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1. Introduction

Suppose G is a connected semisimple Lie group. Then the tempered spectrum of
G consists of families of representations induced unitarily from cuspidal
parabolic subgroups. Each family is parameterized by the unitary characters of a
Cartan subgroup. The Plancherel theorem expands Schwartz class functions on
G in terms of the distribution characters of these tempered representations. Very
roughly, for f in the Schwartz space l(G), we can write

where Car(G) denotes a complete set of representatives for conjugacy classes of
Cartan subgroups of G and

Here O(H : x) denotes the distribution character of the representation 03C0(H : x)
corresponding to ~~ H, R(x) f is the right translate of f by x E G, and m(H : x) dx
is the Plancherel measure corresponding to 03C0(H: X).

Suppose that G has finite center and that f E CC( G) is K-finite where K is a
maximal compact subgroup of G. Fix H ~ Car(G). In [HC2,3,4] Harish-

Chandra used Eisenstein integrals to construct wave packets of matrix coeffi-
cients of the representations 03C0(H: X), XE H. He showed that these wave packets
are Schwartz class functions and that fH is a finite sum of wave packets. In
particular, this shows that fH E l(G).
Now suppose that G has infinite center ZG . (For example, G could be the

* Partially supported by NSF Grant DMS 88-02586.
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universal covering group of one of the non-compact simple Lie groups of
hermitian type.) Let K be a maximal relatively compact subgroup. That is,
ZG - K and KIZG is a maximal compact subgroup of G/ZG . Then there are no
K-finite functions in F(G). However the set (G)K of K-compact functions, those
with K-types lying in a compact subset of K is dense in (G) [Hl]. Let
H E Car(G). Then for every tE (G)K, fH again decomposes naturally as a finite
sum of wave packets. A new feature of the infinite center case is that for

f ECC(G)K’ fH and the wave packets into which it decomposes are not necessarily
Schwartz class functions. This is because of interference between different series

of representations when a principal series representation decomposes as a sum
of limits of discrete series. When G has infinite center, these limits of discrete
series can be actual limits along continuous families of relative discrete series
representations, and so occur in a non-trivial way in the Plancherel formula in
the terms corresponding to different Cartan subgroups. This means that for
f ~ (G) there are matching conditions between the terms fH, H ~ Car(G), which
are necessary in order that the sum be a Schwartz class function when the

individual terms are not. These matching conditions generalize those of H.
Kraljevié and D. Milicic for the universal covering group of SL(2, R) [KM].
The purpose of this paper is to define and study "elementary mixed wave

packets." These are finite sums of wave packets which patch together to form
Schwartz class functions. They should be thought of as the basic building blocks
from which Schwartz class functions are formed in the infinite center case. In this

paper we first study in detail the identities relating the characters of different
families of tempered representations. These identities are used to give the
matching conditions which are the main feature in the definition of elementary
mixed wave packets. We then show that every f ECC(G)K is a finite sum of

elementary mixed wave packets. Finally, we show that elementary mixed wave
packets satisfy a condition which is necessary for them to be Schwartz class. The
asymptotic analysis required to complete the proof that they are Schwartz class
is deferred to another paper. This paper is a continuation of the study of the
Plancherel theorem and Schwartz space for general reductive Lie groups in
[Hl, 2] and [HWI-5].

In order to explain the results of the paper more precisely and with a
minimum of technical notation, we will assume for the remainder of this
introduction that G is a simple, simply connected, non-compact real Lie group
of hermitian type. Let K be a maximal relatively compact subgroup of G. Then
K = K i x V where K 1 = [K, K] is compact and V ~ R is a one-dimensional
vector group in the center of K. Then {eh: h ~ i v*} gives a one-parameter family
of one-dimensional characters of K. Now let P = MAN be a cuspidal parabolic
subgroup of G and H = TA a Cartan subgroup of G with T z K a maximal
relatively compact Cartan subgroup of M. The characters eh, h E iu*, give
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characters of T by restriction. Thus each ~ ~ T lies in a continuous family of
characters of T of the form {x ~ eh : h ~ i *}. Each character in the family
corresponds to a relative discrete series or limit of discrete series representation
n(M : h) of M. Let 03BB(h) E i t* denote the Harish-Chandra parameter of 7r(M : h), let
 be a Weyl chamber of it*, and let D= {h~iu*: 03BB(h)~}. Then -9 is an open
interval and is unbounded just in case the representations 03C0(M: h), h ~ D, are

holomorphic or anti-holomorphic relative discrete series. Now

is called a continuous family of representations of G corresponding to H.
Let 03A6M denote the set of roots for (mc, te) and choose a set 03A6+M of positive

roots so that there is a unique non-compact simple root 03B2. We will use
h H ~03B2, h~ to identify iv* ~ R. Fix ~ ~ H and let

If there is a compact root aEFo, then 03BB(h), 03B1&#x3E; = (03BB(0), 03B1) = 0 for all hEiv* so
that the Plancherel function m(H : h : v) corresponding to n(H : h : v) is zero for all
h e in*, v E a*. In this case the family plays no role in the Plancherel formula.
Thus we assume that Fo contains no compact roots. Then 03BB(h) is regular for
small h ~ 0 and so there are Weyl chambers  ± of it* so that 03BB(h)~+ for small
h &#x3E; 0 and 03BB(h) ~  - for small h  0. (Of course if Fo = 0, then 03BB(0)~ = -.)
Now each F ~ Fo is a strongly orthogonal family of non-compact roots of M

and so corresponds to Cartan subgroups HM,F of M and HF = HM,FA = TFAF of
G. We identify roots of HF with those of H via the Cayley transform cF
corresponding to F. Let PF = MFAFNF be a cuspidal parabolic subgroup
corresponding to HF. Then for each F ~ Fo, TF ç; T and we define xF E TF to be
the restriction of ~. Let n(F : h) be the relative discrete series representation of MF
corresponding to XF Q eh and define

Let 0398(F:h:vF) be the character of 03C0(F:h:vF). In Theorem 3.11 we prove the
following character identities relating the characters 8(F: h: VF). Fix E ~ Fo.
For every E ~ F ç Fo, aE ç; aF and we can identify a*F ~ a*E 0 RIFBEI by
vF H (vE, (03BC03B1)03B1~FBE) where VE is the restriction of vF to aE and J1a = ~vF, 03B1~, oc e FBE.
Write (vE, 0) for the element (VE’ (03BCa)03B1~FBE) with J1a = 0 for all a e EBF and define a
differential operator on a*F by DFBE = i ’1:rxEFBE ~/~03BC03B1. For F c Fo, let Fc = FoBF.
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THEOREM 1.3. Fix E z Fo. Then for all k  0,

for all vE E a:. Here for all p  0, c, = (d/dx)P tanh(x/2)lx=0.

Note that 03BBF0(0) is regular so that limh~0 O(Fo : h : vFo) = limhio O(Fo : h : vFo) for
all c- a* . Further, cl = 2, so that when |F0BE| = 1 and k = 0, (1.3) is just
Schmid’s identity [S]:

lim e(E : h : vE) + lim O(E : h : vE) = 8( F 0 : 0 : (vE, 0))
h(0 hT0

for all VE E a*
Wave packets of Eisenstein integrals corresponding to a continuous family

{03C0(H:h: v): h ~ D, v E a*} are defined as follows. Fix 03C41,03C42 ~ If with the same Z.
character as x and let W be a finite-dimensional complex vector space on which
K acts on the left and right by (Tl, T2). For h e in*, let Ti,h =,ri 0 e h i = 1, 2. In
[HW5] we defined Eisenstein integrals E(P): uê x at x G ~ W which are holo-
morphic in h and v and are (03C41,h, 03C42,h)-spherical functions of matrix coefficients of
the representations 03C0(H: h : v) when h ~ D, v E a*. Then we defined wave packets
of the form

where m(H : h : v) dv dh is the Plancherel measure corresponding to 03C0(H: h : v) and
a : D x a* ~ C is a jointly smooth function of h and v which extends smoothly to
cl(D) x a* and is rapidly decaying at infinity in both variables. It was proven in
[Hl, 2, HW5] that every K-compact Schwartz function is a finite sum of wave
packets of this type and that an individual wave packet 03A6(H:D) is Schwartz
class if and only if a(h : v) has zeros of infinite order at the finite endpoints of the
interval D and if a(h : v)m(H : h : v) is jointly smooth on D x a*. Finite endpoints
of D correspond to limits of discrete series and points (h, v) ~ D x a* at which
m(H : h : v) fails to be jointly smooth correspond to reducible principal series
representations which decompose into limits of discrete series which are actual
limits along continuous families of relative discrete series representations.
Now elementary mixed wave packets are defined roughly as follows. (See (4.1)
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for the precise definition.) Fix a matching family {03C0(F:h: vF): F ~ Fo} as in (1.2)
such that the Plancherel function m*(Ø: h : v 0) defined in (4.5) is jointly smooth
at (0,0)~ in* x a0. Suppose for each F ç Fo we have 03A6(F): in * x a*F x G ~ W
satisfying the following conditions. First, let 03A6±(F) denote the restric-

tion of C(F) to D± x a*F x G where D±={h~in)*:03BB(h)~±}. Then there are
finitely many Eisenstein integrals Ei:t(PF) corresponding to the family
{03C0(F:h:vF):h~D±,vF~a*F} and smooth, rapidly decreasing functions ai as in
(1.4) so that for all h ~ D±, vF~a*F, x~G,

Second, there are a small neighborhood U of 0 ~ in* and a compact subset
cv c U so that

U must be small enough that U c D+ ~ D- ~ {0} and m*(Ø:h:v) is jointly
smooth on U x a0. Finally, the functions 0(F) must satisfy the matching
conditions of (1.3). That is, fix E ~ Fo . Then for all k  0,

lim (~/~h)k03A6(E: h : vE : x) + (-1)|Ec| + 1 1im (~/~h)k03A6(E:h:vE: x)
h(0 hT0

for all VE E a*E, x E G where the DFBE, CIFBEL are defined as in (1.3). Then we say that

is an elementary mixed wave packet. If w E W* we say that

is a scalar-valued elementary mixed wave packet.
Note that if Fo = 0, then (D is a single series wave packet of the type defined

in (1.4) and is Schwartz class since we can assume the neighborhood U of 0 E in *
containing the support of 03A6(Ø) is small enough that U ~ D+ = D- and that
m(Ø: h : v 0) in jointly smooth in U x a0.
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In this paper we will prove the following theorems.

THEOREM 1.6. Every f ~(G)K is the sum of finitely many scalar-valued

elementary mixed wave packets.

Suppose 03A6(x) is defined as in (1.5d), and for h E in* define

THEOREM 1.8. Let C(x) be an elementary mixed wave packet. Then

(h, x) ~ 03A6(h: x) is jointly smooth on in* x G.

This is the first step in proving that 03A6 is a Schwartz class function on G
because of the following proposition which is proven in Section 2. Let Ao be the
split part of the Iwasawa-Cartan subgroup so that G = K cl(A+0)K is the Cartan
decomposition of G. Define 03C3 and E as in (2.2).

PROPOSITION 1.9. Suppose F: in* x G ~ W is (7: 1,h’ i2,h)-spherical and define

Then F(x) is a Schwartz class function on G f and only if

(h, x) - F(h : x) is jointly smooth on iv* x G

and

sup (a)-1(1 + u(a)Y(1 + |h|)r F(h; D : D1; a; D2)~  00

h~in*,a~cl(A+0)

for all r  0, constant coefficient differential operators D on in* and

Dm D2 ~u(gC).

Theorem 1.6 is proven roughly as follows. Recall the Plancherel theorem gives
us a decomposition of f E CC( G)K as

We can define a similar decomposition of elementary mixed wave packets even
though we do not know they are Schwartz class. Let
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as in (1.5). For H E Car(G) let

S(H) = (F z Fo: HF is conjugate to HI.

Then we have

where

Note that for all F ç; F 0, dim AF=dim AØ+|F| so that S(H)=Ø and
~H(x) = 0 if dim A  dim A0 or if dim A = dim A0 and H is not conjugate to
HØ.

Order Car(G)=H1, ..., Hk} so that 0=dim A1  ...  dim Ak. Now H1 is
relatively compact, so for all (03BB, ~) E X(Tl), m*(H1: h : v) is jointly smooth. Let
f ~(G)K. We start by defining finitely many elementary mixed wave packets
~1,i(x), i~I1, corresponding to elements (03BB1,i,~1,i)~X(T1) so that

Assume that for 1  d  p  k-1 we have constructed finitely many elemen-
tary mixed wave packets 4Jd,i(X), i~Id, corresponding to elements

(03BBd,i, ~d,i)~X(Td) so that for all 1  d  p,

Then we show that there are finitely many elementary mixed wave packets
~p+1,i(x), i~Ip+1, corresponding to (03BBp+1,i,~p+1,i)~(Tp+1) so that

Let 1  d  p. Since dim Ad  dim Ap+1 and Hd is not conjugate to Hp+1,
~P+1,iHd(x) = 0 for all i E Ip+1 and so we also have
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Now by induction we have a finite collection of elementary mixed wave
packets

so that for all 1 dk,

Thus

Let 03A6(x) be an elementary mixed wave packet and write

as in (1.7). In order to prove Theorem 1.8 we must show that for each F g Fo,

is smooth on cl(D±) x G and compute

for any differential operator D on iv* x G. Then we must show that

In order to do this we need to study the Plancherel functions m*(F : h : vF) which
for F ~ 0 are not jointly smooth at (0,0) E iu* x a*F. For h ~in*, vF~a*F, write

What we prove in Section 5 is that there are functions g(F : h : vF : x), F - Fo,
which are jointly smooth on cl(D±) x a*F x G and satisfy matching conditions
similar to those satisfied by the 03A6(F:h: vF : x), F z Fo, and a constant c ~ 0
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independent of F so that

Now it is a calculus exercise to compute D03A6±F(0: x). Formula (1.10) follows from
the matching conditions satisfied by the functions g(F), F 9 Fo. Formula (1.11)
will also be needed for the proof that 03A6(h:x) satisfies the estimates of (1.9).
The organization of the paper is as follows.
In Section 2 we review definitions and theorems from [Hl, 2, HW5], prove

(1.9) in Proposition 2.8, and improve the a priori estimates for Eisenstein
integrals given in [HW5] in Theorem 2.21.

In Section 3 we prove the character identity (1.3) in Theorem 3.11 and derive
some consequences which will be needed to prove (1.8).

In Section 4 we define elementary mixed wave packets in (4.1) and prove (1.6)
in Theorem 4.2.

In Section 5 we study the Plancherel functions m(H : h : v) and prove (1.11) in
Theorem 5.3.

In Section 6 we prove some technical results about Plancherel functions for

the universal covering groups of symplectic groups which are needed in

Section 5.

In Section 7 we prove the calculus result (Theorem 7.2) which is needed to
prove (1.8) once the elementary mixed wave packets are written in the form
given by Theorem 5.3.

2. Preliminaries

Suppose G is a connected reductive Lie group. Fix a Cartan involution 0 as in
[W] and let K denote the fixed point set of 0. Then the center ZG of G is
contained in K, and K is the full inverse image of a maximal compact subgroup
of the linear group G/ZG. The following structural result was proven in [HW5].

PROPOSITION 2.1. K has a unique maximal compact subgroup K1 and has a
closed normal vector subgroup V such that K = K1 x V and Z = ZG n V is co-
compact in both V and ZG.

Let g = f + p be the + 1 eigenspace decomposition under 0. (For any Lie
group G we will use the corresponding lower case German letter g to denote the
real Lie algebra of G.) Choose a maximal abelian subspace ao c p and a positive
restricted root system 03A6+ = 03A6+(g, ao). Let p = 1/2 03A303B1~03A6+ m(a)a where m(a) is the
dimension of the root space of g corresponding to a. For x ~ G, define H(x) E ao
using the Iwasawa decomposition, x E K exp(H(x))No . Then the zonal spherical
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function on G for 0 E a* is

Now decompose x E G as x = v(x)k1(x)exp 03BE(x) where v(x) e E k1(x) ~ K1, and
03BE(x) E p. Polynomial growth in G is determined by the function

where 03C3v(x)=~v(x)~ and 03C3(x)=~03BE(x)~. Let W be a Banach space and

f E C~(G: W). If D1, D2 ~u(gc) and r  0, define

The Schwartz space is

We write W(G) = W(G: C).
For f E (G : W), h E in*, x ~ G, define

Let G1= {x e G: x = k exp(03BE) for some k e K1,03BE e p}. For any finite-dimensional
real vector space E, let D(E) denote the constant coefficient differential operators
on E.

PROPOSITION 2.4. f ~ (G:W) if and only if f ~ C~(in* x G:W) and for all
r  0, D ~ D(in*), D1, D2 ~ u(9c),

sup -1(x)(1+03C3)(x))r(1+|h|)r~f(h; D :D1; x; D2) ~  00.

h~in*,x~G1

Proof. This follows from [Hl, 2.14] using the duality of (in*) and (V) via
the Fourier transform. ~

LEMMA 2.5. Let Ari be the positive Weyl chamber for Ao. Then

G1 ={vk1ak2v-1: v ~V, k1, k2 E K1, a ~ cl(A+0)}.

Proof Let XE Gl. Since G = K cl(Aô )K and K = VK1, we can write
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where i

Let il, i2 e K. For i = 1, 2, let 03C41i e K1 dénote the restriction of 03C4i to K1 and let
hi ~ in* so that 03C4i(vk)=ehi(v)03C4i(k) for all reK k~K. Let W = W(03C41:03C42) be the
finite-dimensional subspace of L2(K 1 x K 1 ) on which K1 acts on the left and
right by (7:L 03C41 2). The action of K1 on W extends to an action (03C41,03C42) of K by

for v,, V2 E V, kl, k2 E K1, w E W For any h E ut, write 7:i,h = 7:i Q eh. Then (7: l,h, 7:2,h)
is a double unitary representation of K on W for all hEiu*. We will say
F:iu* x G ~ W is (03C41,h,03C42,h)-spherical if for all kl, k2 E K, x E G, hein*,

LEMMA 2.7. Suppose F is a (03C41,h, 03C42,h)-spherical function. Let D ED(iD*). Then for
all D,, D2 E u(gC) there are finite subsets F1, F2 c u(gc) such that

for all k1, k2EKl, v ~ V, a E Ao .
Proof. For all h E iv* we can write

Thus for all D ~ D(in*) we have

Now there are finite subsets FI, F2 c u(gc) and continuous functions ai, bi on
K/Z so that Dk1=03A3D’i~F1 ai(k)D’i and Dk2=ED"i~F2 bi(k)D"i for all k ~ K. Let
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Then we have

PROPOSITION 2.8. Suppose F ~ C’(iio* x G : W) is (03C41,h,03C42,h)-spherical, and
suppose for all r  0, D E D(in*), D1, D2 E OZt(ge) that

sup 1 (a)(1 + u(a»r(l + 1 h I)r ~F(h; D : D 1 a; D2) Il ~  00.

h~in*,a~cl(A+0)

Then if

F~(G:W).
Proof. Combine Lemmas 2.4, 2.5, and 2.7. D

When K is non-compact there are no K-finite functions in (G). The
appropriate generalization in this case is the notion of a K-compact function
defined as follows. For i E K, let

denote the normalized character of the contragredient i* of i. We say f E (G) is
K-compact if there is a compact subset Q of K so that for i E K,

It was proven in [Hl, 2.12] that the space (G)K of K-compact functions is dense
in (G).
The Plancherel theorem expands functions in (G)K as finite sums of wave

packets as follows. (For details, see [Hl,§3]. Some definitions have been
changed slightly for convenience.)

Let H = TA be a 03B8-stable Cartan subgroup of G and let P = MAN be a
parabolic subgroup associated to H. Let 03A6M = 03A6(mc, tc) denote the roots of mc
with respect to tC, 03A6+M a choice of positive roots. Let pM denote the half sum over
03A6+M. For h~in*={h~if*:h(t1)=0}, set hM(h) = hlt. Let

Let
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For 03BB ~ 039BM,1 set

and let

Then for (À, x) E X(T), h E in*, let 03BB(h) = 03BB + hM(h) and x(h) = x Q9 eh|ZM(M0). Then if
03BB(h) is regular we will write 03C0(h) for the relative discrete series representation of
M° with Harish-Chandra parameter 03BB(h). For v in a* we set

and let

Z is a central subgroup of ZM(M°) so that each XE ZM(M0)^ has a Z-character
(X). Let

Then all K-types of the representation 03C0(H:03BB:03BB:03BB:v) lie in K(X Q9 eh) =
{03C4h=03C4 ~ eh. T ~ k(~)}.
For (03BB, /)eX(T), r,, 03C42 ~ k(~), x e G, and f~(G), define

where

Here R(x) f is the right translate of f by x and m(H: Â: x : h : v) is the Plancherel
function corresponding to 03C0(H:03BB: x : h : v). (See (4.5) for the definition.) We call
f(H:03BB:~:03C41:03C42) a wave packet associated to f. The Plancherel theorem will
expand f in terms of these wave packets.

Let Car(G) denote a complete set of representatives for the 03B8-stable Cartan
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subgroups of G. Fix H = TA E Car(G). Write t = t1 $ t2 where t, = t n f, and t2
is the orthogonal complement of tl with respect to the Killing form. Let

that = {03BB ~039BM,1: Âlt2 =01. Then for 03BB ~ 039BM,1, there is a unique 03BB0~039BM,0 suchthat {03BB + hM(h) : h E iv*l = (Ào + hM(h) : h E in*). Let Xl = {h E in*: hM(h) = 0}. For
03BB0 E AM,o, define an equivalence relation on X(03BB0) by x - x’ if x’ = x Q eh for
some h ~ X1. Let [X(03BB0)/X1] denote a complete set of representatives for the
equivalence classes of X(03BB0) with respect to ~. Set X0(T)={(03BB,~):03BB~039BM,0,
x~[X(03BB0)/X1]}. Define an equivalence relation on Xo(T) by (03BB, ~) ~ (03BB’, x’) if
there is w E W(G, H) = NG(H)/H such that 03BB’=w03BB and X’- wX. Let X0(T)/WH
denote a complete set of representatives for these equivalence classes. For
XE ZM(M0)^ define an equivalence relation on K(~) by 03C4 ~ i’ if 7:’ = 7: Q e h for
some h E ST = {h~in* : eh|T = 1}. Let [K(~)/ST] denote a complete set of repre-
sentatives for the corresponding equivalence classes.

THEOREM 2.12. Let f ~ (G)K, x E G. Then

Proof. This is essentially the result proven in [Hl, 3.6]. The only differences
are that first, we have eliminated listing wave packets more than once by
summing over Xo(T)/WH instead of Xo(T). Second, for convenience of notation,
we have absorbed all constants into the definition of m(H:03BB:~:h:v). (See
(5.10).) 0

Let 03A9 be a compact subset of K. Write (G: 03A9)k for the set of all Schwartz
functions with K-types contained in Q. For H = TA E Car(G), let II Il Il be the
norm on i t* coming from the Killing form. Let B be a Cartan subgroup of K.
For i E K, let I I i ~ = ~03BC~ where 03BC~ib* is the highest weight of i. For m  0, let

and, for XE ZM(M0)^, let

LEMMA 2.13. Let SZ be a compact subset of K. Then there is m  0 so that for all
f E (G: Q) K, H = TA E Car(G), (03BB, x) E X o( T), 03C41, i2 E K (X),

for all v E a*, xeG unless (03BB, ~)~Xm0(T), ’r 1, T 2 E Km(x), Ihl  m, IIÀ(h)11 ~  m, and

II7:j,hll ~  m, j = 1, 2. Further, for all m  0, ~~ZM(M0)^, Xm0(T) and Km(~) are
finite sets.

Proof. This follows from [Hl, 3.11]. 1:1
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Wave packets associated to Schwartz functions can be identified with wave
packets of Eisenstein integrals as follows. (For details see [Hl].) First, we extend
the wave packets associated to f to be vector-valued. For 03C41, 03C42 ~K, xeG,
h~in*, f~(G), define

Then F(h : x) = F( f : 03C41:03C42: h : x) takes values in W = W(03C41: 7:2) and is (03C41,h, t2,h)-
spherical. Now for (À, X) E X(T), set

Then

and

Now let D be a connected component of {h e in* : ~03BB(h), 03B1&#x3E; ~ 0 for all a e 03A6+M}.
Holomorphic families of spherical functions of matrix coefficients of the

representations {~(h) ~ 03C0(h): h ~D} of M+ = ZM(M0)M0 are defined as follows.
For h e ç¿, let S(M+ : W : h) be the set of all 03A8(h): M+ ~ W such that

and for each w* E W*,

x ~ ~03A8(h: x), w*) is a finite sum of matrix coefficients of x(h)Q9n(h). (2.16b)

Now let F(M~:W)=(M~:03BB: ~:D:W) be the set of all 03A8~C~(D*CXM~:W)
such that

T(h) E S(M~: W : h) for all h ~D, (2.17a)

h ~ 03C8(h: m) is holomorphic on né for all m E Mt, (2.17b)
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and

03A8 satisfies a moderate growth condition.

and define the Eisenstein integral E(P : W) : ut x at x G ~ W by

Let P(in* x a*) denote the set of all polynomial coefficient differential

operators on in* x a*. For a E C~(cl(D) x a*) and D E P(iv* x a*) define

Then let

(D x a*)o = {03B1 E C~(cl(D) x a*) : Il a Il D  00 for all D E P(in* x a*)I.(2.19b)
Now the following theorem was proven in [H1, 8.3].

THEOREM 2.20. Let f E (G). Then there are finitely many ’Fi E (M~: W),
oci E (D x a*)o so that

for all (h, v, x) E cl(D) x a* x G.

Finally, we need to improve the growth estimates for the Eisenstein integral
which were proven in [HW5] to give bounds which do not blow up along the
boundary of D.

THEOREM 2.21. Let W E (M~: W). For all D E D(in* x a*), gl, g2 E u(gc), there
exist constants C, r  0 so that

for all h~D, vEa*, xEG.

Suppose 4Y(H : h : v : x) = a(h : v)E(P : W : h : v : x) for some oc E (D x a*)o,
’II E f/(Mt: W).
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COROLLARY 2.22. (h, v, x) - 03A6(H: h : v : x) has a Coo extension to

cl(0394) x a* x G. Further, for all D E D(iv* x a*), r  0, gl, g2 E u(gc), there are
constants C, s  0 so that for all x ~ G, h ~D, v E a*,

Proof. We know from [HWS, 6.7] that E(P : W : h : v : x) extends to be a jointly
smooth function of (h,v,x)~in*x a* x G. By definition, each a E (D x a*)o
extends to be smooth on cl(D) x a*. Thus the first part of the corollary is clear.
Now

can be bounded by a finite number of terms of the form

where D’, D" E D(iv* x a*) depend on D. But using Theorem 2.21 there are C’,
s  0 so that this term can be bounded by

|03B1(h: v ; D’)|C’(x)(1 + h|)r+s(1 + v|)r+s(1 + ù(x))s.

Finally, by definition of (D x a*)o, there is C so that this last term is bounded
by CE(x)(1 + 03C3(x))s. ~

In order to prove Theorem 2.21 we need the following result about the
function 03C3 controlling growth in G/Z.

THEOREM 2.23. Let P = MAN be a parabolic subgroup of G. For any x E G,
decompose x = kman with respect to the decomposition G = KMAN. Then there
exists a constant C so that 03C3(m)  C(1 + Q(x)) for all x ~ G.

Since u factors through G/Z, it is enough to prove the theorem in the case that
G is a semisimple group of adjoint type. Thus we can assume that there is n so
that G c SL(n, C) and K c SO(n). Further we can assume that P is contained in a
standard block upper diagonal parabolic subgroup so that
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where at are positive real numbers. For X = (xij)~M(n, C), define 03C4’(X)=max+x|ij|
and 7:(X) = log(1 +03C4’(X)).

LEMMA 2.24. 03C4(XY)03C4(X)+03C4(Y)+log n for all X, Y~M(n,C).
Proof. This follows easily from the fact that 03C4’(XY)  n03C4’(X)03C4’(Y). ~

LEMMA 2.25. There are constants C1 and C2 so that 7:(x)  C1(1+03C3(x)) and
03C3(x)  C2(1 + 03C4(x)) for all x E G c SL(n, C).

Proof. Write G = KAoK where all elements of Ao are diagonal matrices with
positive real entries. For all k E K c SO(n), 7:’(k)  1 so that 7:(k)  log 2. Thus for
all x E G, kl, k2 E K, using Lemma 2.24,

03C4(k1xk2)  2 log n +03C4(k1)+03C4(x)+03C4(k2) 2 log n + 2 log 2+03C4(x).

Thus there is C so that for all x =k1ak2 ~ KA0K, 03C4(x)C+,03C4(a) and

03C4(a) = 03C4(k-11xk2-1)  C + 7:(x). But u(x) = u(a). Thus it is enough to prove the
lemma when x = a e Ao. Suppose a is the diagonal matrix with entries e03BB1, ..., e03BBn
where the 03BBi are real numbers and 03A3ni=1 03BBi=0. Reorder so that

03BB1  ...  03BBk  0  03BBk+1  ...  Àn. Now max 03BBi =03BBn and max IÀil |= max{03BBn,
|03BB1|. Further,

Thus

Thus
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Further,

But there are constants C and C’ so that 03C3(a)  C maxlâil | and max|03BBi|  C’u(a).
Thus 7:(a)  log 2 + C’u(a) and 03C3(a)  Cn7:(a). D

LEMMA 2.26. There is a constant C so that for all a E A and m E M,

where the diagonal blocks are of size nz, 1  i  k. Reorder so that

max|03B1i-1|=|03B1=1| Now deta=l so that a - "2/ni ... a"k/n, . Further, for each
1 i 1  k, lai = Idet Ai|1/ni and

Idet Ai|  ni! max|ars|ni  ni!03C4’(ma)ni

where ars are the entries of Ai. Thus there are constants C’ and r so that

C’03C4’(ma)r. Thus there are constants C" and C so that

i(a -1) = log(l + la 1)  log(l + C’03C4’(ma)r)  C" + r log(1 + 03C4’(ma))  C(1 + 7:(ma)).

0

PROOF OF THEOREM 2.23. Since u(kman) = u(man), it is enough to prove the
theorem when x = man E P. Further, by Lemma 2.25, it is enough to prove that
i(m)  C(l + 7:(x)) for all x = man E P. But writing

we see that 03C4’(ma)  03C4’(man) so that 03C4(ma)  03C4(man). Finally, using Lemmas 2.24
and 2.26,
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We now begin the proof of Theorem 2.21. Let OJ be a relatively compact
neighborhood of 0~in* and write DC=D+i03C9. Write hc--9c as h=hR+ihI
where hR, h, E in* and write v E at as v = VR + iv, where VR, v, E a*. We will prove
the following theorem.

THEOREM 2.27. Let 03A8~(M~: W). For all DE D(iu* x a*), gi, g2 E O//(ge),
there exist constants C, Co, r  0 so that

LEMMA 2.28. Let 03A6: uê x G ~ W be any smooth family of (03C41,h, 03C42,h)-spherical
functions. Then given Do E D(in*) and g1, g2 E 03BC(gC), there are finite subsets S of
D(in*) and S’ of u(gc) and an r  0 so that

for all (h, x) E ut x G.
Proof. A similar estimate is proven in [HCI, Lemma 17] in the case that the

parameter h does not occur. In extending the estimates to our situation it is only
necessary to observe that terms of the form ~D(d03C4h(03BA))~ II where D E D(in*) and
K E u(fC) grow polynomially in h. D

Write 03A8v(h:x)=03A8(h:x)e(iv-03C1p)Hp(x). For any x E G, decompose x as

x = K(x)p(x)a(x)n(x) using G = KMAN. Also write log a(x) = Hp(x).

LEMMA 2.29. Let D E D(iv*) and g E u(gc). Then there are finite subsets S of
D(in*) and S’ of u(mC) and constants C, Co, r  0 so that

Proof. Let coK be a compact subset of K such that for any continuous function
on K/Z,

Then we can write
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But

so there are a finite subset S, of D(in*) and a finite subset S2 of O//(ge) so that

Now as in [HW5, 9.5], we write g’ = xvv’b where K E u(fC), v E u(mC), v’ E S(aC),
and b E u(nC). Let S’ denote the set of all v which occur in the decompositions of

g’ E S2 . Then for all m ~ M, a E A,

where P is a polynomial in v. Now d03C41,h(k) and all its derivatives in h grow
polynomially in h, so that there are S as above and C, r  0 so that for all

D" E SI’

Now

Enlarge S so that S 1 c S. Thus,

Now as in [HW5,9.6], there is C0  0 so that |vIHp(xk)|  C0|vI|03C3(x) for all

k~K. Further,
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LEMMA 2.30. Let D E D(in*). Then there are constants C, c, r  0 so that for all
x e G, h e né

for all x, k, h. But h - eh(K(k -1 xk)) is a holomorphic function of h. If we estimate
its derivatives in h as in [HW5, 9.10] using radius (1+03C3v(x))-1, this gives the
required estimate. D

When we decompose x = k(x)03BC(x)a(x)n(x) the components x(x) and 03BC(x) are
not unique. Write M in its Cartan decomposition as M = KM cl(A+M)KM. We will
assume that the decomposition is chosen so that J1(x) = aM(x)KM(X) where
aM(x)~cl(A+M) and xM(x) E KM has QV(xM(x)) bounded independent ofxeG.

LEMMA 2.31. Let DeD(fD*), v~u(mC). Then there are constants C,r  0 so
that for all x~G, k~K, h~DC,

Thus it is enough to bound terms of the form 039EM(aM(xk))-1 ~03A8(h; D1: v; aM(xk)) Il
and |D2eh(xM(xk))| where D1, D2 ED(iu*). But

|D2eh(kM(xk))|  C(l + 03C3v(kM)xk)))re|hI|03C3v(kM(xk))~

is bounded since UV(KM(xk» is bounded and Ih¡1 is bounded in éoc . Now for any
a~ cl(A+M) and h~Dc,

This is proven for the case D, = 1 in [HWS, 5.12]. In fact the same proof works
for any D 1 since the proof j ust reduces to the case that M is simple, connected,
non-compact, and of hermitian type. In this case the estimates were proven in

[HW3,4] with derivatives in the h variable included. Now for any a~ cl(A+M),
039EM(a)-1e-03C1M(a)  1. Thus
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But 03C3(aM(xk))=03C3(03BC(xk))  C(l +03C3(xk)) using Theorem 2.23. Finally, 03C3(xk)=03C3(x)
for all k. D

PROOF OF THEOREM 2.27. Combining Lemmas 2.28-2.31, for DED(iu*)
and gl, g2~u(9c) we have constants C, r, c, c° so that for all h~DC, v~aC, and
x~G,

~E(P:03A8:h; D:g1;x;g2)~

 C(1 +|h|)r(1 +|v|)r(1 + 03C3v(x))r(1 + 03C3(x))r039E(x)ec0|vI|03C3(x)e|hI|(c+03C3v(x)).

Since |hI| is bounded on DC, the term e|hI|c is bounded by a constant. Since

E(P:03A8:h;D:v:g1;x;g2) is holomorphic in v we can estimate derivatives in v
using the same method as in [HWS, 9.10]. This gives us additional factors of
(1 +03C3(x)). Finally, the terms with 6(x) and 03C3v(x) can be combined and bounded
by a term of the form (1 + 6(x))r. D

3. Character identities

Let H = TA be a 03B8-stable Cartan subgroup of G, P = MAN a parabolic
subgroup associated to H. Fix (À, x) e X(T) as in (2.10). Let  be a Weyl chamber
of i t* with respect to 03A6M. Then we will write 03C0(h:) for the relative discrete
series representation of M° with Harish-Chandra parameter À(h) if 03BB(h)~, and
for the limit of relative discrete series representation from  corresponding to
À(h) if À(h) is a boundary point of . Now for v in a* we set

03C0(H:h: : v) = IndGZM(M0)M0AN(~(h) Q9 n(h: CC) Q9 ely Q9 1) and let 8(H: h: CC: v) be
the character of 03C0(H:h::v). By coherent continuation, we can extend the
definition of 8(H: h : : v) to allow h to be any element of in*. However it is the
character of a tempered representation of G only when À(h) e cl().

Let 03A6(03BB)={03B1~03A6M:~03B1,03BB~=0}.

LEMMA 3.1. 03A6(03BB) is a subroot system of 03A6M of type A1 for some k  0 and every
root in 03A6(03BB) is non-compact. Further, if  is any Weyl chamber with 03BB~ cl(), then
for any â e 03A6(03BB), either a or - a is a simple root for the positive system of 03A6M
corresponding to .

Proof. 03A6(03BB) is clearly a subroot system of 03A6M. But since 03BB~039BM,1, and every
compact root of 03A6M is in 03A6M,1, every root in 03A6(03BB) is non-compact. But if the sum
of two non-compact roots is a root, it is compact. Thus the sum of two roots in

03A6(03BB) cannot be a root, so 03A6(03BB) is of type A1. Now fix CC with À e cl(). Let 1B denote
the simple roots for the positive system 03A6+M of 03A6M corresponding to . Then
a e 03A6+M is in 03A6(03BB) just in case a is a sum of simple roots in 1B n 03A6(03BB). But as above,
no non-trivial sum of roots in 03A6(03BB) is a root. Thus 03A6(03BB) n 03A6+M = 03A6(03BB) n 0. D
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Let Fo = 03A6(03BB) n 0’. Then any subset F of Fo is a strongly orthogonal system
of non-compact roots in Om. Let HM,F denote the corresponding Cartan
subgroup of M. That is, the complexified Lie algebra of HM,F is obtained from
that of T by Cayley transforms corresponding to the roots in F. Then

HF=HM,FA=TFAF is a Cartan subgroup of G. Let PF = MFAFNF be a

parabolic subgroup with split component AF . Set M*F = MF n M°.

LEMMA 3.2. For any F ~ F0, ZMF(M0F)=ZM(M0)ZM*F(M0F). Further,

ZM*F(M0F) ~ T0 and ZM(M0) n ZM*F(M0F) ~ ZM0.
Proof. Let b be a fundamental Cartan subalgebra of g and let SOS(H) denote

the set of strongly orthogonal non-compact roots of (gc, bc) used to define the
Cayley transform c with c(bc) =bC. Then, as in [Hl, § 10], since F z 03A6MB03A6M,1,
SOS(HF)=SOS(H)~c-1F. Now TF g T and the first statement of the lemma
follows using the argument in [Hl, 10.14]. But

Finally,

Let F ~ Fo . Because of Lemma 3.2 we can define data for tempered
representations of G corresponding to HF as follows. Let 03BBF=03BB|tF. As in

[H1,§9], an ordering 03A6+MF can be chosen so that 03C1MF=03C1M|tF. Thus

03BBF-03C1MF=(03BB-03C1M)|tF. Now since TF ~ T, ÀF-PMF is integral. Further, by (3.4)
below, ÀF is 03A6MF,1 non-singular. Thus ÀFEAM 1. Defin ~0F=e03BB-03C1M|ZM*F(M0F) and
then define a representation of ZF=ZMF(M0F)=ZM(M0)ZM*F(M0F) by
~F=~~~0F· Then (03BBF,~F)~X(TF). For h~in*, set 03BBF(h)=03BBF+hMF(h),
xF(h) = XF Q9 eh. Then for any chamber CC F of it*F, nF(h: CC F) denotes the relative
discrete series or limit from CC F of discrete series representation of M0F with
Harish-Chandra parameter 03BBF(h). When 03BBF(h)~cl(F), v E aF , we define

Finally, we let

when ÀF(h) E cc F and the coherent continuation of the character for arbitrary
hEin*.

Fix Cayley transforms cF: bC ~ 9F,e. We will use these isomorphisms to
identify linear functions on bF,c for any F g Fo. Write F’ = FoBF.
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LEMMA 3.4. Fc= {03B1~03A6+MF: ~03B1, 03BBF~ = 0}.
Proof. 03A6MF can be identified with {03B1 E 03A6M: a 1 FI. Further, using this identifi-

cation, for a 1 F, (a, 03BB~ = ~03B1,03BBF~. D

Given any chamber of it* and a E 03A6M, set 03B503B1() = signer, 03B1), 7: ~. Now let

CC E C(Â), the set of all chambers with 03BB~cl(). Then for all a~03A6+MBF0,
03B503B1() = sign (À, oc). Thus there is a bijection between C(03BB) and

so that e e 03A3 ~ = (03B5) if ea = ea(CC) for all a e Fo. Similarly for any F c Fo there
is a unique chamber F(03B5) with 03BBF~cl(F) and 03B503B1(F)=03B503B1 for all CI. E FC. Given
03B5~03A3, h~in*, v~a*F, set

Note for all a E Fo, ~03BB(h), CI.) = hM(h), 03B1~. Let

Define an equivalence relation on Fo by a~03B2 if 03B1 = Ap. Define

Ba(h) = sign ~hM(h), 03B1~ ~{1,-1, 0}.

LEMMA 3.6. The positive system 03A6+M can be chosen so that a - fi if and only if
Ba(h) = 03B503B2(h) for all h E in*.

Proof. Decompose 03A6M=03A61 ~···~ 03A6k into simple factors. Assume that

1  i  p are the indices such that the subgroup Mi of M° corresponding
to 03A6i is non-compact, simply connected, and of hermitian type. Then

F0 ~03A61 ~ ... ~ (D Assume for 1  i  p that 03A6+i is chosen so that there is a

unique non-compact simple root. Then for any non-compact root 03B1 ~03A6+i,
(a, hM(h)~ = n(03B1)~03B2, hM(h)~ where Pis the non-compact simple root and n(a) &#x3E; 0

is the coefficient of fi in the expansion of a in terms of the simple roots. Thus
Ba(h) = 03B503B2(h) for all h E in*. Let Fi = 03A6(03BB) n 03A6+i. Then each equivalence class is a
union of certain of the Fi and Ba(h) = Bi(h) is independent of a E Fi. Suppose
F1~··· u Fr is an equivalence class. Fix an ordering of 03A6+1 as above. Now for
2  i  r, Ei (h) = 0 if and only if 03B51(h) = 0. Thus there is a = ± 1 such that
Bi(h) = 03C303B51(h) for all h. But if u = -1, we can replace 03A6+i by - 03A6+i. Q

Write Fo = F10~... u Fô where the Fi are the distinct equivalence classes in
Fo. Let 1  i  m and define Jfi = 03B1, a E Fô. Fix hi e in* such that a(hi) &#x3E; 0 for

all a E Fô. For any smooth function f on i n*, define
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Now for all a~Fi0, pick 03BC03B1~a*F0 such that 03BC03B1|03B1=0. 03BC03B1,Cf003B1~=~hi,03B1~
~03BC03B1,CF003B2~ for all P E F 0’ 03B2~03B1. For any F we can consider 03BC03B1~a*F by
restriction from aFO to aF . Now for any smooth function f on a*F, define

Given CI. E F 0 and 03B5~03A3, define Sa8 E ’1: by (s03B103B5)03B2 = 03B503B2, 03B2 ~ a, (S03B103B5)03B1 = - 03B503B1. For
F c Fo and a e FC, let F(03B1) = F u {03B1}. Given VF e a*F, let (vF, 0) e a;(a) be defined by
(VF, 0)|03B1F = vF, ~(vF,0), CF(03B1)03B1~ = 0. Then [Hl, 10.18] can be written as follows.

LEMMA 3.8. Fix F c Fo, CI. E FC n Fi0, 03B5~ 2:. Then for all k  0,

In general, the terms in Lemma 3.8 are not derivatives along continuous
families of tempered representations. The problem is that for an arbitrary e e X,
there may be no h~in* with À(h) E (03B5). For e E ’1:, write

Let

Now if for any 8E E, F c Fo we set DF(03B5) = {h E in* : 8a(h) = 8a for all a E F0BF},
then h~DF(03B5) if and only if ÀF(h) ECCF(B), and D(03B5) = DØ(03B5). Let 03B5~03A30. We will
say that ho E Yti n cl(D(03B5)) is semiregular is ho e Ytj for 1  j  m, j ~ i. We will

say that Yti is a wall of d(03B5) if there are semiregular elements in Yti n cl(-9(8».
Write 03A3i for the set of all 03B5~ Eo such that Yti is a wall of D(03B5). For any h ~DF(03B5),
write O(F : h : v,) for the tempered character O(F : h : E : vF). Now if e E ’1:i, for any
semiregular ho ~i n cl(DF(03B5)) we can interpret (~/~hi)k0398(F: ho : E : VF) as the
limit of (~/~hi)k03B8(F: h:vF) as h - ho, h C- -9F(g), thus as an actual limit of

derivatives along a continuous family of tempered characters. Now the problem
is that even if BE Ei, SaE E ’1:i only if the equivalence class of F 0 containing a has
no other elements.

For any 03B5~03A3, 1  i  m, define 03B5±(i)~03A3 by
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Now for any 1  i  m and 03B5 ~ ’1:i, both of 03B5±(i) E ’1:i, Bis equal to one of 03B5±(i), and
D(03B5+(i)) and D(03B5-(i)) are separated only by the wall i. Fix E gi F. and a

conjugacy class F’ of Fo. Write E(i) = E ~ Fô. For any F such that E 9 F 9 E(i)
define (vE, 0) E aF by (VE, 0)1 QE = VE, ~(vE, 0), CFCI.) = 0 for all CI. E FBE.

THEOREM 3.11. Fix E z Fo, 1  i  m, 03B5~03A3i. Then for all k  0,

The remainder of this section is devoted to the proof of this theorem together
with some consequences which will be needed in Section 7.

In order to prove Theorem 3.11 it is necessary to iterate Lemma 3.8. First, it
will be convenient to work not with O(F : h : ë : v,), but with

where

Now if 03B1~Fc~Fi0 and 03B5~03A3 such that ert = 1, then 03C3F(S03B103B5)=-03C3F(03B5) and

03C3F(03B1)(03B5) = uF(e). Thus in this case, Lemma 3.8 can be rewritten as

Further, if E ~ Fo, 1  i  m, then for E c F c E(i), Fc= (F0BE(i))~(E(i)BF)
where (F0BE(i))~(F0BFio) and (E(i)BF) ~ Fô. Thus 03C3F(03B5+(i))=03A003B1~F0BE(i)03B503B1 and
03C3F(03B5-(i)) = (-1)|E(i)BF|03A003B1~F0BE(i)03B503B1. Thus Theorem 3.11 can be rewritten as
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Suppose as above we write O(F : h : VF) = O(F : h : s : VF) when h E D(03B5). The
point is that on HF, 0(F : h : VF) extends to a smooth function of h~in*. On other
conjugacy classes of Cartan subgroups of course it does not. Now in the case
that the equivalence class of Fo containing a has no other elements, (3.13) can be
interpreted as giving the jumps of O(F : h : VF) and its normal derivatives as h
crosses the wall 03B1. In the general case, (3.14) gives a formula for jumps of
(E:h:vE) and its normal derivatives as h crosses the wall X’i from D(03B5+(i)) to
D(03B5-(i)) in terms of derivatives of families ê(F: h : VF) where E c F 9 E(i). These
are now matching conditions involving only characters of tempered represen-
tations and their derivatives along continuous families of tempered represen-
tations. Thus they will give matching conditions for the Fourier transforms of
Schwartz class functions.

Fix E ~ Fo, a conjugacy class Fo of Fo, elements h0~i, VE~a*E, and k  0.
For any F such that E ~ F z E(i) and ë e X, define

LEMMA 3.16. Let E ~ F ~ E(i). Then for all 03B1~E(i)BF and GE Y- such that
Ga = 1,

Proof. Write

and

By (3.13), we have for any p  0,

for all VF E ai. Thus, differentiating both sides with respect to
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LEMMA 3.17. For any 03B5~03A3, E z F c E(i), d(F:8) = 03A3F~F’~F+(i)d(F’:03B5-(i)).
Proof. Write F+(i)BF = {03B11, ..., ocj. Then the proof will be by induction on r.

If r = 0, then F = F + (i) and d(F:03B5)=d(F:03B5-(i)) since 03B503B1=03B5-(i)03B1 for all a E FoBF.
Assume r  1. Then we can write

using Lemma 3.16 since

Thus using the induction hypothesis,

But now the lemma follows because for any

COROLLARY 3.18. For any 03B5~03A3i, E ç F ç E(i),
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COROLLARY 3.19. For any 03B5~03A3i, E z F - E(i),

Proof. Define d’(F : e) as in (3.15) using 0 instead of 0. Then there is a constant
c = + 1 so that d’(F:8+(i))= cd(F:03B5+(i)) and d’(F:03B5-(i)) = (-1)|E(i)BF|cd(F:03B5-(i))
for all E ~ F s E(i). Thus (3.18) can be rewritten as

Now statements regarding d’ are symmetric with respect to interchanging 03B5+(1)
and 03B5-(i), so we have

Now translate back to d to obtain the result.

LEMMA 3.20. For any E z F 9 E(i),

where the constants i and

Proof. The proof is by induction on |E(i)BF|. If F = E(i), then

d(F:03B5+(i))=d(F:03B5-(i)) and both sides of the equation are 0. Assume that

|E(i))F|= n  1. Combining (3.18) and (3.19) we can write

d(F:03B5+(i))-d(F:03B5-(i))=

Now for F c F’ ~ E(i), IF’BFL odd,

while for F c F" z E(i), IF"BFL even,
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But since 1 E(i)BF"  n, we can use the induction hypothesis to write

where c|F’BF"|=0 if |F’BF"| is even. Thus we can write

Thus is even, and when IF’BFL is odd,

Suppose F c F’ with |F’BF| = 2p+1. Then for 0  q  p -1, there are (2q+1 2q+1)
subsets F" with F c F" c F’ and |F’BF"| = 2q + 1. Thus

LEMMA 3.21. Suppose cp, p  0, are given by C2p = 0, p  0, and

Then for all p  0, cp = (d/ dx)P tanh(x/2)|x= 0.
Proof. Using the recursion relation we can write

Thus



146

LEMMA 3.22. Suppose for p  0, cp = (d/dx)P tanh(x/2)lx = 0. Then for every
2p+ 1

p0, 03A3pq=022q+1(2p+1 2q+1)c2q+1=1.

LEMMA 3.23. Fix E 9 Fo and suppose for each E ~ F ~ E(i) we have complex
numbers al(F) satisfying the following condition. For each E ~ F ~ E(i),

Then

Proof. Write

But in this second term,

But since CIF’BFL = 0 unless |F’BF| and hence |F’BE| are odd,
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But suppose IF’BEI = 2p + 1. Then there are (2q+1 2q+1) sets F with E ~ F c F’,

4. Elementary mixed wave packets

Fix H = TA a 0-stable Cartan subgroup and (À, X) E X(T), il, T 2 E K(~). Let U(O)
be a neighborhood of 0 in in* which is small enough that no h E U(o) is more
singular than h = 0. (See (4.6) for the precise definition.) We assume that the
Plancherel function m*(H:03BB: x:h: v) defined in (4.5) corresponding to (03BB, x) is
jointly smooth as a function of (h, v) E U(o) x a*. As in (3.3) we define Fo and
HF = TFAF, (03BBF, ~F)~X(TF) for every F ~ Fo. Note that for any F c Fo, x and xF
have the same Z-character so that K(~)=K(~F). Let 03C41, 03C42~K(~),
W = W(03C41: 03C42). Suppose for each F c Fo we have a function

Then we will say that

is a ( W-valued) elementary mixed wave packet if the functions C(F) satisfy the
following conditions. First, there is a compact subset OJ c U(0) so that for all
F ç Fo, vF E aF, x~G, h~in*,

Second, let
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DF(03B5) x a*F x G where 03A30, DF(03B5) are defined as in (3.9). Then, using the notation of
(2.17), (2.18), there are finitely many functions 03A8i~y(M~F:03BBF:~F:DF(03B5):W),
03B1i~(DF(03B5) x a*F)0 so that

for all (h,vF,x)~DF(03B5)xa*FxG. Finally, we require that the functions

03A6(F:h: VF:x) satisfy the matching conditions of (3.20). That is, fix E c F 0’ k ;::: 0,
1  i  m, 03B5~03A3i. For E c F ~ E(i) = E ~Fi0, vE~a*E, h0~i~cl(DE(03B5)), x~G,
write

Then we require that for all E ~ F 9 E(i),

where ck, k  0, are defined as in (3.11). Finally, if 03A6 is a W-valued elementary
mixed wave packet and w* E W*, we say that

is a scalar-valued elementary mixed wave packet.

THEOREM 4.2. Every f ~ (G)K is the sum of finitely many scalar-valued
elementary mixed wave packets.

Suppose 03A6(x) is defined as in (4.1 a) and for h ~ i * set

Clearly 03A6(h : x) is (7:1,h’ 03C42,h)-spherical and

In (7.3) we will prove the following theorem.
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THEOREM 4.4. Let 03A6(x) be a W-valued elementary mixed wave packet. Then
(h, x) ~ 03A6(h : x) is jointly smooth on i * x G.

Because of Proposition 2.8, this is the first step in proving that 03A6 ~(G : W).
The estimates needed to complete the proof will be deferred to another paper.
The remainder of this section is devoted to the proof of Theorem 4.2.

Let H = TA be a 0-stable Cartan subgroup of G, (À, x) e X(T). The Plancherel
function m(h : v) = m(H: À: x : h : v) is defined as follows. Let 03A6+ denote a set of
positive roots for 03A6= 03A6(gC, bC) and let 03A6+R = {03B1 ~ 03A6+ : a takes real values on b}.
For 03B1 ~ 03A6+R, let 03A6+03B1 = {03B2 ~ 03A6+: j9L = ca for some c ~ 0}. Let 03A6*R = ~03B1~03A6+R03A6+03B1 and
let D be a connected component of {h ~ i *: ~03BB(h), 03B1~ ~ 0 for all 03B1 ~ 03A6+M}. Then
there is a constant c(H : 03BB : ~ : D) so that for h e D, v e a*, we have

where

and

Here for

is a continuous function of h defined as follows. For a E 03A6+R, let H*03B1 e a be dual to
203B1/~03B1, 03B1~ under the Killing form. Let X a’ 1: be elements of the root spaces
ga, g-03B1 respectively so that 03B8(X03B1) = Y03B1 and [X03B1, Y03B1] =H:. Write Z03B1 = X03B1 - Y03B1 and
set 03B303B1 = exp 03C0Z03B1. Then 03B303B1 ~ ZM(M0). Let 03C103B1 = 1/2 03A303B2~03A6+03B103B2(H*03B1). Then

For 03B1~ 03A6+R, m*03B1(h:v) is clearly jointly smooth on i *  a* except possibly at
points (h, v) where v03B1 = 0 and 03B503B1(h) = 1.
Now fix ho e in*. We want to define a neighborhood U(ho) of ho which is small

enough that no point of U(ho) is more singular than ho in the sense that
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matching conditions satisfied by the characters 8(H: À: x : h : v) at ho will give all
possible matching conditions in U(ho). For any h ~ in*, let 03A6+M(h) =
{03B2 ~ 03A6+M: ~03BB(h), 03B2~ = 0}. Define F0 = 03A6+M(h0) and for F ~ F0 define HF, 03BB(h0)F,
~(h0)F as in (3.3). For each F ~ F0 define 03A6+F,R and m*03B1(F:h:vF), 03B503B1(F:h),
03B1 ~ 03A6+F,R as in (4.5) for HF and (03BB(h0)F, ~(h0)F). Let 03A6+F,R(1:h) =
{03B1 ~ 03A6+F,R : 03B503B1(F:h) = 1}.
For e &#x3E; 0, let U(h0) = U03B5(h0) = {h~in*: Ih - hol  03B5}. We will assume that e is

small enough that for all h e U(ho),

LEMMA 4.7. Define U(ho) as in (4.6), and for F ~ Fo, let

Then for all h E U(ho), 03A6+MF(h) ~ 03A6+MF(h0). Further, let oc E (D + , vo E a;. Then if
m*03B1(F : h: v) is jointly smooth at (ho, vo), it is jointly smooth at (h, vo) for all

h E U(ho).
Proof. Using (3.4) we see that we can identify (03A6+MF(h) with {03B1 ~ 03A6+M : a 1 F and

~03B1, 03BB(h)~ = 0} = 03A6+MF ~ 03A6+M(h). Thus for all h ~ U(ho), using (4.6a), 03A6+MF(h) =
03A6+MF ~ 03A6+M(h) g 03A6+MF ~ 03A6+M(h0) = 03A6+MF(h0).
Now fix a E 03A6+F,R and assume that m:(F: h : v) is jointly smooth at (ho, vo). Then

one of the following possibilities occurs. First, if Ba(F : h0) ~ 1, then by definition
of U(ho), Ba(F: h) ~ 1 for every h E U(ho), so m:(F: h : v) is jointly smooth at (h, vo)
for every h E U(ho). Second, it is possible that 6,,,(F: h) = 1 for all h E iv*. In this
case,

is jointly smooth on in* x a*. Finally, suppose e,,,(F: ho) = 1, but Ga(F: h) is not a
constant function of h ~ in*. Then, as in [H1, 10.3], a must be a root of a simple
factor g 1 of g with G 1 simply connected, non-compact, and of hermitian type.
Let b be a fundamental Cartan subalgebra of g and let SOS(HF) denote the set of
strongly orthogonal non-compact roots of (gc, bc) used to define the Cayley
transform c with C(bC) = 9F,e. Then a’ = c-1 03B1 E SOS(HF). Set
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Then h ~ h03B1 is a non-trivial linear function on in* and 8a(F: h) = cos n(h - h0)03B1.
Now since m*(F:h:v) is jointly smooth at (ho, vo), v203B1 + (h - h0)203B1 divides

03A003B2~03A6+03B1 Thus there are y, 03B3 ~ 03A6+03B1 and a constant c so that

~03BB(h) + iv, 03B3~ = c((h - h0)03B1 + iv03B1) and ~03BB(h) + iv, 03B3~ = ± c((h - h0)03B1 - iv03B1). But now
for h E U(ho), if 03B503B1(F : h) ~ 1, then m:(F: h: v) is jointly smooth. But if

03B503B1(F : h) = cos 03C0(h - h0)03B1 = 1, then (h - h0)03B1 ~ 2Z. Suppose |(h - h0)03B1|  2. Then
there is h’ E U(ho) with 1(h’- ho)al = 1 so that 8(%(F: h’) = -1. But this contradicts
the assumption that 18a(F: h’) - 8a(F: ho)1  1 for all h’ E U(ho). Thus (h - ho)a = 0
so that again m*03B1(F : h : v) is jointly smooth at (h, vo). D

Fix 03B1 ~ 03A6+R such that 8a(0) = 1, but 8a(h) is not identically 1, and use the
notation in the proof of (4.7). Let H’ = T’A’ be the Cartan subgroup of G with
SOS(H’) = SOS(H)B{c-103B1}. Thus c03B1(b’C) = bC where Ca is the Cayley transform
corresponding to a. Write a’ = c03B1-103B1 E 03A6(g, b’) and let P’ = M’A’N’ be a parabolic
subgroup corresponding to H’.

LEMMA 4.8. There is a unique À’ E (i t’)* such that 03BB’ - pm, is integral, 03BB’|t = 03BB,
and (À’, a’) = 0. Further, À’ E AM’,l f and only if (h, v) - m:(h: v) is not jointly
smooth at (0, 0).

Proof. The existence of À’ is proven in [H1, 10.13]. The uniqueness is clear
since restriction to t gives a bijection between {03BB’ ~(it’)*: (À’, a’) = 0} and it*.
Now suppose that m:(h: v) is jointly smooth at (0, 0). Then as in the proof of

(4.7) there are 03B3 ~ 03A6+03B1, c E R, such that ~03BB(h) + iv, 03B3~ = c(h03B1 + iv03B1). In particular,
~03BB, 03B3~ = 0. Write y’ = c-103B103B3. Note 03B3’ ~ 03A6+M’ since the restriction of y to a is a

multiple of a. But

Thus 03B3’ ~ 03A6+M’(0). But 03B1’ ~ 03A6+M’(0) also and ~03B3’,03B1’&#x3E; ~ 0. Thus by (3.1), 03BB’ ~ 039BM’,1.
Conversely, suppose 03BB’ ~ 039BM’,1. Since 03BB’ 2013 03C1M’ is integral, there is y’ ~ 03A6M’,1 so

that ~03BB’, y’) = 0. Hence (À, y) = 0 where y = c03B103B3’. Since 03BB ~ 039BM,1,
03B3 ~ 03A6M,1 = {c03B103B2’: 03B2’ ~ 03A6M’,1, (P’, 03B1’~ = 0}. Thus ~03B3’, 03B1’~ ~ 0 so 03B3 ~ 03A6+03B1. But

and
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since 03B3’ ~ 03A6M’,1 means that ~hM’(h), y’) = 0. Thus

Now 03A003B2~03A6+03B1B{03B1} ~03BB(h) + iv, 03B2~ is real-valued, so that this implies that ~203B1 +v203B1
divides 03A003B2~03A6+03B1~03BB(h) + iv, 03B2~ Thus m:(h: v) is jointly smooth at (0, v) for

all vEa*. ~

LEMMA 4.9. Let H = TA be a 0-stable Cartan subgroup, (2, X) E X(T), and
define Fo, HF, ÂF, XF, F 9 Fo as in (3.3). Suppose F ~ QS and let 03B1’ ~ F,
a = cFa’ E 03A6+R(g, bF). Then m*03B1(HF : 03BBF : ~F: h : VF) is not jointly smooth at (0, 0). In
particular, Ba(F: 0) = 1.

Proof. We must first show that Ba(F: 0) = 1 if a’ E F. Since a’ E F, a must come
from a simple factor of G which is non-compact, simply connected, and of
hermitian type. Thus 03B303B1 is central in ZMF(M0F). Let ra be the central subgroup of
ZMF(M0F) generated by 03B303B1 and let C be the ra-character of XF(O) so that

XF (h: y) = eh(03B3)03B6(03B3)~F(0:1) for all y E r a’ h E i v *. Then

Thus 03B503B1(F : 0) =1 just in case 03B6(03B303B1) = 03B6(03B3-103B1)=(-1)03C103B1. Now since

03B303B1 ~ ZM*F(M0F) ~ T0, using (3.3), 03B6(03B303B1) = e03BB-03C1M(03B303B1) = e-03C1M(03B303B1) since 03B303B1 = exp(03C0iH*03B1’)
and ~03BB, 03B1’~ = 0. Thus to prove that 03B503B1(F : 0) = 1 it suffices to show that

e-03C1M(03B303B1) = (-1)03C103B1. Now this is proven in [Hl, 10.13] in the case that

F = F’ = {03B1’}. Thus 03B503B1(F’ : 0) = 1. But for general F such that a’ e F, it is proven in
(5.5) that 03B503B1(F:0)=03B503B1(F’:0).
Now as in (4.7) we have 03B503B1(F:h)=cos 03C0h03B1 so that

Suppose m:(h: vF) is jointly smooth at (0, 0). Then as in (4.7) there are y E 03A6+03B1,
c ~ R, so that ~03BBF(h) + iVF, y) = c(ha + iva). But then as in the proof of (4.8),
c-1F03B3 ~ F0 = 03A6+M(0). But 03B1’ ~ F0 also and ~03B1’, c-1F03B3~ ~ 0. This contradicts (3.1). ~

THEOREM 4.10. Suppose H = TA is a 0-stable Cartan subgroup of G and
(03BB, ~) ~ X(T). Then there are a 0-stable Cartan subgroup H’ = T’A’ of G,
(À’, x’) ~ X(T’), and subset F 9 Fo = 03A6+M’(0) such that H = H’, À = 03BB’F, X = ~’F and
m*(H’ : 03BB’ : x’ : h : v’) is jointly smooth at (0, v’) for all v’ ~ (a’)*. Further, H’ is unique
up to conjugacy and once a choice of H’ has been made, À’, X’, and F are unique.
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In order to prove the theorem we will need some preparation. Write
03A6+R(0) = {03B1 E 03A6+R : m*03B1(H : h : v) = m*a(H : 03BB : x : h : v) is not jointly smooth at (0, 0)}.
In particular, 03B503B1(H : 0) = 1, but 03B503B1(H : h) is not identically 1, for all oc e 03A6+R(0). Fix
oc e 03A6+R(0) and define H1, 03BB1 E i t i as in (4.8). Define ~1 = ~|ZM1(M01). Identify linear
functionals on 1) and 1)1 via c03B1. Then the set 03A6+1,R of positive real roots of Hi is
identified with {03B2 E 03A6+R : ~03B2, oc) = 0} and ai is identified with {v e a* : (v, oc) = 0) .
For every P e 03A6+1,R, write m*03B2(H1 : h : v) = m*03B2(H1 : À1 : xi : h : v) and 03B503B2(H1 : h) for
the term 03B503B2(h) occurring in m*03B2(H1 : h : v).

LEMMA 4.11. Let 03B2 ~ 03A6+1,R and suppose that m1(H: h: v) is jointly smooth at
(0, 0). Then m*03B2(H1 : h : v) is jointl y smooth at (0, 0).

Proof. Suppose 03B1, 03B2 are both long roots in the same simple factor of 03A6R. Then
the result is proven in (6.1). Otherwise, by (5.5), 03B503B2(H1 : h) = 03B503B2(H : h). Thus the
lemma is obvious if 03B503B2(H : 0) ~ 1 or if 03B503B2(H : h) = 1 for all h e in*. Thus we assume
that 03B503B2(H : h) = cos 03C0h03B2 is not identically 1. Now since m1(H: h: v) is jointly
smooth at (0, 0) there is 03B3 ~ 03A6+03B2 so that ~03BB(h)+iv, 03B3~ = c(h03B2 + iv03B2). Now ~03B3, 03B1~ = 0
so that 03B3 ~ 03A6+1,03B2 = {03B3 ~ 03A6+ : 03B3|03B1*1 = c03B2 for some c ~ 0} and ~03BB1(h) + iv1, 03B3~ =
~03BB(h) + iv1 y) = c(hfJ + i(v1)03B2) for all v1 e af. Thus m*03B2(H1 : h : v) is jointly smooth at
(0,0). D

Suppose now that H, (03BB, ~) are as in the theorem. Recall that

c-103A6+R(0) ~ SOS(H) and that every root in 03A6+R(0) is a long root in a simple factor
C(oc) of 03A6R of type A1 or en. (When 03A6(03B1) is of type A1 we consider all roots to be
long.) We will define an equivalence relation on 03A6+R(0) as follows. First, we set
03B1 ~ 03B2 if a, 03B2 ~ 03A6+R(0) are in the same simple factor of 03A6R, that is if 03A6(03B1) = 03A6(03B2).
Now let a, 03B2 ~ 03A6+R(0) such that 03A6(03B1) ~ 03A6(03B2). Then 03B1 ~ 03B2 if and only if there are
y, y ~ 03A6 such that

LEMMA 4.13. The relation - is an equivalent relation on 03A6+R(0).
Proof. Clearly a - a and rx 1’-1 P if and only if 03B2 ~ 03B1. Now suppose rx 1’-1 p and
. If 03A6(03B1) = 03A6(03B2) = 03A6(03B4), then obviously 03B1 ~ 03B4. Suppose that 03A6(03B1) =
03A6(03B2) ~ 03A6(03B4). Then C(oc) is of type Cn and a, 03B2 are long roots. Let w be the
reflection in the Weyl group of Cn that exchanges a and fi and fixes all other long
roots. Let 03B3, 03B3 be defined as in (4.12) for p and à. Let y’ = wy, ’ = w03B3. Then, since
w03B4 = 03B4 and w acts trivially on it* it is easy to check that y’, ’ satisfy (4.12) for a, b.
Thus a - ô. Finally, suppose 03A6(03B1) ~ 03A6(03B2) and 03A6(03B2) ~ 03A6(03B4). If 03A6(03B1) = 03A6(03B4) then
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03B1 ~ b. Thus we can assume that 03A6(03B1) ~ 03A6(03B2). In particular, a, 03B2, 03B4 are mutually
orthogonal. Define y i, YI as in (4.12) for a, P and 03B32, 03B32 as in (4.12) for 03B2, b. Define
w1 = S03B31S03B31 and set 03B33 = w103B32, 03B33 = w103B32. Then Y3, Y3 satisfy (4.12) for rx, b since

Wlrx = 03B2, WIP = a, w103B4 = 03B4, wl(it*) = it*, and w103BB = 03BB. Thus we have 03B1 ~ b. D

LEMMA 4.14. Let rx -1= 03B2 ~ 03A6+R(0) and define H1, (03BB1, ~1) ~ X(T1) as above with
respect to a. Then 03B1 ~ 03B2 f and only if m*03B2(H1 : h : v) is jointly smooth at (0, 0).

Proof. Suppose first that 03A6(03B1) = 03A6(03B2). Then a - 03B2. But it follows from (6.1) that

03B503B2(H1 : 0) = -03B503B2(H : 0) = -1 so that m*03B2(H1 : h : v) is always j ointly smooth at
(0, 0).
Assume now that 03A6(03B1) ~ 03A6(03B2). Then 03B503B2(H1 : h) = 03B503B2(H : h) for all h e in* so that

we can apply (4.8) to Hi, (03BB1, ~1) and P to obtain H2, (À2, X2). That is,
SOS(H2) = SOS(H1)B{c-103B2} = SOS(H)B{c-103B1, c-103B2}. Note that we would obtain
the same N2, À2, X2 if we had started by defining H’1, 03BB’1, ~’1 with

SOS(H’1) = SOS(H)B{c-103B2} and then had applied (4.8) to H’1, (03BB’1,~’1) and a.
Again, we identify linear functions on b, b1, b’1, and 92 via the Cayley transforms
Ca and cp.
Assume first that 03B1 ~ 03B2. Define y, Y as in (4.12) with respect to 03B1, 03B2 and let

03A8 = 03A6 ~ span(03B1, 03B2, 03B3, 03B3). Then since it*2 = it* ~ span(03B1, 03B2), 03A8 ~ 03A6 ~ it*2 = 03A6M2.
Further, (Â2, b) = 0 for all 03B4 ~ 03A8. But ~03B3, 03B1~ ~ 0. Thus by (3.1), À2 ft AM2,1 so by
(4.8), m*03B2(H1 : h : v) is jointly smooth at 0, 0).

Conversely, suppose that m*03B2(H1 : h : v) is jointly smooth at (0, 0). Then again
by (4.8) there is 03B3 ~ 03A6M2,1 so that ~03B3, 03BB2~ = 0. Suppose that ~03B3, 03B2~ = 0. Then

03B3 ~ 03A6M1,1 and ~03BB1, 03B3~ = 0. But 03BB1 ~ 039BM1,1 so this is impossible. Thus ~03B3, 03B2~ ~ 0.
Similarly, ~03B3, 03B1~ ~ 0 since 03BB’1 ~ 039BM’1,1. Define

Thus 03A8 is a simple root system of rank 3. Since a and p come from a simple
factor of G which is non-compact and of hermitian type, W is of type A3, C3 or

D3. We may as well assume that ~03B3, 03B1~ &#x3E; 0. If ~03B3, 03B2~ &#x3E; 0, replace y by spy. Thus
we can assume that (y, 03B2~  0. Define 03B3 = - saspY E ’P. Then y + 03B3 E span(a, 03B2)
and 03B3 - 03B3 ~ it*. Suppose ~03B3, 03B3~ &#x3E; 0. Then 03B3 - 03B3 ~ 03A8 ~ it* = {03B4 ~ 03A6M : ~03B4, 03BB~ = 0}. In
particular, y - is a root in 03A8 which is orthogonal to both a and 03B2. Suppose Y is
of type A3 or D3. Then there are not 3 mutually orthogonal roots so this cannot
happen. If ’Y is of type C3, since a and p are non-compact roots of 03A6M2 and
cannot both be long, y - 00FF E 03A6M2,1 n 03A6M = 03A6M,1. This contradicts the assumption
that 03BB ~ 039BM,1. Thus ~03B3, 03B3~  0. Suppose ~03B3, 03B3~ &#x3E; 0. Then

since a and pare in différent simple factors of 03A6R. But ~03B3 + , 03B1~ = 2~03B3, 03B1~ ~ 0
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But since (q, 03B3~ &#x3E; 0 and ~03B2, y)  0, ~s03B3s03B303B1, 03B2~ &#x3E; 0 so that s03B3s03B303B1 = Thus y, y
satisfy (4.12) for a, fi so that 03B1 ~ 03B2. D

PROOF OF THEOREM 4.10. The proof of existence of H’, À’, x’, and F is by
induction on dim A. If H is fundamental so that dim A = do is minimal, then
03A6+R = 0 so that m*(h : v) must be jointly smooth. Thus we can take

H’ = H, 03BB’ = 03BB, x’ = x, and F = Qf . This is the only possible choice because of (4.9).
Now suppose dim A &#x3E; do. If there are no roots a E 03A6+R such that m*03B1(h : v) is not
jointly smooth at (0, 0), then again we can take H’ = H. If not, fix 03B1 ~ 03A6+R such
that m:(h: v) is not jointly smooth at (0,0). Define Hl so that

SOS(H1) = SOS(H)B{c-103B1} and choose 03BB1 E 039BM1,1 corresponding to À as in (4.8).
Let x 1 be the restriction of x to ZM1«Ml)0). Then (03BB1, ~1) ~ X(T1) and

dim A1= dim A - 1 so by the induction hypothesis there are H’,À’,X’ and
F1 ~ F0 so that H1 = H’F1 03BB1 = 03BB’F1, ~1 = ~’F1 and m*(H’:)/: X’: h: v) is jointly
smooth at (0,v’) for all v’ ~ (a’)*. But now 03B1’ = c-1F1c-103B103B1 ~ F0 and if we set

F = F1 ~ {03B1’}, then H = H’F, 03BB = Â’ and x = X’. This proves the existence of H’, 03BB’,
x’, F. For fixed H’, x’ = ~|ZM’((M’)0) and F = SOS(H)BSOS(H’) are unique. Further,
À’ is unique since restriction to t gives a bijection between {03BB’ ~ (it’)* : (À’, a) = 0
for all 03B1 ~ F} and i t*.
To see that H’ is unique up to conjugacy we proceed as follows. Define 03A6+R (0)

and the equivalence relation - as in (4.12). Let ’1’ be a complete set of

representatives for the equivalence classes and let H’(03A8) be the Cartan subgroup
of G with SOS(H’(03A8)) = SOS(H)B{c-103B1:03B1 ~ 03A8}. We claim that the conjugacy
class of H’(W) is independent of the choice of Y. Suppose a and p represent the
same conjugacy class in 03A6+R(0). Then either both are long roots in a simple factor
of type Cn or there are y, y defined as in (4.12) corresponding to a, 03B2. In the first
case, let w be the reflection in the Weyl group of en interchanging a and fi and
fixing all other long roots. In the second case, let w = s03B3s03B3. In both cases w

represents an element of W(G, H) which interchanges a and p and fixes every
other root in cSOS(H). Thus any two choices 03A81 and ’JI 2 are conjugate by an
element of W(G, H) so that H’(03A81) is G-conjugate to H’(03A82).
Now we claim that if H’ is as in the theorem, it must be of the form H’(03A8) for

some ’Y as above. Thus suppose we have H’, À’, x’ with H = HF, 03BB = 03BB’F, x = X’. Let
y = CF (F) z 03A6+R. Then by (4.9), W z 03A6+R(0). Suppose that a, fi e W with a - fi. Let
F2 = FBc-1F{03B1, 03B2}. Then as in (4.14), 03BB’F2 ~ 039BMF2,1. Now suppose that there is

03B1 ~ 03A6+R(0) such that 03B1 ~ 03B2 for all 03B2 ~ 03A8. Then applying (4.14) and a simple
induction argument, m*03B1(H’ : 03BB’ : ~’ : h : v’) is not jointly smooth at (0, 0). This
contradicts the assumption that m(H’ : 03BB’ : ~’ : h : v’) is assumed to be jointly
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smooth at (0, 0). Thus ’Y is of the type considered above, so that H’ is unique up
to conjugacy. 0

Suppose for every 03B8-stable Cartan subgroup H = TA, (03BB, ~) ~ X(T), il,

i2 E K(x) we have a function

satisfying the following conditions. First, for all ho, h ~ in*, v E a*, x E G,

Second, suppose for i = 1, 2 we have 03B8-stable Cartan subgroups Hi = TiAi,
(03BBi, ~i) ~ X(Ti), so that there is k ~ K with H1= Hk2, 03BB1 = 03BBk2, Xl = ~k2. Then
K(Xl) = K(X2) and for all7:1, 7:2EK(Xl)’ h ~ in*, v2 E a2, x E G,

Third, we assume that the collection

satisfies all possible matching conditions.

That is, fix H = TA a 0-stable Cartan subgroup, (03BB, ~) ~ X(T). Assume that
m*(H : 03BB : x : h : v) is jointly smooth in U(o) x a* where U(o) satisfies the conditions
of (4.6). Define Fo, HF, 03BBF, xF, F ~ Fo as in (3.3) and fix 03C41, 7:2EK(x). Then the
functions

satisfy the matching conditions of (4.le) in U(O). Fourth, there is m  0 so that
for all H, (03BB, X) E X(T), 7:; E (~),

Finally, for each connected component
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there are finitely many functions ’Fi E P(M~ : 03BB : ~ : D : W), ai E (D x a*)o such
that for all h E D, v E a*, x E G,

LEMMA 4.16. Let f ~ (G)K. Then the functions {(f : H : 03BB : ~ : 03C41 : 03C42)} defined
as in (2.14) satisfy the conditions of (4.15).

Proof. It is clear from (2.14) that the functions (f) satisfy the shift conditions
of (4.15a). Suppose for i = 1, 2 we have 0-stable Cartan subgroups Hi = T Ai,
(03BBi, ~i) ~ X (Ti), so that there is k ~ K with H1= Hk2, 03BB1 = 03BBk2, ~1 = ~k2. Then since k
acts trivially on iv*, 03BB1(h) = À2(h)k, Xl(h) = X2(h)k for all hEiu*. Thus

for all v2 E a2, h E in*, x E G. Now it is clear from the definition that the F( f )
satisfy condition (4.15b). Suppose we have H,, 03BBF, XF, F ~ Fo as in (4.15c). We
know from (3.20) that the characters {0398(HF : 03BBF : xF : h : vF : x) : F g F0} satisfy the
matching conditions of (4.1 e). Using the same argument as that of [Hl, 10.22]
we see that the functions {(f : HF : ÂF: xF : Ti : T2: h: v : x)}F ~ F0 also satisfy these
matching conditions. Finally, (2.13) and (2.20) show that the functions F( f )
satisfy (4.15d) and (4.15e) respectively. D

Let H’ = T’A’ be a 0-stable Cartan subgroup, (À’, x’) E X(T’), 03C4’1, 03C4’2 E K(x’).
Define U’(0) as in (4.6) and F’, HF, 03BB’F, x%, F ~ Fi, as in (3.3) and assume that
m(H’ : 03BB’ : x’ : h : v) is jointly smooth in U’(0) x (a’)*. Suppose for each F ~ Fi we
have

satisfying the conditions of (4.1). Now let H = TA be any 03B8-stable Cartan

subgroup of G and let (03BB, ~) ~ X(T), 03C41, 03C42 ~ (~). Suppose there are F c F’0,
h0 ~ in*, and k ~ K so that Hk = H’F, 03BBk = 03BB’F(h0), ~k = ~’F(h0), 03C41 = 03C4’1,h0, 03C42 = 03C4’2,h0.
Then W(7: 1 : i2) = W(03C4’1 : 03C4’2) and for all h e in*, v e a*, x E G we define

Otherwise, we set 03A6(H : 03BB : ~ : 03C41 : 03C42 : h : v : x) = 0 for all h ~ in*, v ~ a*, x ~ G. Note
that in (4.17b), h0 ~ in* is uniquely determined by 03C41 = 03C4’1,h0. We will show in
(4.18) that F c F’0 is also unique and that definition (4.17b) is independent of the
choice of k e K.

LEMMA 4.18. The collection of functions {03A6(H : 03BB : ~ : 03C41 : 03C42)} of (4.17) is well-
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defined and satisfies the conditions of (4.15). Further, let 03A6(x) be the elementary
mixed wave packet defined as in (4.la) corresponding to the functions 03A6(F). Then

Proof Suppose there are ki, k2 ~ K and Fi, F2 ~ F0 such that Hk1 = H’F1,
Hk2 = H’F2, 03BBk1 = 03BB’F1(h0), 03BBk2 = 03BB’F2(h0), 03BBk1 = ~’F1(h0), ~k2 = ~’F2(h0). Let k = k1(k-12).
Then H’F1 = (H’F2)k, 03BB’F1(h0) = (03BB’F2(h0))k, and ~’F1(h0) = (~’F2(h0))k. But since k acts
trivially on ho, we also have 03BB’F1 = (03BB’F2)k and ~’F1 = (~’F2)k.

Since H’F1 is conjugate to H’F2 there is w ~ W(G, H’) so that wF1 = F2. In fact it
is not hard to check cases as in (5.12) to see that we can take w ~ W(M’, T’) and
w2 = 1. Now v = w Ad k e W(G, H’F2) and 03BB’F1 = w-1v(03BB’F2). Suppose F1 ~ F2. Then
there is 03B1 ~ F2 such that wrx ft F 2. Then W(xeFi so that w03B1 ~ 03A6M’F2. Now since
v ~ W(G, H’F2), v-1 w03B1 ~ 03A6M’F2. Now

Thus v-1 w03B1 ~ F’0BF2. But now if we identify (1)’)ê, (b’F1)*C, (b’F2)*C and the

corresponding roots systems and Weyl groups using the Cayley transforms cFl’
cF2, we have s = w-1v ~ W and 03B2 = s-103B1 ~ 03B1 ~ F’0 such that s03BB’ = 03BB’ and s03B2 = 03B1.
Now a and p must be in the same simple factor of 03A6(03BB’) and are also in the same
simple factor of 03A6M’. But 03A6(03BB’) n 03A6M’ is of type Ai by (3.1). Again, by checking
cases, this cannot happen. Thus F1 = F2 so that the F in (4.17b) is unique.
Further, Ad k represents an element w E WF1(03BB, x). Now using (4.1 c),

so (4.17b) is well-defined.
Since (4.17b) is well-defined, the functions O(H : À : ~ : 03C41 : i2) satisfy (4.15a) and

(4.15b). The fact that there is a compact subset cv of in* so that each

03A6(F : h : vF : x) is zero unless h ~ 03C9 implies that the functions 03A6(H : 03BB : ~ : 03C41 : 03C42)
satisfy (4.15d) and condition (4.1d) implies they satisfy (4.15e). Thus we need only
show that they satisfy all matching conditions.

Fix H = TA, (À, x) E X(T), and U(o) as in (4.6) so that m(H : A : ~ : h : v) is jointly
smooth in U(o) x a*. Define Fo, HF, ~F, XF, F ~ Fo, as usual. We want to show
that for any 03C41, 03C42 ~ (~) the functions 03A6(HF : 03BBF : XF : 03C41 : 03C42) satisfy matching
conditions in U(o). We first note that for any h E U(o), 03A6+M(h) ~ Fo by (4.6), and in
fact (D ’ h) must be the union of the F’ such that h ~ Hi. Thus the matching
conditions corresponding to (03BB(h), x(h)) are a subset of the matching conditions
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corresponding to (À, x). Conversely, suppose for each h e U(0) there is a

neighborhood U(h) of h such that in U(h) the 03A6(HF : 03BBF : ~F : 03C41 : 03C42) satisfy the
matching conditions corresponding to hyperplanes Yfi such that h E Yfi. Then
they satisfy the matching conditions corresponding to (À, x) in U(0). Thus we
need only show that matching conditions are satisfied in some neighborhood
of 0.

Now fix F ~ Fo. Then 03A6(HF : ÂF : ~F : 03C41 : 03C42) is identically zero unless there are
F’ ~ F’0, h0 ~ in*, k E K so that HkF = H’F’, 03BBkF = 03BB’F’(h0). ~kF=~’F’(h0). 03C41 = 03C4’1,h0,
7:2 = 03C4’2,h0. Assume this is the case. Then we may as well assume that k = 1. Now

03A6(HF:03BBF:~F:03C41:t2:h:vF:x)=03A6(F’:h+h0:v:x)=0

unless h + ho e cv ~ U’(0). Thus 03A6(HF: ÀF : xF : 03C41 : i2) is zero in a neighborhood of
h = 0 unless ho e U’(0). Thus by the above we may as well assume that ho e U’(0).
Now consider H’F’, (03BB’F’(h0), ~’F’(h0)). They correspond by (4.10) to H, (À, x). Thus
there is 03A8 as in the proof of (4.10) so that SOS(H)=SOS(H’F’)Bc-103A8. Now T is a
subset of 03A6+F’,R(h0) the set of real roots of HF. such that m*03B1(H’F’: 03BB’F’: ~’F’: h : v) is
not jointly smooth at h=ho. Using (4.7) we see that 03A6+F’,R(h0)~03A6+F’,R(0)· Fix
oc e 03A8. We can assume that a’ = cF-1 03B1 e F’. Now suppose fl ~ 03A8 with 03B1 ~ 0 P where
~ 0 is the equivalence relation on 03A6+F’,R(0) defined as in (4.12) using H’F’, (03BB’F’(0),
xF’(0)). Then m*03B2(H’F": 03BB’F": ~’F") is jointly smooth at h = 0 where F" = F’B{03B1’}. Now
by (4.7), since ho E U’(0), m*03B2(H’F": 03BB’F" /F ) is jointly smooth at h = ho. Thus
03B1~h0 03B2 so that 03B1 = 03B2 since 03A8 contains a unique representative of each conjugacy
class with respect to ’" ho. Thus we may as well assume that 03A8 ~ cF’F’. Write
F1=F’BcF’-103A8. Thus SOS(H)=SOS(H’)~(F1) so that 03BB=H’F1, 03BB=03BB’F1(h0),
x = xFi(ho). Now the matching conditions corresponding to H, (À, x) are a subset
of the matching conditions corresponding to H’, (À’, x’).

Finally, suppose that we have H=TA~Car(G), (03BB,~)~X0(T)/WH, 03C41~K(~),
03C42~[K(~)/ST], such that there are F ~ F’0, h0~iv*, and k~K so that Hk = H’F,
03BBk=03BB’F(h0), ~k=~’F(h0), 03C41=03C4’1,h0, 03C42=03C4’2,h0. Then

Further, given H = TA E Car(G), (03BB, X) E X o(T)/WH, 03C41 E K(~), i2 E [K(~)/ST]
such that 03A6(H: 03BB: X:,r 1 :r2) is not identically zero, there are a unique F ~ F’0,
hoEiu* such that there is k E K with Hk=H’F 03BBk=03BB’F(h0), ~k=X’F(h0), 03C41 =03C4’1,h0
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03C42=03C4’2,h0. Conversely, given F ~ F’0, there are unique H=TA~Car(G),
(03BB,~)~X0(T)/WH, 03C41~K(~), 03C42~[K(~)/ST], h0~i* such that for some k~K,
Hk = H’F, 03BBk =03BB’F(h0), ~k =~’F(h0), 03C41=03C41,h0, 03C42=03C4’2,ho· Thus each term

occurs exactly once in

and all non-zero terms are of this type. 0

Write Car(G)={H1,H2,...,Hk} where the Cartan subgroups Hi=TiAi are
ordered so that dim A1  dim A2  ···  dim Ak. Now suppose H = TA is a 0-
stable Cartan subgroup of G. For any (03BB, ~) ~ X(T), we say (03BB, X) is of level

d, 1  d  k, if the Cartan subgroup H’ associated to (03BB, x) by (4.10) is conjugate
to Hd .
Suppose for every 0  d  k+1, 0-stable Cartan subgroup H of G,

(03BB,~)~X(T), 03C41,03C42~K(~) we have a function

so that for each d the collection {03B2d} satisfies the conditions of (4.15). Suppose in
addition that if (03BB, X) E X(T) has level d’  d, then

THEOREM 4.20. Let f~(G)K. Then there is a collection of functions
{03B2d(H:03BB: ~:03C41: i2)Î satisfying the conditions of (4.19) so that

for all H, 03BB, x, 03C41, i2 and such that if
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then f(x)- fd(x) is a finite sum of scalar-valued elementary mixed wave packets for
all d0.

COROLLARY 4.21. Every f ~(G)K is a finite sum of scalar-valued elementary
mixed wave packets.

Proof. Define the functions 03B2d corresponding to f as in (4.20). Let k = ICar(G)I.
Then 03B2k+1 is identically zero using property (4.19b) since for any 0-stable Cartan
subgroup H, every (03BB,~)~X(T) has level d  k  k+1. Thus fk+1=0. Now
f(x) = f(x) - fk+ 1(x) is a finite sum of scalar-valued elementary mixed wave

packets. D

PROOF OF THEOREM 4.20. Let f ~(G)K. Define

for all H,03BB, x, 03C41, i2, h, v, x. Then Po satisfies the conditions of (4.15) by (4.16).
Further, condition (4.19b) is vacuous when d = 0. Finally, f (x) - fo(x) = 0.
Now let 0  d  k and assume for d’  d that we have constructed functions

03B2d’ satisfying the conditions of (4.19) such that f-fd’ is a finite sum of

elementary mixed wave packets. We will show how to construct 03B2d+1 satisfying
(4.19) so that f - fd+1 is a finite sum of elementary mixed wave packets.

Fix H’ = Hd E Car(G), (03BB, ~)~X0(T’)/WH’, il E K(x), 03C42 E [K(X)/ST’]. For every
h E i n*, let 03A6+M’(h)= {03B1 E 03A6+M’: (a, 03BB(h)~ = 01. For any F z 0 ’,(h), define HF, Â(h)F,
x(h)F as in (3.3). Let 03BBF=03BB|tF, ~F=~~e03BB-03C1M. Then (03BBF,~F,)~X(T’F) and

Â(h)F = ÀF(h), X(h)F = xF(h). Then define

We claim that cl(S) z T = {h0 E in* : m(H’ : 03BB: x : h : v) is jointly smooth at (ho, v)
for all v E (a’)*}. Fix h0 ~ T and define U(ho) as in (4.6). Then since m(H’:03BB:~:h: v)
is not jointly smooth at (ho, v) for some v E (a’)*, H’, 03BB(h0), x(ho) correspond via
(4.10) to some H" = T"A", À", X" with dim A"  dim A’. Thus the level d’ of

(03BB(h0), x(ho)) is strictly less than d. Suppose F ~ 03A6+M’(h0). Then HF, 03BB(h0)F, X(HO)F
correspond via (4.10) to the same H", 03BB", x" as H’, 03BB(h0), ~(h0). Thus the level of
(À(ho)F’ X(hO)F) is also d’  d so that

which implies that
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Let VF(ho) be a neighborhood of h0~iv* so that

so that

h ~ supp 03B2d(H’F:03BBF: ~F: 03C41: 03C42).

Thus h~supp 03B2d(H’F:03BBF:~F:03C41:03C42) for every F~03A6+M’(h), so that h~S. Thus
there is a neighborhood V of ho so that V n S = 0 and so h0 ~ cl(S). Now for
every h e S, h e supp 03B2d(H’F: 03BBF: xF : 03C41: 03C42) for some F ç 03A6+M’(h) implies by (4.15d)
that there is m such that ~03C41(h)~  m. But there is c1 = ~03C41~ so that

Ihl  ~03C41(h)~ +c1 for all h~iv*. Thus |h|  ci + m for all h E cl(S) so that cl(S) is
compact. Now choose a relatively compact open subset U ç in* so that

cl(S) ~ U ~ co = cl( U) c T.
We are now ready to define elementary mixed wave packets corresponding to

H’, À, x, 03C41, 03C42. Define OJ as above, and for each h e 03C9, let U(h) be a neighborhood
of h defined as in (4.6) with radius e  1. Then there are finitely many
h1, h2, ... , hk~03C9 such that 03C9~~Uki=1 U(hi). Further, since each hi~03C9~T,
m(H’: À: x : h : v) is jointly smooth at hi so that by (4.7), m(H’:03BB:~: h : v) is jointly
smooth in U(hi)x(a’)*. Choose ai~C~c(in*) such that supp 03B1i ~U(hi) and
Eki=1 03B1i (h)=1 for all h~03C9.
For 1  i  k, let F0(i) = 03A6+M’(hi) and for F ç Fo(i) define H’F, À(hi)F’ ~(hi)F as in

(3.3) and 03BBF=03BB|tF, XF = x Q9 e03BB-03C1M as above. Now define

where

We claim that (Di is an elementary mixed wave packet. Now 03A6i(F:h: vF : x) = 0
unless h + hi E supp 03B1i c U(hi) so that h E 03C9i = supp 03B1i - hi ~Ui = U(hi) - hi.
Conditions (4.15b) and (4.15e) imply that 03A6i(F) satisfies (4.1 c) and (4.1 d). Finally,
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since the Pd satisfy all matching conditions, and 03B1i(h + hi) is a smooth function of
h which is independent of F, the 03A6(F) satisfy the matching conditions of (4.1e).

Suppose 03A6i(H’:03BB:~: 7: 1 : 03C42) is not identically zero. Then there is F c Fo(i) such
that 03B2d(H’F:03BBF(hi):~F(Hi):03C41(hi):03C42(hi):h:vF:x)03B1i(h+hi) is not zero for some h.
Now 03B1i(h+hi) ~ 0 implies that Ihl  1. Now

implies that

But

Thus (03BB,03BB)~=Xm+10(T’). Further ~03C4i~  ~03C4j(hi+h)~++|hi|+|h|  m+c1+m+1 so
that 03C4j~K2m+c1+1(~). Now by (2.13), Xm+10(T’) and K2m+c1+1(~) are finite sets.
Thus only finitely many of the 03A6i(H’:03BB: x : il : i2) are non-zero.
Now for each

we can use (4.17b) to define the collection of functions

corresponding to the elementary mixed wave packet 03A6i(H’:03BB’:~’:03C4’1:03C4’2).
By (4.18) this collection satisfies the conditions of (4.15). Now for all H,
(À, ~)~X(T), 03C41,03C42 E K(x), we define

Since Pd and the 0,(N’ 03BB’:~’: 03C41: 03C4’2) satisfy the conditions of (4.15), so does 03B2d+1
since the sum is finite.

Define
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Then it is clear from (4.18) that

Now, as above, there are only finitely many non-zero terms in the sum so that
fd-fd+1 is a finite sum of elementary mixed wave packets. By the induction
hypothesis, f - fd is a finite sum of elementary mixed wave packets. Thus
f - fd+1 is a finite sum of elementary mixed wave packets.

Finally, we must show that 03B2d+1 satisfies the additional conditions of (4.19).
Fix (À’, x’) ~ X0(T’)/WH’, 03C41 ~ (~’),03C42 E [(~’)/ST’]. Then, for each 1  i  k and
F ~ Fo(i), using the change of variables h ~ h - hi,

Thus

where we sum over all F such that F g Fo(i) for some 1  i  k and for such

an F,

Note that for all F ~ Fo(i), (03BB’F(hi), xF(hi)) has level d.
Let H = TA be a 03B8-stable Cartan subgroup, (À, x) e X(T), and suppose the level

of (03BB(h),~(h)) is not equal to d for any h~in*. Then H and the family
{(03BB(h),~(h)):h~in*} cannot occur as HF, {(03BB’F(h),~’F(h)):h~in*} for any
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for all il, i2 E K(x). Now suppose the level of (À(ho), ~(h0)) is equal to d for some
h0~in*. Then we may as well assume H = HF and the family
{(03BB(h), ~(h)): h E in*} ={(03BB’F(h), ~’F(h)): h E in*} for some (À’, X’) E X0( T’)/WH’ and F
such that F g 03A6+M’(h) for some h E in*. Define hl, ... , hk and ai, 1  i  k as

above for (À’, X’). In this case we have

Note that in either case,

where 03B2 is a smooth function of h. Thus

Let H E Car(G), (Â,X)EX(T) with level d’  d + 1. If d’  d, then by (4.19b)
applied to 03B2d,

for all 7:j. Thus we need only check the case that d’ = d. Now we can assume as
above that H = HF and the family

and

Let ho E iu* such that (03BB=03BB’F(h0). ~=~’F(h0)) has level d. We must show that
h0~supp 03B2d+1(H:03BB’F:~’F:03C41:03C42). This is true if h0 ~ supp 03B2d(H:03BB’F:~’F:03C41:03C42).
Thus we may as well assume that
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Since

Pick a neighborhood VO(ho) of ho so that Yo(ho) c cv. Let

Now for any i~I(h0), F~03A6+M’(h0)~F0(i). Thus I(h0)~I(F). If i ~I(h0),
there is a neighborhood Y(ho) so that rxi(h) = 0 for all h E Y(ho). Define V =

V0(h0)~~i~I(h0)Vi(h0). Then for any h E t ; 03B1(F:h)=03A3i~I(F)
Thus for all h~V,

5. Plancherel factors

Let H = TA be a 0-stable Cartan subgroup of G, (03BB,~)~~(T). Let U(0) be
defined as in (4.6) and assume that the Plancherel function m*(H:03BB: x : h : v) is
jointly smooth on U(0) x a*. Define HF, ÀF, ~F,cF: bc ~bF,C, F ç F0 as in (3.3).
Define 03A6+, 03A6+R as in (4.5) and for F ~ Fo, set 03A6+F = cF03A6+ and 03A6+F,R = {03B1~03A6+F: (X
takes real values on bF}. We will identify 03A6+F with 03A6+ via cF. For each 03B1~03A6+F,R,
define m*03B1(HF:03BBF:~F:h:vF)=m*03B1(F:h:vF) as in (4.5b). Write 03A6+F,R(0)=
(a e 03A6+F,R: m*03B1(F:h: vF) is not jointly smooth at (0,0)}.

Define the equivalence relation on 03A6+F0,R(0) as in (4.12), and for each

03B1~03A6+F0,R(0), write [03B1] for the equivalence class containing a. For each

oc e 03A6+F0,R(0), let 03A6F0(03B1) be the simple factor of 03A6F0,R containing a and write

For each F z Fo, we will use the notation of (4.5) and write for (h, v)~iv* x 03B1*F,



167

where

and for 03B1~03A6+F,R,

For 03B1~03A6"F,R, define h03B1=2~hM(h), ci 103B1~/~03B1,03B1~ and set

For each F ç Fo, let FF = J(03A6"F,R) denote the set of all two-structures for
03A6"F,R. Thus if 03A6"F,R is of type C1= A1, the only two-structure for 03A6"F,R is 03C8 = 03A6"F,R
and 03B5(03C8)=1. If 03A6"F,R is of type Cs, s  2, then the two-structures 03C8 for 03A6"F,R and
associated signs 03B5(03C8) = ± 1 are described in Section 6. For 03A6"F,R not simple, two-
structures are the union of two-structures for the simple factors and the signs are
multiplied. Thus each 03C8 e JF is of the form 03C8 = 03C81 ~··· u t/J r where each 03C8i is of
type A1 or C2. For each 03B1~03A6"F,R write

If 03C8i+ = {03B1} is of type A1, write

t(F:03C8i:h:v)=t03B1(F:h:v).

If t/I is of type C2, let 03C8+i,s denote the short roots in t/1 t and write

Finally, write

THEOREM Suppose for each
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F c Fo we have functions 03A6(F): in* x a*F x G ~ W satisfying (4.1 b-e). Then there
is a constant c ~ 0 independent of F so that

where for any e E 03A30, h ~DF(03B5),

Further, the functions g(F) have the following properties. For any e E 03A30,

(h, v, x) ~ g(F : h : v : x) is jointly smooth on cl(DF(03B5)) x a; x G.

for all x ~ G, h ~ DF(03B5), v E a;. Finally, the functions {g(F): F g FOI satisfy the
matching conditions of (5.18).

The theorem will be proven by a series of lemmas. Some technical results on
two-structures and Plancherel functions for roots systems of type en, n  2, will
be deferred to the next section. Define WF(03BB,~)={w~W(G,HF):{w03BBF=03BBF,
W~F = ~F}.

LEMMA 5.4. Let a E F. Then for any fi E [a] there is w E WF(03BB, X) such that wa = 03B2,
w03B2 = oc, and w£5 = £5 for every £5 E (DF,R such that ~03B4, a~ = ~03B4, 03B2~ = 0.

Proof. Suppose fi E [03B1]. Then if 03A6(03B1) = 03A6(03B2) is of type Cn, let w be the reflection
in the Weyl group of 03A6(03B1) which interchanges a and fi and fixes every other long
root. If 03A6(03B1) ~ 03A6(03B2), choose 03B3, 03B3 as in (4.12) and let w = s03B3s03B3. In either case w
represents an element of W(G, HF) with w03BBF=03BBF, WXF = xF. ~

For any F ~ Fo we can identify 03A6+F,R = a E (D’ FOR: (a, 03B2~ = 0 for all 03B2 E F0BF}
and a; = {v E a*F0: ~v, 03B2~ = 0 for all fi ~F0BF}.

LEMMA 5.5. Suppose 03B1~03A6+F,R is a long root in a simple factor of 4)’F’,R of type en
which has empty intersection with 03A6+F,R(0). Then Ga(F: h) = -03B503B1(F0: h) for all

hein*. For any other 03B1~03A6+F,R we have 03B503B1(F:h)=03B503B1(F0:h). Let 03B1~03A6"F,R. Then if
03B1~SOS(HF), 03B503B1(F:h)=03B503B1(F:0) cos 03C0h03B1 for all h~in*. If 03B1~SOS(HF), then

03B503B1(F: h) = Ga(F: 0) is independent of h E in*. In either case, Ga(F: 0) = + 1.
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Proof. Since

is independent of F and ~F(h) is the restriction of xFo(h) to ZMF(M0F). Thus
03B503B1(F:h)=03B503B1(F0:h) if and only if (-1)03C1F,03B1=(-1)03C1F0,03B1. But using [HW1.4.13],
(-1)03C1F,03B1=-e03C1F-03C1F,R(03B303B1) where 03C1F=1/2 03A303B2~03A6+F03B2 and pF,R = 1/2 03A303B2~03A6+F,R03B2. But epF(Y«)
is independent of F, and e03C1F,R(03B303B1) is independent of F as long as the simple factor
of 03A6F,R containing a is the same as the simple factor of 03A6F0,R containing a. This
happens unless oc e 03A6+F,R is in a simple factor of 03A6"F,R of type en which has empty
intersection with 03A6+F,R(0) so that the simple factor of 03A6F0,R containing a is of type
Cn+1. This can happen only if a is a root in a simple factor of G which is
isomorphic to the universal covering group of Sp(m, R) for some m  n + 1. In
this case the result is proven in (6.1).

It is enough to prove the second part of the lemma when F = Fo. Now if
a e 03A6"F0,R, 03B1 must corne from a simple factor of G which is non-compact, simply
connected, and of hermitian type. Thus as in (4.9), Ya is central in Zo = ZMF0(M0F0).
Let r be the central subgroup of Zo generated by the 03B303B1, oc e 03A6"F0,R and let’ be the
r-character of ~F0(0). Then

Thus Ba(F 0: 0) = ± 1 just in case 03B6(03B303B1) = 03B6(03B303B1- 1) = ± (-1)03C1a.
Every simple factor of 03A6"F0,R is of type A 1 or Cn, n  2. If a is in a simple factor

of type A1, then a~03B2 for some P E cFoF 0, so that a E 03A6+F0,R(0) and 03B503B1(F0: 0) =1. If
a is in a simple factor of type en and is long, then Ba(F 0: 0) = ± 1 by (6.1). Now in
either case rxESOS(HFo)’ and ha = h(c-1F0H*03B1)=-ih(Z03B1). Thus

since eh(ya) = e03C0h(Z03B1) =e7rih« . Finally, if rx ft SOS(HFo), then a is in a simple factor of
type Cn and is short, so that 03B503B1(F0: h)=03B503B1(F0: 0) = ± 1 by (6.1). D

LEMMA 5.6. For each F z Fo,
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Thus we can write

where

Suppose w~W(03A6"F,R) such that w~F=~F. Then n(F: h : wv) = det wn(F: h : v),
03A6(F:h: wv : x) = 03A6(F:h: v : x) by assumption (4.1c), and m03B1(F:h: wv) = ma(F : h : v)
for all a e 03A6’F,R since every root in 03A6’F,R is orthogonal to every root in 03A6"F,R. Thus
f(h:wv:x)=det wf(h:v:x).

Fix 03C8 ~J F and write 03C8=03C81 1 U ... ~ 03C8r as before. Then if .pt = {03B1} is of type
A1, then using (5.5),

But for all x, y~R, 03B5 = ±1,

Thus

But for a as above, rxESOS(HF) and the reflection sa in oc centralizes ZMF(M0F).
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Thus f(h : s03B1v: x) = - f (h : v : x) as above and for

f’(h: sav : x) = - f’(h: v : x) for all v E a;, so that Sa; f ’(h : v : x) dv = 0. Thus if

i = (a) is of type A1, we can replace ma(F : h : v) by ta(F : h : v) = t(03C8i:h: v) under
the integral.
Now suppose 03C8i is of type C2. Then as in the proof of [HWI, 5.6],

if f "(h : wv : x) = det wf "(h : v : x) for w e Wl(03C8i), the subgroup of W(03C8i) generated
by reflections in the long roots. But again, the long roots of 03C8i are in SOS(HF)
and act trivially on ZMF(M0F). Thus for w e Wl(03C8i), 03A6(F:h: wv : x) = 03A6(F:h: v : x),
03C0(F:h:wv:x) = det w03C0(F:h:v:x), and m03B1(F:h:wv) =m03B1(F:h:v), 03B1~03A6’F,R~03C8j,
j ~ 1, and t03B1(F:h:wv) =t03B1(F:h:v) for a~03C8j, j~1. Thus

LEMMA 5.7. Let U(0) be a neighborhood of 0 in in* as in (4.6). Then for any
03B1~03A6"F,R,

(h, v) ~ ta(F : h : v) is jointly smooth on U(0) x a*F if Ea(F : 0) = -1

and

is jointly smooth on

Proof. It is clear that ta(F : h : v) is jointly smooth except at points (h, v) such
that cosh 03C0(v03B1+ih03B1)=03B503B1(F:0), thus v03B1 = 0 and h03B1~03C0Z. But as in the proof
of (4.7), for h~U(O), h03B1~03C0Z implies that h03B1=0. Thus if 03B503B1(F:0)=-1,
cosh 03C0(v03B1 + ih03B1) ~ 03B503B1(F: 0) for any (h, v) E U(O) x a*F. If 03B503B1(F: 0) = 1, (h, v) ~

(va + iha)ta(F : h : v) is jointly smooth on U(o) x a*F. D
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LEMMA 5.8. The function

is jointly smooth on U(O) x a*F.
Proof. First, let

Then by (5.7) and (6.5),

is jointly smooth on U(0) x a*F. Suppose oc e 03A6"F,R(1). If 03B1 ~ 03A6+F,R(0), then v03B1+ih03B1
divides n(F: h: v). Thus

is jointly smooth on U(o) x a*F. Finally, let a E F,03B2 E [03B1], 03B2 ~ a. If O(a) = 03A6(03B2) it is
proven in (6.5) that (v p - va) divides 03A303C8~JF03B5(03C8)t(F:03C8: h : v). Since 03B1-03B2 2 is a real
root, (v p - va) also divides n(F : h : v). If 03A6(03B1) ~ 03A6(03B2), then let y, y be defined as in
(4.12) and define w=SySy. Let v0~a*F such that v03B2=v03B1. Then w(03BB,F(h)+iv0) =
ÀF(h)+ivo for all h~in* and w03B3=-03B3, wy= -y. Thus

Thus (vp-va) divides both (ÀF(h)+iv, y) and ~03BBF(h)+iv,03B3~ so that (v03B2-v03B1)2
divides 03C0(F: h : v). Il

LEMMA 5.9. Define g(F) as in (5.3). Then for e E 03A30, h E -9F(g),

Further, for any 03B5 ~ 03A30, (h, v, x) - g(F : h : v : x) is jointly smooth on

Cl(DF(03B5)) X a; x G.
Proof. Suppose ao E F. Then 03A6F[03B10] is of type Cn, n  2, or Ai, n  1, and
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Now, using (5.4), for any a E [ao] there is we WF(03BB, x) which interchanges a and
ao. Thus we have 03A6(F:h: wv : x) = 03A6(F:h: v : x). Further,

Further,

by (6.2) in the case that 03A6F[03B10] is of type Cn . When (DFIOCOI is of type An1 this is
also true since det w = 1 and t(F:03C8: h : wv) = t(F:03C8:h: v) for all 03C8 E !TF. Thus

By (4.1d), 03A6(F:h:v:x) is jointly smooth on cl(D(03B5)) x 03B1*F x G. Suppose that
a e 03A6’F,R. Then m*03B1(h: v) = 03A003B2~03A6+03B1 (ÀF(h) + iv, 03B2~m03B1(h: v) is jointly smooth.
Thus to prove the second part of the lemma we must prove that
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is jointly smooth. This follows from (5.8).

for all h E -9F(e), v E aF. What was actually proven in [HW1, 6.17], as modified in
(2.12), is that there is a constant cHF defined as in [HW1,6.17] so that

for all h~in*, v~a*F, where [03BBF,~F] is the number of distinct elements in

{(w03BBF,w~F):w~W(G,HF)}.
LEMMA 5.11. Normalize the Haar measures dvF on aF as in (7.8). Then

for all F ~ Fo.
Proof. In the notation on [HWI, 6.17] we have a constant cG so that for any

Cartan subgroup H = TA of G,

where B is a fundamental Cartan subgroup of G. Now the Cartan subgroups HF
differ only in simple factors Gi of G which are simply connected, non-compact
simple groups of hermitian type. Thus 1 TI(T n M1)1 is independent of F since for
Gi as above, the fundamental Cartan subgroup Bi is relatively compact and

M~Bi = Gi . Further, 03A6F,R differs from 03A6~,R by simple factors of type A i or Cn and
so, as in [HW1,4.18], [L(03C8): L(03A6F,R)] is also independent of F. Finally, the
normalization of Haar measures dvF on a*F used in (7.8) differs from that of
[HW1] by the factor 03A003B1~SOS(H) ~03B1~ (I so that this factor does not occur in the

constants cH for the normalization used in this paper. D

LEMMA 5.12. For any F z Fo, cHF[03BBF, XF]2IFI TIrxeF [03B1] 1 = cHØ[03BBØ, xØ].
Proof. By (5.11) we have a constant c independent of F so that

Thus cHF[03BBF,~F] = c|WF(03BB,~)|-1 for all F 9 Fo

where WF(03BB,~)={w~W(G,HF):W03BBFF=03BBF, W~F=~F}· Thus it suffices to prove
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that |WF(03BB, x)l =21FI TIaeF 1 [,y] ||W~(03BB, x)l. We may as well assume that G is simply
connected, non-compact, simple, and of hermitian type.

Every w E W(G, HF) is of the form w = ad k where k~K such that Ad k

stabilizes both tF and aF. Let w=ad k~WF(03BB,~). Since k E K, Ad k(h)=h for all
h ~iv*. Now since Ad k stabilizes tF, Ad khMF(h)=hMF(h) for all hein*. Thus
wAp(h) = 03BBF(h) for all h E in* . But 03BBF(h) is generically regular with respect to 03A6+MF.
Thus WF(03BB,~)~ W(03A6MF)={1}.

Assume 03A6+ has been chosen so that ~03BB,03B2  0 for all 03B2~03A6+. Recall

W(G, HF) = W(03A6F,R)W0(G, HF)W(MF, TF) where

Write w~WF(03BB,~) as w=wRw0wI where wR~W(03A6F,R), wo E Wo(G, HF), and
wI ~ W(MF, TF). Then ÂF = WRWOWIÂF = WOWIÂF since wR acts trivially on it*. But

But w003A6+MF = 03A6+MF so that ~wI03BBF, 03B2~  0 for all fl E 03A6+MF. Thus WIÂI = ÂF. But w,
acts trivially on ZMF(M0F) so that wI~WF(03BB,~)~W(MF,TF)={1}. Thus

w=wRw0 where wR03BBF =03BBF and w0/03BBF=03BBF.
Since we assume that G is simple, non-compact, and of hermitian type, (DFR is

of type Ak1 x Cs. Now WXF = XF if and only if Bwa(F: 0) = 03B503B1(F: 0) for all a in the A’
factor and all long roots a in the Cs factor. But WR acts trivially on ya if a is in the
A i factor and wo acts trivially on ya is a is a long root in the C,, factor. Thus
WXF= XFifand only if wRxF = xF and WOXF = XF. Thus for all w = wRW0 ~ WF(À, X),
WR’ Wo E WF(03BB, X).
Now W(03A6F,R) is the semidirect product of subgroups Wl(F) and W2(F) where

Wl(F) is the group of order 2dlm aF generated by reflections in the Ai roots and
the long C, roots and W2(F) is the group of permutations of the long Cs roots.
Every element of Wl(F) centralizes ZMF(M0F) and hence belongs to WF(03BB, x). An
element w E W2(F) belongs to WF(03BB, x) just in case 03B503B1(F: 0) = 03B5w03B1(F: 0) for all long
C, roots. Thus if there are r long roots with 03B503B1(F: 0) = 1 and s - r long roots with
03B503B1(F:0)=-1, then |WF(03BB, X) n W2(F)l = r !(s - r) !. Now if there is a E F in the C.,
factor, [03B1] 1 = r and we see using (6.1) that |W~(03BB, x) n W2(~)| = (r-1)!(s-r)!. If
there is no a E F in the Cs factor, then |WF(03BB,~)~ W2(F)1 = |W~(03BB,~)~ W2(0)1.
Thus in all cases we have

where we define F’ = {03B1 E F : 03A6F(03B1) is of type C., 1 and F" = {03B1 E F : 03A6F(03B1) is of type
All.
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To prove the lemma it now suffices to show that

Let W = W(03A6~). For any F c Fo we can identify W with W(03A6F) via the Cayley
transform CF. Then

Suppose w E Wo(G, HF) n WF(03BB, x). Every element of Wo(G, HF) acts on 03A6F,R by
permuting 03A6+(F:A1), the positive A1 roots, and fixing the Cs factor pointwise.
Now fix 03B1~03A6+(F:A1) with 03B503B1(F:0)= 1 and let w~WF(03BB,x)~ W0(G,HF). Now
03B1 ~ 03A6+F,R(0) if and only if m*03B1(F:h: v) is jointly smooth at (0, 0) if and only if there is
a root 03B3~03A6+03B1 with ~03BBF(h)+iv,03B3)=c(h03B1+iv03B1). But then ±w03B3~03A6+wa and

~03BBF(h)+iv, ± w03B3~ = ± c(hw03B1+ivw03B1) since w-103BBF=03BBF. Thus a~03A6+F,R(0) if and only
if w03B1 e 03A6+F,R(0). Now by (5.4), if 03B1,03B2 e 03A6+F,R(0) ~03A6 +(F: A1) and P e [03B1], then there is
w~W0(G,HF) ~ WF(03BB,~) such that w interchanges a and 03B2 and fixes all other
roots in 03A6+F,R. Conversely, suppose rx E F" and there is w E Wo(G, HF) n WF(03BB, x)
such that w03B1=03B2. Then there is W0~W0(G,HF)~ WF(03BB,~) which interchanges
a and p and fixes all other roots in 03A6+F,R. As in the proof of (4.14) we define H 2’
À2 such that SOS(H2) = SOS(HF)Bc-1{03B1, 03B2}, 03BB2|tF = ÀF, (À2, 03B1~ = (À2, 03B2~ = 0. Then
À2 E AM2,1 if and only if 03B2~[03B1] Suppose À2 E AM2,l. Then

is of type Ak1 by (3.1), and so if

where WO,F(G, HF) = {W E Wo(G, HF) : wa = a for all a E FI. Thus to complete the
proof of thc lemma it suffices to show that

Let w E W0,F(G, HF) n WF(03BB, x). Since t~=tF ~ ’1:aeF i RH« and aF = a0 Q
03A303B1~FRHc~03B1, wt~=t~ and wa0=a0. Further, via the Cayley transform identi-
fications, ÀF = À0 and 03A6~,R ~ 03A6F,R. Thus w03BB~=03BB~, and w~~= X0. Finally,



177

Conversely, suppose w e Wo(G, H 0) n W~(03BB, x). If we can show that wa = oc for
all a e F it will follow as above that w e W0,F(G, HF) n WF(03BB, x). Thus it is enough
to show that wa = a for all 03B1~F0. Since w03BB=03BB and w03A6+M=03A6+M, wF0=F0.
Suppose there are Pl ~ 03B22~F0 such that w03B21=03B22. Since w ~ 1 there are also
03B11 ~ a2 e 03A6(~: A1) such that wal = rx2. Thus dim aFo = dim a0 + |F0|  4 so that
G has real rank at least four. Now we see from the list in [HW1,1.4] that G must
be the universal covering group of SU(p, q), Sp(n, R) or SO*(2n). In the first case,
Wo(G, H 0) acts trivially on 03A6+M. In the other two cases, 03A6M is of type Ai x Cr or
Ak1 x Dr for some k, r  0 and Wo(G, H 0) permutes the positive Ak1 roots and acts
trivially on the Cr or Dr factor. However, all of the Ai roots are in 03A6M,1, hence
cannot be in Fo. Thus Wo(G, H 0) acts trivially on Fo. D

For any F ~ F 0’ let Fc=F0BF. Then for all 03B5~03A30, 03C3F(03B5)=03A003B1~Fc03B503B1. We also
define 03C3F(03BB) = sign 03A003B1~03A6+MFBFc~03B1, ÀF).
LEMMA 5.13. There is a complex number c~0 so that for any F ~ Fo, 03B5~03A30,
h~DF(03B5),

Proof We will identify 03A6+F with 03A6+~ via the Cayley transform cF. Write
03A6+F=03A6+F,R~03A6+MF03A6+F,CPX, For every 03B1~03A6+F,R,

so that

For any

Now if
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If

so that

is independent of 03B5~03A30, h~D(03B5). Finally, for each 03B3 ~ 03A6+F,CPX there is 03B3 ~ 03A6+F,CPX
such that ~03BBF(h) + iv, 03B3) = ( - 03BBF(h) + iv, 03B3~. Now

Let nF denote the number of roots y E 03A6+F,CPX such that 03B3 E 03A6+F,CPX. Since  = y, nF
is even. Then for h E DF(03B5),

Thus to finish the proof it suffices to show that

We may as well assume 03A6+ = 03A6+Ø = 03A6+F is chosen so that every a e Fo is simple.
Recall for any F ç; F 0’ 03A6+F,R={03B2 ~ 03A6+ :03B2|tF = 0}, 03A6+MF = {03B2 ~ 03A6+ :03B2|03B1F = 0}, and
03A6+F,CPX = {03B2 ~ 03A6+ : 03B2|03B1F ~ 0 and 03B2|tF ~ 0}. First let P e 03A6+F,RBF. Then the restriction
of P to a0 is non-zero. If ~03B1, 03B2~ = 0 for all a e F, then P e 03A6+Ø,R. If (rx, 03B2~ ~ 0 for
some oc e F, then P e 03A61= {03B3 e 03A6+Ø,CPX: y ItF = 0) . Thus

Now let 03A62 = {03B2~03A6+MBF0 :03B2~03A6+MFBFc}. Then 03A62 = {03B2~03A6+MBF0:~03B2,03B1~ ~0 for
some 03B1 ~ F}. For every rx E F 0, let Sa denote the reflection in a. Then since oc is

simple, s03B103A62 = 03A62. Further, since (À, oc) = 0, (À, 03B2~ = (À, SaP) for all 03B2. But for all
03B2 ~ 03A62 there is ex E F such that s03B103B2 ~ 03B2 and sign(À, 03B2~~03BB s03B103B2~ =1. Thus

Now write
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and

Let SF = IIaEF Sa Then sF03A64 = 03A64. Thus for each y e 03A64, 03B3 = - sF03B3 ~ 03A6+F,CPX. Now
03A63 = {03B3 e 03A6+Ø,CPX : y |tF ~ 0) . For y e 03A63, let F denote the conjugate of y considered
as an élément of 03A6F,CPX and let 03B3Ø denote the conjugate of y considered as an
element of 03A6Ø,CPX. Then 03B3Ø = SF03B3F so that 03B3Ø~03A6+ if and only if 03B3F~03A6+. Finally,
for any 03B3~03A61, 03B3Ø=SF03B3~03A6+. Thus since 03A6+ØCPX=03A61~03A63 we have

LEMMA 5.14. There is a constant c ~ 0 so that for any F ~ Fo,

Proof. The result follows from combining (5.9), (5.10), (5.12) and (5.13). D

LEMMA 5.15. Define g(F) as in (5.3). Then for all e E 03A30, D E D(iv* x aF), r  0, gl,
g2 E O//(ge), there are constants C, s  0 so that

for all x E G, h ~ DF(03B5), v ~ 03B1*F.
Proof. This follows from (2.22) since

and all its derivatives have polynomial growth in (h, v) ~ ia* x a*F. D

We now want to show that the functions g(F), F 9 Fo satisfy the matching
conditions of (4. le). Thus as in Section 3 we fix E ~ Fo, 1  i  m.

LEMMA 5.16. For any E 9 F 9 E(i), vE ~ a*E, h0 ~ Hi, k  0,

Proof. For any F ~ Fo, 03B1 ~ 03A6F, define Ha E bF,C to be dual to a under the
Killing form. Then we can decompose
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Thus we can consider 03BBF0(h) E gp,e by extending trivially on

Further, for v ~ a*F we let v 0 denote the element of b*F,C which is equal to v on a0
and is trivial on tFo ~ 03A303B1~F0BRiHcF03B1~ 03A303B1~F RHcF03B1. Now we see that

Write

For any v E aFo, F ~ Fo, let vF be the restriction of v to aF. Now for every

E 03A6+Ø, (h, v) e in* x a;o’ ~c-1F(03BBF(h) + iVF), P) - ~c-1E(03BBE(h) + ivE), P)

Thus if h0 ~ Hi and VEEat,

for all E ~ F z E(i) since (ho, a) = 0 for all a E FBE ~ Fo and ~(vE, 0), cF03B1~ = 0
for all oc E FBE.

Further, in the notation of (3.7),

while for each oc E FBE,

But for all rx E FBE ç; Fô, ~03BC03B1, cF003B1~ = ~hi, 03B1~. Thus
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for all (h, v) E in* x a;o. Thus for every k  1,

Now, since

for all a E FBE, we have shown that for all k  0, fi E 03A6+Ø,

for all E ~ F z E(i). Thus for all k  0,

LEMMA 5.17. Suppose ho e Jfi and VE e a*E such that (VE’ 03B1~ ~ 0 for all a e 03A6+E,R.
Then for all E c F ç E(i),

Proof. For all hEiu*, v ~ a*F, we can write

Thus if for v E a;, we let vE denote the restriction of v to aE,

For every a E Fo, 03A6F[03B1] is a union of some of the simple factors of 03A6"F,R. Now
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since 03A6"F,R = U«cF. 03A6F[03B1], we can write

where PF(03B1) denotes the set of two-structures of 03A6F[03B1] and if

03C803B1 = 03C81 ~···~03C8k ~ PF(03B1),

Suppose a E FBE. Then if 03A6F0(03B1) is of type Cn for some n  2 it follows from
(6.6) that

If 03A6Fo(03B1) is of type A1, then when VF = (VI, 0), h = ho E Jti, Va = ha = h0 = 0 for all
fi E [a]. Thus

Further PF(03B1) = {03A6F[03B1]}. Now

while for all 03B2 ~ 03A6F[03B1], 03B2 ~ 03B1,

Further, 03A6+E [a] = 03A6+F [03B1]B{03B1}. Thus in this case as well we have
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Finally, when a E FoBF, 03A6F[03B1] = 03A6E[03B1] and

For any F ~ F0, v ~ a*F0, let VF denote the restriction of v to aF ç aFo . Then for
each F z Fo we can extend g(F) to a function on in* x a*F0 x G by

Then for any a e FoBF, ojoJ1ag(F: h : v : x) = 0 for all (h, v, x) since (v + tJ1a)F = VF for
all v e aFo, t E R. For any 8 e Eo, the restriction of g(F : h : v : x) to DF(03B5) extends to
a COO function on cl(DF(03B5)) x aFo x G. Let g(F : 8 : h : v : x) denote a COO function on
in* x aFo x G which agrees with g(F) on cl(Ç¿F(8)) x apo x G. Now fix E ~ F 0’
1  i  m, and 8 ~ 03A3i. For VE E at, let (vE, 0) ~ a*F0 be defined by (vE, 0)|aE = vE,
«VE, 0), cF003B1~ = 0 for all a e FoBE. For E ~ F c E(i), vE e at, ho e Hi n cl(DE(03B5)),
x E G, write

To complete the proof of Theorem 5.3 we must show that for all E ~ F ~ E(i),
k  0, VE E CtÉ, ho c- ei n cl(DE(03B5)), x ~ G, we have

For (h, v, x) E i v* x aFo x G, define

g(E: F: i: h: v: x) = g(F: 03B5+(i): h: v: x) - g(F: 03B5-(i): h: v: x)

- E cBF’BF|(g(F’ : 03B5+(i) : h : v : x) + g(F’ : 03B5-(i) : h : v : x)).
F cF’ çE(i)

Then since

for all k a 0, E £ F ~ E(i), (h, v, x) E in* x a*Fo x G, we see that proving (5.18b) is
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équivalent to proving that for all E ç F ç E(i), k  0, VE e at, ho E Jei n cl(DE(03B5)),
x ~ G,

To do this we first need a simple calculus lemma. For p, q  0, write

coordinates in R1 +p+q as (t, x, y), t E R, x E RP, y E Rq.

LEMMA 5.19. A function f ~ C~(R1+p+q) satisfies

f and only if

Proof. For any k  0 write

Now since t, x, and y are independent variables, we can evaluate

(êlôt - i 03A3pi= 1 ôlêxi)rf(t, x, y) at (t, x) = (0, 0) before differentiating with respect to

(- i03A3qj=1 alayi)k-r . Thus the second condition in the lemma clearly implies the
first. Conversely, assume the first condition is satisfied. We will prove that the
second holds by induction on k. If k = 0 the result is the same as the k = 0 case of
the first condition. Now for k  1,

since using the induction hypothesis, for all 0  r  k -1,
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We will apply this lemma as follows. For any F ç; F 0, let

03A6F(i, l) = ~03B1~Fi0 03A6F[03B1, l] where 03A6F[03B1, 1] denotes the long roots in 03A6F[03B1] .

LEMMA 5.20. Let E ç F ~ E(i), h0 ~ Hi ~ cl(DE(03B5)), x ~ G. Then

for all v, E at, k  0 if and only if

for all vE e a*E, k  0.
Proof. {03BC03B1 : 03B1 ~ 03A6F0(i, l)} is a linearly independent set in aFo and 03A6Fo(i, 1) is the

disjoint union of E(i)BE and 03A6E(i, l). Let p = |E(i)BE|, q = |03A6E(i, l)|. Then for any

gives an embedding of R1 +p+q into in* x aFo. Further, if we consider a*E ~ aFo by
a*E={(vE, 0):vE ~ a*E}, then for 03B1~E(i)BE, J1a is orthogonal to a*E, while for

03B1 ~ 03A6E(i, l), J1a E at. For VE E at define

Then for any k  0,

while
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Now the result follows from Lemma 5.19. 1:1

LEMMA 5.21. For all E ~ F ~ E(i), k  0, VE E CIÉ, ho E Jfi n cl(DE(03B5)), x ~ G, we
have

Proof. Write Di = (~/~hi - i03A303B1~03A6o(i, l) ~/~03BC03B1). Since g(E : F : i : h0 : (vE, 0) : x) is a

smooth function of vE e a*E, it suffices to prove the result for vE regular as in (5.17).
First, using the formulas in the proof of (5.17) we see that for all E ~ F ~ E(i)

and

where

Now, by (5.2) and (6.3), for all E ~ F ~ E(i), p(E : F : h : v) depends on

(h, v) ~ in* x aFo only as a function of v03B1 + ih03B1, 03B1 ~ 03A6F0(i, 1). Now if 03B1,03B2 ~ 03A6F0(i, 1),
then
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and

Thus

so that Di(v03B2 + ih03B2) = 0. Thus for all k  1, Dkip(E:F:h:v)=0 for all

(h, v) ~ in* x aFo. Further, using (5.17),

Thus for all k a 0, E 9 F ~ E(i) we have

where for any 03B5 ~ 03A30, h E -9F (6),

Thus it is enough to prove that Dkig1(E:F:i:h0(vE, 0):x)=0 where

g1(E : F : i : h : v : x) is defined as in (5.18c) with g1(F) replacing g(F).
But

is independent of E ~ F ~ E(i) and by (5.5) we know that 03A003B1~03A6’F,R ma(F : h : v) is
independent of F g Fo for all (h, v) E in* x a*F0. Thus using (5.16) and assumption
(4.1 e) we can conclude that
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for all VE E a*E, k  0. Now as in (5.20) this implies that

6. Sp(n, R) calculations

In this section we will assume that G is the universal covering group of Sp(n, R)
for some n  2. Let B be a relatively compact Cartan subgroup of G. Then we
will write

and

In this case in* is one-dimensional and for h E in*, 2~h, 03B1~/~03B1, a) is independent
of 03B1 ~ {2e1,...,2en}. By abuse of notation we will use h to denote both an
element of in* and the real number 2~h, 03B1~/~03B1, 03B1~, a ~ {2e1,..., 2en}.

Fix 0  r  n - 1 and let H = TA be the Cartan subgroup of G corresponding
to the set of strongly orthogonal non-compact roots

the corresponding Cayley transform, and P = MAN a cuspidal parabolic
subgroup corresponding to H. Use c to identify 03A6+B and 03A6+H =c03A6+B. Now

Fix (03BB, ~) ~ X(T) such that F0 = {2er+ 1} and for FçFo define HF, ÂF, XF,
cF: bC ~ 4Fc as in (3.3). Define 4)F, 03A6F,R as in (5.1) and identify 03A6+F with 03A6+B via
the Cayley transform cep. Thus

and
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Further, Zm,(M’) is abelian and generated by ZM0F = ZMF(M0F) n TF and the
subgroup r F generated by OC E 03A6+F,R} where Ya is defined as in (5. ld). For
1  i  r + 1, let 03B3i = 03B32ei. Then as in [HW1, 1.5], for 1  i ~ j  r + 1,

03B3ei±ej = 03B3i03B3-1j has order two. Thus r 0 is generated by 03B31,..., 03B3r and rFo is

generated by y,, ... , yr+ 1. For ce E 03A6+F,R, define m03B1(F : h : v), pF,a, Ba(F: h) as in (5.1).
For 1  i  r + 1, define ai = B2ei(F 0: 0).

LEMMA 6.1. For all 1  i  j  r + 1, 1  k  r + 1, h ~ in*, B2ek(Fo:h)=
Ek cos nh and 03B5ei±ej(F0 :h) = 03B5i03B5j· For all 1  i  j  r, 1  k  r, h E iv*,
03B52ek(Ø : h) =- Bk cos 03C0h and BeiIej(0: h) = - BiBj. Further gi = ± 1 for 1  i  r

and Er + 1=1. Finall y, for all 1  i  r + 1, m!ei(F 0: h : v) is jointly smooth at
(0, 0) if and only if ai 1 and m!ei(0: h : v) is jointly smooth on in* x a0
for all 1  i  r.

Proof. Because 2er + 1 E Fo we have 03B5r+ 1=1 by (4.9). Now as in (5.5), for
1  i  r + 1, ai= ± 1 just in case ~F0(0 : Yi) = ± (-1)03C1F0,2ei. But now Er+ 1=1
implies that ~F0(0 : 03B3r+ 1) = ± 1 so that for

1  i  r, ~F0(0 : Y i) = ~F0(0: 03B3r+1)~F0(0: 03B3i03B3-1r+1) = ± 1

since 03B3i03B3-1r+1 has order two.
Now as in (5.5), for F g Fo we have Ba(F: h) = Ba(F: 0) cos nh for any h E in* and

any long root 03B1 ~ 03A6+F,R. If 03B1 ~ 03A6+F,R is a short root, ya has order two and eh(03B303B1) = 1
for all h E iti* so that Ba(F: h) = Ba(O: h) = + 1.
To finish the proof of the first part we must compute (-1)03C1F,03B1 for F z Fo,

03B1 E 03A6+F,R. Suppose F = Ø. Then for 1  i  r, Ø+Ø,2ei = {2ei, ei ± ej: r + 1  j  n)
so that 03C1Ø,2ei = n - r + 1. For 1  i  j  r, 03A6+Ø,ei±ej = {ei ± ej} so that 03C1Ø,ei±ej = 1.
Similarly for F = Fo, for 1  i  r + 1, 03A6+F0,2ei = {2ei, ei ± ej: r + 2  j  nl so that
03C1F0,2ei = n - r and for 1  i  j  r + 1, 03A6+F0,ei±ej = {ei ± ej} so that 03C1F0,ei±ej = 1.
Now X0(0) is the restriction to ZM(MO) of ~F0(0) so that for 1  i  r,

X0(0: Yi) = ~F0(0: Yi). Thus B2el0, 0) = (-1)n-r+1~Ø(0: yi) = - 03B52ei(F0: 0) = - ai. 
Further, for 1  i  j  r, 03B5ei±ej(Ø : 0) = - ~Ø(0:03B3i03B3-1j) = -03B5i03B5j. Similarly, for
1  i  j  r + 1, 03B5ei±ej(F0:0)= -~F0(0:03B3i03B3-1j)= -03B5i03B5j.
Now for 1  i  r + 1, m2ei(F 0: h : v) is jointly smooth at (0, 0) if and only if

03B5i = -1. But 03A6+F0,2ei = {2ei, ei ± ej: r + 2  j  nl, and for y = ei ± ej, ~03B3, 03BBF0~ =
~±ej, 03BB~ ~ 0 since 2ejeFo for r + 2  j  n. Thus m*2ei(F0 : h : v) is jointly
smooth if and only if M2ei (FO: h : v) is jointly smooth. However, for 1  i  r,

ei + er+1 ~ 03A6+Ø,2ei and ~03BB(h) + iv, ei + er+1~ = c(h + v2ei) since (2er+ 1, 03BB~ = 0.
Thus miel0: h : v) is jointly smooth even when 03B52ei(Ø : 0) = 1. ~

Fix F ~ F 0, and define P = PF as in (5.2). Since 03A6F,R is of type C, where s = r
or r + 1, P can be described as follows. For any 1  i  j  s, let

03C8(i, j) = {± 2ei, ± 2ej, ± ei ± ej}.
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For 1  i  s, let 03C8(i) = {± 2eil and define

Let Ss denote the set of all permutations 6 of {1,2,..., s} considered as a
subgroup of W(03A6F,R). Then P = {03C303C80 : 03C3 ~ Ss}. Further, if 03C3 ~ Ss such that

03C3(03C8+0) = (03C303C80) + where 03C8+ = 03C8 n 03A6+F,R for any 03C8 ~ P, then 03B5(03C303C80) = det u.

LEMMA 6.2. For 03C8 e P, define t(F : 03C8: h : v) as in (5.2). Then for any 03C3 ~ Ss such
that 03B503C303B1(F : 0) = 03B503B1(F : 0) for all 03B1 ~ 03A6+F,R,

03B5(03C8)t(F : 03C8: h : 03C3v) = det 03C303B5(03C303C8)t(F : 03C303C8 : h : v).

Proof. Since 03C3 ~ Ss permutes {2e1,..., 2es}, {ei + ej:1  i ~ j  s} and

{ei - ej: 1  i ~ j  s}, we have h03C303B1 = ha for all oc e 03A6+F,R. Thus if 03B503C303B1(F : 0) = 03B503B1(F : 0)
for all a e 03A6+F,R, ta(F : h : 03C3v) = t03C303B1(F : h : v) for all a e 03A6+F,R. Further, the only case in
which it is possible to have 03B1 ~ 03A6+F,R and 03C303B1 ~ 03A6-F,R is when 03B1 = ei - ej so that

h03B1 = h03C303B1 = 0. Thus for such a we have t-03B1(F: h: v) = - t03B1(F: h: v). Thus

where p is the number of roots 03B1 ~ 03C8+ such that 03C303B1 ~ (03C303C8)- . Now

03B5(03C303C8) = det 03C3(-1)p03B5(03C8). D

For 1  i  s, write vi = v2ei, v ~ a*F, and set 03B4i = 03B52ei(F: 0). Thus for

1  1  j  s we can write

LEMMA 6.4. If 03B4i = 03B4j = - 1, then

is jointly smooth on U(O) x a;. If 03B4i = 03B4j = l, then
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is jointly smooth on U(O) x a;. If Ji = 1 and J j = -1, then

is jointly smooth on U(0) x a*F.
Proof. The first two statements follow directly from (5.7) and formula (6.3). To

prove the third statement we first note, again using (5.7) and (6.3), that

is jointly smooth on U(O) x a*F. Write D = ~/~h - i~/~vi- i~/~vj. Then to show

that 
(v 

t(vi, v’’ h) is jointly smooth on U (0) x a*F it suffices to show that

Dkt(vi, Vj, h) = 0 for all k  0 when h = 0 and vi = - vj. But since t(vi, vj, h) is a
function of vi + ih and vj + ih, Dkt(vi, vj, h) = 0 for all vi, vj, h if k  1. Finally, for
any

Let 03A6+F,R(1) = (a e 03A6+F,R : Ea(F : 0) =1 and a is either a long root or is a short root
of the form ei - ej, 1  i  j  s}. Let 03A6+F,R(0) = {03B1 e 03A6+F,R : ma(F : h : v) is not jointly
smooth at (0, 0) ~ in*  a*F). Thus by (6.1), 03A6+F0,R(0) = {2ei :1  i  r+ 1, 03B5i =1}
and 03A6+Ø,R(0) = 0.
LEMMA 6.5. Suppose F = 0. Then

is jointly smooth on in* x a;. Suppose F = F0. Then

is jointly smooth on in* x a*F.
Proof. For any F ~ Fo it follows from (6.4) that

is jointly smooth. Now to prove the lemma it suffices to show that if

1  i  r with G2elF: 0) = 1 and if vo E aFo with (v0)i = (v0)r+1, then
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03A303C8~PF03B5(03C8)t(F:03C8:h:v0) = 0 But let 03C3 be the reflection interchanging 2ei and
2er+1. Then 03C3v0=v0. Note that 03B503C303B1(F:0)=03B503B1(F:0) for all 03B1~03A6+F,R since

82elF: 0) = 03B52er+ 1(F: 0). Thus, by (6.2), for any 03C8 ~ P,

THEOREM 6.6. Suppose v0 ~ a*F0 such that (v0)2er+1 = 0 and (v0)03B1 ~ 0 for all
03B1~03A6+F0,R03B1~2er+1. Then

Before we prove Theorem 6.6 we will need some lemmas. Let F z Fo and as
above write

Then each ik E PF is determined by

Let

and for each P g Po(F), let

For 03C8 ~ PF,P, define
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and

We can consider P0(Ø) ~ Po(Fo).

LEMMA 6.7. For all (h, v) E in* x a*F,

of F.
Proof. Let 03C8 C- g-F and write 03C8 = 03C81~···~ 03C8k ~03C8k+1 where k = [s(F)/2], each

03C8i, 1  i  k, is of type C2, and 03C8k+1 is of type A1 if s(F) = 2k + 1 and is the empty
set if s(F) = 2k. Recall from (5.2) that

Thus

and write T(P)={t1, t2,..,tr+1-2|P|} where t1  t2 ···tr+1-2|P|. Now
define the permutation 03C3P ~ Sr+1 by

Define e(P) = det ap. Suppose P - ?o(0) c Po(Fo). Then r + 1= tr+ 1- 21PI C- T(P)
and 03C3P(r+1) = r+1. Thus 03C3p permutes {1,..., r}.
Now for any F ~ Fo and P ~ Po(F), 03A8+F(P) is a root system of type CS(F)-2|P|

and 03C8 ~ 03C8(P) gives a bijection between PF,P and P(03A8F(P)), the set of all two-
structures for ’II F(P). Let
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be the standard two-structure for 03A8+F(P). Now if 03C8 ~ PF,P, let 03C3 ~ SS(F) so that
03C3(03C8+0) = 03C8+. We can assume that 6(i) = pi for 1  i  21PI and 03C303C80(P’) + = 03C8(P)+
where P={p2-1,p2i)} as above and P’={(2i-1, 2i):1  i  |P|}. Now
03C303C3-1P(pi) = pi for all 1  i  2|P| so that 03C3’ = 03C303C3-1p is a permutation T(P) and

03C3’03C8(P)+0 = 03C303C80(P’) = 03C8(P)+. Thus 03B5(03C8(P))=det 03C3’ =03B5(03C8)03B5(P).
Now for any v e a*F,

by [HW1, 4.17]. Since both sides are meromorphic functions of v ~ a*F,C, the
equality persists for v ~ a*F,C. Now for h ~ in* we can define v(h) ~ a*F,C so that
v(h)03B1 = ih03B1 for all 03B1 ~ 03A6+F,R. Then t03B1(F : h : v) = m03B1(F : 0 : v + v(h)) for all

(h, v) ~ in* x afr. Thus we also have the equality

for all (h, v) E in* x a*F. Thus

LEMMA 6.8. Let vo E aFo be as in (6.6). Let P - P0(Ø). Then

Proof. For simplicity of notation we will assume that

so that 03A8+F0(P) is the root system of type Cr+1-2q generated by 2e2q+1,..., 2er,
2er+1 and 03A8+Ø(P) is the root system of type Cr-2q generated by 2e2q+1,..., 2er.
Then
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Now

For q+1  i  r,

Finally, for

PROOF OF THEOREM 6.6. Write

Now when h = 0 and v = vo, vr+1 = 0 so that
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Now fix P ~ Po(Fo). Now all roots in 03C8+P are short, so not equal to 2er + 1.
Suppose P ~ P0(Ø). Then 2er+1 ~ 03A8+F0(P), so that t03B1(F0 : h : v) is jointly smooth at
(0, vo) for all 03B1 ~ 03C8+P ~ ’¥io(P), so that

7. Matching families

Let H = TA be a 03B8-stable Cartan subgroup of G and fix (À, ~) ~ X(T), il, 7:2 E K(x),
W = W(03C41 : 03C42), and U(0) as in (4.6). For F ~ F0 and 03B5 ~ 03A30, set UF(03B5) =
{h ~ U(0) : 03B503B1(h) = 03B503B1 for all 03B1 ~ F0BF}. Define L(UF(03B5) x a*F : W) to be the set of all
g E C~(UF(03B5) x a*F : W) such that g has a C~ extension to the closure of

UF(03B5)  a*F and for all D ~ D(in)*  a*F), r  0,

~g~D,r = sup ~Dg(h : v)~(1 + |v|)r  ~.
(h,v)~UF(03B5)  a*F

Now suppose for each F ~ Fo we have a W-valued function g(F : h : VF) of
(h, vF) e U(0) x 03B1*F such that

g(F:03B5)=g(F)|UF(03B5) a*F~L(UF(03B5)  a*F: W) for all 03B5 ~ 03A30. (7.1 a)

We will say {g(F)}F~F0 is a matching family if in addition the functions g(F)
satisfy the following matching conditions. Fix E ~ F0, k  0, 1  i  m, e e Ei.
For E ~ F ~ E(i) = E ~ Fi0, vE ~ a*E, h0 ~ Hi ~ cl(UE(03B5)), write



197

Then we require that for all E ~ F ~ E(i),

where Ck, k  0 are defined as in (3.11). 
For F g Fo, h E iv*, VF E aF, define PF(h: VF) = 03A003B1~cFF(v03B1 + iha) as in (5. le).

THEOREM 7.2. Suppose {g(F)}F~F0 is a matching family. For h E U(0), define

where the measures dVF are normalized as in (7.8). Then f E C~(U(0)).

COROLLARY 7.3. Let 03A6 be an elementary mixed wave packet as in (4.1) and
define 4)(h: x) as in (4.3). Then (h, x) ~ 0(h: x) is a jointly smooth function on
in*xG.

Proof. Combining definition (4.1) with (5.3) we see that

Further, by Theorem 5.3, for each x ~ G, {g(F: x) : F ~ F0} is a matching family
as defined in (7.1). Now the theorem says that h - 03A6(h : x) is a smooth function
on U(o) for all x ~ G. Further, since 03A6(h : x) is supported in a compact subset of
U(o), it is smooth for all h E i n*. However, it will be clear in the proof of Theorem
7.2 that since for each 03B5 ~ 03A30, the functions g(F : e) are jointly smooth on
cl(UF(03B5)) x a; x G and the Schwartz norms ~g(F: 03B5: x)~D,r are uniformly bounded
on compact subsets of G, 03A6 is in fact jointly smooth on in* x G. 0

The remainder of this section will be devoted to the proof of Theorem 7.2. Fix
e E 03A30, F ~ Fo. Then g(F : h : VF) is jointly smooth on U F(e) x a*F and satisfies
Schwartz estimates as a function of vF uniformly in h. Further, pF(h : VF) is a
polynomial in (h, vF) which has no zeros in UF(03B5)  a*F. Thus fF(h) =

g(F : h : VF) 
dVF is a smooth function on UF(E). We must show that fF(h)a*F PF(h : vF)

extends to be COO on cl(UF(03B5)), the closure of U F(e) in U(o), and compute
DfF(03B5 : h0) = limh~h0 DfF(h) for any differential operator D ~ D(in*) and

ho E cl(U F(e)) where the limit is taken through hEU F(e).
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We start with some elementary calculus lemmas. For any g E L(R), define

The limit exists since

is bounded as x~0 and rapidly decreasing at infinity. Thus we can rewrite

Now let a &#x3E; 0 and write I+(0, a)=(0, a), I-(0, a)=(-a,0), I±[0, a)=
I ± (0, a) ~ {0}. For any integer p  0 define

L(Rp  I±[0, a) : W)

{g ~ C~(Rp  I±[0, a) : W) : ~g~D,r  ~ for all DE D(RP+ 1), r  01

where

Write coordinates in Rp  I±[0, a) as (x, y, t), x E R, y ~ Rp-1, t ~ I±[0, a). For
g E W(RP x I ± [0, a) : W), (y, t) E Rp-1 x I±(0, a), define

LEMMA 7.4. Let g ~ L(Rp  I±[0, a) : W). Then

and extends continuously to Rp-1 x I ’ [0, a) where for y E Rp-1, we define
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where

Proof. Clearly I(g) E C~(Rp-1 x I:t(O, a)) since g(x, y, t)/(x + it) is a Schwartz
function of x, uniformly on compact subsets of Rp-1  I±(0, a). Now for all t ~ 0,

Thus we can write I(g)(y, t) = 03A33j=1 gj(y, t) where

and

Now ~g(x, y, t)/(x + it)~  ~g(x, y, t) ~ for all |x|  1, y ~ Rp-1, t ~ I±[0, a), so g 1
extends continuously to t = 0 with

Further, for |x|  1, y E Rp-1, t ~ I±[0, a),

Thus g2 extends continuously to t = 0 with

Note
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Finally, for y ~ Rp-1, t ~ I±(0,a), g3(y, t) = g(0, y, t)(-03C0i03B5 + 2i arctan t) extends
continuously to t = 0 with g3(y, 0)= -enig(O, y, 0). D

LEMMA 7.5. Suppose g E W(RP x I ± [0, a) : W). Then for any k  0, Dy E D(RP - 1),
(y, t) ~ Rp-1  I±(0, a),

Proof. Write

But integrating by parts, this is equal to

LEMMA 7.6. Let g E W(RP x I± [0, a) : W). Then I(g) E L(Rp-1 x I ± [0, a) : W) and
for all D E D(RP), there is a finite subset F c D(RP+ 1) such that for all r  0,

Proof. Combining Lemmas 7.4 and 7.5 we see that for all Dy ~ D(Rp-1), k  0,

(~/~t)kDyI(g)(y, t) extends continuously to Rp-1 x I±[0, a). Thus to show that
I(g) E C~(Rp-1 x II [0, a) : W) we need only check that each of the one-sided
derivatives (~/~t)kDyI(g)(y, 0) exists and is equal to
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The proof will be by induction on k. Suppose k = 0. Then clearly

is a smooth function of y and the derivative Dy can be brought inside the P.V.
integral. Now suppose k &#x3E; 0. By the induction hypothesis, for all

( y, t) E RP-l x 1 ± [0, a) we can write

where

and the j(y, t) are defined as in the proof of (7.4). Now, assuming that t is
restricted to lie in I±(0, a),

Now, integrating

by parts, this is equal to
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Similarly,

Finally,

Thus (~/~t)kDyI(g)(y, 0) exists and is equal to

Finally, for any r  0, D ~ D(RP), we must compute

But, from (7.5) we see that there is D’ ~ D(Rp+1) so that DI(g) = I(D’g). Thus
~I(g)~D,r = ~I(D’g)~1,r. Write D’g = . As above, write I()(y, t) = 03A33j=1 j(y, t). But
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there is a constant C &#x3E; 0 so that

Further,

Finally,

Thus for any r  0,

COROLLARY 7.7. Suppose g(x1,..., xp, y, t) ~ L(Rp  Rq  I±[0, a) : W). Then

where the limit is taken through t ~ I±(0, a). Further, for any Dy E D(Rq), k  0,

Proof. This follows from (7.4), (7.5), and (7.6) by an easy induction argument.
D

Now let F ~ Fo, 1  i  m, 03B5 ~ ’1:i. Recall 03B503B1 = ± 1 is independent of oc for a E Fo.
Write e, for this common value and write F’= F n F’. Let ho E Jei n cl(UF(03B5)).
We will assume that ho is "semi-regular", that is ho e Hj, j ~ i. Then there is
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a &#x3E; 0 so that if we define hi as in (3.7),

We will identify a*F with a*FBFi  R|Fi| by v = v0 + 03A303B1~Fix03B103BC03B1 ~ (v0, (x03B1)03B1~Fi)
where Vo = vlaFBFi and for rx e Fi, 03BC03B1 is defined as in (3.7). Suppose E c Fi. Then for
any Vo e a*FBFi, write (vo, (x03B1)03B1~E, 0) for the element (vo, (x03B1)03B1~Fi) e a*F with Xa = 0 for
all rx E FiBE. For (X E F, write p03B1(h:v)=v03B1+ih03B1, h ~ in*, v E aF. Then for

For oc E FBFi, p(1.(h: v) * 0 in a neighborhood of ho for all v E a;. Assume that
a &#x3E; 0 is chosen small enough so that Pa(ho(t): v) ~ 0 for all t E lei [0, a], v E aF. For
g ~ L(UF(03B5)) x aF*: W), write

LEMMA 7.8. Suppose g E L(UF(03B5) x a*F : W). Then

Here the limit is taken through h ~ UF(03B5).
Proof. Write Fi = {03B11, ..., 03B1p}, xj = Xai’ 1  j  p. Then we assume that the

Haar measure dVF on a; is normalized so that

so we can write
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Now since g ~ L(UF(03B5) x a*F : W) and PFBFi(h0(t): vo) is a polynomial in t and vo
with no zeros on lei [0, a) x a;BFi,

is an element of W(RP x lei [0, a) : W). Thus we can write

Now the result follows from (7.7). D

LEMMA 7.9. Suppose g E L(UF(03B5) x a*F : W). Then for any k  0, h E UF(E),

where DFi = ôlôhi - i 1:aeFi ~/~03BC03B1.
Proof Using the notation of (7.8) we can write

Now using (7.7) this is equal to

Write in* = Hi E9 Rhi. Then we can write any differential operator D E D(in*)
as a sum of terms of the form D0(~/~hi)k where D0 ~ D(Hi), k  0. Now
combining Lemmas 7.8 and 7.9 we obtain the following.

PROPOSITION 7.10. Let g ~ L(UF(03B5) x a;: W). Write
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Then fF (h) E L(UF(03B5) : W). Further, for any Do E D(Hi), k  0, h ~ UF(03B5),

Finall y, f ho ~ Hi is semi-regular, then

Here the limit is taken through hEU F(e).

Now suppose {g(F)}F~F0 is a matching family and define

as in (7.2). Using Proposition 7.10 we know that for all e E ’1:0, f(h) extends to a
smooth function f(h: 03B5) on cl(U 0(e)) since cl(UØ(03B5)) ~ cl(UF(03B5)) for all F ~ Fo.
Thus to prove Theorem 7.2 it suffices to show that for any 1  i  m, e E ’1:i,
h0 ~ Hi ~ cl(UØ(03B5)) semi-regular, and D E D(io *), Df(h0 :03B5+(i)) = Df(h0 : 03B5-(i)).

Fix i, B, ho, as above and let D = Do(%hi)B Do E D(Hi), k  0. Write

LEMMA 7.11.

Proof. Using (7.10) we can write

Df(h0: e +(i)) - Df(h0 : 8 -(i))
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But for any F ~ Fo, write F’ = F n F’0 = Fi, Fil = F n F"0. Thus a1BFi = a*F". Finally,
we can rewrite the double summation

and simplify the constants to obtain the formula in the lemma. 0

PROOF OF THEOREM 7.2. Fix E’ ~ Fo and F" ~ Fo and write E = E’ ~ F".

Then

For E ~ F ~ E(i) and vE E a*E, l  0, write as in (7.1),

Then using Lemma 7.11, to show that Df(h0 : 03B5+(i))=Df(h0 : 03B5-(i)) it suffices to
show for all v, E a* that

Now for each E c F z E(i),

where pF"(h : vF)-1 is smooth near ho. For 1  0 write
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Now since {g(F)} is a matching family, using (7.1 b) we have for all r  0,

Now using the identities proved above for ai we have

Finally, since D0 ~ D(Hi) we have c±(F:h0:vE)=D0b±(F:h0:vE) for all

E c F z E(i). Now as above, for all E z F - E(i), vEEat,

But differentiating both sides of the equation using the differential operator Do
we obtain
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Now applying (3.23) we see that
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