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We work in the category of complex projective algebraic varieties, and study the
fundamental structures of nonsingular varieties of Kodaira dimension 0 and 1
whose cotangent bundles are semiample. Our results are summarized as follows.
A nonsingular variety X is called a para-abelian variety if it admits a finite

unramified Galois covering A - X with an abelian variety A. It is clear that a
para-abelian variety X is attended with semiample cotangent bundle and of
Kodaira dimension K(X) = 0. Conversely, we obtain the following:

THEOREM I. Let X be a nonsingular variety with semiample cotangent bundle
such that K(X) = 0. Then X is a para-abelian variety.

To simplify our statement of the next result, we introduce a special type of
variety.

DEFINITION. Let V = F x C be the product of a para-abelian variety F and a
nonsingular curve C of genus g, and let X = Y/G be the quotient of V by a finite
group G which acts effectively both on V and on C so that:

(1) qJ 0 a = a 0 qJ for every Q E G and for the projection 9: V ~ C;
(2) If 03C3~G has a fixed point v~V, then Q(v’) = v’ for every point v’~~-1(~(v)).
For each point c E C put G, = {03C3~G|03C3(v’) = v’ for every point v’ ~~-1(c)}, and
set

where IGcl is the order of the subgroup G,. Then, in case R  2g - 2, we call X a

variety of type Q+.

We shall show that a variety X of type Q+ is a nonsingular variety with
semiample cotangent bundle such that K(X) = 1. Such a variety X may seem too
typical for the converse to be verified. Nevertheless we obtain the following:

THEOREM II. Let X be a nonsingular variety with semiample cotangent bundle
such that K(X) = 1. Then X is a variety of type Q+.
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Notation and Terminology

~m the mth tensor power of a line bundle Y

Sm&#x26; the mth symmetric tensor power of a vector bundle .9
det S the determinant bundle of a vector bundle g

* the dual bundle of a vector bundle é

P() the projective space bundle Proj(~m~0Sm) associated to a vector
bundle S

OP()(1) the tautological line bundle of P()
OP()(m) the mth tensor power of OP()(1)
c1() the first Chern class of a vector bundle g

(D x the structure sheaf of a variety X
9-X the tangent sheaf of a variety X
Qi the sheaf of regular 1-forms on a variety X (the cotangent bundle of a

variety X)
03C9X the canonical sheaf of a variety X

03A9X/Y the sheaf of relative differentials of a variety X over a variety Y

A vector bundle means a locally free sheaf of finite rank. A line bundle is said to
be spanned if it is generated by its global sections. A vector bundle é is defined to
be semiample if for some positive integer m the line bundle OP()(m) is spanned.
We say that a surjective homomorphism h of vector bundles is splitting if the
short exact sequence derived from h splits.
Given a line bundle ffl on a nonsingular variety X, we let N(Y) be the set of

all positive integers m such that H0(X, J~m) ~ 0, and for each mE N(ffl) let
(D.: X , P(H°(X, J~m)) be the canonical rational map. Then we put

This is the J2f-dimension of X introduced by Iitaka [5]. For the canonical sheaf
03C9X of X, we put K(X) = K(Wx, X) and call it the Kodaira dimension of X.
A fibration is a dominating morphism of normal varieties with connected

fibres. A fibre bundle is an analytically locally trivial fibration.

1. Semiample vector bundles

In this section, we study some fundamental properties of semiample vector
bundles. We use frequently the following lemmata:
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LEMMA 1 (Fujita [2]). Let f : X ~ Y be a dominating morphism of nonsingular
varieties and let fff be a vector bundle on Y Then g is semiample if and only if the
pull-back f* is semiample.

LEMMA 2 (Fujita). Letg, 5’ be vector bundles on a nonsingular variety X. Then
the direct sum e E9 57 is semiample if and only if both é and J are semiample.

Proof. Put  = 03B5 ED 5. The natural surjective homomorphisms  ~ ,
 ~ J define embeddings i1:P() ~ P(), i2:P(J) ~ P() such that

i*1OP()(1) ~ OP()(1), i*2OP()(1) ~ OP(J)(1) respectively. Hence  and J are
semiample if so is . Put Y1 = i1(P()), Y2 = i2(P(J)). Then the natural injective
homomorphisms  ~ , 3;7 -+ e define morphisms j1: P()B Y2 ~ P( fff),
j2: p(e)B Y1 ~ P(J) such that j*1OP()(1) ~ OP()(1)|P()BY2, j*2OP(J)(1) ~
OP()(1)|P()BY1 respectively. We have Yl n Y2 = ~. Therefore, if both é and 57 are
semiample, then so is . Q.E.D.

LEMMA 3 (Iitaka [5]). Let f : X - Y be a dominating morphism of nonsingular
varieties and let 2 be a line bundle on Y Then K(f* 2, X) = K(2, Y).

LEMMA 4 (cf. Proposition 4.1 in [1]). Let h:  ~ J be a surjective homomorph-
ism from a vector bundle  to a line bundle 2. If there exists a positive integer m
for which the derived homomorphism S’"h: Sm ~ YO’ is splitting, then h is

splitting.
Proof. If m  2, consider the derived homomorphism Sm-1h:Sm-1 ~

J~m-1. Tensoring with 2, we obtain a homomorphism a: Sm-1 ~ J ~ J~m.
On the other hand, the dual homomorphism h*: J* ~ * gives rise to the
Koszul type exact sequence 0 ~ Sm-1 * ~ * ~ Sm* ~
SmJ ~ 0, where 57 is the cokernel of h*. Hence we obtain a homomorphism
03B2: S’.9 -+ sm-1t! 0 2, and then we have Smh = rx 0 03B2. This implies that oc is

splitting and hence so is Sm -1 h. Then by induction we can find that h is splitting.
Q.E.D.

PROPOSITION 1. Let  be a semiample vector bundle on a nonsingular variety
X, and let h:  ~ lQr be a nonzero homomorphism. Then h is surjective and splitting.

Proof. We let m be a positive integer for which the line bundle (9p(S)(m) is
spanned. The homomorphism h is surjective on some open subset U g X. Then
there exists a morphism p: U ~ P() such that 03C1*OP(03B5)(1) ~ OU. Therefore the
natural homomorphism HO(X, sm8) oc OX~OX is surjective on U, and hence on
X. This implies that the derived homomorphism smh: Sm ~ (QX is surjective and

splitting, and hence that h is surjective. Then by Lemma 4 we obtain the result.
Q.E.D.

PROPOSITION 2. Letg be a semiample vector bundle on a nonsingular variety
X. Then the determinant bundle det 8 is semiample.

Proof. We let n: P() ~ X be the projective space bundle associated to 8, and

put r = rank fff. Let m be a positive integer for which the line bundle (9p(S)(m) is
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spanned. For any point x c- X, choosing suitable r global sections of (9p(8)(m) and
taking the intersection of the divisors defined by them, we can find a

nonnegative cycle 03BE on P(if) which represents the class mrc1(OP()(1))r and which
does not meet 03C0-1(x). Then the projection 03C0*(03BE) is a nonnegative cycle on X
which represents the class mrcl(if) (cf. [3]) and which does not contain the point
x. This implies that the mrth tensor power (det )~mr of det  has a global section
which does not vanish at x. Thus we see that the line bundle (det )~mr is

spanned. Q.E.D.

COROLLARY 1. Letg be a semiample vector bundle on a nonsingular variety X.
Then the vector bundle * p detg is semiample.

Proof. Let 03C0: P(6* Q det 6) - X be the projective space bundle associated to
if* Q det.9, and let NT be the cokernel of the natural homomorphism
OP(*~det)(-1) O n* det  ~ 03C0*. Since if is semiample, so is Jf. Hence the line
bundle OP(*~det)(1) ~ det K is semiample. Q.E.D.

REMARK. If 6 is a semiample vector bundle on a nonsingular variety X, then
it follows from Proposition 2 that 03BA(det 03B5, X)  0, where the equality holds if
and only if c1() = 0 modulo torsion.

PROPOSITION 3. Let 6 be a semiample vector bundle on a nonsingular variety
X such that 03BA(det , X) = 0. Then there exists a finite unramified covering
f: À - X such that the pull-back f* if is a trivial bundle.

Proof. Let n, r, m be the same as in Proof of Proposition 2, and let

03A6: P() ~ P(H0(P(), (Op(8)(m))) be the canonical morphism. Clearly
dim 03A6(P())  r - 1. If dim O(P(ol»  r, then we can find a positive cycle which
represents the class mr el (if). However this contradicts the fact that

K(det if, X) = 0. Thus we have dim 4)(P(&#x26;» = r - 1. Therefore if we let W be an
irreducible component of a smooth fibre of 03A6 and let 03BB1:W ~ X be the
restriction of the projection n to W, then 03BB1 is a finite covering. Furthermore, it
follows that

On the other hand, we have

(cf. Proposition 8.4 in [4]). Recall that there exists a positive integer k for which
(det )~k ~ OX. Then from (1.1)-(1.3) we obtain 03C9~kmW ~ 03BB*103C9~Xkm. However the
finite covering 03BB1 induces a nonzero homomorphism 03BB*103C9X ~ 03C9W. Therefore this
implies that 03C9W ~ À!wx, and hence that 03BB1 is a finite unramified covering. By
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virtue of (1.1), we can find a finite unramified covering 03BB2: V - W for which

03BB*2(OP()(1) 0 OW) ~ OV. Put À = 03BB1  03BB2:V ~ X. Then À is a finite unramified

covering. The universal quotient n*6 - (9p(s)(I) of P(.9) induces a surjective
homomorphism 03BB* ~ OV on JI: Then it follows from Proposition 1 that

03BB* ~ OV ~ J with a vector bundle .97 of rank r - 1. By Lemma 2, J is

semiample, and by Lemma 3, K(det 5, V) = 0. Hence, using induction, we
obtain the result. Q.E.D.

COROLLARY 2. Lete be a semiample vector bundle on a nonsingular variety X
such that 03BA(det , X) = 0. Then the dual bundle * is semiample, and

K(det8*,X) = 0.
Proof. The result follows immediately from Proposition 3 and Lemma 1, 3.

Q.E.D.

COROLLARY 3. Let S be a semiample vector bundle of rank r on a nonsingular
variety X such that K(det8,X) = 0 and dimHO(X,&#x26;) = k. Then  ~ J1 ~ J2
with a trivial bundle J1 of rank k and a semiample vector bundle !F2 of rank r - k
such that 03BA(det J2, X) = 0 and H0(X, J2) = 0.

Proof. Put ff1 = H’(X, ) ~C (9x ~ (f)1 1  i  k Ji with Li ~ (9x (i = 1, 2,..., k).
Then the natural homomorphism h:* ~ J*1 induces a nonzero homomorph-
ism hi:* ~ .Pi for every i. By Corollary 2 the dual bundle 8* is semiample.
Hence, by Proposition 1 we obtain the result. Q.E.D.

COROLLARY 4. Let h: ~ ff be a generically surjective homomorphism of
vector bundles on a nonsingular variety X. If  and 57 are semiample and if
K(det J, X) = 0, then h is surjective and splitting.

Proof. By Proposition 3 there exists a finite unramified covering f: ~ X
such that f*J is a trivial bundle. The homomorphism h is surjective and
splitting if so is the pull-back f*h: f* ~ f*J. Therefore we may assume that
is a trivial bundle. Then the result follows from Proposition 1. Q.E.D.

2. Varieties with semiample cotangent bundle

Let X be a para-abelian variety. Then X admits a finite unramified covering
f : A ~ X with an abelian variety A. Since f*03A91X ~ 03A91A is a trivial bundle, by
Lemma 1 the cotangent bundle Qk is semiample, and K(X) = 0 by Lemma 3.
Conversely we have Theorem I, which follows immediately from Proposition 3.

Proof of Theorem J. By Proposition 3, there exists a finite unramified Galois
covering f : A - X such that f*03A91X is a trivial bundle. Since 03A91A ~ f *0’, the
covering space A is an abelian variety (cf. [6]). Q.E.D.

Before proving the second theorem, we have to study varieties of type Q +.
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PROPOSITION 4. A variety X of type Q+ is a nonsingular variety with

semiample cotangent bundle such that K(X) = 1.
Proof. We use the same notation as in Introduction. Put r = {03C3~ G|03C3(v) = v

for some point v E Vil and let H z G be the subgroup generated by r. Then
V/H ~ X is a finite unramified covering. Hence by Lemma 1 and 3, we may
assume that G = H.

Let v be an arbitrary point in V and put c = ~(v), w = 03C8(v) where 03C8:V ~ F is
the projection. Let s be a regular element of (9c,e, and let {t1, t2, ..., tn} be a
regular system of parameters of (9F,,,, where n = dim F. Then we can regard the
set {s, tl, t2, ... , tni as a regular system of parameters of OV,v. For each 03C3i~ Gc, the
restriction of the action ai to the fibre ~-1(c) is the identity. Therefore ai gives
rise to an automorphism 6j of the local ring OV,v such that i(tj) = tj + 03B5ijS with
some 03B5ij~OV,v for every j. Put T = |Gc|-103A303C3i~Gc i(tj). Then for every j we have

The group G, acts also on (9c,,. Hence for each i we have 6i(s) = 03BEis + ~is2 with
some 03B6i ~ * and some li E (9c,,. Put S = |Gc|-1 03A303C3i~Gc 03B6-1ii(s). Then we have

Since G, acts effectively on C, 03B6i1 ~ 03B6i2 if i1 ~ i2. Let V,v be the completion of the
local ring OV,v, and let Jv be the subring of all invariant elements in V,v with
respect to the action of G,. Then from (2.1)-(2.4) we obtain V,v ~
C[[S, Tl, T2,..., Tn]] and Jv ~ C[[Sd, Ti, T2,..., 1;,]] with d = !GJ. Note that
v is a regular local ring. Let f:V ~ X be the quotient morphism and put
x = f (v). Then the completion X,x of the local ring (9x,x is isomorphic to Y,.
Thus we see that the quotient space X is nonsingular, and obtain the following
commutative diagram with exact rows:

where 03C9 = Wc O OC(-03A3c~C(|Gc| - 1). c).
We claim that f*03A91X ~ 03C8*03A91F 0 ~*03C9. Let {e1, e2,’ ... , ek} be a basis of the

vector space H0(F, 03A91F). Each (J E G gives rise to an automorphism a* of

H0(V, 03A91V). If a e r, then for some point c E C the restriction of the action a to the
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fibre ~-1(c) is the identity, and therefore the image of 03C3*(03C8*ej) in H0(V, 03C8*03A91F) is
03C8*ej. However, since G = H, this is true for every 03C3~G. If we put

Ej = |G|-1 03A303C3~G 03C3*(03C8*ej), then for all 03C3 e G we have a*(E) = Ej. Hence every Ej
is a section of the vector bundle f*03A91X, whose image in H0(V, 03C8*03A91F) is 03C8*ej. By
Corollary 3 we have 03A91F ~ 03A90 ~ 03A9, where 03A90 = ~1~j~kOF·ej and Q is a

semiample vector bundle of rank n - k such that 03BA(det03A9,F) = 0 and

H0(F,03A9) = 0. Put J0 = 03C8*03A90, J = 03C8*03A9 and put  = ~1~j~kOV·Ej. Then we
have 03C8*03A91F ~ J0 ~ J and  ~ J0. Thus we obtain f*03A91X ~  0 J1,
03A91V ~ lf 0 2 with some vector bundles 1, 2 for which we have the following
commutative diagram with exact rows:

Let

be the canonical homomorphisms and let 1J E H0(V, J ~ J*) be the identity of
J. Since the bottom exact sequence splits, we see that 03B42(1J) = 0. Consider the
following exact sequence:

where Je = ~*03C9C/~*03C9. By Corollary 2 and 3, we have H°(F, Q*) = 0. Hence it
can be easily checked that H°( Y, H (D = 0. Thus we find that 03B41(1J) = 0,
and hence obtain

Since R  2g - 2, the line bundle co is ample. Hence by Lemma 1 and 2, we
see that the cotangent bundle 03A91X is semiample. Furthermore we have

K(X) = K(f*wx, V) = 03BA(03C8*03C9F O 9*(0, V) = K(9*CO, V) = K(03C9, C) = 1 by Lemma
3. Q.E.D.

REMARK. In the above proof, it can be easily seen that the condition
R  2g - 2 is not only sufficient but also necessary for the quotient X to be
attended with semiample cotangent bundle and of Kodaira dimension K(X) = 1.
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Proof of Theorem II. By Proposition 2, the line bundle 03C9X is semiample.
Hence we have a fibration 03A6: X - B with a nonsingular curve B such that

03C9~kX ~ 03A6*J0 for some positive integer k and some line bundle J0 on B. Any
smooth fibre of 03A6 is a para-abelian variety by Theorem I. Let 2 be the full
subbundle of 03A91X associated to the pull-back n*cob of the canonical sheaf WB’ For
each point b E B, decompose the fibre 03A6-1(b) = 03A3aiDi as a sum of irreducible
components and set D(03A6)b = L (ai - 1)Di. Put D(03A6) = EbcB D(03A6)b. Then we have
J ~ 03A6*03C9B ~ OX(D(03A6)) (cf. [10]). Consider the natural homomorphism
h: JX ~ J*. There exists a closed subset Y of codimension 2 such that h is
surjective at every point in X) Y Tensoring with cvx, we obtain a homomorph-
ism h1:JX ~ 03C9X ~ J* ~ 03C9X. By Corollary 1 the vector bundle JX ~ 03C9X is

semiample. Hence for some positive integer m, the homomorphism

derived from h 1 is surjective at every point in X) Y Write vit = (Y* Q 03C9X)~m.
Since the direct image 03A6* is a line bundle and since H°(B, 03A6*) = H°(X, ),
one has 03A6*03A6* ~  and the zero set of each global section consists of fibres of
C. Therefore h2 must be surjective at every point in X. This implies that h is
surjective, and hence that any fibre (D- 1(b) is a multiple of a smooth irreducible
component.
Choosing a suitable finite covering y: C ~ B with a nonsingular curve C and

taking the normalization V of the product X x, C, we obtain a smooth fibration
~: V - C, a finite covering f:V ~ X,

and the following commutative diagram with exact rows:

(cf. Theorem 6.3 in [8]). From the upper exact sequence, we obtain the following
one:
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Since the homomorphism h2 is surjective and since (Y* Q cvx) Q m is the

pull-back of the line bundle 03A6*  on B, we can find an open covering {Ui}
of B such that on each open subset 03A6-1(Ui) the restricted homomorphism
sm(3X O 03C9X)|03A6-1(Ui) ~ (J* O 03C9X)~m|03A6-1(Ui) is splitting, and hence so is the homo-
morphism 3X Q 03C9X|03A6-1(Ui) ~ Y* Q9 03C9X|03A6-1(Ui) by Lemma 4. Then, restricted on
each open subset ~-1(03B3-1(Ui)), the exact sequence (2.6) splits, and therefore so
do both of the exact sequences in (2.5). This implies that the canonical

homomorphism 9-c -+ R1~*(03A9*V/C) vanishes at every point in C, and hence that 9
is a fibre bundle (cf. Theorem 5.1 in [7]).

Since the fibre of ç is a para-abelian variety, we see that K(det 03A9V/C, V) = 0
(cf. [9]). Therefore by Proposition 3, we have a finite unramified Galois covering
03BC:  ~ V such that Jl*Qy/c is a trivial bundle. Clearly we may assume that the
projection ~:  ~ C is a fibration. Then, since QQC is a trivial bundle, (p is a fibre
bundle whose fibre A is an abelian variety. Furthermore we may assume that (p
has a section p: C ~ . Choose and fix a basis of H0(, 03A9/C). Then the basis and
the section p(C) determine isomorphisms -1(c) ~ A for all c E C, which define
an isomorphism  ~ A x C. Each element x in the Galois group Gal(/V) gives
rise to automorphisms of the fibres -1(c), and hence defines a continuous
mapping x # : C ~ Aut(A), where Aut(A) is the group of automorphisms of A.
However the order of the element x is finite. Therefore 03BB# must be constant.

Hence we see that 9 is a trivial fibre bundle whose fibre is a para-abelian variety.
We may assume that y is a Galois covering. Then, since the variety V is the

normalization of the product X xB C, it follows that f is a finite Galois covering
whose Galois group G = Gal(V/X) acts effectively both on V and on C so that
9 - a = u - ç for every E G. Let F be an arbitrary fibre of (p. Then by Corollary
4 the natural homomorphism f*03A91X Q OF ~ Qi is surjective, and hence the
restriction of f to F is unramified. This implies that if a E G has a fixed point v e E
then 03C3(v’) = v’ for every point v’ E ~-1(~(v)). Finally from Remark to Proposition
4, we infer that the condition R  2g - 2 holds. Thus we find that X is a variety
of type Q +. Q.E.D.

REMARK. Let X be the same as in Definition of a variety of type Q +, and
assume that the condition R &#x3E; 2g - 2 holds in place of R  2g - 2. Then we
call X a variety of type Q -. In Proof of Proposition 4, we can easily see that a
variety X of type Q - is a nonsingular variety with semiample tangent bundle
such that K - ’(X) = 1, where 03BA-1(X) = K(CO*, X) is the anti-Kodaira dimension of
X. Conversely, in the same manner as in Proof of Theorem II, we obtain the
following:

THEOREM II’. Let X be a nonsingular variety with semiample tangent bundle
such that K-1(X) = 1. Then X is a variety of type Q-.
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