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Introduction

Let I be a one-dimensional almost complete intersection prime ideal of height
two in a regular local ring R. Mohan Kumar has shown that I is a set-theoretic
complete intersection, actually that I’ is already contained in a two-generated
ideal, provided that I is (geometrically) linked to an ideal J with R/J a discrete
valuation ring. (Recall that two prime ideals I and J of the same height are said
to be geometrically linked if I ~ J and I n J is generated by a regular sequence.)
On the other hand, as proven in [8,1.9], the same conclusion on the set-

theoretic generation of 1 holds under the assumption that I is normal, i.e., that all
powers of I are integrally closed ideals.

Considering these results it seems natural to investigate the relation between
the two assumptions of I being linked to a regular ideal versus I being normal.
In this paper we will prove that the two above conditions are indeed equivalent,
even without any restriction on the height of I (Corollary 1.7). Actually, as stated
in our main result, we can even drop the assumption of I being a one-
dimensional almost complete intersection (Theorem 1.6). To do so however, we
have to replace "linkage" by "residual linkage", a notion that generalizes linkage
to the case where the two "linked" ideals may not have the same height
(Definition 1.4).
We are going to describe a technically simpler version of our main result. Let

A be a Noetherian local ring with infinite residue class field, and write Â = R/I
where R is a regular local ring; then the deviation of A, d(A), is the difference
between the number of generators and the height of I, and A is said to be
strongly Cohen-Macaulay if all the Koszul homology modules of a generating
set for 7 are Cohen-Macaulay modules ([12], by [11,1.6] this definition is

independent of the particular presentation of Â, and by [2, p. 259] strong
Cohen-Macaulayness is equivalent to Cohen-Macaulayness if d(A)  2).

*The authors were partially supported by the NSF.
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Now let A be as above an isolated strongly Cohen-Macaulay singularity with
d(A) = dim A &#x3E; 0 (actually the singularity need not be isolated; it suffices to

assume that A is reduced and that d(Aft)  dim A p for all prime ideals p which
are neither maximal nor minimal); then Theorem 1.6 asserts that the following
are equivalent:

(a) I is normal.
(b) Ik is integrally closed for some k &#x3E; dim A.

(c) There exists an R-ideal J with R/J a discrete valuation ring, 1 cf:. J, and the
number of generators of 1 n J being smallest possible, namely height
J=dimR- 1.

The equivalence of (a) and (b) is a curious fact showing that it suffices to
consider one particular power of the defining ideal in order to check for
normality. Part (c) can be paraphrased by saying that there exists a geometric
residual intersection J of 1 with R/J a discrete valuation ring (Definition 1.4.b). If
d(A) = 1 = dim A, then the geometric residual intersection in (c) is simply a
geometric link and we obtain the aforementioned Corollary 1.7. In general it is
part (c) that yields structure theorems for certain normal ideals. For example,
every one-dimensional self-radical almost complete intersection ideal I that is
normal can be described explicitly as a Northcott-ideal (Corollary 1.7); this
follows immediately once we have established that I is linked to a complete
intersection. If in addition the characteristic of the residue class field is not two

then I turns out to be a "symmetric" Northcott-ideal (Proposition 1.9). It is this
symmetry that yields a simple proof of the aforementioned result from [8], and
provides some hope for showing that one-dimensional normal self-radical

almost complete intersection ideals are in fact set-theoretic complete inter-
sections. Part (c) of the above Theorem 1.6 also determines the structure of the
defining ideal in the next higher dimensional case, namely where

d(A) = dim A = 2; this will be the subject of a subsequent paper.
Our main result, Theorem 1.6, is stated in section 1. The proofs of the theorem

and some generalizations thereof can be found in sections 2 through 4; they are
largely based on the results in Proposition 2.2, Lemma 3.2, and Theorem 4.1.

1. The main result

In this section, we recall several definitions and state our main result (Theorem
1.6). By "ideal" we always mean a proper ideal. Let (R, m) be a Noetherian local
ring, I and R-ideal, and M a finitely generated R-module. Then e(R) stands for
the multiplicity of R, v(M) denotes the minimal number of generators of M, 03BB(M)
its length, Sk(M) stands for the kth symmetric power of M, height I is the height
of I, grade 7 its grade, and d(I) = v(I) - grade I is called the deviation of I. The



27

ideal I is a complete intersection (almost complete intersection) if d(1) = 0
(d(I)  1 respectively), and it is said to be Cohen-Macaulay (Gorenstein,
reduced, regular) if R/I has any of these properties. By S(I) we denote the
symmetric algebra of I, and by R[It] (t a variable) its Rees algebra. Finally,
V(I) = {P~Spec(R)|I c Pl, if X is a finite set of variables over R then

R(X) = R[X]mR[X], and for a matrix A with entries in R, Is(A) denotes the R-
ideal generated by all the s x s minors of A.

DEFINITION 1.1 Let R be a Noetherian local ring, and let 7 be an R-ideal.

(a) The integral closure of I, written I, is the set of all elements x in R satisfying a
monic equation

with ai E Ii for 1  i  n.

(b) I is integrally closed if 1 = I.

(c) I is normal if I’ = I’ for all k  1.

It is clear from the above definition that an ideal I in a normal domain R is

normal if and only if its Rees algebra R[I t] is a normal domain. In detecting
normality and other properties of the Rees algebra, the following two notions
are often applied:

DEFINITION 1.2. Let R be a Noetherian local ring and let I be an R-ideal:

(a) ([12]) 1 is said to be strongly Cohen-Macaulay if all homology modules of the
Koszul complex on some (and hence every) generating set of 7 are Cohen-
Macaulay modules.

(b) ([1]) I is said to satisfy G 00 if u(Ip)  dim R p for aIl fi E V(I).
The connection to Rees algebra is provided by:

THEOREM 1.3. Let R be a local Cohen-Macaulay ring, and let I be a strongly
Cohen-Macaulay R-ideal with grade I &#x3E; 0.

(a) ([7, 9.1]) If I satisfies G~, then S(I) ~ R[It], and both algebras are Cohen-
Macaulay.

(b) ([7, 9.1] and [10, the proof of Proposition 2.1]) If R is normal, I is reduced,
and v(I)  max{height I, dim R,, - 1} for all ~ V(I), then R [I t] is normal.

In the light of Theorem 1.3, to study normality of ideals, it seems reasonable to
assume that the ideal is strongly Cohen-Macaulay and satisfies G~ but not the
stronger numerical condition of 1.3.b. In fact, for our main result, Theorem 1.6,
we will consider strongly Cohen-Macaulay ideals I which satisfy the condition
of 1.3.b locally on the punctured spectrum and which are G 00 on the nose locally
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at the maximal ideal. Before stating this result however, we need to recall the
definition of residual intersection, a notion originally due to Artin and Nagata
([1]).

DEFINITION 1.4 ([14]). Let R be a Noetherian local ring, let I and J be R-
ideals, and let s  height I.

(a) J is called an s-residual intersection of I if there exists an R-ideal L contained
in I such that J = L: I and v(L)  s  height J.

(b) J is called a geometric s-residual intersection of I if in addition height
(I + J)  s + 1.

As already mentioned in the introduction, if I is an unmixed ideal and J is a
prime ideal with height I  height J, then J is a geometric s-residual intersection
of I if I qt J and v(I n J) is smallest possible as permitted by Krull’s altitude
formula, namely height J; in this case we may choose L to be I n J and then
v(L) = s = height J. If R is a local Gorenstein ring and I is an unmixed R-ideal of
height g, then (geometric) g-residual intersection simply corresponds to (geo-
metric) linkage ([19]). One may take this as a definition of linkage; notice that L
is a complete intersection in this case. There are numerous instances where
residual intersections occur naturally ([1], [12], [16]), we just mention one
more: Let R be a local Cohen-Macaulay ring and let I be a strongly Cohen-
Macaulay R-ideal with grade I &#x3E; 0 satisfying G~, then the extended Rees
algebra R[It, t-1] is defined by a residual intersection of a hypersurface section
on 1 ([12,4.3]).
The next theorem contains several basic properties of residual intersections;

once again, the conditions of Definition 1.2 play a crucial role.

THEOREM 1.5 ([14, 5.1]). Let R be a local Gorenstein ring, let I be an R-ideal of
height g that is strongly Cohen-Macaulay and satisfies G 00’ and let J = L: I be an
s-residual intersection of I. Then:

(a) (cf. also [12, 3.1] and [9, 3.4]) J is a Cohen-Macaulay ideal of height s, depth
R/L = dim R - s, and in case the residual intersection is geometric, L = I n J.

(b) Ss-g+1(I/L) is the canonical module of RIJ.
We are now ready to state our main result.

THEOREM 1.6. Let (R, m) be a regular local ring with infinite residue class field,
and let I ~ m be a reduced strongly Cohen-Macaulay R-ideal such that

v(I) = dim R and v(I)  max{height I, dim R p - 1} for all fiE Y(I)B{m}. Then
the following are equivalent:

(a) I is a normal ideal.
(b) Ik is integrally closed for some k &#x3E; dim RII.
(c) I has a residual intersection J with RIJ a normal Gorenstein domain.
(d) I has a geometric residual intersection J with R/J a discrete valuation ring.
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The rest of the paper is mainly devoted to the proof of Theorem 1.6: In fact,
that (b) implies (a) will follow from Theorem 2.13, that (c) implies (a) will be
shown in Proposition 3.5, and that (a) implies (d) will follow from Corollary 4.1 l.
However, as it turns out, all of the individual implications can be proven with
weaker assumptions than Theorem 1.6, and they follow from other results that
might be of independent interest. Before turning to the proofs, we give an
immediate application of Theorem 1.6 to the case of almost complete
intersections.

COROLLARY 1.7. Let (R, m) be a regular local ring with infinite residue class
field, and let I be a reduced R-ideal with d(I) = 1 = dim RII. Then the following
are equivalent:

(a) I is a normal ideal.

(b) 1 k is integrally closed for some k &#x3E; 1.

(c) I is geometrically linked to a regular ideal.

(d) There exists an n x 1 matrix Y = [] with y,, ... , Yn, Yn+ 1 forming a regular

system of parameters and an n x n matrix X with entries in R and

det(X) ~ (y1, ... , Yn)R such that

Proof. The ideal I is strongly Cohen-Macaulay since it is perfect and d(I)  1
(e.g. [2, p. 259] or [12,2.2]). Thus we may apply Theorem 1.6. Also, for the
residual intersection J in Theorem 1.6.d, dim R/J = 1 = dim R/I, and hence J is
simply a geometric link of l. Now Theorem 1.6 implies that (a), (b), and (c) are
equivalent. On the other hand, the equivalence of (c) and (d) is well-known (e.g.
[3, p. 193] or [13, 3.1]); we only indicate how to obtain the matrices Y and X in
(d) assuming that (c) holds: Let n = height I, and let a1,...,an be a regular
sequence in I such that J = (a,, ..., an): I is a regular ideal. Now take Y1, ... , y,,
to be an arbitrary generating sequence of J and let X be any n x n matrix with
entries in R giving an equation

then and X have all the properties asserted in (d).
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We now want to strengthen the statement of Corollary 1.7.d. To this end a
general lemma is needed.

LEMMA 1.8. Let R be a ring, and let Y1, ... , Yn be elements in R.

(a) Let Z be an alternating n x n matrix with entries in the ideal 2(yl, ... , y.)R;
then Z = U - U* for some n x n matrix U whose rows are R-linear com-
binations of the Koszul relations among y1,..., yn.

(b) Let X be an n x n matrix with entries in R such that X is symmetric modulo the
ideal 2(Y1’..., Yn)R; then X + U is symmetric for some n x n matrix U whose
rows are R-linear combinations of the Koszul relations among Y1,’ .. , Yn-

Proof. To prove the assertion of (b), simply apply part (a) to the matrix
Z = X* 2013 X. In order to show (a), it suffices to consider the case where all

entries of Z = (z03BD03BC) are zero except for zij = -zji = 2Yk, with (fj) a fixed pair,
1 ~ j, and k arbitrary. Let {e1,..., en} be the standard basis of R". We take U to
be Vi + V + Vk where the i th row of Vi is Ykej - yjek, the jth row of Y is
Yi ek - Ykei, and the kth row of Vk is yiej - yjei, all other rows being zero (this
also covers the cases k = i and k = j). D

PROPOSITION 1.9. If char R/m ~ 2 then the matrix of Corollary 1.7.d can be
chosen symmetric.

Proof. We use the notation of Corollary 1.7.d. Since RI2(Y1"’.’ Yn)R is a

discrete valuation ring, we may achieve that X is symmetric modulo the ideal
2(yl,. - -, Yn)R. (This can be done by performing elementary row and column
operations on X and Y that do not change any of the ideals I1(X · Y), In(X),
I1(Y).) But then by Lemma 1.8.b, X + U is symmetric for some n x n matrix U
whose rows are relations among y 1, ... , yn. Therefore (X + U)· Y = X· Y Now
it follows as in the proof of Corollary 1.7 that we may replace X by the
symmetric matrix X + U. D

Corollary 1.7.d and Proposition 1.9 provide a strong structure theorem for
reduced one-dimensional almost complete intersection R-ideals 7 having an
integrally closed power Ik =f. I (at least if (R, m) is a regular local ring with R/m
infinite and of characteristic different from two.) Especially the symmetry of the
matrix X might be helpful in proving that such ideals are set-theoretic complete
intersections. We illustrate this in the case where height 1 = 2, and thereby give a
slightly different proof of [8, 1.9]: If height 1 = 2, then in the notation of
Corollary 1.7.d and Proposition 1.9, n = 2 and

where X is symmetric. It follows from the linkage property of perfect height two
ideals (e.g. [l, 3.2.b]), or by direct computation, that the product of the two
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ideals

is contained in the ideal generated by the determinant of X and the determinant
of

However, by the symmetry of X,

and therefore 12 is contained in a complete intersection inside 1. (The connection
between the set-theoretic complete intersection property and the symmetry of
certain matrices was first observed and systematically exploited by Ferrand, and
Valla [20]; see also [5].)

We conclude this section with another consequence of Theorem 1.6.

COROLLARY 1.10. Let R be a three-dimensional regular local ring, and let 1 be
an R-ideal such that Ril is reduced and equidimensional and e(R/I)  5. Then 1 is
normal.

Proof. We may assume that v(I) &#x3E; height 1 = 2. If m denotes the maximal
ideal of R, we may further assume that k = R/m is infinite; then there exists an
element z~mBm2 such that z is regular on R/I and eR/(I, z)) = e(R/I). Let " - "
denote reduction modulo zR. Now R is a two-dimensional regular local ring,
v(I) &#x3E; 2, and 03BB(R/I)  5. In this situation it follows from [8, Proof of 1.14] that 7’
has a standard basis {f1, f2, f3} whose leading forms {L(f1), L(f2), L(f3)} in
grmR = k[X, Y] are either {X2, XY, Y2}, or {X2,XY, Y3}, or {X2,XY, Y4}, or
{X3, XY, Y3}, or {X2 + 03B1XY + Py2, X y2, Y3} where 03B1 and pare in k. For each
of these five cases, one can easily write down the 2 x 3 matrix of relations among
L(f1), L(f2)’ L(f3)’ and then lift those relations to obtain a 2 x 3 matrix of

relations W among f1, f2, f3. Furthermore, after elementary column operations,
the entries of some column of W generate m. This implies that Î and m are
linked. Since the property of being linked to a regular ideal is preserved under
déformation, we conclude that 1 is also linked to a regular ideal. In addition
d(I) = 1 = dim R/I, and the normality of 1 follows from Theorem 1.6. D
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Contrary to the proof of Corollary 1.10 however, it is not true that the

property of being normal is preserved under deformation: For example let k be a
field, R = k[[X, Y, Z]], and I = (X2 - Y2Z3, y4 _ XZ2, Z5 _ X Y2); then Z is
regular on R and on R/I = k[[t16, t7, t6]], and modulo ZR, the image of I in
k[[X, Y]] is a normal ideal ([23, p. 385]). However I is not normal ([21, p. 309]).

2. Ideals having an integrally closed power

The main result in this section is Theorem 2.13, which says that under suitable

assumptions the integral closedness of one particular power of an ideal forces
the ideal to be normal. In this and other results we will often replace the notion
of integral closedness by the weaker concept of m-fullness, which is due to D.
Rees ([22]). The latter notion has the advantage of being more amenable to
computer algebra methods.

DEFINITION 2.1. Let (R, m) be a Noetherian local ring, and let I be an R-
ideal.

(a) If R/m is infinite, then I is called m-full if there exists an element y E R with
ml : y = I.

(b) If R/m is finite, then I is called m-full if there exists a Noetherian local ring
(R’, m’) with R’ faithfully flat over R, m’ = mR’, and R’/m’ infinite, such that
IR’ is m’-full.

Every integrally closed ideal I ~ JO is automatically m-full ([6, 2.4]), and
every m-full ideal I has the Rees property, which means that v(I)  v(J) for every
R-ideal J with I c J and À(J/I)  oo ([6, 2.2], cf. also [22, Theorem 3]). It is only
this property of m-full or integrally closed ideals that we are going to use in our
proofs.

Further recall that an ideal J in a Noetherian local ring (R, m) is said to be a
reduction of an R-ideal I, if J c I and I" = Jn-1 for some n  1. A reduction J is
called a minimal reduction of I, if there is no reduction of I properly contained in
J. Assuming grade I &#x3E; 0, then J is a minimal reduction of I if and only if

.I ~ I ~ J and J is generated by analytically independent elements. Every R-
ideal admits a minimal reduction provided that R/m is infinite ([18]).
The next proposition and its immediate consequences provide the technical

background for the proof of Theorem 2.13, but they also have some other
consequences, which might be of independent interest (Corollaries 2.6 through
2.11 ).

PROPOSITION 2.2. Let (R, m) be a Noetherian local ring, and let I be an R-
ideal with grade I &#x3E; 0, and let J be a minimal reduction of l. Write S = R[It].
Then one of the following two conditions hold:
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(a) m(Jk : m) = mJk for all k  0.
(b) R is analytically irreducible, and there exists a prime ideal P of S containing m

such that Sp is a discrete valuation ring and PS p = mS p .

Proof. Let T = R[Jt], then mT is a prime ideal since J is generated by
analytically independent elements. We first prove that if TmT is not a discrete
valuation ring then (a) holds.
So let ( )-1 dénote inverse fractional ideals in the total ring of quotients. We

assume that TmT is not a discrete valuation ring. Then the maximal ideal mTmT is
not invertible, and hence

On the other hand, R[t] is contained in the total ring of quotients of T, and
therefore

Now (2.4), combined with (2.3) and the fact that mT is prime, implies

mT(T:R[t]mT) = mT,

or equivalently

Reading the graded pieces of (2.5), we conclude that for all k  0,

m(Jk:Rm) = mJk,

which is the condition in (a).
Now assuming that (a) does not hold, we have seen that TmT is a discrete

valuation ring. We wish to prove that (b) is satisfied. First, R is a subring of TmT,
and hence a domain. All our assumptions are preserved as we pass from R to R,
and therefore also R is a domain.
Now S is a birational integral extension of T and TmT is integrally closed.

Therefore S ~ TmT. Write P = S n mTmT. Then P is a prime ideal of S

containing m. Furthermore, the inclusions TeS c TmT and mT c P c mTmT
imply that SP = TmT and PS p = mTmT. In particular, Sp is a discrete valuation
ring with PS p = mSP . D

COROLLARY 2.6. Let (R, m) be a Noetherian local ring, let 1 be an R-ideal with

grade 1 &#x3E; 0, and let J be a minimal reduction of l, and suppose that for some
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k  0, depth RI Jk = 0 and Jk is m-full (the latter assumption is satisfied if Jk is
integrally closed). Write S = R[It]. Then R is analytically irreducible, and there
exists a prime ideal P of S containing m such that Sp is a discrete valuation ring
with PSp = mSp.

Proof. Since (Jk:Rm)/Jk is a module of finite length and Jk is m-full it follows
from [6, 2.2] (cf. also [22, Theorem 3]) that

Now suppose that the assertion of the corollary is false, then by Proposition 2.2,

Combining (2.7) and (2.8), we conclude that Jk:R m = Jk, which is impossible
since depth RIJ’ = 0. D

If in Corollary 2.6, 1 happens to be generated by analytically independent
elements, then J = 1 and mS is prime. Hence we obtain the following result.

COROLLARY 2.9. Let (R, m) be a Noetherian local ring, let I be an R-ideal with
grade 1 &#x3E; 0 that is generated by analytically independent elements, and suppose
that for some k  0, depth Rljk = 0 and 1 k is m-full (the latter assumption is

satisfied if Ik is integrally closed). Write S = R[It]. Then R is analytically
irreducible, and Sms is a discrete valuation ring.

Before continuing, we record two immediate consequences of Corollary 2.9.

COROLLARY 2.10. Let (R, m) be a universally catenary local ring of dimension
d, and let 1 be an R-ideal with grade I &#x3E; 0 that is generated by less than d
analytically independent elements. Then the following are equivalent:

(a) depth Rllk &#x3E; 0.

(b) 1 k is rn-full.

Proof. If depth Rllk &#x3E; 0, then we may take any regular element on RII k to be
the element y in Definition 2.1. Therefore 1 k is m-full.
We only need to show that (b) implies (a). So assuming (b) suppose that

depth R/Ik = 0. Now we may apply Corollary 2.9. In particular, R is a domain
and therefore

dimSms = dim S - dim SIMS = d + 1 - v(I)  2.

On the other hand, again by Corollary 2.9, dim S.s = 1, which yields a
contradiction. D

The next result has been known if k = 1 ([6, 3.1]) or if k is sufficiently large
([17, Théorème 3]).
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COROLLARY 2.11. Let (R, m) be a Noetherian local ring with depth R &#x3E; 0, and
let I be an ideal generated by a system of parameters of R. Then the following are
equivalent:

(a) I is normal.
(b) 1k is integrally closed for some k  1.
(c) R is regular and mil is cyclic.

Proof. If I’ is integrally closed for some k  1 then by Corollary 2.9, R is
analytically irreducible and S.s is a discrete valuation ring. Now our assertion
follows from Goto’s theorem ([6, 3.1]). D

Before proving the main result of this section, we need to recall the following
result from [15]:

LEMMA 2.12 ([15, 2.7]). Let R be a local Gorenstein ring, and let I be a perfect
R-ideal that is strongly Cohen-Macaulay and satisfies G~. Then for every
k &#x3E; d(I), depth RII’ = dim R - v(I).

THEOREM 2.13. Let R be a local Gorenstein ring, and let I ~ 0 be a perfect R-
ideal that is strongly Cohen-Macaulay and G~. Then the following are equivalent:

(a) I is normal.

(b) 1k is integrally closed for some k &#x3E; d(I).
(c) For every ~V(I) with V(I) = dim Rjt there exists k &#x3E; d(I) such that 1ft is

R-full.
Proof. First notice that grade I &#x3E; 0 and write S = R[I t]. Since I is strongly

Cohen-Macaulay and G~, it follows from Theorem 1.3.a that the Rees algebra S
and the symmetric algebra S(I) are Cohen-Macaulay and that these algebras
coincide. In particular, I can be generated by analytically independent elements.

It suffices to prove that (c) implies (a). Thus assuming (c) we will now show by
induction on dim R that the ring S is integrally closed in R[t] (for this proof we
also allow I to be R).

So let y be an element of R[t] that is integral over S, and let C = S:sy be the
conductor of y in S. Suppose that y e S, then by the Cohen-Macaulayness of S,
there exists a prime ideal P in S with P ~ C and dim SP  1. Write p = P n R. If
 ~ I then yl 1 ~R[t] = Rft [It], whereas if m ~  ~ I, then yl 1 ~R[It] by
induction hypothesis. (Notice that the latter case cannot occur for dim R = 1.) In
either case, Cp = Sp, which is impossible. Therefore  = m, and hence P
contains the prime ideal mS.

Furthermore, dim S = dim R + 1 because S = R [I t] with grade I &#x3E; 0, and
dim SIMS = v(I) because S rr S(I). Since S is also Cohen-Macaulay,

1  dim SP  dim Sms = dim S - dim SIMS = dim R + 1 - v(I)  1,
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where the latter inequality follows from the G 00 assumption. In particular

dim Sp = dim SmS = dim R + 1 - v(I) = 1.

From this we conclude that

and

Now by (2.15) and Lemma 2.12, depth R/Ik = 0 for all k &#x3E; d(I), and hence by
(2.15) and (c), depth Rilk = 0 for some k where Il is m-full. Then Corollary 2.9
implies that R is a domain and that S.s is a discrete valuation ring. Since
furthermore R[t] is contained in the quotient field of Sms, we then conclude that
YESms. Hence y E SP by (2.14), which is impossible since CP ~ Sp. D

Now it is clear that Theorem 2.13 implies the equivalence of parts (a) and (b)
in Theorem 1.6, since there, v(1 ) = dim R and hence d(I) = dim R/I.
We wish to point out that if under the assumptions of Theorem 2.13, 1’ is

integrally closed for some k  1, then I" is integrally closed for all n with
1  n  k. This is clear since grl(R) is Cohen-Macaulay ([7, 9.1]), hence there
exists an element x~IBI2 whose leading form is regular on gr,(R). Now the
inclusion xk-nIn C 1 k = Il implies that In = ln.
On the other hand, the assumption k &#x3E; d(I) in Theorem 2.13 is sharp as can

be seen from the next remark.

REMARK 2.16. Let (R, m) be a regular local ring, and let 0 ~ 1 c m3 be a
reduced R-ideal such that I is strongly Cohen-Macaulay, v(I) = dim R, and

v(I)  max{height I, dim R - 11 for every ~ V(I)B{m}. (For example, one
may take 7 to be a sufficiently general specialization of a generic perfect height
two ideal with at least four generators.) Then for all k  1 and all ~ V(I)B{m},
depth(R/Ik) &#x3E; 0, and also for all 1  k  d(I), depth R/Ik &#x3E; 0 ([7, 5.1]). Hence
for every 1  k  d(I), the power Il and the symbolic power I(k) coincide, and in

particular, Il = Ik. On the other hand, I is not normal, since v(I) = dim R and
7 c m3 ([21, 1.1]).

3. Ideals admitting a residual intersection that is regular

In this section we will address the question of how certain properties of a
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residual intersection of an ideal I imply that I is normal (Proposition 3.5). The
connection between a residual intersection and the Ress algebra of an ideal is
provided by Lemma 3.2. To formulate it we need to recall a definition from [13].

DEFINITION 3.1. Let A and B be Noetherian local rings.

(a) B is a deformation of A if B/(x) ~ A for some B-regular sequence
x = xl,...,x".

(b) B is essentially a deformation of A if there exist Noetherian local rings Bi,
1  i  n, such that B1 = A, Bn = B, and for every 1  i  n - 1 one of the

following holds:

(i) Bi+1 ~ (Bi)p for some P E Spec(Bi).
(ii) Bi+1 is a deformation of Bi.
(iii) Bi+1(Z) ~ Bi(Y) for some finite sets of variables Z over Bi+1, Y over Bi.

Note that most ring theoretic properties are preserved or can only improve
under essentially a deformation.

LEMMA 3.2. Let R be a local Cohen-Macaulay ring, let 1 be an R-ideal with
grade I &#x3E; 0 that is strongly Cohen-Macaulay and satisfies G 00’ and write

S = R[It]. Further let J = L : I be a residual intersection of 1 with IIL being
cyclic. Then SmS is essentially a deformation of RIJ.

Proof. Let v(L) = n - 1 and write L = ( fl, ... , fn-1). Then we may assume
that 7 = (f1,..., fn), and hence J = ( fl, ... , fn-1): (fn) with height J  n - 1.
We will work with the presentation

Now consider the sequence of elements in S, x = x 1, ... , Xn-1 = f1t,..., fn-1t.
From (3.3) we see that

where T = T" . Since by the definition of residual intersection. J c m, it follows
that S/(m, x) ~ R/m[T], which is a one-dimensional domain. Hence P = (m, x)
is a prime ideal in S, and dim Sp = dim S - dim S/P = dim R.
Now S.s is a localization of Sp, and to prove the assertion of the lemma it

suffices to show that Sp is a deformation of (R/J)(T).
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To see this, notice that x c P and that by (3.4),

On the other hand, Sp is Cohen-Macaulay, and dim SP = dim R, and

dim Sp 1(x 1, ... , xn-1) = dim(R/J)(X) = dim R - ht J  dim R - (n - 1).

Thus it follows that x = x l, ... , xn-1 form an Sp-regular sequence. D

PROPOSITION 3.5. Let (R, m) be a regular local ring, and let I be a reduced
strongly Cohen-Macaulay R-ideal such that v(I)  dim R and

u(I)  max{height I, dim R,6 - 11 for all e V(I)B{m}. If there exists a residual
intersection J of 1 with R/J a Gorenstein normal domain, then 1 is a normal ideal.

Proof. First notice that g = grade 1 &#x3E; 0. Since S = R[It] is Cohen-Macaulay
it suffices to prove that this ring satisfies Serre’s condition (R 1)’ So let P E Spec(S)
with dim SP  1 and write p = P n R. If /tft V(I) or if  is minimal in V(I) then

1ft = R p or 1ft = R, and Sp is regular. If p is non-minimal in V(I)B{m}, then by
our assumption,

Therefore this case cannot occur. Finally, if  = m, then P =) mS and hence

P = mS. It remains to prove that S.s is normal.
Now suppose that J is an s-residual intersection of 7 with J = L : I where

v(L)  s. Then by Theorem 1.5.b, the canonical module of R/J is given by the
symmetric power Ss-g+ 1(I/L). In particular,

and hence V(IIL) = 1. But then it follows from Lemma 3.2 that Sms is essentially
a deformation of R/J. Now the normality of R/J implies that SmS has the same
property. p

Proposition 3.5 shows that in Theorem 1.6, part (c) implies part (a).

REMARK 3.6. (a) Appealing to deformation arguments as in [14] one can
replace the assumption of Lemma 3.2 that IIL be cyclic by the weaker
hypothesis that J is an s-residual intersection with s  v(I) - I.
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(b) Using induction on dim R/J one can prove Proposition 3.5 under the
more general assumption that R is a local Gorenstein ring, I is strongly Cohen-
Macaulay and satisfies G~, and 1 fz is a normal ideal for all  E Spec(R)B V(J).

4. Residual intersections of normal ideals

In this section we will prove that under suitable assumptions every normal ideal
admits a geometric residual intersection that is regular (Corollary 4.11). This will
follow from our next more general result. Recall that e(A) denotes the

multiplicity of a Noetherian local ring A.

THEOREM 4.1. Let R be a local Cohen-Macaulay ring with infinite residue class
field, let I be an R-ideal with grade I &#x3E; 0 that is strongly Cohen-Macaulay and
satisfies G 00’ and write S = R[It]. Then there exists a geometric residual

intersection J of I with height J = v(I) - 1 such that e(R/J) = e(SmS).
Proof. Set k = R/m, S7 = S (&#x26;, k, n = u(7), and d = dim R + 1 - n. Then

S ~ S(1 QR k) is a polynomial ring over k in n variables and that

dim Sms = dim S - dim S = d, whereas dim Sms QR R/I  d. Now since k is

infinite, there exist d elements z = z 1, ... , zd in m such that z1,..., Zd generate a
minimal reduction of mSms and zl, ... , Zd-1 generate an ideal primary to the
maximal ideal of Sms QR RII. In other words, MRS.S = (z)mr -1 SmS for some r,
and in particular e(S.S) = 03BB(SmS/(z)SmS), where denotes length; furthermore
mlSms c (I, zl, ... , Zd-1)SmS for some t.
For 0  i  r + 1 we define graded S-modules Li by

and we set ei = v(Li ~SS0). Notice that

whereas

Now consider homogeneous presentations
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and the Fitting ideals Fi = Ini-ei(~i) generated by all ni - ei size minors of gi.
Then Fi are homogeneous S-ideals with

In particular, O ~ ~r+1i=0 V(Fi), and thus ~r+1i=0 V(Fi) n Proj(S) is a closed subset
properly contained in Proj(S). Since k is infinite, there exists a k-rational
projective point not contained in ~r+1i=0 V(Fi). Choosing a suitable basis

T1,...,Tn of I ~R k, we may assume that this point is (0:···:0:1). In other
words, (T1,...,Tn-1)S~~r+1i=0V(Fi), where we view 8 as S(I ~R k) =
k[T1, ... , Tn]. Thus for all 0  i  r + 1,

Let fit~It be the preimage of T under the natural epimorphism

and consider the embedding 03C0*: Spec(S)  Spec(S). Then 03C0*((T1,..., Tn-1)S) = P
where P = (m, f1t,..., fn-1t). Now (4.4) implies that for all 0  i  r + 1,

Further notice that 1 = ( fi, ... , £) and define the R-ideal

As in (3.4) one sees that SP/(f1t,..., fn-1t) ~ (R/J)(T), and hence by (4.5),
v(Li ~S(R/J)(T))  ei. Writing A = R/J, using the definition of Li, faithfully flat
descent, and (4.2), it follows that

and

From (4.7) and (4.8) we see that
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and

Since mA is the maximal ideal of A, (4.9) and (4.I0) imply that dim A x d and

dim A/I A  d - 1. Therefore height J  dim R - d = n - 1, whereas height
(I + J)  n. Thus J is a geometric (n - 1)-residual intersection of 7.
Now by Theorem 1.5.a, height J = n - 1 which yields dim A = d. Thus

z = z 1, ... , zd form a system of parameters of A, and now (4.9) implies that

Combining this with (4.6) and (4.3) it follows that

Thus we have constructed a geometric (n - 1)-residual intersection J of I with
e(R/J)  e(Sms).
To show the equality of the multiplicities we may complete R to assume that

all rings in question are excellent. By Lemma 3.2, Sms is essentially a

deformation of R/J, and hence by [13,2.3], e(SmS)  e(R/J). D

The next corollary shows that in Theorem 1.6, part (a) implies part (d).

COROLLARY 4.11. Let R be a local Cohen-Macaulay ring with infinite residue
class field, let I be an R-ideal with dim R = v(I) &#x3E; grade I &#x3E; 0 that is strongly
Cohen-Macaulay and satisfies G 00. If 1 is normal, then there exists a geometric
residual intersection J of 1 with R/J being a discrete valuation ring.

Proof. The assertion follows from Theorem 4.1 observing that S.s is a

discrete valuation ring and R/J is a one-dimensional Cohen-Macaulay ring (cf.
Theorem 1.5.a). D

REMARK 4.12. Without assuming v(I) = dim R but with all the other as-

sumptions of Corollary 4.11 in place one could still prove that there exists a
geometric residual intersection J of 1 with height J = v(I) - 1 and R/J a normal
domain (at least if R contains Q; the latter assumption is needed since one has to
use [4, 4.3]).

References

[1] M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto
Univ. 12 (1972), 307-323.



42

[2] L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z. 175
(1980), 249-260.

[3] R.-O. Buchweitz, Contributions à la théorie des singularités, thesis, l’Université Paris VII, 1981.
[4] H. Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), 97-111.
[5] S. Goto, The divisor class group of a certain Krull domain, J. Math. Kyoto Univ. 17 (1977), 47-

50.

[6] S. Goto, Integral closedness of complete intersection ideals, J. Algebra 108 (1987), 151-160.
[7] J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing-up rings, in

Commutative Algebra, Proceedings: Trento 1981 (S. Greco and G. Valla, Eds.), Lecture Notes
in Pure and Applied Math. 84, M. Dekker, New York, 1983, 79-169.

[8] J. Herzog and B. Ulrich, Self-linked curve singularities, Nagoya Math. J. 120 (1990), 129-153.

[9] J. Herzog, W. V. Vasconcelos and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99
(1985), 159-172.

[10] C. Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), 121-137.
[11] C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043-1062.
[12] C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math.

Soc. 277 (1983), 739-763.
[13] C. Huneke and B. Ulrich, The structure of linkage, Annals of Math. 126 (1987), 277-334.
[14] C. Huneke and B. Ulrich, Residual intersections, J. reine angew. Math. 390 (1988), 1-20.
[15] C. Huneke and B. Ulrich, Powers of licci ideals, in Commutative Algebra (M. Hochster, C.

Huneke and J. D. Sally, Eds.), MSRI Publications 15, Springer-Verlag, Berlin, Heidelberg,
New York, 1989, 339-346.

[16] C. Huneke and B. Ulrich, Generic residual intersections, in Commutative Algebra Proceedings:
Salvador 1988 (W. Bruns and A. Simis, Eds.), Lecture Notes in Mathematics 1430, Springer-
Verlag, Berlin, Heidelberg, New York, 1990, 47-60.

[17] M. Morales, N. V. Trung and O. Villamayor, Sur la fonction de Hilbert-Samuel des clôtures
intégrales des puissances d’idéaux engendrés par un système de paramètres, J. Algebra 129
(1990), 96-102.

[18] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc. 50
(1954), 145-158.

[19] C. Peskine and L. Szpiro, Liaison des variétés algébriques, Invent. Math. 26 (1974), 271-302.
[20] G. Valla, On determinantal ideals which are set-theoretic complete intersections, Compositio

Math. 42 (1981), 3-11.
[21] W. V. Vasconcelos, On linear complete intersections, J. Algebra 111 (1987), 306-315.
[22] J. Watanabe, m-full ideals, Nagoya Math. J. 106 (1987), 101-111.
[23] O. Zariski and P. Samuel, Commutative Algebra, Volume II, Springer-Verlag, Berlin,

Heidelberg, New York, 1975.


