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1. Introduction

Suppose G is a connected semisimple Lie group. Then the tempered spectrum of
G consists of families of representations induced unitarily from cuspidal
parabolic subgroups. Each family is parameterized by the unitary characters of a
Cartan subgroup. The Plancherel theorem expands Schwartz class functions on
G in terms of the distribution characters of these tempered representations. Very
roughly, for f in the Schwartz space ¢(G), we can write

f= 3 fukx) xeG (1.1a)

HeCar(G)

where Car(G) denotes a complete set of representatives for conjugacy classes of
Cartan subgroups of G and

Ju(x) = f 5 OH ORE)S)m(H ) dy. (1.1b)

Here O(H : y) denotes the distribution character of the representation n(H :y)
corresponding to y € H, R(x)f is the right translate of f by xe G, and m(H : y)dy
is the Plancherel measure corresponding to n(H : y).

Suppose that G has finite center and that fe%(G) is K-finite where K is a
maximal compact subgroup of G. Fix HeCar(G). In [HC2,3,4] Harish-
Chandra used Eisenstein integrals to construct wave packets of matrix coeffi-
cients of the representations n(H : y), xeﬁ . He showed that these wave packets
are Schwartz class functions and that fy is a finite sum of wave packets. In
particular, this shows that fy € %(G).

Now suppose that G has infinite center Z;. (For example, G could be the
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universal covering group of one of the non-compact simple Lie groups of
hermitian type.) Let K be a maximal relatively compact subgroup. That is,
Z; < K and K/Z is a maximal compact subgroup of G/Z;. Then there are no
K-finite functions in ¢(G). However the set ¢(G)x of K-compact functions, those
with K-types lying in a compact subset of K is dense in %(G) [H1]. Let
H € Car(G). Then for every f € 4(G)k, fy again decomposes naturally as a finite
sum of wave packets. A new feature of the infinite center case is that for
f €¥(G)x, fu and the wave packets into which it decomposes are not necessarily
Schwartz class functions. This is because of interference between different series
of representations when a principal series representation decomposes as a sum
of limits of discrete series. When G has infinite center, these limits of discrete
series can be actual limits along continuous families of relative discrete series
representations, and so occur in a non-trivial way in the Plancherel formula in
the terms corresponding to different Cartan subgroups. This means that for
f € 4(G) there are matching conditions between the terms fg, H € Car(G), which
are necessary in order that the sum be a Schwartz class function when the
individual terms are not. These matching conditions generalize those of H.
Kraljevi¢ and D. Mili¢i¢ for the universal covering group of SL(2, R) [KM].

The purpose of this paper is to define and study “elementary mixed wave
packets.” These are finite sums of wave packets which patch together to form
Schwartz class functions. They should be thought of as the basic building blocks
from which Schwartz class functions are formed in the infinite center case. In this
paper we first study in detail the identities relating the characters of different
families of tempered representations. These identities are used to give the
matching conditions which are the main feature in the definition of elementary
mixed wave packets. We then show that every fe%(G)x is a finite sum of
elementary mixed wave packets. Finally, we show that elementary mixed wave
packets satisfy a condition which is necessary for them to be Schwartz class. The
asymptotic analysis required to complete the proof that they are Schwartz class
is deferred to another paper. This paper is a continuation of the study of the
Plancherel theorem and Schwartz space for general reductive Lie groups in
[H1,2] and [HW1-5].

In order to explain the results of the paper more precisely and with a
minimum of technical notation, we will assume for the remainder of this
introduction that G is a simple, simply connected, non-compact real Lie group
of hermitian type. Let K be a maximal relatively compact subgroup of G. Then
K=K, xV where K; =[K, K] is compact and ¥V =~ R is a one-dimensional
vector group in the center of K. Then {e": hein*} gives a one-parameter family
of one-dimensional characters of K. Now let P = M AN be a cuspidal parabolic
subgroup of G and H=TA a Cartan subgroup of G with T < K a maximal
relatively compact Cartan subgroup of M. The characters e heiv*, give
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characters of T by restriction. Thus each ye T lies in a continuous family of
characters of T of the form {y ® e": heiv*}. Each character in the family
corresponds to a relative discrete series or limit of discrete series representation
(M h) of M. Let A(h) € it* denote the Harish-Chandra parameter of n(M : h), let
% be a Weyl chamber of it*, and let 2 = {heiv*: A(h)e ¢}. Then 2 is an open
interval and is unbounded just in case the representations n(M :h), he 9, are
holomorphic or anti-holomorphic relative discrete series. Now

{m(H:h:v)=Ind§ y(n(M:h) ® ” ® 1): he D, ve a*}

is called a continuous family of representations of G corresponding to H.

Let ®@,, denote the set of roots for (mc, tc) and choose a set ®@;; of positive
roots so that there is a unique non-compact simple root f. We will use
h (B, h) to identify iv* ~ R. Fix ye H and let

Fo = {ae®,: <o, X0)> = 0}.

If there is a compact root aeF, then {A(h),a) = {A(0),a> = 0 for all heiv* so
that the Plancherel function m(H : h: v) corresponding to n(H : h:v) is zero for all
heiv* vea*. In this case the family plays no role in the Plancherel formula.
Thus we assume that F, contains no compact roots. Then A(h) is regular for
small h # 0 and so there are Weyl chambers €* of it* so that A(h)e ¢* for small
h > 0and A(h)e ¢~ for small h < 0. (Of course if F, = &, then A(0)eG* =€)

Now each F < F is a strongly orthogonal family of non-compact roots of M
and so corresponds to Cartan subgroups H,, » of M and Hp = Hy, ;A = Ty Ay of
G. We identify roots of Hy with those of H via the Cayley transform cg
corresponding to F. Let Pr=MpA N be a cuspidal parabolic subgroup
corresponding to Hy. Then for each F < F,, T = T and we define ¥, € T} to be
the restriction of y. Let n(F : h) be the relative discrete series representation of My
corresponding to yr ® e and define

(F:h:vg) = IndLFAFNF(n(MF h)®e"F® 1), heiv*, vpeak. (1.2)

Let O(F: h:vg) be the character of n(F:h:vg). In Theorem 3.11 we prove the
following character identities relating the characters ®(F:h:vg). Fix E € F,,.
For every EC F < F,, az; < ar and we can identify af = af @ RP\E by
Vi <> (VE, (Ha)ser E) Where vg is the restriction of v to agand p, = {vp,a),ae F\E.
Write (vg, 0) for the element (vg, (4,)yer\£) With p, = O for all a € E\F and define a
differential operator on af by Dp\g =i Z,cp\g 0/0l,. For F S F,, let F* = F,\F.
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THEOREM 13. Fix E < F,. Then for all k > 0,

lim (8/0R)*@(E: h:vg) + (— 1)E1+ 1 1im (8/0h)*O(E : h: vg)
hl0 hto

= Z CIF\EI l:llm (6/6h - DF\E)kG(F th: (VE, 0))
EcFcF, hl0

(— 1)F1lim (8/0h — Dp\g)*O(F : h: (v, 0))]
1o

for all vgeaf. Here for all p > 0, ¢, = (d/dx)” tanh(x/2)|,-o.

Note that A (0) is regular so that limj, ;o @(F: h:vg,) = limyyo O(F g : h:vg,) for
all vy ea¥,. Further, ¢, =3, so that when |Fo\E|=1 and k=0, (1.3) is just
Schmid’s identity [S]:

ImO(E:h:vg) + im®(E:h:vg) = O(F,:0:(vg, 0)
k0 K10

for all vgeaf.

Wave packets of Eisenstein integrals corresponding to a continuous family
{n(H :h:v):he D, vea*} are defined as follows. Fix 7,, 7, €K with the same Zg
character as y and let W be a finite-dimensional complex vector space on which
K acts on the left and right by (z,,7,). For heio* let 7;,=7,®¢€" i=1,2. In
[HWS5] we defined Eisenstein integrals E(P): v§ X ag x G — W which are holo-
morphic in h and v and are (z, 4, 7, 4)-spherical functions of matrix coefficients of
the representations n(H : h:v) when he 9, ve a*. Then we defined wave packets
of the form

DH:D:x)= j; *E(P:h:v:x)oc(h:v)m(H:h:v)dvdh (1.4)

where m(H : h:v)dv dh is the Plancherel measure corresponding to n(H : h:v) and
a: 2 x a* — C is a jointly smooth function of # and v which extends smoothly to
cl(P) x a* and is rapidly decaying at infinity in both variables. It was proven in
[H1,2, HW5] that every K-compact Schwartz function is a finite sum of wave
packets of this type and that an individual wave packet ®(H :2) is Schwartz
class if and only if a(h : v) has zeros of infinite order at the finite endpoints of the
interval 2 and if a(h: v)m(H : h:v) is jointly smooth on & x a*. Finite endpoints
of 2 correspond to limits of discrete series and points (h, v)e Z x a* at which
m(H : h:v) fails to be jointly smooth correspond to reducible principal series
representations which decompose into limits of discrete series which are actual
limits along continuous families of relative discrete series representations.
Now elementary mixed wave packets are defined roughly as follows. (See (4.1)



Schwartz space of a general semisimple Lie group IV 119

for the precise definition.) Fix a matching family {n(F:h:vg): F < F,} as in (1.2)
such that the Plancherel function m*((J : h: v) defined in (4.5) is jointly smooth
at (0,0)eiv* x a}. Suppose for each F = F, we have ®(F): io* xaf xG > W
satisfying the following conditions. First, let ®*(F) denote the restric-
tion of ®(F) to 2* x a¥ x G where 2* = {heiv*: A(h)e €*}. Then there are
finitely many Eisenstein integrals EX(Py) corresponding to the family
{n(F:h:vp):he D%, vpea}} and smooth, rapidly decreasing functions a as in
(1.4) so that for all he 2%, vpeaf, xeG,

OF(F:hivp:x)=) o (h: ve)EE(Pp:h:vp:x). (1.5a)

Second, there are a small neighborhood U of Oeiv* and a compact subset
o < U so that

D(F:h:vp:x)=0 forall veea¥, xeG, if h¢w. (1.5b)

U must be small enough that U =« 2% U2~ U {0} and m*(F:h:v) is jointly
smooth on U x a. Finally, the functions ®(F) must satisfy the matching
conditions of (1.3). That is, fix E < F,. Then for all k > 0,

lim (8/0RY*®(E : h:vg: x) + (— 1)1 lim (8/0hy*®(E: h: vg: X)
hl0 110

= Y ong [Iim (6/0h— D\ g)®(F : h: (vg, 0): X)
hl0

EcFc<F,

+ (= 1)¥"lim (6/6h — Dp\g)* ®(F : h: (v, 0): x)] (1.5¢)
h10

for all vg € af, x € G where the Dp\g, ¢|p\ g are defined as in (1.3). Then we say that

Ox)= ) I 'f*@(F:h:vF:x)m(F:h:vF)dhdvF (1.5d)

F<F,

is an elementary mixed wave packet. If we W* we say that
P(x) = <D(x), w*) (1.5¢)

is a scalar-valued elementary mixed wave packet.

Note that if F, = ¢, then ® is a single series wave packet of the type defined
in (1.4) and is Schwartz class since we can assume the neighborhood U of 0 e in*
containing the support of ®() is small enough that U =€ 2* =2~ and that
m( :h:vy) in jointly smooth in U x a};.
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In this paper we will prove the following theorems.

THEOREM 16. Every f€%(G)x is the sum of finitely many scalar-valued
elementary mixed wave packets.

Suppose ®(x) is defined as in (1.5d), and for heiv* define

Oh:x)= ) ‘(I)(F:h:v,,:x)m(F:h:vF)dvF. (1.7)

FcF, JOF

THEOREM 1.8. Let ®(x) be an elementary mixed wave packet. Then
(h, x) > ®(h: x) is jointly smooth on iv* x G.

This is the first step in proving that @ is a Schwartz class function on G
because of the following proposition which is proven in Section 2. Let 4, be the
split part of the Iwasawa—Cartan subgroup so that G = K cl(A¢)K is the Cartan
decomposition of G. Define ¢ and E as in (2.2).

PROPOSITION 1.9. Suppose F:iv* x G— W is (ty 4, T, 4)-spherical and define
F(x) = J F(h:x)dh.
in*

Then F(x) is a Schwartz class function on G if and only if

(h, x) = F(h:x) is jointly smooth on iv* x G
and

sup  E(a)"'(1+0(a)f (L +|h|) | F(h; D:Dy; a; D)l < 0

heiv*,aecl(Ag)
for all r=0, constant coefficient differential operators D on iv* and
Dy,D,e%(gc)-

Theorem 1.6 is proven roughly as follows. Recall the Plancherel theorem gives
us a decomposition of f € 4(G)k as

f) =3 falx).

HeCar(G)

We can define a similar decomposition of elementary mixed wave packets even
though we do not know they are Schwartz class. Let

O(x)= ) J‘J*<I>(F:h:vF:x)m(F:h:vF)dhdvF,

FcF,
H(x) = (D(x), w*>, weW*,
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as in (1.5). For H e Car(G) let
S(H)={F < F,: Hy is conjugate to H}.
Then we have

px)= 3 ulx)

HeCar(G)

where

dux)= Y I J (D(F:h:vep:x), w*>m(F: h:vg)dh dvg.
FES(H) Jiv* Ja2

Note that for all F < F,, dim Ar =dim Az +|F| so that S(H)= (¥ and
¢u(x) =0 if dim A4 < dim Ay or if dim 4 =dim Ay and H is not conjugate to
HQ .
Order Car(G)={H,,..., H;} so that 0=dim 4; < --- < dim 4,. Now H, is
relatively compact, so for all (4, y)e X(T;), m*(H, :h:v) is jointly smooth. Let
f €6(G)x. We start by defining finitely many elementary mixed wave packets
¢'i(x), iel,, corresponding to elements (A'", y!)e X(T,) so that

fale) = 3 $hi)
el
Assume that for 1 < d < p < k—1 we have constructed finitely many elemen-
tary mixed wave packets ¢%i(x), iel;, corresponding to elements
(A%, x*) e X(T,) so that for all 1 < d < p,

fu )= Y ¥ ¢5x).

1<d'<p iel,

Then we show that there are finitely many elementary mixed wave packets
¢?*V(x), iel,,,, corresponding to (A?* 1, yP* 1) e X(T,, ) so that

fa,. =% ¥ ¢, %)

1<d'<p+1 iel,

Let 1 <d <p. Since dim 4, <dimA4,,, and H, is not conjugate to H,,.,,
#%; i(x)=0for all ie I, and so we also have

fu= Y ¥ ¢uix).

1<d'<p+1 iel,
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Now by induction we have a finite collection of elementary mixed wave
packets

¢*i(x), iel, 1<d<k
so that for all 1 <d <k,

fu¥)= Y ¥ i)

1<d'<k iel,

Thus

=% ¥ ¢*).

1<d<k iel,
Let ®(x) be an elementary mixed wave packet and write
Oh:x)= Y O(F:h:vp:x)m(F:h:vgp)dvg
F<F, JoF

as in (1.7). In order to prove Theorem 1.8 we must show that for each F < F,,

Op(h:x) = J‘*(D(F:h:vpzx)m(F:h:vF)dvF

is smooth on cl(2*) x G and compute

D®E(0:x)= lim D®p(h:x)
h—>0,he?*

for any differential operator D on iv* x G. Then we must show that

Y DO (0:x)= ¥ D®;(0:x). (1.10)

FcF, FcF,

In order to do this we need to study the Plancherel functions m*(F : h:vg) which
for F # & are not jointly smooth at (0,0)eiv* x a}. For heiv*, vpea}, write

2
pF(h . VF) = Il W((V, (Z> + lh)‘

What we prove in Section 5 is that there are functions g(F:h:vp:x), F S F,
which are jointly smooth on cl(2%*)x a¥ x G and satisfy matching conditions
similar to those satisfied by the ®(F:h:vg:x), F < F,, and a constant ¢ # 0
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independent of F so that

®p(h: x) = c(mi)~F f 9F:h:vp:x) (1.11)

at  pr(h:vg)

Now it is a calculus exercise to compute D®(0: x). Formula (1.10) follows from
the matching conditions satisfied by the functions g(F), F < F,. Formula (1.11)
will also be needed for the proof that ®(h: x) satisfies the estimates of (1.9).

The organization of the paper is as follows.

In Section 2 we review definitions and theorems from [H1,2, HWS5], prove
(1.9) in Proposition 2.8, and improve the a priori estimates for Eisenstein
integrals given in [HWS5] in Theorem 2.21.

In Section 3 we prove the character identity (1.3) in Theorem 3.11 and derive
some consequences which will be needed to prove (1.8).

In Section 4 we define elementary mixed wave packets in (4.1) and prove (1.6)
in Theorem 4.2.

In Section 5 we study the Plancherel functions m(H : h:v) and prove (1.11) in
Theorem 5.3.

In Section 6 we prove some technical results about Plancherel functions for
the universal covering groups of symplectic groups which are needed in
Section 5.

In Section 7 we prove the calculus result (Theorem 7.2) which is needed to
prove (1.8) once the elementary mixed wave packets are written in the form
given by Theorem 5.3.

2. Preliminaries

Suppose G is a connected reductive Lie group. Fix a Cartan involution 8 as in
[W] and let K denote the fixed point set of 6. Then the center Z; of G is
contained in K, and K is the full inverse image of a maximal compact subgroup
of the linear group G/Z;. The following structural result was proven in [HW5].

PROPOSITION 2.1. K has a unique maximal compact subgroup K, and has a
closed normal vector subgroup V such that K=K, xV and Z=Z5;nV is co-
compact in both V and Z;.

Let g =%+ p be the +1 eigenspace decomposition under 6. (For any Lie
group G we will use the corresponding lower case German letter g to denote the
real Lie algebra of G.) Choose a maximal abelian subspace a, = p and a positive
restricted root system ®* = ®*(q, a,). Let p = 1/2 X, o+ m(a)o where m(a) is the
dimension of the root space of g corresponding to . For x € G, define H(x)e a,,
using the Iwasawa decomposition, x € K exp(H(x))N,. Then the zonal spherical
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function on G for Oea} is
B(x) = f e PHER) (k7). (2.2a)
K/Z

Now decompose x € G as x = v(x)k(x)exp &(x) where v(x)e V, k,(x)e K, and
&(x) e p. Polynomial growth in G is determined by the function

(%) = ay(x) + o(x) (2.2b)

where o, (x)=|v(x)] and a(x)=||&(x)||. Let W be a Banach spéce and
feC®(G:W).If D, D,e%(gc) and r > 0, define

pill S llr.p, = Sug(l +EX)E) ™ fD1; x; D)llw. (229

The Schwartz space is

€(G:W)={f€C™(G:W)ip, || fl.0, < o for all D, D, U(gc), r > O}.

(2.2d)
We write €(G)=%(G :C).
For fe®(G: W), heiv*, xeG, define
fh:x) = L f(vx)e ™ "(v)dv. (2.3)

Let G; ={xeG:x =kexp(¢) for some ke K, éep}. For any finite-dimensional
real vector space E, let D(E) denote the constant coefficient differential operators
on E.

PROPOSITION 24. fe%(G:W) if and only if f € C2(iv* x G: W) and for all
r ? 0, DGD(iU*), Dl’ DZG%(QC)’

sup  E7 1)1 +0(x))(1+[h)I/(h; D:Dy; x; Dy)l| < 0.

heiv*,xeG,

Proof. This follows from [H1,2.14] using the duality of %(iv*) and %(V) via
the Fourier transform. O

LEMMA 2.5. Let Af be the positive Weyl chamber for A,. Then
G, = {vkiak,v " :veV, ky, k, €Ky, aecl(Ag)}.

Proof. Let xeG,. Since G=Kcl(Ag)K and K=VK,, we can write
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x = v,k av,k, where v;eV, k;e K,, aecl(Ag). But now
x = v,ky0,k,(0,k2) " avsky = (v10,)(ki ko) (v2k5) ™ av,k,)

where v,v, €V, k,;k, e K, and (v,k,)” 'av,k,eexpp. Now since xe G, v,v, = 1

O

Let 7, 7,e K. Fori=1,2, let t! € K, denote the restriction of 7, to K, and let
h;eiv* so that ;(vk) = e"(v)r;(k) for all ve V, ke K. Let W = W(z,:1,) be the
finite-dimensional subspace of L*(K, x K,) on which K, acts on the left and
right by (z}, t3). The action of K, on W extends to an action (z,,,) of K by

7101k )W, (02k,) = eh‘(U1)eh2(Uz)Ti(k1)WT5(k2) (2.6a)

forv,,v,eV,ky, k, €Ky, we W.For any he vg, write 1, ,=7, ® €". Then (t 4, 7,.,)
is a double unitary representation of K on W for all heiv*. We will say
F:iv*x G- W is (1, 4, 7, 4)-spherical if for all k,, k, €K, xe G, heiv*,

F(h:kixk,) =ty y(ky)F(h:X)t, (k). (2.6b)
LEMMA 2.7. Suppose F is a (ty 4, T, ;)-spherical function. Let D € D(iv*). Then for
all D,, D,€%(gc) there are finite subsets F,, F, < U(gc) such that

I|[F(h; D:Dy; vkyak,p™'; D))l < ), |F(h; D:D'; a; D")|
D'eF,,D'eF,

for all k,, k,eK,, veV, aec A,.
Proof. For all heiv* we can write

F(h:Dy; vkyak,v™"; Dy)=1,(vk,)e"(v)F(h: D(lvkl)-l} a; D% Yok~ Yet(o™ )
= 7,(vk,)F(h: DY*)™"; a; D& yry(kpv™?).

Thus for all D e D(in*) we have
F(h; D:Dy; vkyak,v™1; Dy) = t,(vk,)F(h; D: D™ a; D& Yo, (kyv ™).

Now there are finite subsets F,, F, = %(gc) and continuous functions a;, b, on
K/Z so that Dk =ZD§EF‘ a,(k)D: and Dk =ED§'EF2 b,(k)D:, for all ke K. Let

C= sup |a;(ky)bj(k,)l.
ky.k,eK,ij
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Then we have

IF(h; D:Dy; vkyakov™ "5 D))l < Y. |IF(h; D:D"; a; D). O
DeFl,D 'eF,

PROPOSITION 2.8. Suppose FeC®(iv* x G: W) is (ty,, T 4)-Spherical, and
suppose for all r = 0, De D(iv*), D,, D, eU(gc) that

sup  E7Ya)1+0(@)(1+|hlY | F(h; D:Dy; a; D,)|| < co.
heiv*,aecl(Ag)

Then if
F(x)=f *F(h:x)dh,

Fe®(G:W).
Proof. Combine Lemmas 2.4, 2.5, and 2.7. O

When K is non-compact there are no K-finite functions in %(G). The

appropriate generalization in this case is the notion of a K-compact function
defined as follows. For 1€ K, let

d(t) = deg(t*) trace(r*) (2.9a)

denote the normalized character of the contragredlent t* of t. We say f € 4(G) is
K-compact if there is a compact subset Q of K so that for teK,

(¥ ag f =0 = frgo(x), T¢Q. (2.9b)

It was proven in [H1, 2.12] that the space €(G)x of K-compact functions is dense
in 4(G).

The Plancherel theorem expands functions in (G), as finite sums of wave
packets as follows. (For details, see [H1,§3]. Some definitions have been
changed slightly for convenience.)

Let H=TA be a f-stable Cartan subgroup of G and let P=MAN be a
parabolic subgroup associated to H. Let ®,,=®(mc, tc) denote the roots of m¢
with respect to tc, @5 a choice of positive roots. Let p,, denote the half sum over
®@;;. For heiv*={heif*: h(f,) =0}, set hy(h) = hl;. Let

Dy = {ae Dy : <, hy(h)y = 0 for all heiv*}. (2.10a)

Let

A,y = {A€it*:A—py is integral and A is @), ; non-singular}. (2.10b)
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For Ae Ay, set

X(A) = {x€Zy(M° |z, is a multiple of &*~#x|, } (2.10¢)
and let
X(T) = {(4 x)€Ap,1 X Zu(M°) " : ge X(A)}. (2.10d)

Then for (4, x) € X(T), heiv*, let A(h)=A+ hy(h) and x(h)=x ® €*|z, o). Then if
A(h) is regular we will write n(h) for the relative discrete series representation of
M?° with Harish-Chandra parameter A(h). For v in a* we set

m(H:A:x:h:v)=Indg opoan(t(h) @ n(h) ® e ® 1) (2.10¢)
and let
O(H:A:y:h:v) be the character of w(H:A:):h:v). (2.10f)

Z is a central subgroup of Z,,(M°) so that each y€ Z,(M°)" has a Z-character
{(0)- Let

R(y)={reK :1(kz)=L(x: 2)e(k) for all keK, ze Z}. (2.10g)

Then all K-types of the representation m(H:A:yx:h:v) lie in IZ(X ® M=
{t,=1®e":1eK(x)}-
For (4, x)e X(T), t4, 1,€ K()), x€G, and f € 6(G), define

fH: ATyt x)= fH: Ayt ity hevix)m(H: Ay h:v)dvdh

io* Ja*

(2.11a)
where

f(H:l:x:tl:12:h:v:x)=5(t‘{,,,)*K,ZG)(H:l:x:h:v:R(x)f)*K,Zé(rz,,,).
(2.11b)

Here R(x)f is the right translate of f by x and m(H :A: x:h:v) is the Plancherel
function corresponding to n(H :A:y:h:v). (See (4.5) for the definition.) We call
f(H:A:x:14:7,) a wave packet associated to f. The Plancherel theorem will
expand f in terms of these wave packets.

Let Car(G) denote a complete set of representatives for the #-stable Cartan
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subgroups of G. Fix H = TAeCar(G). Write t =t, @ t, where t; =tnf, and t,
is the orthogonal complement of t; with respect to the Killing form. Let
Apo={A€Ay;: A, =0}. Then for Ae A, ;, there is a unique o€ Ay, such
that {4+ hy(h):heiv¥}={Ao+hy(h): heiv*}. Let X, = {heiv*: hy(h)=0}. For
Ao € Ay o, define an equivalence relation on X(4o) by x~x if ¥’ =y ® €" for
some he X ,. Let [X(4,)/X ] denote a complete set of representatives for the
equivalence classes of X(4,) with respect to ~. Set Xo(T)={(4, x): A€ Ap.0,
1€[X(40)/X {]}. Define an equivalence relation on X(T) by (4, x) ~ (4, x) if
there is we W(G, H)=Ng(H)/H such that ’=wi and y' ~wy. Let X(T)/ Wy
denote a complete set of representatives for these equivalence classes. For
x€Z, (M~ define an equivalence relation on K(x) by © ~ 7’ if 7 =t ® e” for
some he Sy = {heiv*:e|; =1}. Let [K(x)/S1] denote a complete set of repre-
sentatives for the corresponding equivalence classes.

THEOREM 2.12. Let f €4(G)g, x€G. Then

fx)= Y y y Y f(H:Aigityityix)

H=TAeCar(G) (AeXo(T)/Wy ©,eK(x) 7.€[K(x)/S1]
Proof. This is essentially the result proven in [H1, 3.6]. The only differences
are that first, we have eliminated listing wave packets more than once by
summing over X o(T)/Wy instead of X ((T). Second, for convenience of notation,

we have absorbed all constants into the definition of m(H:A:y:h:v). (See
(5.10).) (]

Let Q be a compact subset of K. Write B(G: Q)i for the set of all Schwartz
functions with K-types contained in Q. For H = TAeCar(G), let |- || be the
norm on it* coming from the Killing form. Let B be a Cartan subgroup of K.
For ek, let ||z|| = [lull where ueib* is the highest weight of 7. For m > 0, let

X(T) = {(4 peXo(T): Al < m}
and, for y € Z,,(M°)", let
K"(x) = {teK(0): <] <m}.

LEMMA 2.13. Let Q be a compact subset of K. Then there is m > 0 so that for all
f€4(G:Qx, H=TAeCar(G), (4 e Xo(T), 11,1, € K (1),

f(H:A:x:rlztzzh:v:x)=0

for all vea*, xeG unless (4, x)e Xo(T), rl,rzelfm(x), |h| < m, ||A(h)|| < m, and
Tjall <m, j=1,2. Further, for all m >0, 1€ Zp(M®~, X™T) and K™(x) are
finite sets.

Proof. This follows from [H1, 3.11]. O
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Wave packets associated to Schwartz functions can be identified with wave
packets of Eisenstein integrals as follows. (For details see [H1].) First, we extend

the wave packets associated to f to be vector-valued. For t,, 7,€K, x€G,
heiv*, fe¥%(G), define

fyitaihix) = 8t p) ¥k f(X) %Kz 0(t2,1); (2.14a)
F(f:tyitphix)ky:ky) = f(zyit:hiki xksY), ki, k,eK,. (2.14b)

Then F(h:x)=F(f :7,:7,:h:x) takes values in W = W(t:1,) and is (14 4, T, 4)-
spherical. Now for (4, y)e X(T), set

F(f:H:A:y:ty:tp:h:v:x)=OH: 1:x:h:v:RE)F(h); (2.14¢)
F(f:H:2A:x:1,:7,:X)
=f j f(f:H:l:x:rl:tz:h:v:x)m(H:/l:x:h:v)dvdh. (2.14d)

Then

f(H:).:x:rI:tzzh:v:x) = I*:(f:H:l:x:rlztzzh:v:x)(l:1)
and

fH:A:y:10:1:x)=F(f: H: A:x:t:ty:x)(1:1). (2.15b)

Now let 2 be a connected component of {heiv*: {A(h), ) # 0 for all a e Dy;}.
Holomorphic families of spherical functions of matrix coefficients of the
representations {y(h) ® n(h):he 2} of Mt =2Z,,(M°)M°® are defined as follows.

For he 2, let S(M': W :h) be the set of all ¥(h): M' - W such that

W(h: kyxk,) = 14 k)P (h: X)14k;) for all ky, ky e Kl
=KnM' xeM' (2.16a)

and for each w*e W*,
x = (¥(h:x), w*) is a finite sum of matrix coefficients of y(h)®n(h). (2.16b)

Now let (M": W) = #(M*:A::2: W) be the set of all ¥ e C* (o5 x M': W)
such that

Y(h)eS(M':W:h) for all he 2, (2.17a)
h — ¥(h:m) is holomorphic on v¢ for all me M, (2.17b)
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and
¥ satisfies a moderate growth condition. (2.17¢)

(See [H1, 5.2] for details.)
Now for ¥ e #(M': W), we extend ¥ to G by

W(x) =1 4(x(x)P(h: p(x)), x = k(x)u(x) exp(Hp(x))n(x)e KM'AN  (2.18a)

and define the Eisenstein integral E(P:¥):v¢ x ag x G > W by
E(P:¥:h:v:x)= j W(h: xk)t, 4(k =) —PPHAHR 4(kZ). (2.18b)
K/Z

Let P(in* x a*) denote the set of all polynomial coefficient differential
operators on iv* x a*. For a e C*(cl(2) x a*) and D € P(iv* x a*) define

lellp = sup [Da(h:v). (2.19a)
(h,v)ED x a*

Then let

B(2 x a*)y={ae C*(cl(PD) x a*): ||la p, < oo for all D e P(iv* x a*)}.(2.19b)
Now the following theorem was proven in [H1, 8.3].
THEOREM 220. Let fe%(G). Then there are finitely many ¥;e ¥(M': W),
o; € (D x a*), so that

f(f:H:l:x:t,:tzzh:v:x)=Zoz,.(h:v)E(P:‘P,~:h:v:x)

Sor all (h,v,x)ecl(D) x a* x G.

Finally, we need to improve the growth estimates for the Eisenstein integral
which were proven in [HWS] to give bounds which do not blow up along the
boundary of 2.

THEOREM 2.21. Let ¥ € #(M* : W). For all D € D(iv* x a*), g,, g, € %(g¢), there
exist constants C, r = 0 so that

IE(P:¥:h:v; D:gy; x; g5)| < CE()(1+[A])Y(1+)Y(1+6(x))

for all he 2, vea*, xeG.

Suppose ®(H:h:v:x)=o(h:v)E(P:¥:h:v:x) for some wae% (D xa*),,
Yes (M. W).
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COROLLARY 222. (hv,x)>®DH:h:v:x) has a C® extension to
cl(D)x a* x G. Further, for all De D(iv* x a*), r 2 0, g,, g, €U (gc), there are
constants C, s = 0 so that for all xe G, he D, vea*,

IO(H :h:v; D:gy; x5 g2)II(1+ V)Y (1 + Ay < CEXN1+6(x)).

Proof. We know from [HWS, 6.7] that E(P:¥: h:v:x) extends to be a jointly
smooth function of (h, v, x)€iv* x a* x G. By definition, each ae%(Z x a*),
extends to be smooth on cl(2) x a*. Thus the first part of the corollary is clear.
Now

I®(H :h:v; D:gy; x; g2)I(1+ V)Y (1+|hl)
can be bounded by a finite number of terms of the form
loe(h:v; D) | E(P:W :h:v; D"; gy x5 go)I(1+ Al (1+[v])

where D’, D" € D(iv* x a*) depend on D. But using Theorem 2.21 there are C’,
s = 0 so that this term can be bounded by

loe(h 2 v; D) C E(xNL + A (1 + V) (1 + 6(x))".

Finally, by definition of ¢(2 x a*),, there is C so that this last term is bounded
by CE(x)(1+ &(x))". O

In order to prove Theorem 2.21 we need the following result about the
function ¢ controlling growth in G/Z.

THEOREM 2.23. Let P=MAN be a parabolic subgroup of G. For any x€G,
decompose x=kman with respect to the decomposition G=KMAN. Then there
exists a constant C so that a(m) < C(1+ a(x)) for all xeG.

Since o factors through G/Z, it is enough to prove the theorem in the case that
G is a semisimple group of adjoint type. Thus we can assume that there is n so
that G = SL(n, C) and K = SO(n). Further we can assume that P is contained in a
standard block upper diagonal parabolic subgroup so that

Ay * %
P=MANc | 0 -. =
0 0 4,

4, 0 0

MA< |0 - O
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I * =
NclO - =
0 01
ol 0 0
Ac |0 - 0
\ 0 0 ol

where «; are positive real numbers. For X =(x;;) € M(n, C), define 7'(X) = max|x;;|
and 1(X)=log(1 +7'(X)).

LEMMA 224 «(XY) < t(X)+1(Y)+logn for all X, Ye M(n,C).
Proof. This follows easily from the fact that t'(XY) < nt'(X)7'(Y). O

LEMMA 2.25. There are constants C, and C, so that 1(x) < C{(1+ a(x)) and
a(x) < C,(1+1(x)) for all xe G < SL(n, C).
Proof. Write G=KAyK where all elements of A, are diagonal matrices with

positive real entries. For all ke K = SO(n), 7'(k) < 1 so that t(k) < log 2. Thus for
all xegG, k,, k,eK, using Lemma 2.24,

ok xk,) < 2 log n+ t(k,)+1(x) + t(k,) < 2 log n+2 log 2+ 7(x).
Thus there is C so that for all x=k,ak,e KAoK, 1(x) < C+1(a) and
(a)=1(k; 'xk; ') < C+1(x). But o(x)=0(a). Thus it is enough to prove the
lemma when x = a€ A,. Suppose a is the diagonal matrix with entries e*,, ..., e*"
where the 1, are real numbers and X}_; 4;=0. Reorder so that
A <o €4 <0< Aqq < - € 4,. Now max 4;=1, and max |4;|=max{4,,
|41]}. Further,

Ny 2 Ay + oot Ay = Al + o0+ 1A4] 2 144].
Thus

max |4;|/n < max 4; < max [4;].
Thus

emaxlhl/n < ‘c'(a) = max e}.i = Mmax Ai < emaind‘

Further, for all x > 0, x < log(1 +¢*) < x+1log 2. Thus

7(a) = log(1 +7'(a)) < log(1 + ™) < log 2+ max|4;|.
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Further,
max|4;| < log(1 +e™*!) < log(1 +7'(a)") < n log(1 +1'(a)) =n1(a).

But there are constants C and C’ so that ¢(a) < C max|4;| and max|4;| < C'a(a).
Thus 1(a) < log 2+ C'a(a) and o(a) < Cnt(a). O

LEMMA 2.26. There is a constant C so that for all ac A and me M,
(a™!) < C(1 +t(ma)).

Proof. Write

A, 0 O ol 0 O
ma= 1|0 .. O and a=| 0 . O
0 0 A4, 0 0 ol

where the diagonal blocks are of size n;, 1 <i<k Reorder so that
max|o; }|=|x; !|. Now deta=1 so that a; ! =af2/"...aq0/" Further, for each
1 <i<k, || =|det 4;|™ and

|det A4;] < n;! max|a,|" < n;! t'(ma)™

where a,, are the entries of A4, Thus there are constants C' and r so that
la; }] < C’'t'(ma)’. Thus there are constants C” and C so that

(a~Y)=log(l +|a; ) <log(1 + C't'(ma)) < C"+rlog(l +7'(ma)) < C(1 + 1(ma)).
O

PROOF OF THEOREM 2.23. Since a(kman) = o(man), it is enough to prove the
theorem when x =mane P. Further, by Lemma 2.25, it is enough to prove that
1(m) < C(1+1(x)) for all x =mane P. But writing

A, 0 O A, *  x
ma=| 0 . O and man=| 0 .. =* |,
0 0 A4, 0 0 4,

we see that 7'(ma) < 7'(man) so that t(ma) < t(man). Finally, using Lemmas 2.24
and 2.26,

(m) = 1(maa" ') < log n + t(ma) + t(a™?)

< log n + t(ma) + C(1 + ©(ma)). O



134 R. A. Herb

We now begin the proof of Theorem 2.21. Let w be a relatively compact
neighborhood of Oeiv* and write D¢ =2 +iw. Write he D¢ as h=hp+ih;
where hg, h;eiv* and write v e af as v = vg + iv; where vg, v, € a*. We will prove
the following theorem.

THEOREM 2.27. Let Ye #(M':W). For all DeD(iv* x a*), g, g,€%(ac),
there exist constants C, Co, r = 0 so that
IE(P:¥:h:v; D:gy; x; go)ll
< CE)1 + [h]) (1 + v])Y(1 + &(x)) eltrlovix) gColvrlotx)

for all he D¢, vea§, xeG.

LEMMA 2.28. Let ®: v x G > W be any smooth family of (ty 4, T, 4)-Spherical
functions. Then given D, e D(iv*) and g, g, € %(gc), there are finite subsets S of
D(iv*) and S’ of U(gc) and an r = 0 so that

|®(h; Do:gy; x; g2l S(L+AY Y [|D(h; D:g; x)|
DeS,geS’

for all (h, x)e v x G.

Proof. A similar estimate is proven in [HC1, Lemma 17] in the case that the
parameter h does not occur. In extending the estimates to our situation it is only
necessary to observe that terms of the form || D(dz,(x))|| where D e D(iv*) and
Kk €U(tc) grow polynomially in h. O

Write W, (h:x)=¥(h:x)e® PPHAY For any xeG, decompose x as
x =k(x)u(x)a(x)n(x) using G = KMAN. Also write log a(x) = Hp(x).

LEMMA 2.29. Let D e D(iv*) and geU(gc). Then there are finite subsets S of
D(iv*) and S’ of U(mc) and constants C, Cy, r = 0 so that
[E(P:¥:h; D:v:g; x)| < C(1+|h|y(1+|v])eColl™E(x)

x 3, sup|De(x(kxk )| sup {Ep(u(xk)) " | P(h; D": v; p(xk))|}.
D', D"eS,veS’ keK keK

Proof. Let wg be a compact subset of K such that for any continuous function
on K/Z,

f f(kZ)d(kZ) = j f(kZ)dk.
K/Z ox
Then we can write

IE(P:¥:h; D:v:g; Xl SJ IDC¥,(h: g; xk)e, (k™ ) dk.

g
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But

¥, (h:g; xK)12u(k ™)
= (k™ Lic(xk)ye (k(ek) P, : g0 uxk)alxk))ea(k™Y),

so there are a finite subset S, of D(iv*) and a finite subset S, of %(gc) so that

ID(¥,(h: g:oxck)e, u(k™ )

< Y Dtk Ixk)| W, (h; D":g'; p(xk)a(xk))].
D', D"€S,,geS,

Now as in [HWS5, 9.5], we write g’ = kvv'b where k € %(f¢), ve %(mc), v' € S(ac),

and be(nc). Let S’ denote the set of all v which occur in the decompositions of
g €S,. Then for all me M, ac A4,

Y (h:g'; ma) = dt, 4(K)P(V)Y,(h:v; ma)

where P is a polynomial in v. Now dt, ,(x) and all its derivatives in h grow
polynomially in h, so that there are S as above and C, r > 0 so that for all
D"eS,,

¥y (h; D":g's ma)ll < C(1 + Ay (1+ v DZS I¥,(h; D:v; ma).

Now
W (h; D:v; ma) = "~ PX8P(h; D:v; m).
Enlarge S so that S; = S. Thus,

|E(P:¥:h; D:v:g; x)Il < C(A+]|hl)(1+ )

x Y D, e(x(k ~ 1xk))| el Rl g =peHHK) | Pk D, 2 v; p(xk))| dk.
D,D,eSveS’ J Pk

Now as in [HWS, 9.6], there is C, = 0 so that |[v;Hp(xk)| < Colvila(x) for all
ke K. Further,

j e~ PrHARE(u(xk) d(kZ) = E(x) a
K/Z
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LEMMA 2.30. Let D € D(iv*). Then there are constants C, c, r = 0 so that for all
x€G, heog

sup |Det(x(k ™ 1xk))| < C(1+ gy (x)) eltilc+avx),
keK

Proof. By [HWS, 9.7], there are constants C, ¢ so that

Ieh(K(k B lxk))l S Celhll(ﬂ'v(x)+c)

for all x, k, h. But h — e*(x(k~ 1xk)) is a holomorphic function of h. If we estimate
its derivatives in h as in [HWS, 9.10] using radius (14 6,(x)) "1, this gives the
required estimate. O

When we decompose x = k(x)u(x)a(x)n(x) the components k(x) and u(x) are
not unique. Write M in its Cartan decomposition as M = K, cl(A)K 5. We will
assume that the decomposition is chosen so that u(x)= a,(x)k,(x) where
ap(x) e cl(Ay) and xp(x) € Ky has oy, (ke (x)) bounded independent of xeG.

LEMMA 2.31. Let De D(iv*), ve %(mc). Then there are constants C, r = 0 so
that for all xe G, keK, he D,

Ep(u(xk) ™ P(h; D:v; p(xk)ll < C(1+ [Al) (1 + o(x))-
Proof.
Epe(p(xk) ™ (h:v; p(xk)) = Epg(ar (k)™ P (h:v; ap(xk))Ta slp(xk)).

Thus it is enough to bound terms of the form Z,,(ay, (xk)) ! [|¥(h; Dy : v; ap(xk)) ||
and |D,e"(xy,(xk))| where D,, D, e D(iv*). But

D€’ (1cpr (xk))| < C(1 + 0y (rcpg (k)" elriovicaxh)

is bounded since o (k,,(xk)) is bounded and |h,| is bounded in 2. Now for any
aecl(A;y) and he D¢,

I'¥(h; Dy :v; a)] < C(1+h|)(1+0(@) e "*(a).

This is proven for the case D, = 1 in [HWS, 5.12]. In fact the same proof works
for any D, since the proof just reduces to the case that M is simple, connected,
non-compact, and of hermitian type. In this case the estimates were proven in
[HW3,4] with derivatives in the h variable included. Now for any ae cl(4z)),
Ep(@) te (a) < 1. Thus

En(ap(xk) ™ 'P(h; Dy :v; ap (k)| < C(1+ [RIY(1+ alar (xk)y.
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But o(a,(xk)) = a(u(xk)) < C(1 + o(xk)) using Theorem 2.23. Finally, o(xk) = o(x)
for all k. O

PROOF OF THEOREM 2.27. Combining Lemmas 2.28-2.31, for D e D(iv¥*)
and gy, g, E%(Q(C) we have constants C, r, ¢, ¢, so that for all he D¢, veac, and
x€Q@,

|E(P:¥:h; D:v:gy; x; g,)|
< CLHIBY (L4 MY (L4 0y (<)) (1 -+ 0(x)) Bt +ovts),

Since |h,| is bounded on P, the term e is bounded by a constant. Since
E(P:¥:h;D:v:g,;x;g,) is holomorphic in v we can estimate derivatives in v
using the same method as in [HWS5, 9.10]. This gives us additional factors of
(1 + o6(x)). Finally, the terms with o(x) and o,(x) can be combined and bounded
by a term of the form (1 + a(x))". d

3. Character identities

Let H=TA be a O-stable Cartan subgroup of G, P=MAN a parabolic
subgroup associated to H. Fix (4, ) € X(T) as in (2.10). Let ¥ be a Weyl chamber
of it* with respect to ®,,. Then we will write n(h: %) for the relative discrete
series representation of M° with Harish-Chandra parameter A(h) if A(h)e €, and
for the limit of relative discrete series representation from % corresponding to
AMh) if A(h) is a boundary point of ¥. Now for v in a* we set
n(H:h:€:v)= IndZM(Mo)MoAN(x(h) Rnh:6)®e”® 1) and let O(H:h:€:v) be
the character of n(H:h:%:v). By coherent continuation, we can extend the
definition of @(H : h: ¥ :v) to allow h to be any element of iv*. However it is the
character of a tempered representation of G only when A(h) € cl(%).
Let ®(1) = {a e ®@y,: <o, 1) = 0}.

LEMMA 3.1. ®(4) is a subroot system of ®,, of type A% for some k > 0 and every
root in ®(4) is non-compact. Further, if € is any Weyl chamber with A e cl(¥), then
for any o€ ®(4), either oo or —a is a simple root for the positive system of ®,,
corresponding to €.

Proof. ®(4) is clearly a subroot system of ®,,. But since A€ A,,,,, and every
compact root of @, is in @, ,, every root in ®(4) is non-compact. But if the sum
of two non-compact roots is a root, it is compact. Thus the sum of two roots in
®(4) cannot be a root, so ®(1) is of type A%. Now fix € with A e cl(#). Let A denote
the simple roots for the positive system ®;; of ®,, corresponding to ¥. Then
a €@,y is in O(4) just in case a is a sum of simple roots in A N ®(4). But as above,
no non-trivial sum of roots in ®(4) is a root. Thus ) N O =D()NA. O
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Let F, = ®(1) N ®;;. Then any subset F of F,, is a strongly orthogonal system
of non-compact roots in ®,,. Let H, , denote the corresponding Cartan
subgroup of M. That is, the complexified Lie algebra of H), ; is obtained from
that of T by Cayley transforms corresponding to the roots in F. Then
Hp=Hy yA=TpAr is a Cartan subgroup of G. Let Pr=MyA:Ny be a
parabolic subgroup with split component Ay. Set M} = M~ M°.

LEMMA 32. For any F<F, Zy, (M) =Zy(M°Zys(M?). Further,
ZM;(Mg) [ To and ZM(MO) N ZM}(M?’) = ZMo.

Proof. Let b be a fundamental Cartan subalgebra of g and let SOS(H) denote
the set of strongly orthogonal non-compact roots of (g¢, bc) used to define the
Cayley transform ¢ with ¢(bc) = hc. Then, as in [H1, §10], since F S @y \ Dy, ;,
SOS(Hy)=SOS(H)u c™'F. Now T; = T and the first statement of the lemma
follows using the argument in [H1, 10.14]. But

ZyiMP S TnM° = TAM®=TC
Finally,
Zy(M®) N Zys(MP) € Zpy(M°) A M° = Z 0. O

Let F = F,. Because of Lemma 3.2 we can define data for tempered
representations of G corresponding to Hy as follows. Let Ap=4|; . As in
[H1,§9], an ordering ®,;, can be chosen so that py =pply,. Thus
Ar—pm, = (A—ppyly,- Now since Tp S T, Ap—pyy, is integral. Further, by (3.4)
below, g is @y, ; non-singular. Thus Ap€ Ay, ;. Define 1o = e’l”’MIZM;(Mg) and
then define a representation of Zp=Zy (M) =Zy(M°Zys(Mg) by
xr=X®xp. Then (Af, xp)eX(Tp). For heiv*, set Ap(h)=Ap+ hy(h),
xr(h) = xr ® €". Then for any chamber %y of it¥, np(h: %) denotes the relative
discrete series or limit from %, of discrete series representation of M2 with
Harish-Chandra parameter Ag(h). When Ap(h) € cl(€F), ve af, we define

MHp:h:€p:v)=Indz pos,(xr(h) @ np(h: €p) ® €” @ 1). (3.3a)
Finally, we let

O(Hp:h:%y:v) be the character of n(Hp:h:€r:v) (3.3b)
when Ap(h)e % and the coherent continuation of the character for arbitrary
heiv*.

Fix Cayley transforms cp:bc = bhrc. We will use these isomorphisms to
identify linear functions on b for any F = F,. Write F* = F,\F.
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LEMMA 34. F* = {ae®};,: <o, 4> = O}.
Proof. @y, can be identified with {ae®),:a L F}. Further, using this identifi-
cation, for o L F, <o, 1> = (o, Ap). O

Given any chamber € of it* and a € ®,,, set &,(¥) = sign{t, a), 1€ €. Now let
#eC(A), the set of all chambers with Aecl(®). Then for all ae®y\F,,
£,(%) = sign {4, a). Thus there is a bijection between C(4) and

T = {(6x)uer, &, = t 1 for all ae F,} (3.52)

so that ee X & € = B(¢) if ¢, = &,(¥) for all a € F,,. Similarly for any F < F, there
is a unique chamber %(¢) with Azecl($f) and ¢,(€r) = ¢, for all ae F. Given
ce€eX, heiv* vea}, set

O(F:h:e:v)=O(Hp:h:€r(e):v). (3.5b)
Note for all ae F,, (A(h), a) = (hy(h), o). Let
H#H, = {heiv*: (hy(h), ) = 0}. (3.5¢)

Define an equivalence relation on F, by a~pf if #,=#; Define
&,(h) = sign{hy(h), «) € {1, — 1, 0}.

LEMMA 3.6. The positive system ®y; can be chosen so that o. ~ B if and only if
&,(h) = gg(h) for all heiv*.

Proof. Decompose @), =®, U--- U®, into simple factors. Assume that
1 <i<p are the indices such that the subgroup M; of M° corresponding
to ®; is non-compact, simply connected, and of hermitian type. Then
Foc®;U---U®,. Assume for 1 <i < p that @; is chosen so that there is a
unique non-compact simple root. Then for any non-compact root ae®;,
{a, hpg(B)) = n(a){ B, hyy(h)) where B is the non-compact simple root and n(«) > 0
is the coefficient of f in the expansion of « in terms of the simple roots. Thus
&,(h) = g4(h) for all heiv*. Let F; = ®(4) n ®;". Then each equivalence class is a
union of certain of the F; and ¢,(h) = ¢;(h) is independent of ae F;. Suppose
F,u---UF, is an equivalence class. Fix an ordering of ®; as above. Now for
2<i<r, gh)=0 if and only if ¢(h)=0. Thus there is ¢ = +1 such that
&;(h) = o¢,(h) for all h. But if 6 = — 1, we can replace ®;' by —®;'. O

Write Fo = FJ U --- U F§ where the F} are the distinct equivalence classes in
Fo. Let 1 <i < mand define #; = #,, ae Fi. Fix h;eivo* such that a(h;) > 0 for
all «e Fi. For any smooth function f on iv*, define

8/0h,f(h) = d/dt|,_o f (h + thy). (3.7a)
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Now for all aeF}, pick p,eaf such that p,=0, {fy,cpa> =<h;,a),
{Yq> cp B> =0 for all feF,, p+#a For any F we can consider u,eaf by
restriction from ay o 10 aF. Now for any smooth function f on af, define

0/0uef (v) = d/dtly=o f (v + tu,). (3.7b)

Given aeF, and ¢eX, define s,e€X by (s,8); = &5, f # o, (5,8)s = —&,. For
F < Fyand a e F¢, let F(a) = Fu{a}. Given vp € af, let (vg, 0) € af, be defined by
(Ve O)la, = Vs {(VF, 0), gy =0. Then [H1, 10.18] can be written as follows.

LEMMA 3.8. Fix F c Fy, ae F° N Fi, e€ X. Then for all k > 0,

(0/0h){(O(F :hy:e:vp) + O(F : ho: 5,6 V)
— (0/0h, + i0/0u,) OF(®): ho: &: (vp, 0)) (3.8)

for all vpea}, hye H#,.

In general, the terms in Lemma 3.8 are not derivatives along continuous
families of tempered representations. The problem is that for an arbitrary e€ X,
there may be no heiv* with A(h)e%(¢). For ee X, write

D(e) = {heiv*:¢,(h) = ¢, aeFy}. (3.9a)
Let
2o ={eeX:9(e) # T} (3.9b)

Now if for any ¢e X, F < F, we set D(¢) = {heiv*:¢,(h) =¢, for all ae F,\F},
then he Pr(e) if and only if Ap(h)e €r(e), and D(e) = Dx(e). Let e Z,. We will
say that hoe #; N cl(D(e)) is semiregular is ho¢ #; for 1 <j <m, j # i We will
say that #, is a wall of 9(e) if there are semiregular elements in J; N cl(D(g)).
Write X, for the set of all ¢ X, such that 5#; is a wall of 2(¢). For any he Z(¢),
write O(F : h:vg) for the tempered character ©(F : h:¢:vg). Now if e€ Z,, for any
semiregular hy e #; N cl(Pr(e)) we can interpret (0/0h)®O(F:hy:e:vp) as the
limit of (0/0h))*@(F:h:vg) as h— hy, he Dr(e), thus as an actual limit of
derivatives along a continuous family of tempered characters. Now the problem
is that even if e€ X,, 5,6 € X; only if the equivalence class of F, containing « has
no other elements.
For any e€ X, 1 <i < m, define ¢*(i)e X by

s JEa i a€F\Fj;
¢ (l)"‘_{il, if xe Fi, (3.10)
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Now forany 1 < i < mand ee Z;, both of (i) e Z,, ¢ is equal to one of ¢*(i), and
2(e*(})) and 2(¢”(i)) are separated only by the wall #,. Fix E< F, and a
conjugacy class F& of F,. Write E(i) = E U F}. For any F such that E = F < E(i)
define (vg, 0)€ aF by (vg, 0)|, = vg, {(Vg, 0), cpa) =0 for all a€ F\E.

THEOREM 3.11. Fix ES Fy, 1 <i<m, ¢€X;. Then for all k >0,
(0/0h Y (O(E : hy:e*(i):vg) + (— DENEFIQ(E : by e (i) : vg))

k
=X C|F\E|<a/3hi+i > J_ra/ﬁua>

EcF<E(®) aeF\E
X (O(F : hg:&*(i): (vg, 0) + (— EOFI@(F : hy: 27 (i) : (v, 0)))

for all ve af, hoe H; N cl(D(e). Here for all p = 0, c, = (d/dx)? tanh(x/2)|,—,.

The remainder of this section is devoted to the proof of this theorem together
with some consequences which will be needed in Section 7.

In order to prove Theorem 3.11 it is necessary to iterate Lemma 3.8. First, it
will be convenient to work not with ®(F:h:¢:vg), but with

OF :h:e:vp) = op(e)O(F :h:e:vp) (3.12a)
where
or(e) = [] &, (3.12b)
acFe
Now if ae F°n Fi and e€X such that g, = 1, then op(s,e) = —o(¢) and

Or)(€) = op(e). Thus in this case, Lemma 3.8 can be rewritten as

(0/0h)<O(F :hy:&:vg) — O(F : hy:5,6:Vp))
= (0/0h; + i0/op) OF(2): ho:&: (v, 0)). (3.13)
Further, if E = Fy, 1 <i < m,then for E = F < E(i), F* = (F,\E@)V(E(@)\F)

where (Fo\E(i)) = (Fo\Fp) and (E()\F) € Ff,. Thus og(e* (i) = Iyer,\ g, and
ope (i) = (— 1)EOFITLcp \ pye,. Thus Theorem 3.11 can be rewritten as

(0/0h){(O(E : hy:e*(i):vg) — OE : hy & (i): vp)
= Z ch\El <0/6h, +i z i 6/6;1,,)

EcFCE() aeF\E
X (O(F : hy: *(i): (v, 0)) + O(F : hg:& (i) : (vg, 0))). (3.14)
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Suppose as above we write O(F:h:vp)=O(F:h:g:v;) when he 2(e). The
point is that on Hy, ®(F : h:vj) extends to a smooth function of h€iv*. On other
conjugacy classes of Cartan subgroups of course it does not. Now in the case
that the equivalence class of F, containing o has no other elements, (3.13) can be
interpreted as giving the jumps of @(F:h:v;) and its normal derivatives as h
crosses the wall J,. In the general case, (3.14) gives a formula for jumps of
O(E: h:vg) and its normal derivatives as h crosses the wall #; from 2(¢*(i)) to
(¢~ (i) in terms of derivatives of families ®(F : h:v;) where E c F < E(i). These
are now matching conditions involving only characters of tempered represen-
tations and their derivatives along continuous families of tempered represen-
tations. Thus they will give matching conditions for the Fourier transforms of
Schwartz class functions.

Fix E < F,, a conjugacy class F} of F,, elements hy€ 5#;, vgea¥, and k > 0.
For any F such that E = F < E(i) and ¢€ Z, define

d(F:e) = (3/oh; + Y + i0/ou)t®(F :ho:2:(ve, O)). (3.15)
aeF\E

LEMMA 3.16. Let E = F < E(i). Then for all ac EG\F and ¢€X such that
g,=1,

d(F:¢) — d(F :s,6) = d(F(a):¢).

Proof. Write

<6/6hi+ » ii@/@u,,)k: f(';)( ¥ iia/ap,,)k-"(a/ah,.)p
p=0

BeF\E BeF\E

and

(a/ah.-+ 5 iia/auﬂ)k= > (';)( > iia/aup)k_"(a/ah..iia/aua)*’.
B

PeF(@)\E p=0 cF\E
By (3.13), we have for any p > 0,

(0/0hYP(O(F :hy:e:vp) — O(F :hy 5,62 vp))
= (0/0h; + i0/0p,"O(F(@): ho : &: (v, 0))

for all vpeaf. Thus, differentiating both sides with respect to
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(Zper\£ +10/0pg) P and evaluating at vp=(vg,0), for any 0 < p < k,

< Y * i@/aﬂﬁ>k_p(a/ahi)p(@(F:h0533(VE, 0)) — @(F:h055433("£’0)))
BeF\E

=< Y ii&/@y,,)kﬁp(@/ahi-l_-ia/ayu)P@(F(a):ho:s:(vE,O)). 0
BeF\E

For any E < F < E(i), e€ Z, define F*(i)= Fu{xeE():¢, = +1}.
LEMMA 3.17. For any ¢€X, E < F < E(i), d(F:6) = Zpcpc o d(F : &7 ().
Proof. Write F*(i))\F = {a,...,a,}. Then the proof will be by induction on r.

If r =0, then F = F*(i) and d(F : &) = d(F : ¢~ (i)) since &, = ¢ (i), for all a€ Fo\F.
Assume r > 1. Then we can write

r—1
dF:e)—d(F:e (i)=Y, (d(F:8y-5,,8) — d(F s, -+ 5,,8))
i=0
r—1
= '—ZO d(F(ai+ 1): Sa‘."'Salﬁ)
using Lemma 3.16 since (s, ** 54,€)y,,, = &,,, = 1. But
{a € F(ai+ IXi)\F(ai+ 1): (sa.- '“Sals)a = 1} = {ai+29 LR (xr}'

Thus using the induction hypothesis,

A(F (0t 4 1) Sa """ 5,8) = Y d(F':¢=(i)).

F(#;41)SF SF(@41)U{0 4 25-00,%,}

But now the lemma follows because for any
FcF cF*(i))=Fu{ay,...,0}, F #F,

let i+1 be the smallest index such that o;,,€F. Then F(x;,,) <
F' < F(o;41) U {%s...,0,}, but for j<i, F(aj.,) ¢ F, while for j>i,
F' & F(oj41)U{43,...,.}. Thus each term occurs exactly once. O

COROLLARY 3.18. For any ¢eeX;, E < F < E(i),

dF:e* ()= Y A(Fe )

FESF SEG
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COROLLARY 3.19. For any ¢€X;, E = F < E(i),
dF:e~(@)= Y (=DFVFdF :e* ().
FSF cE(i)

Proof. Define d'(F : ¢) as in (3.15) using © instead of ®. Then there is a constant
c= 41 so that d'(F:e*(i)) = cd(F:¢*(i)) and d'(F : e~ (i) = (— 1)EO\Fled(F : £ (i)
for all E = F < E(i). Thus (3.18) can be rewritten as

dF:e*@)= Y (=DEOFI@F &7 ().
FcF < E()

Now statements regarding d’ are symmetric with respect to interchanging &* (i)
and &7 (i), so we have

d(F:e (@)= Y (=DEOFIgFE:e*3).

FSF SE()

Now translate back to d to obtain the resulit. O
LEMMA 3.20. For any E = F < E(i),

dF:e*()—dF:e” ()= Y ¢mp@F e @)+dF e (i)

FeF CE()

where the constants c,, p > 0, are given by ¢,,=0, p > 0, and

=t (2p+1
Caprr=1/2—1/2 ZO<22+1
£

>02q+19 D >0

Proof. The proof is by induction on |E(@)\F|. If F=E(), then
d(F:e*(i))=d(F:¢ (i) and both sides of the equation are 0. Assume that
|E(@)\F|=n = 1. Combining (3.18) and (3.19) we can write

d(F:e* (i) — d(F ¢ (i) =

12 Y (—)FVFHAF et @)+ d(F e (1)
FcF' cE()

Now for F <= F' < E(i), |[F'\F| odd,
(— YFNFIHLQF s e* (i) + d(F &7 (i) = d(F': e+ (i)) + d(F" : ¢ (i)
while for F < F” < E(i), |F"\F| even,

(— DFNFIHLGF" e (0) + d(F" : 6~ () = —(d(F" : e (1)) — d(F" : ¢~ (i))).
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But since |E()\F”| < n, we can use the induction hypothesis to write

dF":e*()—d(F":e~ (@)= Y cppdF e*@)+dF e ()

F” < F' < E(i)

where ¢jpn g =0 if |[F'\F"| is even. Thus we can write
d(F:e*(i)) — d(F:e™ ()

= 1/2 Z (1 — Z ch'\F"I) (d(F, . 8+(l)) + d(FI . 8'(1)))

F < F' < E(i),|F'\Flodd FcF'cF

Thus ¢jp\p =0 if [F'\F| is even, and when |F'\F| is odd,

ClF'\Fl = 1/2— 1/2 z C”:"\F"l.
FcF'cF

Suppose F c F’ with |F'\F|=2p+1. Then for 0 < g < p—1, there are (321})
subsets F” with F = F” < F’ and |F'\F"| =2q + 1. Thus

2p+1
Cipn=12-12% ( ”+1> 0

LEMMA 3.21. Suppose c,, p = 0, are given by c,,=0, p > 0, and

2p+1

Copi1=1/2-1/2 Z (2 +1

>c2q+1’ 14 >4 0.

Then for all p > 0, ¢, = (d/dx)? tanh(x/2)|;-o-
Proof. Using the recursion relation we can write

P 2p+1 -1 2p+1
) c X X X 4 C2 +1X
4

1 1 2
S0 PPl 2,50Qp+1) 2,5 So(p—q)2g+1)!

1 1 ® 2qg+1 o 2(r—9q)
— —sinh x — — Z C2g+1X"" X
2 25 Qq+1) ,5412q—p)

—Linn hx—1 X
Esm x——(cos x— )Zc;

Thus

i xP sinh x
c

X _ S anh(x/2).
=0 "p! cosh x+1 tanh(x/2) .



146 R. A. Herb

LEMMA 3.22. Suppose for p >0, c,=(d/dx)?tanh(x/2)|.=o. Then for every
2p+1
p=0,Z0_ 22q+1<2q+1>02q+1 =1
Proof. Write

0 P 2p+1 x2p+1 © C, +122q+1qu+1 © x2p
Z z 22q+1< )52q+1> - Z q z
p=0 <q=0

2q+1 2p+1)! o 2q+ 1) =0 (2p)!
© x2p+ 1
= =si h = _
tanh(2x/2) cosh x = sinh x ‘;0 21 D)
Thus £2_,229% (381 ey = 1 for all p. O

LEMMA 3.23. Fix E < F, and suppose for each E = F < E(i) we have complex
numbers a*(F) satisfying the following condition. For each E < F < E(i),

a*(F)—a (= Y c¢ppla*(F)+a (F)).
FcF cE(j)

Then

Y 27M(=1)"Fa*(F)~a"(F)=0.
EcFc<E®l)

Proof. Write

Y 27— 1"t (F)—a~(F)

EcF<E()
= Y —27Fa*(F)+a™(F))
Ec F < E(i)|F\Elodd
+ Y —27¥l@*(F)—a™(F)).

Ec F < E(j)|F\Eleven

But in this second term,

a*(F)—a~(F)= Y cppa*(F)+a (F)).
Fc F' S E()

But since ¢pp; =0 unless [F'\F| and hence |F'\E| are odd,

Y 27— 1)P\Elg*(F) — a=(F))
EcF<E(®)

= Y 2-'F"(a+(F')+a—(F'))< —1+ Y 2'F'\F'c,p\p,)-

EcF’ < E(i)|F\Elodd E<FcF'|F\Flodd
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But suppose |F'\E|=2p+1. Then there are (30{}) sets F with ES Fc F,
|F\F|=2q + 1. Thus

2p+1

, )4

)22q+ 152q+ L= 1
E<FcF',|F\Flodd q=0

by (3.22). O

4. Elementary mixed wave packets

Fix H = TA a 0-stable Cartan subgroup and (4, y) € X(T), 74, 7, ek (). Let U(0)
be a neighborhood of 0 in iv* which is small enough that no he U(0) is more
singular than h=0. (See (4.6) for the precise definition.) We assume that the
Plancherel function m*(H:A:y:h:v) defined in (4.5) corresponding to (4, ) is
jointly smooth as a function of (h, v)e U(0) x a*. As in (3.3) we define F, and
Hp=TiAg, (A, xr) € X(T) for every F < F,. Note that for any F < F, y and yr
have the same Z-character so that K(x) =K(p). Let t,, 1,eK(y),
W = W(t,:1,). Suppose for each F = F, we have a function

O(F):iv* xaf x G > W.

Then we will say that

O(x)= Y, I *f*<I>(F:h:vF:x)m(HF:AF:xF:h:vF)dvFdh (4.1a)

FcF,
is a (W-valued) elementary mixed wave packet if the functions ®(F) satisfy the
following conditions. First, there is a compact subset w = U(0) so that for all
F < Fy, vpeaf, xeG, heiv*,

OF:h:vp:x)=0, hé¢o. (4.1b)
Second, let

We(4, x) = {we W(G, Hg):Wip = Ap, WX = Xr}-
Then for all we Wi(4, x), vr€a}, xeG, heiv*,

D(F:h:wvp:x) = O(F:h:vg:x). (4.1¢)

Third, for each F < F, ¢€X,, let ®(F:¢) denote the restriction of ®(F) to
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Dr(e) x af x G where X4, D¢(¢) are defined as in (3.9). Then, using the notation of
(2.17), (2.18), there are finitely many functions ;e #(M}: Ap: xp: Dr(e): W),
o, € G(Zr(e) X af), so that

O(F:e:h:vp:x) =Zai(h:vF)E(PF:‘I’,-:h:vF:x) 4.1d)

for all (h,vp,x)ePp(e)x a¥ xG. Finally, we require that the functions
®(F : h:vg: x) satisfy the matching conditions of (3.20). That is, fix E = Fo, k > 0,
1<i<m, eeX;,. For ES F< E(li)=EUF., vgea¥, hpe #;ncl(PDg(¢), xeG,
write

AX(F:hy:vg:x)= (6/6h,~ —iy 6/0u¢>kap(ei(i))<I>(F 1e%(i):hg: (vg, 0): x).

aeF\E

Then we require that for all E = F < E(i),
AY(F:hy:vg:x)— A (F:hg:vg:x)
= X ARFAH(F hy:vg:x) + A~(F ko vg: ) @.1¢)

FcF cE()

where ¢, k > 0, are defined as in (3.11). Finally, if ® is a W-valued elementary
mixed wave packet and w* e W*, we say that

P(x) = <D(x), w*> (4.1f)
is a scalar-valued elementary mixed wave packet.

THEOREM 4.2. Every fe%(G)x is the sum of finitely many scalar-valued
elementary mixed wave packets.

Suppose ®(x) is defined as in (4.1a) and for heio* set

Oh:x)= Y J‘<I>(F:h:vF:x)m(HF:lF:xF:h:vF)dvF. (4.3a)

FcF,

Clearly ®(h:x) is (14 4, T, 4)-spherical and

D(x) = f ‘Cl)(h:x) dh. (4.3b)

In (7.3) we will prove the following theorem.
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THEOREM 4.4. Let ®(x) be a W-valued elementary mixed wave packet. Then
(h, x) > ®(h: x) is jointly smooth on iv* x G.

Because of Proposition 2.8, this is the first step in proving that ® e €(G: W).
The estimates needed to complete the proof will be deferred to another paper.
The remainder of this section is devoted to the proof of Theorem 4.2.

Let H = TA be a 0-stable Cartan subgroup of G, (4, y) € X(T). The Plancherel
function m(h:v)=m(H :A:x:h:v) is defined as follows. Let ®* denote a set of
positive roots for ®=®(gc, hc) and let @z ={ae ®*: « takes real values on b}.
For ae®;, let ® = {fe®*: B|, = ca for some ¢ # 0}. Let ®f = | J,eo; @, and
let 2 be a connected component of {heiv*: (A(h), «) # O for all xe®@;;}. Then
there is a constant ¢(H:A:y:9) so that for he 2, vea*, we have

m(h:v) = c(H: A: x: Dym*(h:v) (4.5a)
where
m*h:v)=m*H:A:x:h:v)= [] <MW +iv, B> [T m¥(h:v) (4.5b)
BedH\DE «ed;
and

m¥h:v)=m¥H:A:x:h:v)

sinh 7y,
cosh v, —e,(h)’

= [] <ih)+iv, B - xedy. (4.5¢)

Bed;
Here for
2
aedy, v, = L and ¢,(h)
o, o)

is a continuous function of h defined as follows. For a € ®%, let H* € a be dual to
20/{a, ) under the Killing form. Let X,, Y, be elements of the root spaces
8. 8-, respectively so that 6(X,)=Y, and [X,, Y,]=H}. Write Z,=X,—Y, and
set y,=exp nZ,. Then y,e Z,,(M°). Let p,=1/2 Zpear B(Hg). Then

5, trace[x(h:y,) +x(h:y. )]
2deg x(h)

&g(h) = (—1) (4.5d)

For ae®;, m*h:v) is clearly jointly smooth on ip* x a* except possibly at
points (h, v) where v,=0 and ¢,(h)=1.

Now fix hy ein*. We want to define a neighborhood U(h,) of h, which is small
enough that no point of U(hy) is more singular than h, in the sense that
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matching conditions satisfied by the characters @(H : 1:x:h:v) at hy will give all
possible matching conditions in U(h,). For any heiv* let ®y(h)=
{Be®y;: CAh), B> =0}. Define Fo=®5(h,) and for F = F, define Hp, A(ho)r,
x(ho)r as in (3.3). For each F < F, define ®f p and m}¥(F:h:vg), s(F:h),
ae®f, as in (45 for Hp and (Aho)r, x(ho)r)- Let @7 x(1:h)=
{ae®f p:e,(F:h)=1}.

For & > 0, let U(hy) = U, (ho) = {heiv*:|h—hy| < ¢}. We will assume that ¢ is
small enough that for all he U(h,),

D@yy(h) = Oyylho); (4.6a)
OFf p(1:h) = ®Ff g(1:hy) for all F < Fy; (4.6b)
le(F:h)— e F:ho)l <1 forall F< Fgy, ae®fg. (4.6c)

LEMMA 4.7. Define U(h) as in (4.6), and for F < F,, let
Dy (h) = {ae @y, <o, Ap(h)> =0}

Then for all he U(hy), @y, (h) = @y (ho). Further, let a € ®f g, voeaf. Then if
m¥(F:h:v) is jointly smooth at (hy,v,), it is jointly smooth at (h,v,) for all
he U(hy).

Proof. Using (3.4) we see that we can identify ®;;,(h) with {xe®;;:« L F and
{a, A(h)) =0} =@y, " @y (h). Thus for all heU(h,), using (4.6a), @y (h)=
O, D) By, O Dfs(ho) = B (o).

Now fix « € ®F ¢ and assume that m¥(F : h:v) is jointly smooth at (hy, vo). Then
one of the following possibilities occurs. First, if ¢,(F : hy) # 1, then by definition
of U(hy), &,(F : h) # 1 for every he U(h,), so m¥(F : h:v) is jointly smooth at (h, v,)
for every he U(h,). Second, it is possible that ¢,(F:h) =1 for all heiv*. In this
case,

v, sinh 7,

R L

Be®; \{o}

is jointly smooth on iv* x a*. Finally, suppose &,(F : hy) = 1, but ¢,(F : h) is not a
constant function of heivo*. Then, as in [H1, 10.3], « must be a root of a simple
factor g, of g with G, simply connected, non-compact, and of hermitian type.
Let b be a fundamental Cartan subalgebra of g and let SOS(Hy) denote the set of
strongly orthogonal non-compact roots of (gc, bc) used to define the Cayley
transform ¢ with ¢(bc) = brc. Then o =c ™ 'ae SOS(Hp). Set

L Kb
RCE
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Then h— h, is a non-trivial linear function on iv* and &,(F : h)=cos n(h— hy),.
Now since m*(F:h:v) is jointly smooth at (hy,vo), v2+(h—ho)? divides
Mgeps{A(h)+iv, B). Thus there are y, ye®; and a constant ¢ so that
AR +iv, > = o((h— ho), + iv,) and {A(h) + iv, 7D = t c((h— ho), —iv,). But now
for heU(hy), if e (F:h)# 1, then m¥(F:h:v) is jointly smooth. But if
e(F :h)=cos a(h—hy), =1, then (h—h,),€2Z. Suppose |(h—h,),| = 2. Then
there is h' € U(h,) with |[(h'— hg),| =1 so that ¢,(F: h)= — 1. But this contradicts
the assumption that |e,(F : h') —¢&,(F : ho)| < 1 for all h' e U(h,). Thus (h—h,),=0
so that again m¥*(F : h:v) is jointly smooth at (h, v,). O

Fix ae®g such that (0)=1, but ¢, h) is not identically 1, and use the
notation in the proof of (4.7). Let H' = T'A’ be the Cartan subgroup of G with
SOS(H')=SOS(H)\{c™'a}. Thus c,(hc) =bhc where c, is the Cayley transform
corresponding to a. Write o = ¢, 'a e ®(g, ') and let P’ = M’A’N’ be a parabolic
subgroup corresponding to H'.

LEMMA 4.38. There is a unique A €(it')* such that X' — p,,. is integral, A'|; = A,
and (X,a') =0. Further, X € Ay, if and only if (h,v)—>m¥(h:v) is not jointly
smooth at (0,0).

Proof. The existence of A’ is proven in [H1, 10.13]. The uniqueness is clear
since restriction to t gives a bijection between {4’ e (it)*: (A, a’> =0} and it*.

Now suppose that m¥*(h:v) is jointly smooth at (0,0). Then as in the proof of
(4.7) there are ye®,;, ceR, such that {(A(h) + iv,y)>=c(h,+iv,). In particular,
{4, 7>=0. Write y'=c; 'y. Note y e ®;,. since the restriction of y to a is a
multiple of a. But

U, 7> =L4y>+

A, o .,
A2 oy = 0.

oy ay

Thus 7 € ®;;.(0). But o’ € ®,7.(0) also and (y’,o’) # 0. Thus by (3.1), V' ¢ Ay ;.

Conversely, suppose ' ¢ Ay ;. Since 1’ — py,. is integral, there is ' €@y, ; so
that (4,7>=0. Hence <{4,y)=0 where y=c,). Since Ae€Ay;,
Y€ D@y, ={c,B : B €Dy 1, {B,o'>=0}. Thus {y,a’) # 0so ye®,;. But

_pw Ly
vy = @ M) ="

and

<hM’(h)’ a,> _ <Y, d)
Ty PTT

CAUR), 7> = Khag(h), 7D = Chag(h), ¥ — h,
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since y’ € @y, ; means that {hy.(h), y'> =0. Thus

—<y, @
2

<}'(h) + iV, y> = (ha - iva)'

Now Igepr\(a) CUR)+iv, B> is real-valued, so that this implies that hZ +v2
divides Tlgeqp+ CA(h)+iv, B>. Thus my(h:v) is jointly smooth at (0,v) for
all vea*. O

LEMMA 49. Let H=TA be a 0-stable Cartan subgroup, (1, y)€e X(T), and
define Fo, Hgp, Ag, x5, F S Fy as in (3.3). Suppose F # (& and let o« €F,
o =cpa €®;(a,hp). Then m¥(Hp:Ap: xp:h:vg) is not jointly smooth at (0,0). In
particular, ¢ (F:0)=1.

Proof. We must first show that ¢,(F:0)=1 if o’ e F. Since «’ € F, « must come
from a simple factor of G which is non-compact, simply connected, and of
hermitian type. Thus y, is central in Z MF(ME). Let I', be the central subgroup of
VA MF(M?-) generated by y, and let { be the I',-character of xz(0) so that
xe(h:y)=e"y)()xp(0:1) for all yeT',, heiv*. Then

euF ) = (1~ e"(va)C(v,)+;”(y; D0

Thus ¢,(F:0)0=1 just in case {(y)={(y;Y)=(—1yY-~ Now since
V€ Zap(MP) = T°, using (3.3), {(y)=e€"""M(y,)=e"*¥(y,) since y,=exp(niH¥)
and {4,a’>=0. Thus to prove that ¢,(F:0)=1 it suffices to show that
e "M(y)=(—1)~ Now this is proven in [HI1,10.13] in the case that
F =F ={«'}. Thus ¢,(F':0)=1. But for general F such that «' € F, it is proven in
(5.5) that g (F:0)=¢(F":0).

Now as in (4.7) we have ¢(F : h)=cos nh, so that

sinh 7wy,

my(Hp: Ap:xp:h:vg) = n {Ap(R)+ivg, B>

fed? cosh nv,—cos 7h,

Suppose m}(h:vg) is jointly smooth at (0,0). Then as in (4.7) there are ye ®;,
ceR, so that {Ag(h)+ivp,y)=c(h,+iv,). But then as in the proof of (4.8),
cr 'ye Fa=®;(0). But o’ € F, also and <o/, c¢; 19> # 0. This contradicts (3.1). (]

THEOREM 4.10. Suppose H=TA is a 0-stable Cartan subgroup of G and
(A4, x)e X(T). Then there are a 0-stable Cartan subgroup H'=T'A’ of G,
(A, x)eX(T’), and subset F < F = ®3(0) such that H=Hp%, = Ar, x = xr and
m*(H': X'y - h:V) is jointly smooth at (0, V') for all v’ e(a’)*. Further, H' is unique
up to conjugacy and once a choice of H' has been made, X', y', and F are unique.
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In order to prove the theorem we will need some preparation. Write
Dz (0)={ae®g :m¥H:h:v)=m}(H:A:x:h:v) is not jointly smooth at (0, 0)}.
In particular, ¢,(H:0)=1, but &,(H : h) is not identically 1, for all a e ®z(0). Fix
ae®z(0) and define H,, A, €it¥ as in (4.8). Define y, =y| z,(m2)- 1dentify linear
functionals on b and b, via c,. Then the set @ ¢ of positive real roots of H, is
identified with {fe®z : (B, > =0} and af is identified with {ve a*:{v,a)=0}.
For every e ®{ g, write m§(Hy :h:v) = mf(H,: A, :x,:h:v) and &g(H,:h)for
the term ¢,4(h) occurring in mf(H:h:v).

LEMMA 4.11. Let fe®{ ; and suppose that m}(H:h:v) is jointly smooth at
(0,0). Then m§(H,:h:v) is jointly smooth at (0,0).

Proof. Suppose a, f§ are both long roots in the same simple factor of ®z. Then
the result is proven in (6.1). Otherwise, by (5.5), g5(H, : h)=¢z(H : h). Thus the
lemma is obvious if e4(H :0) # 1 or if eg(H : h)=1 for all heiv*. Thus we assume
that e4(H:h)=cos nh, is not identically 1. Now since mj(H:h:v) is jointly
smooth at (0,0) there is ye ®; so that {A(h)+iv,y) =c(hg+ivg). Now <(y,a)=0
so that ye®,={ye®" :y|s=cp for some c#0} and {A;(h)+ivy,y>=
(M) +ivy y)> =c(hg+i(vy),) for all v, e a¥. Thus mj(H, :h:v) is jointly smooth at
(0,0). O

Suppose now that H, (A,x) are as in the theorem. Recall that
¢ 1®7(0) = SOS(H) and that every root in ®; (0) is a long root in a simple factor
®(a) of Dy of type 4, or C,. (When ®(a) is of type A, we consider all roots to be
long.) We will define an equivalence relation on ®(0) as follows. First, we set
o ~ B if a, e ®;(0) are in the same simple factor of @y, that is if ®(x) = D(P).
Now let a, B ®;(0) such that ®(x) # ®(B). Then a ~ B if and only if there are
7,7 € ® such that

<> =0; (4.12a)
y + y€span(a, f); (4.12b)
5,80 = P (4.12¢)
y—7yeit* and (y—% 4> =0. (4.12d)

LEMMA 4.13. The relation ~ is an equivalent relation on ®3(0).

Proof. Clearly a ~ o and a ~ § if and only if f ~ a. Now suppose a ~ f and
p~6. If ®(a)=D(f)=D(6), then obviously a~dJ. Suppose that D(a)=
®(B) # D(5). Then ®(x) is of type C, and «, f are long roots. Let w be the
reflection in the Weyl group of C, that exchanges o and § and fixes all other long
roots. Let 7, 7 be defined as in (4.12) for f and 6. Let y =wy, 3" = wj. Then, since
wd = 6 and w acts trivially on it* it is easy to check that y’, 3’ satisfy (4.12) for «, 6.
Thus a ~ 6. Finally, suppose ®(x) # ®(f) and ®(B) # ®(J). If ®(o)=D(5) then
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o ~ 6. Thus we can assume that ®(a) # ®(p). In particular, a, §, are mutually
orthogonal. Define y,, 7, as in (4.12) for a, f and y,, 7, as in (4.12) for B, 6. Define
wy=s, 55 and set y3=w,;y,, J3=w7,. Then y3,7; satisfy (4.12) for o, é since
wio =B, w f=a, w6 =20, w(it*) =it* and w;A=A. Thus we have a ~46. [

LEMMA 4.14. Let o # Be®;(0) and define H,, (A4, x1)€ X(T,) as above with
respect to o. Then o ~ B if and only if m§(H, : h:v) is jointly smooth at (0, 0).

Proof. Suppose first that ®(xx) = ®(f). Then a ~ . But it follows from (6.1) that
eg(H,:0)= —¢gp(H:0)= —1 so that m§(H,:h:v) is always jointly smooth at
0,0).

Assume now that ®(«) # ®(f). Then eg(H, : h) = g4(H : h) for all heiv* so that
we can apply (4.8) to H,, (A,x;) and B to obtain H,, (4,,x,). That is,
SOS(H,)=SOS(H)\{c™'B}=SOS(H)\{c™'a, c~*B}. Note that we would obtain
the same H,, A,,x, if we had started by defining H, 4%, x; with
SOS(HY) = SOS(H)\{c™ !B} and then had applied (4.8) to H, (4}, x}) and o.
Again, we identify linear functions on b, b, b}, and b, via the Cayley transforms
¢, and cg.

Assume first that o ~ . Define y,7 as in (4.12) with respect to «, § and let
Y =®nspan(a, f,7,7). Then since ity =it* @ span(x, f), ¥ S @ nit =@y,
Further, {(1,,5) =0 for all 5e€'¥. But {y,a) #0. Thus by (3.1), 1, ¢ Ay,.; so by
(4.8), mg(H : h:v) is jointly smooth at (0, 0).

Conversely, suppose that mg(H, :h:v) is jointly smooth at (0,0). Then again
by (4.8) there is ye®,, ; so that {y,4,> =0. Suppose that {y, f>=0. Then
ye®@y, 1 and {A;,7) =0. But 4; €Ay, ; so this is impossible. Thus <y, ) # 0.
Similarly, <y, a) # 0 since 47 € Ay, ;. Define

¥ = @ nspan(a, B, 7) S Qy,(4;) = {6€ D@y, :{4,, ) =0},

Thus ¥ is a simple root system of rank 3. Since « and § come from a simple
factor of G which is non-compact and of hermitian type, ¥ is of type A3, C; or
D;. We may as well assume that <y, a) > 0. If <y, f> > 0, replace y by szy. Thus
we can assume that <y, B> <0. Define y = —s,s5,y€¥. Then y + 7 e span(a, )
and y—7 eit*. Suppose {y,7) >0. Then y—je ¥ nit* = {e®y,: {5, 4> =0}. In
particular, y—7 is a root in ¥ which is orthogonal to both « and f. Suppose ¥ is
of type A5 or D;. Then there are not 3 mutually orthogonal roots so this cannot
happen. If ¥ is of type C;, since « and f are non-compact roots of ®,,, and
cannot both be long, y —y € @, ; N @), = By, ;. This contradicts the assumption
that A€ Ay ;. Thus <y,%> < 0. Suppose {y,7) > 0. Then

v+ 7€'¥ nspan(x, f) = @ N span(a, f) = {+a, =}

since « and B are in different simple factors of ®g. But {y+7%,a>=2{y,a) #0



Schwartz space of a general semisimple Lie group IV 155

and <y+7, > = 2<y, B> #0. Thus (y,7) = 0. Now

2 a, _
SyS0 = a — <<yoz y);} (y+7)€¥ nspan(a, f) = { o, +B}.
But since {a,y) > 0 and {B,7) <0, {s,s;0, f> > 0 so that s,s;0 = . Thus 7,
satisfy (4.12) for a, § so that o ~ B. O

PROOF OF THEOREM 4.10. The proof of existence of H', ', ¥, and F is by
induction on dim A. If H is fundamental so that dim A =d,, is minimal, then
®F = so that m*(h:v) must be jointly smooth. Thus we can take
H'=H,2 =1,y =y,and F = J. This is the only possible choice because of (4.9).
Now suppose dim A > d,,. If there are no roots a € ®5 such that m*(h:v) is not
jointly smooth at (0,0), then again we can take H' = H. If not, fix a e ®5 such
that m¥(h:v) is not jointly smooth at (0,0). Define H;, so that
SOS(H,) = SOS(H)\{c ™ 'a} and choose 1, € A, ; corresponding to A as in (4.8).
Let x, be the restriction of y to Z,,((M,)°. Then (4,,%,)eX(T;) and
dim A, =dim A—1 so by the induction hypothesis there are H’, 1,y and
F, € F, so that Hy=Hy, Ay=2p, x1=xr, and m*(H': X'y :h:v) is jointly
smooth at (0,v) for all v’ e(a’)*. But now o =cz'c; 'a€F, and if we set
F=F u{a},then H= Hy, A= Ay and y = x5 This proves the existence of H’, A’,
X, F. For fixed H', ¥’ = x|z,.(m)) and F=SOS(H)\SOS(H’) are unique. Further,
A’ is unique since restriction to t gives a bijection between {1’ e (it')*: <A, a) =0
for all ae F} and it*.

To see that H' is unique up to conjugacy we proceed as follows. Define @ (0)
and the equivalence relation ~ as in (4.12). Let ¥ be a complete set of
representatives for the equivalence classes and let H'(‘¥) be the Cartan subgroup
of G with SOS(H'(¥))=SOS(H)\{c 'a:ae'¥}. We claim that the conjugacy
class of H'('W) is independent of the choice of ¥. Suppose « and f represent the
same conjugacy class in ®; (0). Then either both are long roots in a simple factor
of type C, or there are y, y defined as in (4.12) corresponding to «, f. In the first
case, let w be the reflection in the Weyl group of C, interchanging « and # and
fixing all other long roots. In the second case, let w=s,s;. In both cases w
represents an element of W(G, H) which interchanges « and f and fixes every
other root in ¢cSOS(H). Thus any two choices ¥, and ¥, are conjugate by an
element of W(G, H) so that H'(¥,) is G-conjugate to H'(¥,).

Now we claim that if H' is as in the theorem, it must be of the form H'(‘¥Y) for
some ¥ as above. Thus suppose we have H', A, ' with H= H%, A= A%, x= . Let
Y =cp(F) < ®;. Then by (4.9), ¥ = ®;(0). Suppose that o, € ¥ with & ~ f. Let
F,=F\c; *{o, B}. Then as in (4.14), Az,¢ Ay, ;. Now suppose that there is
ae®;(0) such that o + B for all Be¥. Then applying (4.14) and a simple
induction argument, m*(H':A':x':h:v’) is not jointly smooth at (0,0). This
contradicts the assumption that m(H':1':y':h:v) is assumed to be jointly
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smooth at (0, 0). Thus P is of the type considered above, so that H' is unique up
to conjugacy. O

Suppose for every 6-stable Cartan subgroup H =TA, (4, x)eX(T), t,,
7, € K(y) we have a function

PBH:A:x:t 1) 0¥ xa* XG> W = W(t,:1,)
satisfying the following conditions. First, for all h,, heiv*, vea*, x€G,

B(H : Aho): x(ho): Ty pg:Tome hivix)
=PBH:A:y:t T h+hy:vix). (4.15a)

Second, suppose for i=1,2 we have f-stable Cartan subgroups H,=TA4;,
(l,,x,)eX(T), so that there is ke K with H,=H% 1,=2% yx,=x% Then
K(x1)=K(x,) and for all 14, 1,€ K(yy), heiv*, v,eaf, xeG,

BH i Ay it hiviix)=BHy: Ay xp:Ty: T, hivyiX). (4.15b)
Third, we assume that the collection

{B(H:A:x:7,:7,)} satisfies all possible matching conditions. (4.15¢)
That is, fix H=TA a 6-stable Cartan subgroup, (4, y)e X(T). Assume that
m*(H : A: x: h:v)is jointly smooth in U(0) x a* where U(0) satisfies the conditions

of (4.6). Define F,, Hyg, Ag, xz, F < Fy as in (3.3) and fix 7,, , € K(x). Then the
functions

{Ig(HFJF:XF:Tl5Tzih3V3x)}F;Fo

satisfy the matching conditions of (4.1e) in U(0). Fourth, there is m > 0 so that
for all H, (4, ) e X(T), 1;e K(y),

supp B(H:A:x:7,:7)) S {heiv*: [|A(h)| <m and |7;,| <m,j=1,2}
(4.15d)

where supp S(H:A:x:t,:7,) is the closure of
{heiv*:B(H:A:x:t :15:h:v:x) # 0 for some vea*, xeG}.

Finally, for each connected component & of {heiv*: (A(h), a) # O for all xe D5}
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there are finitely many functions W;e #(M':A:x:2: W), a;€ €(2 x a*), such
that for all he 9, vea*, x€gG,

BH:A:y:t:15:hivix) =Zoc,~(h:v)E(P:‘I’,.:h:v:x). (4.15¢)

LEMMA 4.16. Let f € 4(G)x. Then the functions {F(f:H:A:y:7,:1,)} defined
as in (2.14) satisfy the conditions of (4.15).

Proof. It is clear from (2.14) that the functions F(f ) satisfy the shift conditions
of (4.15a). Suppose for i=1,2 we have #-stable Cartan subgroups H;= T;A;,
(4 x:) € X(T,), so that there is ke K with H, =H%, A, =2%, y, =%. Then since k
acts trivially on iv*, 1,(h) = A,(h)¥, x,(h)=yx(h)* for all heiv*. Thus

OH Ay hivi:x)=0OH,: Ay x,:hivyix)

for all v,ea%, heiv*, xeG. Now it is clear from the definition that the EF(f)
satisfy condition (4.15b). Suppose we have Hg, Ag, xf, F S F, as in (4.15c). We
know from (3.20) that the characters {@(Hg: Ag: xp:h:vp:X): F < F,} satisfy the
matching conditions of (4.1¢). Using the same argument as that of [H1, 10.22]
we see that the functions {ﬁ(f: Hp:lp:xp:7y:72:h:viX)}pcF, also satisfy these
matching conditions. Finally, (2.13) and (2.20) show that the functions F(f)
satisfy (4.15d) and (4.15e) respectively. d

Let H=T'A’ be a O-stable Cartan subgroup, (¥, x)eX(T"), t,, 1€ K(¥).
Define U’(0) as in (4.6) and Fy, Hf, A5, x5, F S Fy, as in (3.3) and assume that
m(H': A’ :x':h:v) is jointly smooth in U’(0) x (a')*. Suppose for each F <= F, we
have

D(F):iv* x(a)FEXxG > W = W(t|:1)) (4.17a)

satisfying the conditions of (4.1). Now let H=TA be any 0-stable Cartan
subgroup of G and let (4, y)e X(T), t,, 1,€K(x). Suppose there are F < Fy,
hoeiv* and ke K so that H*=Hp, 2*=A5(he), x*=1r(ho)s Ty =T1 hp T2=Ta.no
Then W(z,:1,)=W(1}:13) and for all heiv*, vea*, xe G we define

OH:A:x:t:1:h:vix) = O(F :h+hy:v*:x). (4.17b)

Otherwise, we set ®(H:A:x:7,:7,:h:v:x)=0 for all heiv*, vea*, xeG. Note
that in (4.17b), hyo€iv* is uniquely determined by 7, =1} ,,. We will show in
(4.18) that F < Fj is also unique and that definition (4.17b) is independent of the
choice of ke K.

LEMMA 4.18. The collection of functions {®(H:A:y:7,:1,)} of (4.17) is well-
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defined and satisfies the conditions of (4.15). Further, let ®(x) be the elementary
mixed wave packet defined as in (4.1a) corresponding to the functions ®(F). Then

)= Y

HeCar(G) (x)eXo(T)Wy 1:6K(1) 1,e[K(0)/S7]

xj OH: Ay 1yt hv:x)m(H: Az x:h:v)dvdh.
io* Ja*

Proof. Suppose there are k;, k,eK and F,, F,eF, such that H*=H},,
H=Hy,, 1= 2 (ho), 2= (ho), 2 =1, (ho), 1= 1islho). Let k=ky(k3").
Then Hy, =(Hy,), Zs,(ho) =ik (ho))’, and xr,(ho)=(xr,(ho). But since k acts
trivially on hy, we also have Ay, =(A%,)* and xp, = (xp,)"

Since Hf, is conjugate to Hp, there is we W(G, H’') so that wF; =F,. In fact it
is not hard to check cases as in (5.12) to see that we can take we W(M’, T') and
w?=1.Nowv=wAd ke W(G, Hy,) and Az, =w ™ 'v(i},). Suppose F, # F,. Then
there is o€ F, such that wa¢ F,. Then wae F; so that wae®,y, . Now since
ve W(G, Hg,), v~ 'wae @y, . Now

o™ two, ) = <o twa, A, = wa, wig, > =a, A') =0.

Thus v~ 'waeFy\F,. But now if we identify ()¢ (b )& (Or,)E and the
corresponding roots systems and Weyl groups using the Cayley transforms c,,
Ccr, We have s=w™'veW and f=s"'a#aeF| such that sA’=1" and sf=a.
Now « and  must be in the same simple factor of ®(4’) and are also in the same
simple factor of @,,.. But ®(1) N ®,,. is of type A% by (3.1). Again, by checking
cases, this cannot happen. Thus F,=F, so that the F in (4.17b) is unique.
Further, Ad k represents an element we Wy (4, ). Now using (4.1c),

DF,:h+hg:wv:x)=®(F,:h+hy:v:Xx)

so (4.17b) is well-defined.

Since (4.17b) is well-defined, the functions ®(H : A: y: 7, : 7,) satisfy (4.15a) and
(4.15b). The fact that there is a compact subset w of iv* so that each
®O(F:h:vp:x) is zero unless hew implies that the functions ®(H:A:y:t,:1;)
satisfy (4.15d) and condition (4.1d) implies they satisfy (4.15¢). Thus we need only
show that they satisfy all matching conditions.

Fix H=TA, (4, x)€ X(T), and U(0) as in (4.6) so that m(H : A: y:h:v) is jointly
smooth in U(0) x a*. Define F, Hg, Ap, x5, F = F, as usual. We want to show
that for any 1,, t,€K(y) the functions ®(Hp: Ap: yp:7y: T,) satisfy matching
conditions in U(0). We first note that for any h e U(0), ®;(h) = F, by (4.6), and in
fact ®;(h) must be the union of the Fi such that he ;. Thus the matching
conditions corresponding to (A(h), x(h)) are a subset of the matching conditions
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corresponding to (4,x). Conversely, suppose for each he U(0) there is a
neighborhood U(h) of h such that in U(h) the ®(Hp: Ap: xr:7,:7,) satisfy the
matching conditions corresponding to hyperplanes #; such that he #;. Then
they satisfy the matching conditions corresponding to (4, x) in U(0). Thus we
need only show that matching conditions are satisfied in some neighborhood
of 0.

Now fix F € F,. Then ®(Hp: Ap: xp: 1, :7,) is identically zero unless there are
F' c Fy, hyeiv*, keK so that Hy=Hp, Ax=2pho), xk=xk(ho)y T1=T1ho
T, =T} .- Assume this is the case. Then we may as well assume that k=1. Now

OHp: g xp:T1:T2 hivp:X) =O(F :h+hy:v:x)=0

unless h+hgew < U'(0). Thus ®(Hy: Ap: xr:7,:7,)is zero in a neighborhood of
h=0 unless hy € U’'(0). Thus by the above we may as well assume that h, e U’(0).
Now consider Hg., (Az-(ho), x5-(ho)).- They correspond by (4.10) to H, (4, x). Thus
there is ¥ as in the proof of (4.10) so that SOS(H)=SOS(Hy)\c '¥. Now Wis a
subset of @7 g(hy), the set of real roots of Hy. such that m*(Hp.: A% : x5 h:v) is
not jointly smooth at h=h,. Using (4.7) we see that ®F g(ho) = @7 z(0). Fix
ae¥. We can assume that o’ = cp.'a e F’. Now suppose fe'¥ with a ~, f where
~ o is the equivalence relation on @7, (0) defined as in (4.12) using H., (A¢(0),
Xr(0)). Then mf(H. : A : xr~) is jointly smooth at h=0 where F” = F'\{«'}. Now
by (4.7), since hoe U'(0), m§(Hy.: Ap-: xp-) is jointly smooth at h=h,. Thus
o ~ 4, B so that a=f since ¥ contains a unique representative of each conjugacy
class with respect to ~,, . Thus we may as well assume that ¥ < c,.F'. Write
Fy=F\cz'¥. Thus SOS(H)=SOS(H')U(F,) so that H=Hjy, A= A% (ho),
% = xr,(ho). Now the matching conditions corresponding to H, (4, ) are a subset
of the matching conditions corresponding to H', (4, ¥).

Finally, suppose that we have H="TAe Car(G), (4, y)€ Xo(T)/ Wy, 1,€K (%),
rze[If(x)/ST], such that there are F < Fy, hyeivn*, and ke K so that H*=H},
7= Xilho), 2= (o), T1 =T} ppy T3=T5 4 Then

J fCD(H:A:x:h:v:x)m(H:).:x:h:v)dvdh
io* Ja*
=J f<I)(F:h+h0:v":x)m(H:,l:x:h:v)dvdh
in* Ja*
=J J(I)(F:h:vF:x)m(H’F:l'F:x},:h:vF)ddeh.
io* Ja¥

Further, given H = TAeCar(G), (4, x)€ Xo(T)/ Wy, 1, € K(x), 1,€[K(x)/S+]
such that ®(H:A:y:1,:1,) is not identically zero, there are a unique F < F,
h €iv* such that there is ke K with H*=Hp, 2*=1z(ho), x*=x¥(ho), T1="T1 ho»
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T,=175,, Conversely, given F < F;, there are unique H=TAeCar(G),
(4 )€ Xo(T)/ Wy, 1,€K(x), 1,€[K(x)/S1], ho€iv* such that for some keK,
H* = Hp, 2*=2(ho), x*=xi(ho), T1 =T np T2 =T2n, Thus each term

f O(F:h:vp: X)m(Hp: Ap: xr:h:vp)dvedh
io* JaF

occurs exactly once in

2 LY X

HeCar(G) (A0)eXo(T)/Wy 1:K(x) 1,€[K(x)/Sq]

xf f DH:A:x:ty 1t h:vix)m(H: A:x:h:v)dvdh
in* Ja*

and all non-zero terms are of this type. O

Write Car(G)={H,,H,,...,H,} where the Cartan subgroups H;=T;A; are
ordered so that dim A, < dim 4, < --- < dim 4,. Now suppose H=TA is a 6-
stable Cartan subgroup of G. For any (4, x)€ X(T), we say (4, ) is of level
d, 1 < d < k, if the Cartan subgroup H' associated to (4, x) by (4.10) is conjugate
to H,.

Suppose for every 0<d<k+1, O-stable Cartan subgroup H of G,
4, neX(T), 14,1, eIZ(x) we have a function

Ba(H:A:x:1.:7,):i0¥ X a*x G > W = W(t,:1,) (4.19a)

so that for each d the collection {B,} satisfies the conditions of (4.15). Suppose in
addition that if (4, y) € X(T) has level d’ < d, then

O¢supp By(H:A:x:7,:7,). (4.19b)

THEOREM 4.20. Let fe®(G)x. Then there is a collection of functions
{Bs(H:A:y:74:7,)} satisfying the conditions of (4.19) so that

PoH: Ay 11:15) = F(f:H:l:x:‘cl:rZ)
Sfor all H, A, x, ty, T, and such that if

fil)= ) ) )

HeCar(G) (4y)eXo(T)/ Wy 16K 7€[K(0)/St]

xf Iﬁd(H:A:x:rl:rzzh:v:x)(l:l)m(H:l:x:h:v)dvdh,
iv* Ja*
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then f(x)— f,(x) is a finite sum of scalar-valued elementary mixed wave packets for
alld > 0.

COROLLARY 4.21. Every f € 4(G)x is a finite sum of scalar-valued elementary
mixed wave packets.

Proof. Define the functions 8, corresponding to f as in (4.20). Let k=|Car(G)|.
Then B, ., , is identically zero using property (4.19b) since for any 6-stable Cartan
subgroup H, every (4, x)e X(T) has level d <k <k+1. Thus f,,,=0. Now
f(x) = f(x) — fi+1(x) is a finite sum of scalar-valued elementary mixed wave
packets. O

PROOF OF THEOREM 4.20. Let f € 4(G)k. Define
BO(H:l:x:tlz‘cZ:h:v:x)=ﬁ(f:H:A:x:tl:rzzh:v:x)

for all H, A, x, t4, T3, h, v, x. Then B, satisfies the conditions of (4.15) by (4.16).
Further, condition (4.19b) is vacuous when d = 0. Finally, f(x) — fo(x)=0.

Now let 0 < d < k and assume for d' < d that we have constructed functions
B, satisfying the conditions of (4.19) such that f — f; is a finite sum of
elementary mixed wave packets. We will show how to construct f,, , satisfying
(4.19) so that f — f,,, is a finite sum of elementary mixed wave packets.

Fix H' =H,eCar(G), (A, x)€ Xo(T")/ Wi, , € K(¥), 7, € [K(x)/St]. For every
heivo*, let ®y.(h)={ae Dy : (o, A(h)y=0}. For any F < ®y;(h), define Hy, A(h),
x(Wr as in (3.3). Let Ap=A4l, xr=x® e* . Then (Ap, xp)eX(Ty) and
Mh)g = Ap(h), x(h)r=xr(h). Then define

S = {hein*:he (J supp Bu(Hp:Ap:xp:1y :12)}.
F<0j(h)

We claim that cli(S) = T = {hoeiv*:m(H': A:x:h:v) is jointly smooth at (hg, v)
for all ve(a’)*}. Fix hy ¢ T and define U(h,) as in (4.6). Then since m(H': A: x: h:v)
is not jointly smooth at (hy, v) for some ve(a')*, H', A(h,), x(ho) correspond via
(4.10) to some H'=T"A", A", x" with dim A” < dim A". Thus the level d’ of
(Aho), x(hy)) is strictly less than d. Suppose F < ®yAho). Then Hi, Aho)r, x(ho)r
correspond via (4.10) to the same H”, 1", x" as H', A(hy), x(ho). Thus the level of
(A(ho)g, x(ho)F) is also d’ < d so that

0¢supp By(HF: Ap(ho) : xr(ho) : T1(ho): T2(ho))

which implies that

ho ¢ésupp By(Hr: Ap:xp:T1:T2).
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Let Vx(hy) be a neighborhood of hy eiv* so that

Vi(ho) nsupp By(Hr: Ap: xr:T1:72) = &.

Let V =U(h)O(\reosmy) Vrlho) Now if heV, heU(hy) so that
@7 (h) < ®y7(h,). Thus for

F < ®y(h) € @pp(ho), he Ve(ho)
so that

hésupp By(Hp: Ap: xp:Ti:7T,).

Thus hé¢supp Ba(Hy: Ap:xp:T,:1,) for every F < ®;1.(h), so that h¢S. Thus
there is a neighborhood V of h, so that ¥V n S = (& and so hy ¢ cl(S). Now for
every heS, hesupp B,(Hy: Ap: xp:7,:7,) for some F < ®;;.(h) implies by (4.15d)
that there is m such that |t,(h)|| <m. But there is ¢; =|t,|| so that
| < ||t,(W)|| + ¢, for all heiv*. Thus |h| < ¢, +m for all hecl(S) so that cl(S) is
compact. Now choose a relatively compact open subset U < in* so that
dS) cUco=c(U)cT

We are now ready to define elementary mixed wave packets corresponding to
H', A, x, 14, 7,. Define w as above, and for each he w, let U(h) be a neighborhood
of h defined as in (4.6) with radius ¢ < 1. Then there are finitely many
hy,hy,...,lew such that w < | Ji=, U(h). Further, since each hew < T,
m(H': A:x:h:v)is jointly smooth at h; so that by (4.7), m(H': A: x:h:v) is jointly
smooth in U(h;) x(a’)*. Choose o;e C*(iv*) such that suppa; = U(h;) and
=¥ a(h)=1 for all he w.

For 1 <i < k,let Fo(i) = ®;.(h) and for F < F (i) define Hy, A(h)g, x(h;)F as in
(3.3) and Ap=Al,, tr=x® ¢*~P» as above. Now define

O,(H A x:11:75:X) = Dy(x)
= Y J f O(F:h:vp:x)m(Hg: Ap(hy): xg(h):h:vg)dvedh
FSFi) Jiv* J@)f
where
O,(F:h:vp:x)=Ba(Hp: Ap(h): xe(h):t(h):t2(h): h:ve: x)a;(h+ h).
We claim that ®; is an elementary mixed wave packet. Now ®,(F:h:vp:x)=0

unless h+h;esuppo; = U(h;) so that hew;=suppa;—h;,cU;=U(h)—h,.
Conditions (4.15b) and (4.15¢) imply that ®;(F) satisfies (4.1c) and (4.1d). Finally,
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since the f, satisfy all matching conditions, and «;(h + h;) is a smooth function of
h which is independent of F, the ®(F) satisfy the matching conditions of (4.1e).

Suppose ®,(H': A: x:1,:17,)is not identically zero. Then there is F < F (i) such
that B,(Hy: Ap(h): xp(h):T1(hy):To(hy): h:vp:x)a;(h+ k) is not zero for some h.
Now a;(h+ h;) # 0 implies that || < 1. Now

Ba(Hg: Ap(h): xp(h):t(h):t5(h):h:vp:x) # 0
implies that

lAe(h;+h)| <m and |7;(h;+h)|| <m,j=1,2.
But

1Al < AR = NAp(h)I < llAp(hi+h)I| + [H] < m+ 1.

Thus (4, y)e X5+ 1(T"). Further ||t;l| < |lt;(h;+h)l| +|h| + |kl < m+c,+m+1 so
that 7,€ K2™*<1*1(y). Now by (2.13), X5+ (T") and K>™*°**1(y) are finite sets.
Thus only finitely many of the ®,(H': A: x:1,:t,) are non-zero.

Now for each

W, ) eXo(T) Wy, ©1eK(), telK@/Srl, 1<i<k
we can use (4.17b) to define the collection of functions
{Q;(H": Ay ity it H A xit0:1,)}

corresponding to the elementary mixed wave packet ®,(H':A':y :7}:75)
By (4.18) this collection satisfies the conditions of (4.15). Now for all H,
(4, x) e X(T), ©4, 7, € K(x), we define

Bar1(H:A:x:ty:t)=PBy(H: A1 x:7y:75)

- > Z > YOH Ay Tyt H Ayt 1y).
A X)EX(T) Wy 1eR(r) ©oe[R()/Sr] i

Since f,; and the ®;(H': 1': ¥’ : 7} : 15) satisfy the conditions of (4.15), so does B, ;
since the sum is finite.
Define

Jir®)= ¥ ) )IED)

HeCar(G) (Lx)eXo(T)/Wy t,6K() t,eR(0)/Sr

xf J Bavi(H: Ay 1yt hevix)L: )m(H:A:x:h:v)dvdh.
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Then it is clear from (4.18) that

Ja(%) = fa+1(x)
= Y y y Y OH Ay Tty x)1]).

WAEXo(TY Wy 7ieRl) elKG)Sr] i

Now, as above, there are only finitely many non-zero terms in the sum so that
Ji— fi+1 1s a finite sum of elementary mixed wave packets. By the induction
hypothesis, f — f; is a finite sum of elementary mixed wave packets. Thus
f — fi+1 is a finite sum of elementary mixed wave packets.

Finally, we must show that f§,, , satisfies the additional conditions of (4.19).
Fix (A, y)e X o(T')/ Wy, T, € K ), 7, € [IZ(x’)/ST']. Then, for each 1 <i < k and
F < F (i), using the change of variables h —» h — h;,

J f Q,(F:h:vp:x)m(Hp: Ap(hy): xp(h):h:vg)dvedh
iv* J(a)f
= Jin‘ ” Ba(Hp: Ap: xp:t1:75  hivp: x)o;(Wm(Hy: Ap: xp:h:vg)dvedh.

Thus

YOH Ny Ty iTy)

=y Y J  Ba(Hp: Api gpity it hivp:x)
i FCFyi)Jiv* J@F

x o;(Wm(Hp: Ap: yp:h:vg)dvpdh

=ZJ Ba(Hy: Ap:yp T :Th hivpix)
F Jiv* J(a)f
xm(Hp: Az xp:h:vg)a(F : h)dvpdh

where we sum over all F such that F < F(i) for some 1 < i < k and for such
an F,

IF)={1<i<k:FcSFyi)}, oF:h)= Y oh)

ieI(F)

Note that for all F < F(i), (Ax(h), x¥(h;)) has level d.

Let H = T4 be a -stable Cartan subgroup, (4, y) € X(T), and suppose the level
of (A(h), x(h)) is not equal to d for any heiv*. Then H and the family
{(Ah), x(h)): heiv*} cannot occur as Hy, {(Az(h), xp(h)):heiv*} for any
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A, x)eX(T'), F = Fy(i). Thus in this case we have

Bar1t(H:A:x:ty:t)) = Ba(H: A1 x:74:7,)

for all 7,, 7, e K(x). Now suppose the level of (4(h,), x(h)) is equal to d for some
hoeiv*. Then we may as well assume H=H; and the family
{(A(h), x(h)): heiv*} ={(Az(h), xp(h)): heiv*} for some (X, x')e X o(T')/Wy. and F
such that F < ®;;.(h) for some heiv*. Define hy,...,h, and a;, 1 <i<k as
above for (4, ). In this case we have

Bav1(H: Ap:yritiitaihivix)= Ba(H: Ap:yp:t: T2 hivix) (1 — ofF 1 h)).
Note that in either case,

Bivi(H:Aty:t ity hivix) = Ba(H:A:y:ty:75:h:v:x)p(h)

where f is a smooth function of h. Thus
supp Ba+(H:A:x:7.:7,) S supp By(H: A: i1, :1,).

Let HeCar(G), (4, x)e X(T) with level d’ <d + 1. If d' < d, then by (4.19b)
applied to S,,

O¢supp By(H:A:x:ty:1)=>0¢supp By (H: A x:1,:7,)

for all 7;. Thus we need only check the case that d’ = d. Now we can assume as
above that H = Hy and the family

{(A(h), x(W):heiv*} = {(Ax(h), xp(h): heiv*}
and

Bas1(H:Ap:yp:ty:ta hivix) = By(H: Ap:yp:t:ita hivix)(1—a(F : h)).
Let hyein* such that (A= Ap(he), x = x¢(ho)) has level d. We must show that
hoésupp By ((H: Ap:xr:7,:75). This is true if hgésupp Ba(H:Ap:xp:T,:7,).

Thus we may as well assume that

hoesupp Ba(H: Ap:xp:T,: 1)
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Since
F < ®;(hy), this implies that hy€S.

Pick a neighborhood V;(h,) of hy so that Vy(hy) = w. Let
I(ho) = {1 < i< k:hyeU(h)}.

Now for any iel(hy), F < ®;(ho) S Fo(i). Thus I(ho) < I(F). If i¢I(hy),
there is a neighborhood ¥;(h,) so that a;(h) =0 for all he V,(hy). Define V =
Vo(ho) N (Nigrhy) Vilho)- Then for any heV, a(F :h)=Z ) a;(h) = Zf- o;(h) = 1.
Thus for all heV,

Bas1(H: 2p:xp Tty hivix) = Bu(H: Ap:yp:T1: 7, h:vix)(1—a(F:h)) = 0.
O

5. Plancherel factors

Let H=TA be a 0-stable Cartan subgroup of G, (4, x)e X(T). Let U(0) be
defined as in (4.6) and assume that the Plancherel function m*(H:A:y:h:v) is
jointly smooth on U(0) x a*. Define Hp, Ap, xr, ¢cr:bc = brc, F < F, as in (3.3).
Define ®*, @ as in (4.5) and for F < F,, set ®f =c;®* and ®f z = {ae®f :a
takes real values on b;}. We will identify ®F with ®* via c;. For each a e ®f g,
define m}(Hp:Ap:yp:h:vp)=m¥(F:h:vg) as in (4.5b). Write @7 z(0)=
{ae®F g :m¥(F:h:vg) is not jointly smooth at (0,0)}.

Define the equivalence relation on ®f g(0) as in (4.12), and for each
ae®f (0), write [a] for the equivalence class containing «. For each
a ez, (0), let ®p (o) be the simple factor of ®p, g containing « and write

Pp[a] = | OrB).

Bela]

Finally, for any F < F, oaecF, define ®p[a]=Pp[a] "Drr and set
F.R= UaeFo ®; [o], Op p= (I);,R\(D;‘,R =@, g Then if aeF, ®p[a] = Pp [a]
and @p[a] "D (0)=[a]. If aeF,\F, then ®p[a]={fe®s[«]:fLa} and
Or[a]N@F 4(0) = .
For each F < F,, we will use the notation of (4.5) and write for (h, v)eiv* x a¥,

m*(Hp: Ap:xp:h:v)=m*(F:h:v)=n(F:h:v) [] m/(F:h:v) (5.1a)
oedf o
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where

(F:h:v) = [] <Ar(h) +iv, o) (5.1b)

aedf

and for a e ®f g,

sinh nv,
my(F:h:v) = cosh v, —eFR)’ (5.1¢)
For a e ®f g, define h,=2{hy(h), cg 'a)/<a, &) and set
pr(h:v) = [] (va+ihy), (5.1¢)
aecgF
gqF:h:vy= [ O.+ik) [ I (p—v)™ " (5.1H)
ae® 5(0) aeF Pe[a],B#a

For each F  F,, let I =7 (@ r) denote the set of all two-structures for
®F r. Thus if @F g is of type C; = A, the only two-structure for @ g is Y = Of
and e(y)=1. If ®f  is of type C,, s = 2, then the two-structures y for ®f z and
associated signs &(y)= + 1 are described in Section 6. For ®%  not simple, two-
structures are the union of two-structures for the simple factors and the signs are
multiplied. Thus each y € 7 is of the form Y =y, U --- U ¥, where each y; is of
type 4, or C,. For each a e ®f , write

sinh n(v,+ih,)

(F:h:v) = cosh (v, +ih,)—e,(F:0) (5.2a)
If ;" ={a} is of type A4,, write

t(F:y;:h:v) =t (F:h:v). (5.2b)
If y; is of type C,, let Y%, denote the short roots in ;" and write

HF: Y hov) = ] tdF:hov) + [] tu(F:h:v). (5.2¢)

aeyi ey

Finally, write

:(F:.//:h:v)=.ljlt(F:./,,.;h:v). (5.2d)

THEOREM 5.3. Let t,, IZEIZ(X) and let W = W(z,:1,). Suppose for each
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F < F, we have functions ®(F):iv* x a} x G — W satisfying (4.1b—e). Then there
is a constant ¢ # 0 independent of F so that

f*d)(F:h:v:x)m(F:h:v)dv=c(ni)_'F'

F

g(F:h:v:x)
J;F pF(h:v) v

where for any e€ X, he Dg(e),

g(F:h:v:x) = op(e)n/2) ' DF :h:v:x)n(F:h:v)q(F:h:v)
x 1 muF:h:v) Y eW)(F::h:v).

ey g VeI

Further, the functions g(F) have the following properties. For any e€Z,,,
(h, v, x) > g(F :h:v:x) is jointly smooth on cl(Dg(e)) x af x G.

For any De D(iv* x a¥), r = 0, ¢,, g, € ¥(g¢), there are constants C, s = 0 so that
Ig(F:h:v; D:gy; x; g5)(1+V])" < CExN1+6(x))°

for all xe G, he Dg(e), vea¥. Finally, the functions {g(F):F < F,} satisfy the
matching conditions of (5.18).

The theorem will be proven by a series of lemmas. Some technical results on
two-structures and Plancherel functions for roots systems of type C,, n = 2, will
be deferred to the next section. Define Wi(4, x)={we W(G, Hg): wip = g,

WYr= XF} .

LEMMA 54. Let o.€ F. Then for any p € [a] there is we Wg(4, x) such that wa = f,
wh=a, and wo=45 for every 6 € ®p g such that {3,0) =, > =0.

Proof. Suppose f € [a]. Then if ®(x) =D(f) is of type C,, let w be the reflection
in the Weyl group of ®(x) which interchanges « and § and fixes every other long
root. If ®(«) # ®(B), choose 7,7 as in (4.12) and let w =s,s;. In either case w
represents an element of W(G, Hg) with wip=Ap, wyr = Xr. O

For any F = F, we can identify ®; = {a € ®F, z:<a, B> =0 for all fe F,\F}
and af ={vea},: (v, B> =0 for all Be Fy\F}.

LEMMA 5.5. Suppose a € ®f g is a long root in a simple factor of ®f g of type C,
which has empty intersection with ®F g(0). Then e (F:h)=—¢,(Fy:h) for all
heiv*. For any other o€ ®f x we have ¢,(F:h)=¢,(Fq:h). Let o€ ®f g. Then if
aeSOS(Hy), e(F:h)=¢(F:0)cosnh, for all heiv*. If a¢SOS(Hg), then
e,(F:h)=¢,(F:0) is independent of heiv*. In either case, e,(F:0) = +1.
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Proof. Since
SOS(H,) = SOS(Hp)U(Fo\F), 7,€Zy,(MP) = Zy, (Mp,)

is independent of F and y(h) is the restriction of yp(h) to Z M,(M(F)‘)~ Thus
e(F:h)=¢,(F,:h) if and only if (—1)’r«=(—1)’= But using [HW1,4.13],
(— 1)Pre= —ePr~Pra(y,) where pp=1/2Zpea; B and pr.x=1/2 Epeog, b. But e7(7,)
is independent of F, and e’r(y,) is independent of F as long as the simple factor
of @  containing « is the same as the simple factor of @, r containing a. This
happens unless « € ®f p is in a simple factor of @, g of type C, which has empty
intersection with @7 ¢(0) so that the simple factor of @,  containing « is of type
C,.:. This can happen only if « is a root in a simple factor of G which is
isomorphic to the universal covering group of Sp(m, R) for some m > n+ 1. In
this case the result is proven in (6.1).

It is enough to prove the second part of the lemma when F=F, Now if
o e D, g, @ must come from a simple factor of G which is non-compact, simply
connected, and of hermitian type. Thus as in (4.9), y, is central in Z,=Z),, (M3,).
Let I be the central subgroup of Z, generated by the y,, a € ®f, r and let { be the
I'-character of y,(0). Then

")) +€" (s N0s "
euFo: by = (— 1y S0 )
Thus &,(F,:0) = 41 just in case {(y,)={(y, }) = +(—1)=
Every simple factor of ®f, g is of type 4, or C,, n > 2. If ais in a simple factor
of type A,, then a ~ f for some f € cg,F, so that a € ®f, x(0) and &,(F,:0)=1. If
o is in a simple factor of type C, and is long, then ¢(F,:0)= + 1 by (6.1). Now in

either case a € SOS(Hy,), and h,=h(cy,'H¥)= —ih(Z,). Thus

() +e'(, )

eFo:h) = ¢&,(F,:0) 3

= g,(F:0)cos nh,

since e"(y,) = e™Z? = ¢ Finally, if a ¢ SOS(Hy,), then a is in a simple factor of
type C, and is short, so that g,(F,:h)=¢,(F,:0)= +1 by (6.1). O

LEMMA 5.6. For each F < F,,

*(I)(F:h:v:x)n(F:h:v) [T m.(F:h:v)dv

oe®f »

=j*d>(F:h:v:x)n(F:h:v) [1 mF:h:v) Y, e(p)e(F:y:h:v)dv.

oe®r g Vedp
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Proof. Write @ g = @} p U ®f . Now by [HW1,4.17],

[T muF:h:vy="Y &) [ miF:h:v).

%e®f g Ve aey*

Thus we can write

‘Q(F:h:v:x)n(F:h:v) [T mdF:h:v)dv

ae®; »

=Y &) fh:vix) [1 m(F:h:v)dv

veTy F eyt

where

fhov:x)=®F :h:v:x)n(F:h:v) [] mfF:h:v).

ac®f g

Suppose we W(®f g) such that wyp=yxr. Then n(F:h:wv)=detwn(F:h:v),
O(F:h:wv:x)=®(F:h:v:x) by assumption (4.1c), and m,(F:h:wv)=m,(F:h:v)
for all a € ®@p p since every root in @ g is orthogonal to every root in ®% g. Thus
f(h:wv:x)=detwf(h:v:X).

Fix Y € 7y and write Yy =y, U --- U |}, as before. Then if ;" ={a} is of type
A,, then using (5.5),

sinh 7v,

F:h:v)= .
ma V) cosh nv,—e&,(F:0)cos nh,

But for all x, yeR, e = +1,

sinh(x+iy)  sinh x—iesin y
cosh(x+iy)—e cosh x—¢ cos y’

Thus
sinh n(v,+ih,) ig,(F:0)sin wh,
cosh (v, +ih,)—e(F:0) coshnv,—e,(F:0)cosnh,

ie,(F:0)sin 7h,
cosh nv,—¢,(F:0)cos mh,

my(F:h:v)=

=t,(F:h:v) +

But for « as above, e SOS(Hy) and the reflection s, in « centralizes Z, (M7).
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Thus f(h:s,v:x) = — f(h:v:x) as above and for
Bey*\{a}, mg(F:h:s,v)=mg(F:h:v), ty(F:h:s,v) =ts(F:h:v). Thus if

sin mth,

fith:v:x)= f(h:v:x) ] mp(F:h:v)

pey\(a} cosh nv,—e¢,(F:0)cos h,’

fi(h:syv:x)= —f'(h:v:x) for all veaf, so that ja;f'(h:v:x)dv=0‘ Thus if
¥;" ={a} is of type 4,, we can replace m,(F:h:v) by t,(F:h:v)=t(y;: h:v) under
the integral.

Now suppose ¥; is of type C,. Then as in the proof of [HW1,5.6],

J f'(h:vix) [ me(F:h:v)dv = J S(h:v:x)t(y; h:v)dvy
af oyt of

if f"(h:wv:x)=detwf"(h:v:x) for we W(y,), the subgroup of W(y,) generated
by reflections in the long roots. But again, the long roots of y; are in SOS(Hp)
and act trivially on Zy (M?). Thus for we W,(y;), ®(F :h:wv:x)=®F :h:v:x),
n(F:h:wv:x)=detwn(F:h:v:x), and m,(F:h:wv)=m/(F:h:v), ae®zU;,
j#i,and t,(F:h:wv)=t,(F:h:v)for aey;, j #i. Thus

fh:v:x) ] ma(F:h:v)dv=j fhv:x)((F:y:h:v)dv. d
aF aept af

LEMMA 5.7. Let U(0) be a neighborhood of 0 in iv* as in (4.6). Then for any
o€ Dy g,

(h, v) > t,(F:h:v) is jointly smooth on U(0) x a¥ if e,(F:0)= —1
and

(h, v) > (v, + ih )t (F:h:v)
is jointly smooth on

UQO)xaf if g,(F:0)=1.

Proof. 1t is clear that t,(F:h:v) is jointly smooth except at points (h, v) such
that coshn(v,+ih,)=¢,(F:0), thus v,=0 and h,enZ. But as in the proof
of (4.7), for heU(0), h,enZ implies that h,=0. Thus if ¢ (F:0)= —1,

cosh n(v, + ih,) # €,(F:0) for any (h,v)eU(0)xa}. If ¢,(F:00=1, (h,v)—>
(v, +ih )t (F :h:v) is jointly smooth on U(0) x af. d
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LEMMA 5.8. The function

hv)-n(F:hy) [T Gatibd [T TT p—va 2 Y eWF:p:h:v)

ae®; £(0) aeF Be[a],B#a VeI

is jointly smooth on U(0) x af.
Proof. First, let

O; g(1)={ae D g:&,(F:0)=1 and ¢~ 'ae SOS(Hy) or ¢ 'a is compact}.
Then by (5.7) and (6.5),

- T[] (utih) Y eW)t(F:p:h:v)

ae®f g(1) yeTr

is jointly smooth on U(0) x a¥. Suppose a € ®f g(1). If a¢ Of x(0), then v, +ih,
divides n(F :h:v). Thus

(h,v) > m(F:h:v) [] (va+ihy) Y, eW)(F:y:h:v)
ae®f x(0) VeI
is jointly smooth on U(0) x af. Finally, let ae F, fe[a], f # o. If ®(x) =D(p) it is
proven in (6.5) that (vs—v,) divides Zycs, e(W)t(F: ¢ :h:v). Since 2>b is a real
root, (vg—v,) also divides n(F:h:v). If ®(a) # ®(f), then let y, 7 be defined as in
(4.12) and define w=s,s;. Let voeaf such that vy =v,. Then w(dp(h)+ivo)=
Ap(h)+iv, for all heiv* and wy= —y, wy= —%. Thus

CAp(h) + Vo, 7> = (Ap(h) + ive, 3> =0 for all heiv*.

Thus (vz—v,) divides both {Ap(h)+iv,y) and {Ap(h)+iv,7) so that (vp—vn)?
divides n(F :h:v). O

LEMMA 5.9. Define g(F) as in (5.3). Then for e€ Xy, he D(e),

CD(F h:v:x)n(F:h:v) [] mu(F:h:v)dv

oedy »

— IF| g( iy X)
= 2/n) aF(e)ag Ll =

Further, for any e¢€X, ((hv,x)>g(F:h:v:x) is jointly smooth on
c(Dp(e) x af x G.
Proof. Suppose ay€ F. Then ®[a,] is of type C,, n =2, or A}, n > 1, and
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@[] N ®F g(0)=[00]. Further, ®F z(0) = { ),cr [o]. Write

M Gt = ¥ [<va+iha>-1 0 (vﬂ—va)-l].

aefao] aeloo] Belool.B#a

Now, using (5.4), for any ae[a,] there is we Wi(4, ) which interchanges o and
oo. Thus we have ®(F:h:wv:x)=®(F:h:v:x). Further,

(F:h:wy)=detwn(F:h:v), [] (W), +ih)= [] (v.+ih,).

aelag] aelag]

Further,

Y eWHF:y:h:wv)y=detw Y, eW)(F:y:h:v)
yeIr VeTy
by (6.2) in the case that ®y[a,] is of type C,. When ®;[a,] is of type A] this is
also true since detw=1 and «(F:y:h:wv)=tF:y:h:v) for all Yy € 7 5. Thus

*(I)(F:h:v:x)n(F:h:v) [T ma(F:h:v) Y e(W)d(F:y:h:v)dv

ae®f g YeTr

= *(I)(F:h:v:x)n(F:h:v) [T mu(F:h:v) Y, e)e(F:y:h:v)

oDy p VeJy

xI1 [ [T Gatin) ¥ <(va+ih¢)‘1 I (vﬂ_va)-l)]dv

aoeF Lael[a,] aelag] Belaol.f#a

= ‘Q(F:h:v:x)n(F:h:v) [T moF:h:v) >, eW)(F:y:h:v)

oDy g Vedy

x [T atih) [T 1[todl0ve+ihg) ™" TT  (vp—ve) 'dv

€D x(0) aeF BelxolB#ao

=11 |[oz(,]|L*(I)(F:h:v:x)n(F:h:v)q(F:h:v)pF(h:v)_1

aoeF

x [] mfF:h:v) Y e@)e(F:y:h:v)dv.

*€Py g yeT
By (4.1d), ®(F:h:v:x) is jointly smooth on cl(Z(¢)) X aF x G. Suppose that

o€ @ g. Then m¥(h:v) = Mg {Ap(h)+iv, BYm,(h:v) is jointly smooth.
Thus to prove the second part of the lemma we must prove that

(F:h:v)q(F:h:v) Y. eW)(F:y:h:v)

yeTr

=n(F:h:v) [ (.+ih) [] [T p=ve) ™t Y eW)(F:y:h:v)

ae®; r(0) aceF Pe[agl.f#oo VeTr
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is jointly smooth. This follows from (5.8). O

Recall from (4.5) that for any F < F, &€ZX, there is a constant
c(F:e)=c(Hp: Ap: xr: Dr(€)) so that

m(F:h:v)=c(F:em*(F:h:v) (5.10a)

for all he D¢(e), ve ak. What was actually proven in [HW1,6.17], as modified in
(2.12), is that there is a constant cy, defined as in [HW1,6.17] so that

m(F:h:v) = [Ap: xplen, Im*(F :h:v)| (5.10b)

for all heiv* vea¥, where [Ap, xr] is the number of distinct elements in
{(wip, wyg): we W(G, Hp)}.

LEMMA 5.11. Normalize the Haar measures dvy on af as in (7.8). Then
cn, IW(G, Hy)l = cyz IW(G, Hy)l

forall F € F,,.
Proof. In the notation on [HW1, 6.17] we have a constant ¢ so that for any
Cartan subgroup H=TA of G,

cp' =cgIW(G, H)lITAT n MPILLG): L@ ] el

a2eSOS(H)

where B is a fundamental Cartan subgroup of G. Now the Cartan subgroups Hp
differ only in simple factors G; of G which are simply connected, non-compact
simple groups of hermitian type. Thus |T/(T n M})| is independent of F since for
G; as above, the fundamental Cartan subgroup B; is relatively compact and
M}, = G,. Further, @y ¢ differs from @ » by simple factors of type 4, or C, and
so, as in [HW1,4.18], [L(y): L(Df )] is also independent of F. Finally, the
normalization of Haar measures dvy on a} used in (7.8) differs from that of
[HW1] by the factor Il 505 2|l so that this factor does not occur in the
constants cy for the normalization used in this paper. O

LEMMA 5.12. For any F € Fo, ¢y, [Ap, 512" Toer |[6]| = cugy[Ags Xz
Proof. By (5.11) we have a constant ¢ independent of F so that

ey, = c|W(G,Hg)| ™" forall F < F,,.
Thus ¢, [Ar, 251 = clWe(4, )| ~! for all F = F,

where Wi(4, )= {we W(G, Hp):wAp=Ap, wxr=r}. Thus it suffices to prove
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that |We(4, x)| = 2 Tex | [e]| [Ws(4, ). We may as well assume that G is simply
connected, non-compact, simple, and of hermitian type.

Every we W(G, Hy) is of the form w=adk where ke K such that Adk
stabilizes both t and ay. Let w=ad ke Wi(4, y). Since ke K, Ad k(h)=h for all
heiv*. Now since Ad k stabilizes tp, Ad khy (h)=hyy,(h) for all heiv*. Thus
wag(h)= Ag(h) for all heiv*. But Ag(h) is generically regular with respect to ®,;,..
Thus We(4, x) n W(®@y,)={1}.

Assume ®* has been chosen so that <i,8) >0 for all fe®*. Recall
W(G, Hy) = W(®F ) Wo(G, HR)W(MF, Tr) where

I/I/O(G, HF) = {WG W(G, HF): WQ;‘,R = (DIT,R, WQI{F = (D&F}'

Write we We(4,x) as w=wgwow; where wge W(®y ), woe Wy(G, Hp), and
w; € W(Myg, Tp). Then Ay =wgrwow Ar =wow Ar since wy acts trivially on it*. But

{Aps B = {WoWiAp, BY = {wihp, wo 18> =0 for all Be®y,.

But wo®@y;, =y, so that {w g, B> > 0 for all Be®@;;,. Thus wiiz= A, But w,
acts trivially on Z, (M?) so that wye We(4, ) nW(Mg, Ty) = {1}. Thus
w=wgw, Where welp=2A1r and wolp=Ar.

Since we assume that G is simple, non-compact, and of hermitian type, @y p is
of type A% x C,. Now wy = x if and only if &,,,(F : 0) = &,(F : 0) for all a in the A%
factor and all long roots a in the C, factor. But wy acts trivially on y, if a is in the
A% factor and w, acts trivially on 7, is « is a long root in the C, factor. Thus
wyr=yxr if and only if wgyr = xr and woxr = xr. Thus for all w = wgwy € Wr(4, ),
Wg, Wo € Wi(4, %)

Now W(®; g) is the semidirect product of subgroups W;(F) and W,(F) where
W,(F) is the group of order 2™ generated by reflections in the 4% roots and
the long C, roots and W,(F) is the group of permutations of the long C; roots.
Every element of W,(F) centralizes Z MF(M?) and hence belongs to Wx(4, x). An
element w e W,(F) belongs to W;(4, x) just in case &,(F :0) = ¢,,,(F : 0) for all long
C, roots. Thus if there are r long roots with ¢,(F:0) =1 and s—r long roots with
&, (F:0)= —1, then |Wg(4, x) n Wy(F)| =r!(s—r)!. Now if there is a € F in the C;
factor, |[«]| = r and we see using (6.1) that |Wx(4, x) " Wy(D) = (r—D!(s—r)!. If
there is no ae F in the C; factor, then |Wr(4, x) N Wy(F)| = |[Wx(4, x) n Wy(D)I.
Thus in all cases we have

[We(2, 1) 0 W@ ») = 27 TT ]| [Wg(4, 1) 0 W(@g )l

aeF’

where we define F' = {¢e F: ®g(x) is of type C,} and F"={a e F: ®g() is of type
A}
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To prove the lemma it now suffices to show that

IWo(G, Hp) 0 Wi, 0l = T I[ed] IWo(G, Hg) 0 W4, 7).

aeF”

Let W = W(®g). For any F < F,, we can identify W with W(®y) via the Cayley
transform cp. Then

Wo(G, Hp) ={we W:wtp =tp, wap = ap, wOF g = Of p, wdy =0p.}.

Suppose w e Wy(G, Hp) n Wi(4, x). Every element of W,(G, Hp) acts on @ 5 by
permuting ®*(F: A4,), the positive A% roots, and fixing the C, factor pointwise.
Now fix ae®*(F: A,) with ¢,(F:0)=1 and let we Wz(4, y) n Wy(G, Hz). Now
a¢ @F ¢(0)if and only if m¥*(F : h:v) is jointly smooth at (0, 0) if and only if there is
a root ye®; with <{Ag(h)+iv,y>=c(h,+iv,). But then +wye®}, and
(Ap(h)+iv, 2wy =t c(hy,+iv,,) since w™ ' Az = Ap. Thus ae @7 ¢(0) if and only
if woce ®F z(0). Now by (5.4), if o, fe OF g(0)n®*(F: A,) and B e [«], then there is
we Wy(G, Hg) N We(4, ) such that w interchanges o and f and fixes all other
roots in @7 5. Conversely, suppose o€ F” and there is we Wy(G, Hg) N Wr(4, 1)
such that wa=p. Then there is wye Wy(G, Hg) n W(4, x) which interchanges
a and B and fixes all other roots in ®F . As in the proof of (4.14) we define H,,
4, such that SOS(H,)=SOS(Hg)\c¢™ *{a, B}, Aalt, = Ap, (A3, a) = {4z, B> =0. Then
A€ Ay, if and only if B¢ [a]. Suppose 4, € Ay, ;. Then

D(A,)={0€Dy,: (5, 4,>=0}
is of type A% by (3.1), and so if
W(ky)={weW(®@y,):wi,=A,}, wo= 10 for all 6e®(4,), we W(4,).
But woe W(4,), a, Be ®(4,), and wa = B. Thus A, ¢ Ay, so that fe[a]. Thus

IWo(G, Hg) 0 We(4, 0l = [T I[ed| [Wo,r(G, He) 0 We(4, 1)l

aeF”

where W, ¢(G, Hp)={we W,(G, Hp): wa =« for all a€ F}. Thus to complete the
proof of the lemma it suffices to show that

[Wo.r(G, Hp) 0 We(4, 0)| = [Wo(G, Hg) N Wix(4, 1)l
Let we Wo (G, Hp) N We(4, ). Since ty = t; @ Z,riRH, and ap = apx @

Z,erRH, ,, wtz=15 and wag=ag. Further, via the Cayley transform identi-
fications, Ap=A4yh and @y p < pg. Thus wigz=Agy and wygy=yy. Finally,
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recall that (g, f> >0 for all ﬁetbg}g. Now {4y, B>=0 just in case e F
and we know that wF=F. Now for any /3:5/\”Q with (B, x> >0,
(WP, gy =< wp, wig) =P, Ay) >0 so that wﬂe(I)j}Q. Thus

we Wo(G, Hz) N W4, x).

Conversely, suppose w e Wo(G, H z) N Wx(4, x). If we can show that wo =« for
all a e F it will follow as above that we W, (G, Hg) N We(4, ). Thus it is enough
to show that wa=a for all aeF,. Since wi= 4 and w®;, =05, wF,=F,.
Suppose there are B, # p, € F, such that wf; =f,. Since w # 1 there are also
oy # a, e ®(F: A;) such that wa; =a,. Thus dim ar, = dim ag+|F,| > 4 so that
G has real rank at least four. Now we see from the list in [HW 1, 1.4] that G must
be the universal covering group of SU(p, q), Sp(n, R) or SO*(2n). In the first case,
Wo(G, H ) acts trivially on ®@;;. In the other two cases, @), is of type A} x C, or
A x D, for some k,r > 0 and W,(G, H z) permutes the positive A} roots and acts
trivially on the C, or D, factor. However, all of the 4 roots are in ®,, ,, hence
cannot be in Fy. Thus Wy(G, Hy) acts trivially on F, O

For any F < F, let F'=F \F. Then for all eeX,, op(c) =11y f&,. We also
define 65(A)=sign Hae@,t,,\ Felot, Ap).

LEMMA 5.13. There is a complex number ¢ # 0 so that for any F < F, e€ Z,,
he ‘@F(g)9

[m*(F:h:v)| = c(—i)Flop(eym*(F: h:v).

Proof. We will identify ®F with @ via the Cayley transform cp. Write
OF =0F pU Dy, UDF px. For every ae ®f g,

ido, a) v, sinh 7v,
2 cosh nv,—¢,(F:h)

{Op(h)+iv, o > m (F:h:v)=

so that

[KAp(h)+iv, adm(F :h:v)|= —i{Ap(h)+iv, apm,(F 1 h:v).
For any

€@y, {Ap(h)+iv, a) ={Ap(h), o).
Now if

a€ F, he D(e), sign {Ap(h), a) =sign{hy (), o) =¢,.
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If
ae®y \F, {Ap, 0> #0,
so that
sign{Ap(h), «) =sign{iz, o)
is independent of e€ £, he Pr(e). Finally, for each y e ®f cpx there is 7€ OF cpx
such that {Az(h)+iv,y>=<{—Ap(h)+iv,y)>. Now
ey +iv, £7)CAp(B)+iv, v> = F(CAp(h), 7D+ v, 7)%)

Let n; denote the number of roots y € @z cpx such that j € ®F cpx. Since F=1, np
is even. Then for he D(¢),

Im*(F : h:v)| = (— )% o p()ar (A — 1) 2a(F :h:v) [ m(F:h:v).

ae®f o

Thus to finish the proof it suffices to show that

(— i) algp () — 12 = (— )Y~ ) *B R (2 — 12",

We may as well assume @ =@ =®; is chosen so that every a € F, is simple.
Recall for any F € Fo, @ g={fe®@" :f|; =0}, O3, ={fe®*:p|,, =0}, and
@5 cpx={Be®": B, #0 and |, #0}. First let B @7 g\F. Then the restriction
of B to ag is non-zero. If {a, B> =0 for all a € F, then fe @ . If o, B # O for
some a€F, then fe®, = {ye® cpx:yl, =0}. Thus

(— )%= = (—j)Fl(— ,-)twga,m( — i),

Now let ®,={Be®;\Fo:B¢ Dy, \F}. Then ®,={fe®;\F,:{B,a)>#0 for
some o€ F}. For every ae F, let s, denote the reflection in o. Then since a is

simple, 5,®, = ®,. Further, since {4, a) =0, {4, > = {4, s, for all p. But for all
pe®, there is a € F such that 5,8 # f and sign{4, f>{4,s,f>=1. Thus

o5(4) = op(4).
Now write

O cpx = D3 U@, Wwhere O3 = {y€ D7 cpy 7oy # 0}
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and

P, = {)’E(D;,CPX : Vlag = 0}~

Let sp = IT,.r 5,. Then sp®, = ®,. Thus for each ye®,, y = —spy ¢ OF cpx. Now
®,={ye® cpx:7li, # 0}. For y € @3, let 5 denote the conjugate of y considered
as an element of @ cpy and let J5 denote the conjugate of y considered as an
element of @ cpx. Then 5 = sp7r so that € ®* if and only if 5 € @ *. Finally,
for any ye®,, 7o = spy € ® . Thus since O cpx =P, UD; we have

(=172 = (== 1", 0
LEMMA 5.14. There is a constant ¢ # 0 so that for any F < F,,,

L 1 ¢ g(F:h:v:x)
L* O(F:h:v:x)m(F:h:v)dv = o L; oY) dv.

F

Proof. The result follows from combining (5.9), (5.10), (5.12) and (5.13). O
LEMMA 5.15. Define g(F) as in (5.3). Then for allee X, D € D(iv* x a¥),r = 0, ¢g,,
g, €(gc), there are constants C, s = 0 so that

Ig(F:h:v; D:gy; x; g2)(14+ ) < CE(x)(1+6(x))°

for all xe G, he Dr(e), veaf.
Proof. This follows from (2.22) since

w(F:h:v) [ m(F:h:v)g(F:h:v) Y, e@)t(F:y:h:v)

ae®f r VeTr

and all its derivatives have polynomial growth in (h, v)€ivo* x a}. d

We now want to show that the functions g(F), F < F satisfy the matching
conditions of (4.1e). Thus as in Section 3 we fix ES F,, 1 <i<m.

LEMMA 5.16. For any E < F < E(i), vgea}, hoeH#;, k=0,

(8/6hi—i Y 6/6ua>k T(F :hgy:(vg, 0)) = (8/0h)Yn(E : hy: vg).

aeF\E

Proof. For any F = F,, € ®y, define H,ehrc to be dual to a under the
Killing form. Then we can decompose

bF=tFo @ Z RiHcpa ® Z RHc,a @ ag.
aeF,\F aeF



180 R. A. Herb
Thus we can consider Ar (h) € b} ¢ by extending trivially on

® Y RiH,,® Y RH,,® ag.

aeF\F aeF
Further, for ve af we let v denote the element of bf ¢ which is equal to v on ag
and is trivial on tr, @ Zyep\r RiH o @ Zocr RH, .. NOoW we see that

ivp, cpo)
— " cpo.
o, ap

h, .
Ap(h)+ivp=Ap W)+ 3, Chya) cputivg+ Y,
aeF\F <OC, CX> acF

Write

n(F:h:ve) = [] e +ive, B> = [1 <cr 'Gp(m)+ivg), B.

Bed; e

For any vea¥, F < F, let vp be the restriction of v to ar. Now for every

Be®p;, (h,v)eiv* x af,, {cr (Ap(h)+ivp), B> — cg '(Ag(h) +ivg), B>

<h’ a> (a,ﬁ>+ Z <ivF’ cFa>

aerg % 0 wrg <%0

e, B>.

Thus if hy € #; and vy € af,

<er YApho) +i(ve, 0), B> — {cg '(Ap(ho) +ivg), B> =0
for all E = F < E(i) since <hy,a) = 0 for all ae F\E < F} and {(vg, 0),cra> =0

for all ae F\E.
Further, in the notation of (3.7),

0/ohi(<e W)+ iv) B — e () + ivg), By = 3, ST 22X B

whE (%0
while for each ae F\E,

0/oma(Cer (Ap(h)+ive), B> — (5 *(hu(h) +ivg), B) = ziia—“is“—‘ﬁ

But for all ae F\E < F}, {,, cp,0) = {h;, «). Thus

(0/5’1:—1' > 5/5#a> (Cer '(Ap(h) +ive), B — {cg '(Ap(h) +ivg), B5)=0

aeF\E
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for all (h, v)eiv* x af,. Thus for every k > 1,

(0/5’1:—1' > 0/5ﬂa>k(<65 Y(Ap(h)+ivg), B> —<cg '(Ap(h) +ivg), B)=0.

aeF\E
Now, since
0/0uqlcg '(Ag(h) +ivg), B> =0

for all xe F\E, we have shown that for all k >0, fe @},

k
(6/6’1,-—1' > 8/6ua> (Ker Y(Ap(ho) +i(ve, 0)), BY)
aeF\E

= (0/0h)*(<cg '(Ag(ho) +ive), BD)

for all E = F < E(i). Thus for all k >0,

(6/6h,——i Y 6/6ua>k 7(F:hy:(vg,0) = (0/0h)n(E : hy: vg)

weF\E

for all E < F < E(i). O

LEMMA 5.17. Suppose hy € #; and vg€ a} such that {vg,a) #0 for all o€ ®F ¢.
Then for all E = F < E(i),

lim  g(F:h:vgp) Y eW)U(F:y:h:vg)

(h,vg)—(ho,(ve,0)) VeI
= (2/n)"\EQE ho:vg) Y. eWUE:Y:hy:vg).
YeJg

Proof. For all heiv*, vea¥, we can write
F>

qF:h:v) =[] +ih) [] (vp+ihg)vg—vy) ™t
aeF Pe[a],p#a

Thus if for ve a¥, we let v denote the restriction of v to a,

gF:h:v)=q(E:h:vg) [] (va+ih) I (p+ihg)vp—v) ™"
aeF\E Pela],f#a

For every a € Fy, ®c[«] is a union of some of the simple factors of @z z. Now
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since ®f g = | )uer, Pr[o], We can write

Y e)F:p:h:iv)= 1‘[( y s(x//a)t(F:t//a,:h:v))
Y,

veT g aeFy \Y,e7 {®)

where Jp(0) denotes the set of two-structures of ®@g[a] and if
l//a=l//1 U U'//ke'g.F(a),

HF: Yy, h:v)= f[ t(F:y; h:v)

Suppose o€ F\E. Then if ®(«) is of type C, for some n > 2 it follows from
(6.6) that

lim  (,+ih) ] p+ikp—v) ™' Y e IUF Y, h:vg)
(h,vg)—>(ho,(vg,0) Pelo],p#a V.£7 o)

=Q/n) Y eYIUE: Y, h:vp).
V.£7 o)
If @p () is of type 4;, then when vp=(vg,0), h=h, € #,;, v,=h,=hz=0 for all
Bela]. Thus

lim [T p+ihdvs—v) t=1.
(h,vg)—(ho,(vE,0)) Be[a], B~

Further J (o) ={®p[a]}. Now

lim (h,+iv,) sinh 7T(v¢ +ih,) — n
(hyp)(hovg0)  COSH (Ve +ihy)—1

while for all e @[], B # a,

lim tg(F:h:vg) = tg(E:hy:vg).
(hvg)—(ho(vi,0))

Further, @7 [«] =®; [o]\{«}. Thus in this case as well we have

im — (+ih) [1 Op+itdo—v)t Y e )iWa:h:ve)
(h,ve) = (ho)(vE0)) Belal.B#a V.£THa)

=Q/m) Y eWIHUE Y, h:vp).
)
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Finally, when a€ Fy\F, ®r[a] = ®z[a] and
lim Y eWIHF Y hiv) = Y e HE: Y, h:vE) O
(h,vg) = (ho,(ve0)) Y ,€THo) V.£THa)
For any F < F,, veaf,, let vp denote the restriction of v to ar < ag,. Then for
each F c F, we can extend g(F) to a function on iv* x a¥, x G by

g(F:h:v:x)=g(F:h:vg:x), (h, v, x)€iv* x af x G.

Then for any a€ Fo\F, 0/0u,g(F:h:v:x)=0for all (h, v, x) since (v + tu,)r = vg for
all veaf,, teR. For any e€ X, the restriction of g(F: h:v:x) to Pr(e) extends to
a C” function on cl(Pr(e)) x af, x G. Let g(F:&:h:v:x) denote a C* function on
in* x af x G which agrees with g(F) on cl(Zp(e)) x af, x G. Now fix E < F,,
1 <i<m, and ¢€X;. For vgeaf, let (vg,0)eaf be defined by (vg, 0)l,, = v,
{(vg, 0), cp, 0> =0 for all ae Fo\E. For E < F < E(i), vg€ af, ho € H#; N cl(D(¢)),
x € G, write

gi(F:k:hO:vE:x)=(6/6h,-—i Y 6/0pa>kg(F:si(i):hoz(vE,O):x). (5.18a)
weF\E

To complete the proof of Theorem 5.3 we must show that for all E = F < E(i),
k=0, vgea}, hoe #,; N cl(Dg(e), x€ G, we have
g (F:k:hg:vg:x)—g (F:k:hy:vg:x)

= Y opr@t(F kiho:vgix)+g (F :k:hg:vg:x)). (5.18b)
FcF < E(®)

For (h, v, x)eiv* x af x G, define

gE:F:i:h:v:x)=g(F:e*(i):h:v:x)—g(F:e~(i):h:v:x)

— Y opp@F et @):hivix)+g(F e () hivix)). (5.18c¢)
FcFCE()

Then since

<6/6hi—i Y 6/6ua>kg(Fzsi(i):h:v:x)

aeF\E

=<6/6hi—i Y 6/6u¢)kg(F:ei(i):h:v:x)

acE(\E

forall k > 0, E = F < E(i), (h, v, x)€iv* x af, X G, we see that proving (5.18b) is
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equivalent to proving that for all E = F < E(i), k > 0, vge a¥, ho € #;n cl(Dg(¢)),
xeg@,

(6/6h,-—i Y 6/6,ua>kg(E:F:i:ho:(vE,O):x)=0. (5.18d)

aeE(i)\E

To do this we first need a simple calculus lemma. For p,q > 0, write
coordinates in R1*7%9 a5 (t, x, y), teR, xeR?, yeR%

LEMMA 5.19. A function f € C*(R! *?*9) satisfies
k
(a/at—i 3 ojox—i 3 a/ay,.> £0,0,)=0 forall yeR%, k>0
i=1 ji=1
if and only if
k
<6/6t—i 3 a/ax,.> £(0,0,7)=0 for all yeR%, k0.
i=1
Proof. For any k > 0 write
4 q k
(6/6t—i Y 8fox;—i Y. (?/6yj> f(t, x, y)
i=1 j=1

= Zk: (f)(‘l .z_{i 6/ayj>k_r(a/at—i .Zp: a/ax,)rf(t, x, y).

Now since t,x, and y are independent variables, we can evaluate
(0/ot—iXP_, 0/0x)f(t, x, y) at (t, x) = (0, 0) before differentiating with respect to
(—iX9_, 0/dy;)*"". Thus the second condition in the lemma clearly implies the
first. Conversely, assume the first condition is satisfied. We will prove that the
second holds by induction on k. If k =0 the result is the same as the k=0 case of
the first condition. Now for k > 1,

0=<(7/0t—i 3 afoxi—i a/ay,.)k £(0,0,y) = (0/6t—i 3 a/ax,.>k 1(0,0, y)

since using the induction hypothesis, for all 0 <r < k—1,

( iy a/ay,.)k_'(a/at—i s a/ax,.)' £(0,0, ) =0. 0
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We will apply this lemma as follows. For any Fc<F, let
O3, )= Uaepi) ®p[o, I] where @p[a, 1] denotes the long roots in ®z[a].

LEMMA 5.20. Let E = F < E(i), hoe ;N cl(Dg(€)), xe G. Then
k
(6/6h,-—i Y 0/6ua> g(E:F:i:hy:(vg,0),x)=0
acE()\E
for all vpeaf, k = 0 if and only if
k
(0/6hi—i Y 6/8/1¢> g(E:F:i:hy:(vg,0),x)=0
e (i,])

for all vgea¥, k = 0.
Proof. {u,:a€®g(i,])} is a linearly independent set in af and @ (i, ]) is the
disjoint union of E()\E and ®@(i, [). Let p=|E(G)\E|, g=|®g(i, ])|. Then for any

VEE (IE, (ta X, ,V) - (hO(t)9 V(VE, X, Y))

= (ho + th;, (vg,0) + Z Xolly + Z yﬂ”ﬂ)
wcEG\E Bed(i)

gives an embedding of R' *?*?into iv* x a¥,. Further, if we consider a} < af by
af={(vg, 0):vgea}}, then for aeEG)\E, u, is orthogonal to af, while for
a €D, ), p,eaf. For vgeaf define

f@t, x,y)=g(E:F:i:hyt):v(vg, x, y)).

Then for any k > 0,

(a/at—i y a/axa>k 10,0, y)

aeEG)\E

=(6/6h,-—i Y 6/6ya)kg<E:F:i:h0:(vE+ y yﬁvﬁ,0>>

«eE(\E Bed(iy])
while
k
(6/6t—i Y o/ox,— Y a/ay,g> £(0,0, y)
aeE()\E Be®(i,))

=<3/6h,~—i Y 8/6ua)kg<E:F:i:h0:<vE+ Y yﬁv,,,O)).

ae®g(i,]) Be®e(i.)
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Now the result follows from Lemma 5.19. O

LEMMA 5.21. For all E< F < E(i), k = 0, vge a¥, hoe #; N cl(Dg(e)), x€ G, we
have

k
(8/6h,-—i Y a/au,> g(E:F:i:hy:(vg, 0):x)=0.
€D (i,))

Proof. Write D;=(0/0h;—iZ,cq, i1 0/0p,). Since g(E:F:i:hy:(vg,0):x) is a
smooth function of v € af, it suffices to prove the result for v, regular as in (5.17).
First, using the formulas in the proof of (5.17) we see that for all E < F < E(i)

qF:h:v)=q(E:h:v) ] (vo+ih) [] (p+ihg)vp—v)~!
aeF\E Pe[a].p#a
and

Y eWHF:y:h:iv) = ]_[[ Y 6(!//¢)t(F:l//a:h:v):|.
v

VeI oeF o Ly ,eT (o)

Now since F\E < Fi, for ae Fj, j # i, we will have

Y EWIHF Y hiv)= Y Y HE Y, h:).

Y.eTHe) 240

For each E = F < E(i), write

g(F:h:v) Y e)(F:y:h:v)

yeTr

=pE:F:h:v)q(E:h:v) ] l: Y s(://a)t(E:n//,:h:v)]

aeFo\F§ Ly,eT5()

where
p(E:F:h:v)

=[] va+ihy) |1 (vp+ihg)vg—va) ! H[ Y s(llla)t(Fu//,:h:v)].

aeF\E Pel[«].8+#0 aeFh Ly e Ho)

Now, by (5.2) and (6.3), for all E< F < E(i), p(E:F:h:v) depends on
(h,v)eiv* x af, only as a function of v,+ih,, a€®@py(i,]). Now if o, Be Qg (i, D),

then
Ve if o # B;
O =0T ah,py
v+ —o— -, ifa=f;
B, B>
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and
(h+th)s = hy + %’—Bgl for all reR.
Thus
Dy(hy) = 26 By g Dy(v;) = _ 2k, B

<B.B> <B. B>

so that D,(vg+ihg) =0. Thus for all k>1, D'p(E:F:h:v)=0 for all
(h, v)eiv* x af,. Further, using (5.17),

lim  p(E:F:h:v)=Q/n)P\EIp(E:E:hy:vp).
(h,v)—>(ho,(ve,0)

Thus for all k > 0, E = F < E(i) we have

DYg(F :e%(i): ho: (vg, 0): )
= (n/2)E'D¥g,(F :e*(i): hy: (vg, 0): X)P(E: E : hy: vg)

where for any ¢€X,, he Dy(e),

gi(F:e:h:v:x)=op(@)®F:h:v:x)m(F:h:v) [] my(F:h:v)
e r

xq(E:h:v) [] [ Y E(llla)t(EZl/lalhiv):]‘

aeFo\Fo L/,e 7 5(@)

Thus it is enough to prove that DYg,(E:F:i:hy:(vg,0):x)=0 where
g.(E:F:i:h:v:x) is defined as in (5.18¢c) with g,(F) replacing g(F).
But

qE:h:v) [] [ Y S(IIIa)t(EIl/IthZV)]

aeFo\Fo Ly.eT (@)

is independent of E < F < E(i) and by (5.5) we know that Il g, ,m,(F:h:v) is
independent of F = F,, for all (h, v)eiv* x af,. Thus using (5.16) and assumption
(4.1e) we can conclude that

(6/6h,- -y a/aua>kgl(E:F: ithg:(vg, 0):x)=0

acE(I\E
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for all vgea¥, k > 0. Now as in (5.20) this implies that
D¥g(E:F:i:hy:(vg, 0):x) =0

for all vgea}, k > 0. O

6. Sp(n, R) calculations
In this section we will assume that G is the universal covering group of Sp(n, R)
for some n > 2. Let B be a relatively compact Cartan subgroup of G. Then we
will write

O =0*(gc, bo)={e;t e, 2¢:1 <i<j<n 1<k<n}
and

O*(fc, bo) ={e;—e;:1<i<j<n}.
In this case iv* is one-dimensional and for heiv*, 2<h, a>/{a, a) is independent
of ae{2e,...,2e,}. By abuse of notation we will use h to denote both an
element of iv* and the real number 2<{h, a)/{a, ), a€{2e;,...,2e,}.

Fix 0 < r < n—1andlet H= TA be the Cartan subgroup of G corresponding
to the set of strongly orthogonal non-compact roots

SOS(H)={2e,,...,2e,},c:bc - b

the corresponding Cayley transform, and P=MAN a cuspidal parabolic
subgroup corresponding to H. Use ¢ to identify ®7 and @ = c®;. Now

Q=0 (mc, to)={e;te;,2e,:r+1<i<j<nmr+1<k<n}
Fix (4, x)e X(T) such that Fy={2e,,,} and for F = F, define Hp, g, xr,
¢r:be = brc as in (3.3). Define @, @ ¢ as in (5.1) and identify ®F with @5 via
the Cayley transform ccy. Thus

Ohr={e;te,2e:1<i<j<r1<k<r}

and

O r={e;te,2¢:1<i<j<r+1,1<k<r+1}
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Further, Z) (M}) is abelian and generated by Zyo=Z, (M) N T¢ and the
subgroup I'; generated by {y,:ae®; g} where y, is defined as in (5.1d). For
1<i<r+1, let y;=y,,. Then as in [HWI1,1.5], for 1 <i#j<r+1,
Ve,ie,=)’i?,71 has order two. Thus I'; is generated by y,,...,7, and I is
generated by yy,...,7,+1. For a e ®F ¢, define m,(F :h:v), p 4, &,(F :h) asin (5.1).
For 1 <i<r+1, define ¢;=¢,,,(F,:0).

LEMMA 6.1. For all 1<i<j<r+1, 1<k<r+1, heiv¥ &, (Fy:h)=
gcosmh and &4, (Fo:h)=—¢g. For all 1<i<j<r, 1<ks<r, hein*,
826 T h)=—g cosmth and ¢, +e(J: h)= —ee;. Further ;=11 for 1 <
and ¢,.,=1. Finally, for all 1 <i<r+1, m§, (Fy:h:v) is jointly smooth at
(0,0) if and only if ¢;=—1 and m3, (J:h:v) is jointly smooth on iv* x af
forall1 <i<r

Proof. Because 2e,,,€F, we have ¢, =1 by (49). Now as in (5.5), for
1<i<r+1, g=+1 just in case gz (0:7)= +(—1)?*. But now ¢, ,;=1
implies that yp(0:9,.,)= £ 1 so that for

I<i<r, XF0(01Yi)=XF0(03)’;+1)XF0(03)’i?r_+11)= +1

since 7,y,Y; has order two.

Now asin (5.5), for F = F, we have ¢,(F : h)=¢,(F :0)cos h for any heiv* and
any long root a e ®F z. If x e ®F ¢ is a short root, y, has order two and €(y,)=1
for all heiv* so that e (F:h)=¢,(0:h)= +1.

To finish the proof of the first part we must compute (— 1)/« for F < F,,
ae®g . Suppose F = . Then for 1 <i<r, O, ={2¢,e;te;:r+1<j<n}
so that pgo, =n—r+1.For 1 <i<j<r,®%, . ={e+te;}so that PBeite,= L.
Similarly for F=Fy,for1 <i<r+1,®f ,.= {2e,,e tej:r+2 <j<n}sothat
Pro2e;=n—rand for 1 <i<j<r+l1, (DFOHE ={e;+ 1} so that pg 1. = 1.

Now x(0) is the restriction to Z,(M°) of xp(0) so that for 1 <i<r,
xz5(0:7)=1ro(0:7:). Thus é&,.(F,0)=(— 1)""'“)(@(05)’;'): —&36,(Fo:0)=—¢;.
Further, for 1 <i<j<r, &y, (1 0)= —xg(O:y,-y,-‘ )= —¢gg;. Similarly, for
I<i<j<r+l, e,4,(Fo:0)=— Xro0: 77 )= —

Now for 1 <i< r+1 my(Fo:h:v) is jointly smooth at (0,0) if and only if
g=—1 But ®f ,, ={2e,e;te;:r+2<j<n}, and for y=¢;e;, (y,Ap,y=
{+ej, Ay #0 since 2e;¢F, for r+2<j<n Thus m}, (Fy:h:v) is jointly
smooth if and only if m,, (Fy:h:v) is jointly smooth. However, for 1<i<r,
e;+e. €05y, and (Ah)+iv,e;+e,. )=clh+v,,) since <(2e,,,4)=0.
Thus m%, (& :h:v) is jointly smooth even when &,,(J:0)=1. O

Fix F € Fy, and define J = J  asin (5.2). Since @y p is of type C, where s=r
orr+1, J can be descrlbed as follows. For any 1 <i<j<s, let

!/l(l’ j) = {izei9 izeja iei i e}}



190 R. A. Herb

For 1 <i < s, let Y(i)={12e;} and define

[s/2]
U v@Qi—1,2) uy(s), if s is odd;
i=1

Yo =1 1
U v(2i—1,2i), if s is even.
i=1

Let S, denote the set of all permutations ¢ of {1,2,...,s} considered as a
subgroup of W(®pg). Then I ={oy,:0€S,}. Further, if €S, such that
o(¥g)=(0y)* where y* =y N ®f ; for any Y € 7, then g(oy,) =det a.

LEMMA 6.2. For y €7, define t(F:y:h:v) as in (5.2). Then for any o €S such
that €,(F:0)=¢,(F:0) for all xe ®f g,

eW(F .y :h:ov) = det oe(ay)t(F : oy h:v).

Proof. Since oeS, permutes {2ey,...,2e}, {e;+e;:1 <i#j<s} and
{e;—e;:1 <i#j <s},wehaveh,,=h, for all te ®F . Thus if ¢,,(F :0)=¢,(F : 0)
for all xe ®F g, t(F:h:0ov)=t,(F:h:v)for all o € ®f . Further, the only case in
which it is possible to have a€®f z and oae®y , is when a=e;—e; so that
h,=h,,=0. Thus for such « we have ¢t_, (F:h:v)= —t,(F:h:v). Thus

eW(F:y:h:ov)=e(y) [] tdF:h:v)=(—1Peyy) [] tdF:h:v)
aeo(y ) ag(oy)”
where p is the number of roots aeyt such that cae(oy)”. Now
g(oy) =det o( —1)e(y)). O

For 1<i<s, write v;=v,,, veaf, and set §,=¢,,(F:0). Thus for
1 <i<j< s wecan write

. sinh 7(v;+ih) sinh 7(v;+ih)
HF Y@, j):h:v)= 1 1
(F:yG@, ):hv) <(cosh 7(v; +ih)— 3;) (cosh n(v;+ih)—3))
» sinh n(v;+v;+ 2ih) sinh 7(v;—v;)
(cosh m(v;+v;+2ih)+6,6)) (cosh m(v;—v;)+5:0))

(6.3)

LEMMA 64. If6; = 6; = —1, then
(b, v) > (vi—v) " UF Y (G, ) h:v)
is jointly smooth on U(0) x af. If 6;=0;=1, then

(v;+ih)(v; +ih)

(vi— Vj)

(h,v) > HF (i, j):h:v)
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is jointly smooth on U(O)x af. If 6;=1 and 6;= —1, then
(h, v) = (v; + i) (v;— v)U(F (i, j): h:v)

is jointly smooth on U(0) x af.
Proof. The first two statements follow directly from (5.7) and formula (6.3). To
prove the third statement we first note, again using (5.7) and (6.3), that

(h, v) = t(v;, vj, h) = (v; +ih)(v; +v;+ 2ih)(v;— v )U(F :Y(i, j): h:v)

is jointly smooth on U(0) x af. Write D =0/0h—id/0v;—i0/0v;. Then to show

t(v;, v;, h)
(vi+v;+2ih)
D*t(v;, v;, h)=0 for all k >0 when h=0 and v,= —v;. But since (v, v;, h) is a
function of v;+ih and v;+ih, D*t(v,, v;, W)=0 for all v;, v;, hif k > 1. Finally, for
any

that is jointly smooth on U(0)x af it suffices to show that

x sinh nx sinh n(—x) 2 2x sinh 27x
(cosh mx—1) (cosh n(—x)+ 1) © (cosh 2nx—1)

xeR, t(x, —x,0)=

2x 2x sinh 2nx

7 (cosh 2nx—1) =" =

Let @7 g(1)={ae®f :&,(F:0)=1 and a is either a long root or is a short root
of the form e;—e;, 1 <i <j < s}. Let ®f p(0)={o€ ®f g: m,(F : h:v)is not jointly
smooth at (0,0)eiv* x a}}. Thus by (6.1), @7, r(0)={2¢;:1 <i<r+1,¢=1}
and ®F(0) = .

LEMMA 6.5. Suppose F = . Then

(h,v)—> I Gatih) > eW)uF:y:h:v)

ae®y g(1) yeJy

is jointly smooth on iv* x af. Suppose F=F. Then

(h’ V) - H (va + iha) l_[ (va_ Vet 1)_ ! Z 8('/’)t(F ./I th: V)

ae®y (1) ae®F r(O\{2¢,+ 1} yeTp

is jointly smooth on iv* x af.
Proof. For any F < F, it follows from (6.4) that

(h,v)=> JI a+ih) D eW)uF:y:h:v)

ae®y x(1) VeTy

is jointly smooth. Now to prove the lemma it suffices to show that if
1<i<r with &, (F:00=1 and if voeaf, with (vo);=(vg),+1, then
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Zyes, EWIUF Y :h:vg)=0. But let o be the reflection interchanging 2e; and
2e,.;. Then ovo=v, Note that ¢, (F:0)=¢,(F:0) for all ae®fy since
&10(F:0)=¢,,,, ,(F:0). Thus, by (6.2), for any y €7,

eWUF - h:vg)= e(W)t(F - h:ovy) = det ae(oY)t(F : oy : h:vy).
Thus if 6y =, (F:y :h:vy) = 0, while if oy # ¥, then
eWHF: Y h:v) + eloY)(F:op:h:v) =0.

Thus Zycq, eW)UF Yy :h:v) = 0. O
Define g(F : h:v) as in (5.1f) so that g(F:h:v)=1 and

qFo:h:v)= ] (,+ih) I (vp—vae,, ) "
ae®7, x(0) Bedi, RO\{2e,+,}

THEOREM 6.6. Suppose vo€af, such that (vo),,, =0 and (vo), #0 for all
ae®F g # 2e,.,. Then

lim g(Fo:h:v) Y e(u/z)t(Fon//:h:v)=z Y W) ::0:vy).

(h,1)—=(0,v,) vedy, yed o

Before we prove Theorem 6.6 we will need some lemmas. Let F < F,, and as
above write

T, if F=g;

S=S(F)={r+1, if F = F,.

Then each Y € I is determined by
P) = {(i, j):1 <i<j<s(F)and Y@, j) < ¢}
Let
Po(F) = {G, j):1 <i<j<s(F)},
and for each P = Py(F), let
Trp={WeTp:P < PR}
For Y € I p, define

vrP) =y U ¥*G)),  vr={ete:j)eP}

(i,))eP
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and
Wi (P) = {ae®f g:a L Y(, j) for all (i, j)e P}.

We can consider Po() < Po(Fo)-
LEMMA 6.7. For all (h,v)€iv* x af,

S oeWF:y:h:v)= Y &P) [] ta(F:h:v) ] tF:h:v).

VeI PcPy(F) aeyy ae¥;(P)
Here e(P)= +1 for all P < Py(F) and if P < Py(J) & Py(F o), &(P) is independent
of F.

Proof. Lety e J pand write y =, U --- U ¥, U Y, , where k=[5(F)/2], each
Vi, 1 <i<kisoftype C,, and Y, is of type A, if s(F)=2k+ 1 and is the empty
set if s(F)=2k. Recall from (5.2) that

t(F:lp:h:v):.f[(n to(F:h:v)+ [] ta(F:h:v)) [T tdF:h:v)

aey; aeyy, L
= [T taF:hev) [] toF:h:v)
PSPWY) aey; aey *(P)

Thus

S oeWF:y:h:vy= Y [l tdF:h:v) Y e@) [] tdF:h:v).

VeJ PS Py(F) aeyp VeTrp aey* (P)

Fix P < Py(F,) and write P={(p,;_1, p2)):1 <i < |P|}. Let
TP)={1<j<r+1:j¢{p:1 <i<2IP|}}

and write T(P)={ty,t5,...,t,41-2p) Where t; <t, < - <t,iy 5p. Now
define the permutation ¢,€8S,,; by

op(i)=p, 1 <i<2P|, 0p(i+2|P))=t;, 1 <i<r+1-2|P|

Define &(P)=det op. Suppose P = Py(J) < Po(F,). Then r+1=t,,_yp e T(P)
and op(r+1)=r+ 1. Thus op permutes {1,...,r}.

Now for any F < F, and P = Py(F), ¥¢ (P) is a root system of type Cyg)_2p|
and iy — Y(P) gives a bijection between 7 p p and J (¥(P)), the set of all two-
structures for Wy(P). Let

Y(ty, 1) - UY(ty(ry - 21p| - 15 Lsiry - 21P)s if s(F) is even;
Y(ty, 1)Uty - 21| - 20 tsipy - 211 - DY sy - 21pp)s 1 S(F) is odd

¥(P)o ={
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be the standard two-structure for Wy (P). Now if Yy € T ¢ p, let 0 €S, so that
o(Yd)=y*. We can assume that o(i) = p; for 1 < i < 2|P| and ayo(P")* =y(P)*
where P={(p,i-1,P,)} as above and P'={(2i—1,2i):1 <i<|P|}. Now
oop '(p)=p; for all 1 <i<2|P| so that ¢'=00; ! is a permutation T(P) and
dY(P)g =ayo(P')* =yY(P)". Thus e(y(P))=det ¢’ =z()e(P).

Now for any veaf,

Yoo (P) [ mfF:hiv)= [ m(F:h:v)

W(P)leT (YHP)) ey *(P) ae'¥; (P)

by [HW1,4.17]. Since both sides are meromorphic functions of veafc, the
equality persists for veafc. Now for heiv* we can define v(h)eaf ¢ so that
v(h),=ih, for all oe®fg. Then ¢, (F:h:v)=m (F:0:v+v(h)) for all
(h,v)eiv* x a}. Thus we also have the equality

> eP) [] tdF:hiv)= [] tu(F:h:v)

W(P)eT (Y(P)) aey*(P) ae¥¢ (P)

for all (h, v)eiv* x af. Thus

Y &) [l tdF:h:v)=¢eP) Y eW(P) ] tuF:h:v)

VeTrp aeyf (P) Y(P)eT (¥(P)) aey " (P)
=&P) [[ tuF:h:v). 0
«e¥; (P)

LEMMA 6.8. Let vyeaf, be as in (6.6). Let P = Py(F). Then

lim (v +ih) [] tdFo:h:v)=2/n) ] t(B:0:v,).

(h,v)—(0,v,) ae¥i(P) «e'¥ E(P)
Proof. For simplicity of notation we will assume that
P={Q2i—1,2):1<i<q}, 0<29<r
so that W (P) is the root system of type C,,; _,, generated by 2e,,,4,...,2e,
2e,,; and Wj(P) is the root system of type C,_,, generated by 2e,,.4,...,2e,.

Then

sinh 7(v; +ih)

T tFo:h:v)= T] '
ae'¥f(P) 2q+1<i<r1 COSh 7vi+ih)—e;
y sinh n(v; +v;+ 2ih) sinh n(v;—v;)

2q+1<i<j<rs1(©€OSh m(vi+v;+2ih)+ &) (cosh n(v;i—v)+eg)
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Now

sinh 7n(v, , ; + ih)

lim (v, +ih) - =2/zm.
()= (0.v0) 1 cosh n(v,,; +ih)—1
Forg+1<i<r,
sinh n(v; +ih) sinh 7t(v; + v, + 1 + 2ih)

;
) 0y (COSD TV + 1) — ) (COSh (v, + v, 41 + 2i) + &)

N sinh n(v;—v,+,) _ sinh n(vo);
(cosh m(v;—v,+1)+&)  (cosh n(vo)i—¢,)

y sinh 7(vy); sinh 7(v,);
(cosh 7(vy); + €;) (cosh m(vy); +¢;)

TN
- (cosh m(vo); + &) = 12.(:0:vo).

Finally, forg+ 1 <i<j<r,

lim sinh n(v;+v;+ 2ih) sinh n(v;—v))
(h)=(Oo) (cosh m(v;+v;+2ih)+ge;) (cosh n(v;—v;)+¢e;)
sinh 7((vo); +(vo) j) sinh 7((vo); —(vo) j)

N (cosh 7((vo); +(vo);) + &:€;) (cosh m((vo); — (Vo)) +&:€))
= tei+2j(g :0: VO)te,'—ej(g :0: VO)‘

PROOF OF THEOREM 6.6. Write

q(Fo:h:v) = (V41 +ih) I1 (Vo +iR)(ve— v, 4 1) " h
ae®; g(0\{2¢,+,}

Now when h=0 and v=v,, v, ; =0 so that

I—[ (va+ih)(va_vr+l)_l=1'
ae®y RO\ {2e, .}
Now by (6.7),
(Vy+1+ih) Y, eW)(Fo:y:h:v)

VeTg,

=1 +ih) Y, &P) [] tuFo:h:v) [l tuFo:h:v).
P<Py(Fy) ey ae¥7(P)

195
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Now fix P < Py(F,). Now all roots in {7 are short, so not equal to 2e,,,.
Suppose P & Py(). Then 2e, , , ¢ Y7 (P), so that t,(F, : h:v)is jointly smooth at
(0, vo) for all aeyy U Wi (P), so that

lim v,y +ih) [] tfFo:h:v) [l tFo:h:v)=0.
(h;v)—(0,v0) aeys ae¥5(P)

Now if P = P(), then by (6.8),

lim (v, +ih) J] tdFo:h:v)=Q2/m) [] tF:0:ve).
(h,v)—=(0svo) ae¥F(P) ae'¥ H5(P)

Further, for acyy, t(F:0:vo)=t,(Z:0:v,). Thus

lim Y e(P)v, 41 +ih) Hta(Foih:v) 1 tuFo:h:v)

(h,v)—=(0,v0) P< Po(F,) acy; ae¥7(P)
=@2/m) Y oP) [] tdD0:ve) ] t(F:0:v0)
PcSPy(Q) aey = )
=@2/m) ) WD :Y:0:v) O
yed 7]

7. Matching families

Let H = T A be a 6-stable Cartan subgroup of G and fix (4, )€ X(T), t,, T,€ K ),
W = W(t,:1,), and U(0) as in (4.6). For F < F, and g€XZ,, set Ug(e)=
{he U(0): g,(h)=¢, for all a € F,\F}. Define €(Ug(e) x a¥: W) to be the set of all
ge C®(Ug(e) x af: W) such that g has a C* extension to the closure of

Ur(e)xa¥ and for all D e D(iv* x a¥), r=0,

Igllp,= sup [Dg(h:v)l(1+v]) < oc0.
(hv)eU (e) x af

Now suppose for each F = F, we have a W-valued function g(F:h:vg) of
(h, ve) e U(0) x af such that
9(F:8)=g(F)lyxar € E(Up(e) x af: W) for all eeX,. (7.1a)

We will say {g(F)}rcF, is a matching family if in addition the functions g(F)
satisfy the following matching conditions. Fix ES Fy, k 20,1 <i<m, ceX,
For E = F < E(i))=EUFj, vgeaf, hye #,;ncl(Ug(e)), write

ai(F:hO:vE)=<a/6h,~—i Y 6/6;4a>kg(F:ai(i):ho:(vE,O)).

aeF\E
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Then we require that for all E = F < E(i),

at(F:hg:vg) —a (F:hy:vg)

= Y  cmp@t(F:ho:vg)+a (F':ho:vg) (7.1b)
FcF E()

where ¢;, k > 0 are defined as in (3.11).
For F < Fy, heiv*, vpeaf, define pp(h:vp) =T, r(v,+ih,) as in (5.1e).

THEOREM 7.2. Suppose {g(F)}rcF, is a matching family. For he U(0), define

fy= % dvp

FcF,

1 g(F:h:vg)
(@)™ Jor pr(h:vE)

where the measures dvy are normalized as in (71.8). Then f € C*(U(0)).

COROLLARY 7.3. Let ® be an elementary mixed wave packet as in (4.1) and
define ®(h:x) as in (4.3). Then (h,x) > ®(h:x) is a jointly smooth function on
in*xG.

Proof. Combining definition (4.1) with (5.3) we see that

Oh:x)=c ) dvg.

1 J‘ g(F:h:ve:x)
FcF, af

(”i)m pr(h:vg)

Further, by Theorem 5.3, for each xe G, {g(F:x): F < F,} is a matching family
as defined in (7.1). Now the theorem says that h — ®(h: x) is a smooth function
on U(0) for all x e G. Further, since ®(h: x) is supported in a compact subset of
U(0), it is smooth for all heiv*. However, it will be clear in the proof of Theorem
7.2 that since for each ¢eX,, the functions g(F:¢) are jointly smooth on
cl(Ug(e)) x af x G and the Schwartz norms ||g(F : &: x)||p,, are uniformly bounded
on compact subsets of G, @ is in fact jointly smooth on iv* x G. O

The remainder of this section will be devoted to the proof of Theorem 7.2. Fix
e€Xy, F = Fy Then g(F:h:vg) is jointly smooth on Ug(e) x a¥ and satisfies
Schwartz estimates as a function of v, uniformly in h. Further, pp(h:vg) is a
polynomial in (h,vg) which has no zeros in Upg(¢e)xaf. Thus fr(h)=
J‘ g(F:h:vg)

at prlh:vE)
extends to be C® on cl(Ug(g)), the closure of Uge) in U(0), and compute
Dfp(e:hg)=lim,_,, Dfz(h) for any differential operator DeD(iv¥) and
ho € cl(Ug(e)) where the limit is taken through he Ug(e).

dvg is a smooth function on Ug(e). We must show that fr(h)



198 R. A. Herb

We start with some elementary calculus lemmas. For any g € ¢(R), define

P.V. L@dx = lim J de.

X Mo +oeloJesikisM X

The limit exists since
M —g(— —a(—
f @dx=J g¥)—g(=0) 4 4 IX—g(=x)
e<|x|<M X & pY X

is bounded as x—0 and rapidly decreasing at infinity. Thus we can rewrite

P.V.f ggc—)dx=f M—‘—x)dx
R x>0

X X

=ﬁ IMdﬁf 99 4
x| < Ix|

p 1>1 X

Now let a>0 and write I7(0,a)=(0,a), I~ (0,a)=(—a,0), I*[0,a)=
I1%(0,a)u{0}. For any integer p > 0 define

G(RP x [*[0,a): W)
{ge C*(R? x I*[0,a): W): ||g|p, < oo for all De D(R?*Y), r > 0}
where

lglp,= sup  [Dglx:y)I(1+Ix]).
(x.y)eR? x I*[0,a)

Write coordinates in R? x I£[0,a) as (x,y,t), xeR, yeR?™!, teI*[0,qa). For
gebR? x I*[0,a): W), (y,t)eR? ! x I*(0, a), define

X, y, t
g\, 1) = L %ji—t) dx.

LEMMA 7.4. Let ge 4(R? x I*[0,a): W). Then
I(g)e C*(RP ! x I%(0,a): W)
and extends continuously to R? ! x I*[0,a) where for yeR? "1, we define

f 9(_"’;”_0) dx —enig(0, y, 0)

Ig)y, 0)=P.V.
R
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where

{1, i I*[0, =170, a);
= =1, i IE[0, =10, a).

Proof. Clearly I(g)e C*(R?P~! x I*(0,a)) since g(x,y,t)/(x+it) is a Schwartz
function of x, uniformly on compact subsets of R?~! x I*(0, a). Now for all ¢t # 0,

1 .
— dx = —mi sign(t)+2i arctan t.
X<t X+t

Thus we can write I(g)y, £) = Z;_, g,(y, t) where

g(x, Vs t) g(x7 Vs t)'—g(oa Y, t)
g1y, )= J ——dx, g,(» 1) =J . dx,
xl=1 x+it Ixl<1 X+t

and

g3(», ©) = ¢(0, y, t)(—mie + 2i arctan t).

Now |lg(x, y, )/(x +it)ll < llg(x, y, t)l| for all [x| > 1, yeR?™!, teI*[0,a), so g,
extends continuously to t=0 with

910, 0) = j de.

Ix|=1 X

Further, for |x| < 1, yeR? ™, teI%[0,a),

lg(x, Vs t)—g(o’ Y, t)l

|g(x’ Vs t)—g(O, Y, t)l <
I x+it

~
x !

< sup [(6/0x)g(x, y, t)l.

IxI<1

Thus g, extends continuously to ¢t =0 with

gz(y, 0) — J g(x, Vs 0)_9(0’ ys 0) dx.

[xj<1 X

Note

£ b O
00,0+ 4s0.0) = 2. [ 22D
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Finally, for yeR?™!, teI*(0,a), g;(y,t)=9(0, y, t—mic+2i arctan t) extends

continuously to t=0 with g;(y, 0)= —emig(0, y, 0).

a

LEMMA 7.5. Suppose g€ 4(R” x I*[0,a): W). Then for any k > 0, D,e D(R?™1),

(7, )eRP~ 1 x I%(0, a),

(@/0t)D, J g6 0.0 4y f (0/0r —10/0x)D,g(x, , 8) |
R X+it R

+ x+it

Proof. Write

aa kD g(x9 y9 t)
(0/0y yL x+it dx

B J 9 (:) ((@/30) =D, g(x, y, O)@/3e)(x +i)* dx

= J;l i (:) ((0/0t) 79D, g(x, y, )id/Ox)i(x +it)~* dx.

=0

But integrating by parts, this is equal to

J i (:) ((6/0ty~4(—i6/0x)"D,g(x, y, )(x+it) "' dx
R

q=

)
(9/0t—i0/0x)*D,g(x, y, 1) doc
R x+it )

a

LEMMA 7.6. Let ge 4(R? x I*[0, a): W). Then I(g)e 4(R? ! x I*[0,a): W) and

for all D e D(RP?), there is a finite subset F = D(R?*') such that for all r > 0,

H@lpr < Y, Ngllp 2

D'eF

Proof. Combining Lemmas 7.4 and 7.5 we see that for all D, e DR? Y, k>0,
(0/0t)D,I(g)( t) extends continuously to R?~! x I*[0,a). Thus to show that
I(g)e C*(RP~1 x I*[0,a): W) we need only check that each of the one-sided

derivatives (9/0t)*D,I(g)(y, 0) exists and is equal to

—i0/ax)*
PV. f (0/00~10/0xV Dy, 32 O) 4\ emieyor —i6/oxD, (0, y, O).
R

X
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The proof will be by induction on k. Suppose k = 0. Then clearly
0
P.V. j 9539 41 erigo, y, 0)
R X

is a smooth function of y and the derivative D, can be brought inside the P.V.
integral. Now suppose k > 0. By the induction hypothesis, for all
(y, ) eRP ™! x I*[0,a) we can write

3
(0/00" "D I(g)ys 1) = X 30 )
where

g(x, y, t) = (0/0t—id/0x)*~'D,g(x, y, t)

and the §;(y,t) are defined as in the proof of (7.4). Now, assuming that ¢ is
restricted to lie in 1(0, a),

i 9105 9=6:0,0) _ .1 f gyt 60
x=1 X+it x

t—-0 t t—0 t

_ llmJ\ g(x9 Vs t)_g(x’ Y, 0) _ lg(x’ Vs 0) dx
Ix|=>1

(50 t(x +it) x(x +it)

x x?

_ I ©/095(x, ., 0) _ ig(x, 3, 0) |
= - X.
Ix|=1
Now, integrating

j 0
J 5 3, 0)
[x|=1

x2

by parts, this is equal to

j (0/0t—i0/0x)(x, ¥, 0) ,
|x|=>1 X

x—ig(, y, 00+3(—1, y, 0)).

B j (9/0t—i0/0x)"Dyg(x, ¥, 0) 4
|x|>1

X
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Similarly,

= lim— -
x+it

lim gZ(ya t)“@z(y, 0) IJ g(x’ Vs t)_g(O’ Vs t)
=0 t -0 L JIxI<t

g(xs Y 0)—5(0, Vs 0) d
— . X

— lim g(x, y, )—g(x, , 0) 40, y, )—4(, y, 0)
-0 JIXIST Hx +it) t(x +it)

. g(x, y, 00—g(0, y, 0)—x(5/0x)3(0, y, 0)
—1i - dx
IxI<1 x(x +it)

dx

— i(—mie + 2i arctan t)(6/0x)g(0, y, 0)
_ f (9/08)g(x, y, 0)—(9/0t)g(0, y, 0)
[xl<1

X

—i g(x, y, 0) —g(0, y, )(:Z— x(0/0x)g(0, y, 0) dx — en(8/8x)3(0, y, 0)

_ J (6/0t —i6/0x)"D, g(x, y, 0)—(9/9t —i6/0x)*D,g(0, y, 0) dx
<t

X

Finally,

lim 930y, D—33(», 0)

; = —emi(d/0t)g(0, y, 0) + 2ig(0, y, 0).
t—0

Thus (3/0t)*D,I(g)y, 0) exists and is equal to

P.V. J (a/at - a/ax)kDyg(x> Vs 0)
R

~ dx —eni(9/0t — 8/0x)*D,g(0, y, 0).

Finally, for any r > 0, D e D(R?), we must compute

H@p,r = sup I+ ¥ IDI(gXy, D).
(n,)eRP™ 1 x I%(0,4)

But, from (7.5) we see that there is D'e D(R?*') so that DI(g)=1I1(D'g). Thus
1H@lp,r= I I(D'g)ll; .. Write D'g=4. As above, write I(G)y, ) =Z}-, g;(, t). But
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there is a constant C > 0 so that

$] b t ~ ~
J 99‘—y.—)dx” < J I3x, v, Ol dx < € sup( +|x|)2]13(x, 3, DIl
x=1 X+it R x

Further,

j Z](X, Vs t)_g(oa Vs t) dxll < \[ ||g(x, Y, t)_g(o’ Y, t)“ d
x| <1 Ix|<1

x+it ||

< 2 sup [[(6/0x)g(x, y, D).

Ix|<1

Finally,

190, y, O (ne — 2 arctan 1)} < 2z g(0, y, D|I.

Thus for any r > 0,

@), = @1, < Cllgllpr+2 + 2900y + 270Gl b r- d

COROLLARY 7.7. Suppose g(x, ..., X,,y,t) € 6(R? xR x I*[0,a): W). Then

1
11m XigeoeyXp ,tdx dx
z_.oL JRjIjl xj+itg( t » ¥, ) dx, »

o dx;
= Y (—em) I [TP.V. J\R;lg(xl, ey Xy Vs O, —o gt

I1={1.2,....p} Jjel J

where the limit is taken through te1*(0, a). Further, for any D,e DRY), k >0

(8/01D, j j g("l’ 9w Xp 10 4 gy

. 1()c +it) ! P

___J' J‘ (6/8t—i2}’=16/6xj)"Dyg.(x1,...,x,,,y, t)dxl---dx,,.
R IE_ | (x;+it)

Proof. This follows from (7.4), (7.5), and (7.6) by an easy induction argument.

d

i <m,eeX, Recall g,= +1 is independent of « for a e Fi,.
Write ¢; for this common value and write F'=F N Fi. Let hge 3,0 cl(Ug(e)).

We will assume that h, is “semi-regular”, that is hy ¢ 5}, j # i. Then there is

Nowlet F < Fy, 1 <
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a > 0 so that if we define h; as in (3.7),

I(0,a), ifeg=1,;
ho(t) = ho + th;e Ug(e) for tel, (0,a) = {I‘(O, @), ife = —1.
We will identify af with afpxRF by v=v+ 2,5 Xty © Vo, (Xp)uerd)
where vo =",y and for a € F', , is defined as in (3.7). Suppose E < F'. Then for
any vo € af\ i, Write (vo, (X,),eg, 0) for the element (vo, (X,),er:) € a with x, =0 for
all e F\E. For aeF, write p,(h:v)=v,+ih, heiv* ve af. Then for

. Wy,
A& P, el 0 Ciler) = =2 (x4,

For ae F\F', p,(h:v) # 0 in a neighborhood of h, for all vea¥. Assume that
a > 0is chosen small enough so that p,(hy(t):v) #0 for all t e I.,[0,a], vea}. For
ge€(Ur(e)) x af : W), write

gi(h:vg) = g(h: VF)PF\F‘(h vp) L (b vp)e Ur(e) x af.

LEMMA 7.8. Suppose ge€(Ug(e) x a: W). Then

. g(h:vg) . .
lim dv, =27 IFI (— g;mi) F\E!
h—)ho J‘Q: pF(h : VF) F EEF'

dx,
X J . dvo l_[ PV f gi(ho : (VO’ (xa)aeE, 0))
AF\Fi R

acE xa

Here the limit is taken through he Ug(e).
Proof. Write F'={a,,...,a,}, x;=x,,, 1 <j < p. Then we assume that the
Haar measure dv; on a} is normalized so that

p . .
dvp = dvy [T 322

dx;
ji=1 <°‘j, ij> g

SO we can write

[ st
at Pr(ho(t):vy)  ©

P 1 ho(t): (vo, yeens
=2_pf ”.J' ]-—[ i J g( 0() (vo X1 ‘ xp)) dvo dxl eee dxp.
R Rj=1 xj+lt a;‘\F‘ pF\F'(hO(t)'VO)
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Now since g€ G(Ug(e) x af: W) and pp\pi(ho(t): vo) is a polynomial in ¢ and v,
with no zeros on I,,[0, a) x a;\F.-,

g,(xh LR} xpa t) = J\ g:(ho(t) : (VO’ X1senes xp)) dVO
af\Fi

is an element of ¥(R” x I,,[0,a): W). Thus we can write

o))
LpF(ho(t) v & J L, i v X Xy

Now the result follows from (7.7). O

LEMMA 7.9. Suppose g€ 4(Ug(e) x ak: W). Then for any k = 0, he Ug(e),

h:vg) Dkigy(h:vp)
aahikj gh:ve) 4, =J Drgihive) 4,
(0/0k,) aprh:ve) © Ja pm(hivg) T

where Dgi=0/0h;—i X, p: 0/0U,.
Proof. Using the notation of (7.8) we can write

k g(h : VF) P, k g (xla xp’ t) .
(0/0hy) J;;pp(h:vp)d r=2"P(0/0t) T x,+ it ——F"dx, --dx,.

Now using (7.7) this is equal to

_iyp k
(6/6t I 16/6xl)g(x1, "’x"’t)dxl---dxp
ITP_ x;+it
Di.g;(h:vg)
= 2 P dv,. O
L; prihive) "

Write iv* =#; @ Rh;. Then we can write any differential operator D e D(iv*)
as a sum of terms of the form Dy(0/0h;)* where DyeD(;), k > 0. Now
combining Lemmas 7.8 and 7.9 we obtain the following.

PROPOSITION 7.10. Let ge%(Ug(e) x a¥ : W). Write

| g(h:vp)
frh) = L;’ pr(h:vE) .
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Then fr(h)e €(Ug(¢): W). Further, for any Dye D(5#)), k = 0, he Ug(e),

h:v ) DOD',‘.-ig;(h:vF)
Dy@sany | 2B g, —J o k9% Ve
VB | pethivg = ™ puthivy O
Finally, if hy € #, is semi-regular, then
lim D(0/0h;)* f ghve) ve=2"F1'Y (—gmi)f\E
h—h, af PF(h ) EcF
dx, i
x dvo l_[ P.V. DoDr:igi(ho : (o, (Xauer> 0))-
“;-"\F‘ acE R X4

Here the limit is taken through he Ug(e).

Now suppose {g(F)}rcF, is a matching family and define

f=3 (m.l).n f qERVe) g,

FCF, af Pr(h:vp)

as in (7.2). Using Proposition 7.10 we know that for all e€ X, f(h) extends to a
smooth function f(h:e) on cl(Uy(e)) since cl(U x(e)) < cl(Ug(e)) for all F < F,,.
Thus to prove Theorem 7.2 it suffices to show that for any 1 <i<m, eeX,,
ho € #,ncl(U x(e)) semi-regular, and D € D(io*), Df (hy: &*(i))=Df (hy: £ (i)).

Fix i, ¢, ho, as above and let D=D(0/0h,)*, D, € D(3#,), k > 0. Write

Fi=F,  F\Fy=F, and Dj= DyDk.
LEMMA 7.11.
Df(hy: 7 (i) — Df (hy:& (i)
—1 dx
B ’ 2 ~IF|
F’Eﬂ; (”i)'F"'L:f, e LG z)'El [T PV. f y 2

E'cFy oeE’ @ EcFcF,
x (= DD g (F' O F" 6 (i) ho: (v, (XoJeer» 0)
=D gi(F" O F":67 (i) ho: (vpr, (Xo)aerr> 0))].

Proof. Using (7.10) we can write

Df(ho:&* (i) — Df (ho: £ (i)
1 i\ dx
—|Fi| AFA\E'| a
Fek, (TCl)IFI 2 E,EF.' (7”) J‘Q%\F; dVO ale—g’ P.V. R X,
 [(= D)F\EDg(F 6% (i) : ho : (vos (Xo)aer» 0))

- D’Fgl(FS—(l) : hO : (v09 (xa)aeE” 0))]
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But for any F < F,, write F'=F n Fo=F', F"=F nF{,. Thus af,pi=a.. Finally,
we can rewrite the double summation

r X

FSFoECF

as

Y X X

F'cFyEcF,EcFcF,

and simplify the constants to obtain the formula in the lemma. O

PROOF OF THEOREM 7.2. Fix E’' < F, and F” < F; and write E =FE UF".
Then

(FUF":E € F < Fo} ={F:ESF < E(j) = EUFg}.

For E c F < E(i) and vgea}, | > 0, write as in (7.1),

at(F:lihy:vg) = <8/6h,-—i Y a/aua>lg(F:ei(i):ho:(vE,O));

aeF\E

at(F:l:hy:vp) = <6/6hl~—i > 0/6ua)lg,-(F:£i(i):hO:(vE, 0));
2eF\E
bE(F:hy:vg) = Diigi(F:e%(i): (vg, 0));

c*(F:hy:vg) = Dpgi(F:e%(i): (vg, 0)).

Then using Lemma 7.11, to show that Df (ho:&*(i))=Df (ho:&" (i)) it suffices to
show for all vyeaj} that

Y 27— 1) F\EleH(F :hg:vg)—c™(F:hg:vg) = 0.
EcF<E()

Now for each E = F < E(i),
gi(F:ex():h:vp) = g(F :X(i): h:vp)pprh:vp) ™!

where pp(h:vg)~! is smooth near h,. For [ > 0 write

p(:ho:vg) = <a/ahi —i Z a/alia)l prdho: (v, 0)

aeF\E
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Now since {g(F)} is a matching family, using (7.1b) we have for all r > 0,

at(F:r:hy:vg)—a; (F:r:hy:vg)
ro(r
:1;0 <l)p(r—l:h0:vE)(a’L(F:l:hO:vE)—a”(F:l:hO:vE))

= l;) (?) p(r—1:hy:vg)

x Y apap@t(Fy:liho:vg)+a™(Fy:lihg:vg)
FeF,<E®)
= Y rnp(@ (Fyirihgivg)+a; (Fyirihg:vg).
FcF, <E(i)

Now for all E = F = F; < E(i), vge a}, since
Fi =F,=(F)\E)UE and F),\FE = F,\E,

k

k k-1
b:(Fy:hy:ve) =Y, <l><—i zEla/au,,) atf(F:1:hg:vp).

Now using the identities proved above for a; we have
b*(F:hg:vg) — b~ (F:hgy:vg)

& (k k-1
= <l><—i > 6/5#,,) (@t (F:l:hg:vg)—a; (F:l:hg:vg)
=0

acE’

_ ,io <'l‘><-zzE a/a;%,)“

Y orpr(al (Fy:lihg:vg)+a; (Fy:l:hg:vg)
FeF, <E)

= Y T (Fiiho:ve) + b (Fy:ho:vg))
FcF, cE()

X

Finally, since D,eD(#,) we have c*(F:hy:vg)=Dob*(F:hy:vg) for all
E c F < E(i). Now as above, for all E = F < E(i), vgea,

b*(F:hg:vg) — b~ (F:hy:vg)
= Y  op\pbT(Fytho:ve)+b (Fy:hg:vg)).
FeF, S E()
But differentiating both sides of the equation using the differential operator D,
we obtain

¢t (F:hg:vg) —c (Fihg:ivg)= Y, crpr(cT(Fy:ho:vg)+c (Fy:iho:vg)
FeF,<E()
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Now applying (3.23) we see that

Y 27— 1)PNElct (Fihg:vg) —c ™ (F:hg:vg) = 0. O
EcFcE()
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