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1. Introduction

For a long time algebraic cycles have been used in the study of algebraic
varieties and are themselves a fascinating primary object of study. Recently, new
and interesting invariants for algebraic varieties, arising from the structure of the
algebraic cycles supported on them, have been studied, generalizing many well-
known invariants. Examples are found in the theory of Higher Chow Groups by
S. Bloch [3] and in the Lawson Homology introduced by E. Friedlander in [8].

This paper introduces Lawson homology for quasi-projective varieties, using
compactifications together with a relative version of Lawson homology (cf.
[24]). Lawson homology, as defined by Friedlander (and subsequently devel-
oped in his work [9], and also in [11] and [23]), is a set of invariants attached to
a closed projective algebraic variety X derived from the homotopy properties of
the Chow monoid W,(X) of effective p-cycles supported on X.
The precursor of this theory is B. Lawson’s foundational paper [21], where he

establishes a homotopy equivalence

between the space of algebraic p-cycles (after a certain "completion") supported
on a complex projective variety X and the space of (p + 1)-cycles on the
projective cone 03A3X over X. The cone 03A3X is called "the complex suspension" of
X in Lawson terminology. The techniques used in his work constitute a

beautiful combination of complex geometry, geometric measure theory and
homotopy theory. Lawson’s paper has interesting derivations in various

directions such as the work of Lawson-Michelsohn [22] on algebraic cycles and
the Chern characteristic map and the work of Boyer-Lawson-Lima(-Filho)-
Mann-Michelsohn [5] on algebraic cycles and infinite loop spaces. More
recently, Friedlander and Lawson [10] have introduced a cohomology theory
(morphic cohomology) which pairs to the present homology theory in the case
of closed varieties.

In [9] Friedlander works with varieties over algebraically closed fields of
arbitrary characteristic, and in this broader context he first proves the 1-adic

*This research was partially supported by CAPES (Brazil) Doctoral Fellowship # 6874/84.
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analog of Lawson’s complex suspension theorem, using techniques of étale
homotopy theory. Then Lawson homology is introduced in this general setting.
For complex closed projective varieties it is simply the homotopy groups of the
group completion C¡p(X) of the Chow monoid, more precisely

for n &#x3E; 2p. This bigraded group is then shown to be a highly interesting
invariant of the variety X which encompasses many classical invariants. For
example, Friedlander shows that the Néron-Severi group NS(X), H1(Pic°(X))
and the classical Chow groups of algebraic cycles modulo algebraic equivalence
are particular cases of Lawson homology. Furthermore, with the use of an
"algebraic version" of the Dold-Thom Theorem [6] he goes further and shows
that étale homology is also obtained via Lawson homology. (In the complex
case one obtains the singular homology immediately from the classical Dold-
Thom theorem, op. cit.)
More recently, Friedlander and Mazur [11], using the complex suspension

theorem, provided the bigraded Lawson homology with operations, which
make it into a bigraded module over the polynomial ring in two variables
Z[h, s]. An iteration of the action of SE Z[h, s] defines a "cycle map" into
singular homology. Although this module structure depends on the embedding
into a projective space, the cycle map is a natural transformation of functors, cf.
[23] and [25]. The image of the successive iterations of s provide a filtration in
singular homology, called topological filtration which is shown in [11] to be
finer than the geometric filtation in case X is smooth. The geometric filtration is
the analog in homology of Grothendieck’s [15] arithmetic filtration.
We start, in Section 2, by introducing the relative Lawson homology

L*H*(X, X’) of a pair X’ c X of algebraic sets as a functor of algebraic pairs and
present basic properties and background information.

In Section 3 we proceed showing the existence of long exact sequences, in
Lawson homology, for triples of closed projective varieties.

In Section 4 we present the main result of this work, which enables one to
define Lawson homology for quasiprojective varieties using compactifications,
namely:

THEOREM 4.3. A relative isomorphism ’JI: (X, X’) ~ (Y, Y’) induces an isomor-
phism of topological groups:

for all p a 0, where p(X, X’)def p(X)/p(X’) is the quotient group.
This result enables us to define the Lawson homology LpHn ( U) of a
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quasiprojective set as the homotopy group 7rn - 2P(C¡ p(X, X’)), for n &#x3E; 2p. This is a
covariant functor for proper maps satisfying:

PROPOSITION 4.8. (a) For any quasiprojective variety U there is a natural

isomorphism

where Ap(U) is the group of algebraic cycles in U modulo algebraic equivalence
[13].

(b) Let V be a closed subset of the quasiprojective variety U. Then there is a

(localization) long exact sequence in Lawson homology:

ending at

The main results and technical lemmas are proven separately in Section 5. In
Section 6 we use the excision theorem to compute some examples in which we
also make use of the "generalized cycle map", cf. [11] and [25], making the
computation more natural and elegant.

2. Cycle groups and Lawson homology for closed pairs

In this section we provide basic definitions and a concise summary of the
preliminary results which originated the theory in study.
An (effective) algebraic p-cycle in the complex projective space PN is a finite

formal sum 03C3=03A303BBn03BBV03BB, where the nÂ’s are positive integers and the V/s are
(irreducible) subvarieties of dimension p in pN.
The degree of 03C3 = L;. nÂ VÂ is defined as deg(a) = 03A303BBn03BB deg(V03BB), where deg lg is

the degree of the irreducible subvariety VÂ in PN, and the support of Q is the
algebraic subset ~03BBV03BB of pN.
The set of p-cycles of a fixed degree d in PN can be given the structure of an

algebraic set, which we denote by Cp,d(PN), cf. [28] and [30]. In case j: X 4 PN is
an algebraic subset of PN, the subset Cp,d(X) c Cp,d(PN), consisting of those
cycles whose support is contained in X, is an algebraic subset of Cp,d(PN) whose
algebraic structure depends on the embedding j. See [9] and [28].

DEFINITION 2.1. The set
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of all effective p-cycles in X, together with an isolated point 0 ("zero cycle") is an
abelian topological monoid, called the Chow monoid of effective p-cycles in X.
Here we are considering the analytic topology on p(X). Its associated

Grothendieck group (or naïve group completion) is denoted p(X), and will,
henceforth, be called the cycle group or the group of p-cycles in X.

Although the algebraic structure of each individual Cp,d(X) depends on the
embedding of X into a projective space, the homeomorphism type of p(X) does
not, cf. [9] or [18].
Given X as above, endow C¡p(X) with the topology induced by the quotient

map:

This makes C¡p(X) into an abelian topological group having the universal
property with respect to topological monoid mappings from p(X) into

topological groups, cf. [24].

REMARK 2.2. (a) There is a continuous embedding [21] of C¡p(X) into the
group of integral cycles in X (in the sense of geometric measure theory) with the
flat-norm topology [7]. In particular c¡ p(X) is a Hausdorff topological group.

(b) This topology makes p(X) also into a homology group-completion for
p(X), meaning that in the level of homology the natural map

is the localization of the Pontrjagin ring of p(X) with respect to the action of
1ro(CC p(X)). See [24].

DEFINITION 2.3. For a closed algebraic subset X’ of X, the cycle group
c¡ p(X’) is naturally a closed subgroup of the topological group c¡ p(X). Define the
relative cycle group Î,(X, X’) as the quotient group p(X)/p(X’) endowed with
the quotient topology.

Our investigation is centered on the invariants for algebraic sets obtained as
the homotopy groups of the cycle groups above. More precisely:

DEFINITION 2.4. The (relative) Lawson homology (or L-homology for short)
of the pair (X, X’) is defined as

for n  2p. Whenever X’ is empty it is denoted simply LpH"(X).
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Using Remark 2.2(b) above, we see [24] that our definition for the absolute
case coincides with Friedlander’s over the complex numbers. Also notice that
since the homeomorphism type of p(X) is independent of the embedding
j : X 4 PN, Lawson homology becomes an invariant of X as an abstract variety,
cf. [9].

In case p = 0 we have Wo(X) equal to LId0 SPd(X), where SPd(X) is the d- fold
symmetric product of X. It follows, e.g. from [24] or from an alternative
description of the Lawson homology also given in [9], that for X connected
there is a natural homotopy equivalence

where r¡ o(X)o ç lio(X) is the connected component of the identity and SP°°(X) is
the infinite symmetric product of X. Therefore the Dold-Thom [6] theorem
gives an isomorphism

between L0Hi(X) and the i th singular homology group of X with Z coefficients.

Actually, the latter isomorphism holds for arbitrary X [6], [24].
Being belian topological groups, the cycle spaces IÎP(X) are products of

Eilenberg-MacLane spaces [33], and hence they are determined, up to

homotopy, by the Lawson homology. In other words, there is a homotopy
equivalence

Functoriality of Lawson homology

DEFINITION 2.5. Let X = LIxX03B1 and Y = LI03B2Y03B2 be disjoint unions of

algebraic sets (not necessarily finite unions) taken with the disjoint union
topology (of the Zariski topology of their components). We say that a

continuous map f : X - Y is a morphism of X into Y if the restriction of f to
any component X (l is a morphism of algebraic sets. A proper morphism
f : X ~ Y is a bicontinuous algebraic morphism if it is a set theoretic bijection
and for every y E Y the induced map on residue fields C(y) ~ C(f -’(y» is an
isomorphism. A continuous algebraic map f : X ~ Y is a correspondence, i.e., a
pair {g: Z - X, h : Z ~ Y} in which g is a birational, bicontinuous morphism. In
other words, a continuous algebraic map is a rational map which is well defined
and continuous at all points. Here we follow Friedlander’s [9] terminology
closely.

We see that a bicontinuous algebraic morphism f : X ~ Y, with X and Y as in
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the definition above, induces birational equivalences (in the sense of [16])
between the irreducible components of X and Y Furthermore, taking X and Y
with the analytic topology, it follows that f induces a homeomorphism between
(X)a" and (Y)an, whose restriction to an irreducible component of X is a

homeomorphism onto a corresponding component of Y Observe that a rational
continuous map f : X ~ Y is semi-algebraic in the sense of [17]. In particular
one sees that the monoid operation in the Chow monoids is algebraic
continuous in the above sense.

With the notions just introduced, it now makes sense to talk about

continuous algebraic maps between Chow monoids, and we present the first
functorial properties of Lawson homology.

PROPOSITION [9]. Let X, Y and W be closed projective algebraic sets.

(a) For any morphism f : X - Y and integer 0  p  dim X, there exists a
continuous algebraic map

defined by

The map f# is a morphism of abelian topological monoids in the analytic topology
and induces a morphism f* on Lawson homology for all n  2p

(b) For any flat morphism [16] f : W ~ X of relatiue dimension r  0, and any
integer p, 0  p  dim X, there exists a continuous algebraic map

which is a morphism of topological monoids in the analytic topology. Therefore, the

map f # induces a morphism on Lawson homology, for all n  2p:

Here, for a morphism f : X ~ Y and subvariety Y c X, deg(V/f(V)) is defined
as
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where C(V), C(f(V)) are the function fields of V and f(V) respectively.

REMARK 2.6. From now on we sometimes use the word algebraic indistinctly
meaning either algebraic morphisms in the usual sense or algebraic continuous
maps, depending on the context.

From the above one sees that Lawson homology is a covariant functor from
the category of algebraic sets and morphisms to the category of bigraded groups;
also, it is a contravariant functor from the category of algebraic varieties and flat
morphisms (with relative dimension) to bigraded groups.

Joins and suspensions

DEFINITION 2.7. Let X  PN and Y 4 PM be algebraic sets. Embed PN and
Pm linearly in PN+M+1 as two disjoint linear subspaces. Define the complex join
(also called the ruled join) i # j: X # y 4 pN + M + 1 of X and Y as the algebraic
subset of PN + M + 1 obtained as the union of all projective lines j oining points of
X to points of Y in PN+M+1. In the particular case where Y is a point po E PN + 1
not lying in PN, the complex join P0 # X OfpoEpN+1 with X ~ PN c pN+1 is
simply the projective cone over X. In [21], Lawson calls it the complex
suspension of X and denotes it by X. The m-fold complex suspension of X,
JJÎ"’X, is

Observe that the complex suspension can also be seen as the Thom space of the
hyperplane bundle O(1) over X, and its structure as an algebraic set does not
depend on the point P0~PN+1-PN.

It is immediate that whenever V is a subvariety of X  PN having dimension p
and degree d, and W is a subvariety of Y  P" with dimension q and degree e (in
other words, V E Cp,d(X) and W E Cq,e(Y)), then the join V # W is a subvariety of
X # Y having dimension p + q + 1 and degree d· e.

Notice that the m-fold suspension tmx of X can also be viewed as the join
Pm-1 # X of P- 1 with X. From the above we conclude that the m-fold
suspension takes irreducible cycles in Cp,d(X) to irreducible cycles in

Cp+m,d(mX). Actually the join operation can be extended linearly to the cycle
spaces as follows.

PROPOSITION [9]. Let i : X u PN, j : Y 4 PM be algebraic sets. The external
join induces a continuous algebraic map
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for any r  dim X, s  dim Y, d and e. Up to bicontinuous algebraic equivalence,
this pairing is independent of the embeddings i and j. These continuous algebraic
maps induce a bi-additive continuous rational map

which sends r(X) x {0} and {0} x CCr(Y) to {0} E r+s+ 1(X # Y).

Considering P’-’ as a cycle in Cm-1,1(Pm-1) we obtain an algebraic map

which is defined in such a way that it sends a cycle a = 03A303BB n03BBV03BB in Cp,d(X) to
m03C3 = EÂ n03BB(mV03BB) = 03A303BB n03BB(Pm-1 # V03BB). The map induced on the cycle spaces (by
functoriality) m: p(X) ~ p+m(mX) is remarkably well behaved and satisfies
the following theorem, which is the foundation stone of the theory, proven by
Lawson in [21]:

THEOREM CST (the complex suspension theorem). The m-fold complex
suspension

is a homotopy equivalence for every integer p, with 0  p  dim X and every
positive integer m.

Equivalently:

COROLLARY. The m-fold complex suspension tm induces an isomorphism

for euery n  2p.

Concluding this section we observe that the cycle spaces of the complex
projective space P’ are completely determined by the complex suspension
theorem. Namely

for all 0  p  dim X, the later equivalence being a consequence of the Dold-
Thom theorem, as observed above. Equivalently, one has isomorphisms
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3. Fibrations and long exact sequences

The exceptional features of the Chow monoids endow the relative cycle groups
with interesting and fundamental properties, such as the following result, proven
in slightly greater generality in [24] for a certain category of filtered monoids.

THEOREM 3.1. For a pair of algebraic sets (X, X’) the quotient map
p(X) ~ p(X)/p(X’) admits a local cross-section. In particular one has a
principal fibration :

Observe that the natural morphism

induced by a given morphism of pairs of algebraic sets f : (X, X’) ~ (Y, Y’) fits
into a morphism of principal fibrations.
As an immediate consequence of the above theorem one obtains the existence

of long exact sequences for the L-homology of triples, as follows.

PROPOSITION 3.2. For a triple of closed algebraic sets (X, X’, X") there is a
natural exact sequence

which is a principal fibration. In particular there is a long exact sequence in
Lawson homology:

Proof. Consider the following commutative diagram:
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The existence of v and n follows from the universal properties of the

projections pi, i = 1, 2, 3 and exactness for the third column follows from the
exactness of the rows and a diagram chasing.
Now, if 03C3:U ~ p(X) is a local cross-section defined on an open set

U ~ p(X, X’), then the composition P2 ’ a: U - rip(X, X") is also a cross-

section for n. The proposition now follows, cf. [31]. D

For a given pair of (closed) algebraic sets (X, X’), the complex suspension
:p(X) ~ p+1(X) restricts to : 16P (X’) -+ p+ 1(X’), and hence it naturally
induces a morphism of the corresponding principal fibrations associated to the
pairs (X, X’) and (eX,eX’) as in Theorem 3.1. From this one obtains a

morphism of long exact sequences for the Lawson homology of the pairs, which,
together with the complex suspension theorem (CST) and the five lemma yields
the following:

COROLLARY 3.3. The relative complex suspension

is a homotopy equivalence for all p  0.

4. Excision and quasiprojective varieties

The notation of this section is slightly abusive but it will prove to be useful.

DEFINITION 4.1. We say that a pair (X, X’) of closed projective sets is a

compactification of a quasiprojective set U if X - X’ is isomorphic to U as a
quasiprojective set. Two pairs (X, X’) and (Y, Y’) of closed algebraic sets are
relatively isomorphic if they are compactifications of the same quasiprojective
set.

Note that we are not requiring U to be dense in X for a projectivization
(X, X’) of U.

REMARK 4.2. Let 03A8: U - E be a proper map between two quasiprojective
varieties, and let (X, X’) and (Y, Y’) be two compactifications of U, Y, re-

spectively, as above. Let

be the closure of the graph of w and let f : 0393 ~ X, g : r - Y be the restrictions to
r of the projections onto the first and second factors of X x Y, respectively.
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Define r’ c r to be r - Graph(IF). Then there is a "correspondence of pairs"

where f : (F, r’) - (X, X’) is a relative isomorphism and g : (r, r’) - (Y, Y’) is an
actual morphism of pairs, by the properness of 03A8.

In particular, whenever (X, X’) and ( Y, Y’) are relatively isomorphis pairs, the
maps f and g are relative isomorphisms.

Our main goal is to prove the following "localization theorem":

THEOREM 4.3. A relative isomorphism ’Y: (X, X’) ~ (Y, Y’) induces an isomor-
phism of topological groups:

forall p  0.

As a consequence we obtain the equivalent of an excision theorem for the
Lawson homology of pairs of closed projective algebraic sets:

COROLLARY 4.4. A relative isomorphism 03A8: (X, X’) ~ (Y, Y’) gives an isomor-
phism in Lawson homology:

for all p and n  2p.

The relevance of the theorem above lies in the fact that it allows one to define

unambiguously a topology on the group of all p-cycles supported on any
quasiprojective set U as well as to define its Lawson homology. More precisely:

DEFINITION 4.5. Given a quasiprojective set U define the group of p-cycles
nn 11 qç

where (X, X’) is any compactification of U. This is a topological group whose
homotopy groups define the Lawson homology of U, namely

From Remark 4.2 we obtain, as expected, the following:
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COROLLARY 4.6. Lawson homology is covariant for proper morphisms of
quasiprojective varieties.

REMARK 4.7. (a) When p = 0, we still obtain L0Hn(U) ~ Hn(X, X’), where
(X, X’) is any compactification of U, cf. [24]. Since X’  X is a cofibration, one
sees that Hn(X, X’) is isomorphic to the Borel-Moore homology of U, cf.

[4], [12].
(b) For arbitrary characteristic one has to consider homotopy group com-

pletions instead of the naïve ones as above. In this case one has to prove an
excision theorem similar to Corollary 4, where the relative homology of a pair is
defined as the homotopy groups of the homotopy quotient of the respective
group completions. This homotopy theoretic formulation over the complex
numbers is equivalent to the present one, and the excision theorem can be
proven directly in this context without the use of naïve completions. See [24] for
a proof of the equivalence of both approaches as well as a proof of Corollary 4 in
the homotopy theoretic context. We believe that the techniques of [24] can be
carried out to the context of varieties over arbitrary algebraically closed fields.

PROPOSITION 4.8. (a) For any quasiprojective variety U there is a natural

isomorphism

where Ap(U) is the group of algebraic cycles in U modulo algebraic equivalence
[13].

(b) Let V be a closed subset of the quasiprojective variety U. Then there is a

(localisation) long exact sequence in Lawson homology:

ending at

Proof. (a) It follows from the fact that for a closed projective variety X, there
is a natural isomorphism LpH2p(X) ~ Ap(X) sending the connected component
of a cycle to its class modulo algebraic equivalence. Combining this with the
exact sequence in [13], Section 1.8, concludes the argument.

(b) Given a compactification (X, X") of U, let V be the closure of V in X and
define X’ = V ~ X". Since V is closed in U we have X’ - X" = V and also
X - X’ = U - V. Applying item (a) and Proposition 3.2 to the triple (X, X’, X") we
conclude the proof. D

REMARK 4.9. A last remark should be the following interpretation of
Lawson’s complex suspension theorem in terms of quasiprojective varieties. Let
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X be a closed projective variety and let r: H ~ X be the hyperplane bundle over
X. Composing the complex suspension :p(X) ~ p+1(X) with the isomor-
phism 03C0:p+1(X) ~ p+1(H)=p+1(X, pt) one obtains the pull-back map
03C4#: p(X) ~ lgp , 1 (H). In this context, the complex suspension theorem stands
as a restricted form (only for very ample line bundles) of the homotopy axiom
(see [ 13], Theorem 3.3) for Lawson homology.

This axiom actually holds in a more general form, namely, the pull-back of
cycles in arbitrary vector bundles induces an isomorphism in Lawson ho-
mology. A proof of this fact as well as some of its deep consequences will appear
in a forthcoming paper*.

5. Proof of Theorem 4.3

We start introducing a bit of notation in order to interpret the topology of

ri p(X, X’), for a given pair (X, X’) of closed projective algebraic sets.

DEFINITION 5.1. Given (X, X’) as above define:

Notice that ~p(X, X’) is a submonoid of 6p(X) and that Cp,~D(X,j) is an

algebraic set. Using the canonical projections p: p(X) p(X)~p(X) and
03C0: rip(X) -+ p(X)/p(X’) ~ p(X, X’) we also define the sets:

Here, the sets {D(X)}~D=1, {QD(X, X’)l "0= 1 form a filtering family of compact
subsets of rip(X) and C¡p(X, X’), respectively. Also notice that Yp(X, X’) is the

*We have learned, after this paper was submitted for publication, that E. Friedlander and O. Gaber
have obtained this result prior to us.
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subgroup of rip(X) obtained as the Grothendieck group associated to the
monoid ~p(X, X’). Summarizing we have the following commutative diagram:

where the horizontal arrows are inclusions and the vertical ones are proclusions
(i.e. they are quotient maps, in Steenrod’s terminology [32].)
From the above picture we draw the following

LEMMA 5.2. Let (X, X’) be a pair of closed algebraic sets. Then:

(a) The topology of p(X) x p(X) is the weak topology induced by the filtering
family of compact sets K1(X) c -,X2(X) c ... KD(X) The same holds
for p(X) and p(X, X’) with respect to the families 1(X) c f 2(X) c ...
and Q1(X, X’) - Q2(X, X’) ~ ···, respectively.

(b) The composition Yp(X, X’)  p(X) ~ rip(X, X’) is an abstract group iso-
morphism which takes p~D(X, X’) onto QD(X, X’).

The proof of this lemma is elementary and follows from general facts about
graded monoids, cf. [24].
The fundamental key for the theorem is the following result:

PROPOSITION 5.3. Given a relative isomorphism of algebraic pairs
f : (X, X’)~(Y, Y’), the induced morphism f#: p(X) ~ p(Y) of Chow monoids
restricts to an isomorphism of submonoids

with the subspace topology. Equivalently, f# restricts to a bijection and for every
d &#x3E; 0, there exists D &#x3E; 0 such that

forall p~0.
Proof. Take a p-dimensional subvariety c X not contained in X’. Since

f|X-X’: X - X’  Y - Y’ is aniomorphism, we see that f(V) is a p-dimensional
subvariety of Y not contained in Y’. Also deg(V/ f(V)) = 1, since f|X-X’ restricts
to an isomorphism between V - (V n X’) and f(V) - (f(V) n Y’). Therefore
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and hence f # sends ~p(X, X’) to Yp(1’: Y’). This immediately implies that the
restriction of f# to ~p(X, X’) is an isomorphism of discrete monoids, since the
monoids are freely generated by the irreducible varieties.

In order to prove the remaining part of the proposition we need the following
technical result.

LEMMA 5.4. Given f : (X, X’) ~ (Y, Y’) as in Proposition 5.3, there can not exist a

sequence {Vn}~n=1 1 of p-dimensional subvarieties of X satisfying :

(a) lim sup deg(Vn) = oo;
(b) deg f#(Vn)  M, for some constant M, for all n;
(c) Vn ~ X’, for all n.

Assume the lemma for a while and suppose the proposition does not hold. In
other words, there exists d &#x3E; 0 such that

for all n &#x3E; 0. This allows one to select a sequence of p-cycles {03C3n}~n= 1 contained in
~p(X, X’) satisfying:

for all n. Write 03C3n = Ein 1 kinVni, where the v"’s are irreducible subvarieties of X
not contained in X’. As we pointed out at the beginning of the proof, we have
deg(Vni/f(Vni)) = 1, and hence

Suppose that deg(Vni) ~ B for all n and 1 ~ i ~ ln, where B is some constant. In
this case one has

and hence

for all n. On the other hand, by hypothesis
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which is a contradiction. Therefore no such constant B can exist. In other words

lim sup deg(Vni) = o0

and deg f#(Vni) ~ deg f#(03C3n) ~ M, which contradicts the lemma, and the

proposition is proven. D

Let us prove the lemma now:

Proof of Lemma 5.4. It suffices to assume that X and Y are irreducible, for if

V 1 is an infinite sequence of irreducible subvarieties of X (not contained in X’)
we can extract a subsequence {Vnl} so that all Vni’s are contained in a unique
irreducible component X 1 of X. Define Xi = X n X’ and observe that f(X1)
must be contained in an irreducible component Y1 of Y Define Y,’= Y1 n Y’, in
doing so we obtain a morphism of pairs f : (Xi, X’) -+ (Y,, fi). Since f|X-X’ is an
isomorphism of quasiprojective sets, its restriction to X1-X’1 ~ X-X’ es-
tablishes an isomorphism between X1 - X’1 and Y1 - Y’1. Therefore

f : (X 1, X’) - (Y1, Y,) is a relative isomorphism and the sequence {Vni} satisfies
the hypothesis of the lemma with X and Y, irreducible.
We now use induction to prove the lemma with X and Y irreducible.

For p = 0 it is immediate, since a 0-dimensional variety has always degree 1.
Consider the case p =1. Take a sequence of irreducible curves Vn c X

satisfying the hypothesis of the lemma. We may assume deg Vn  n. Observe that
the set yri aef yn n X’ is finite (or empty) since Yn is irreducible. Now use the

following facts

(i) The generic hyperplane intersection of an irreducible subvariety of PN of
dimension  2 is irreducible.

(ii) The generic hyperplane intersects the curve Vn transversely and misses the
finite subset V’ c Vn,

to obtain (by Baire category arguments) a hyperplane H c PN satisfying:

(a) H is transversal to Vn, V n;
(b) HnVn ~ H ~ Vn ~ X’ = ~, ~ n;
(c) H n X is irreducible and is not contained in X’.

By definition, the cardinality of the intersection of Vn with H is its degree, and
hence,

by hypothesis. On the other hand, since H n X is irreducible and not contained
in X’, we have
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as observed at the beginning of the proof of Proposition 5.3. Call

D = f (H n X) c Y c PM. As a subvariety of PM, D is a set-theoretic intersection
of a finite number of (irreducible) hypersurfaces Hi , ... , Hk c pM.

Consequently,

Since f(Vn) ~ D, there must be one hypersurface Hjo (among Hi, ... , Hk) not
containing f(Vn). From this we get:

where i(Hj., f(Vn); x) denotes the multiplicity of the intersection of Hjo and f(Vn)
along x. Again by hypothesis deg f#(Vn) = deg f(Vn)  M, and # f(Vn ~ H) =
# (Vn n H). Hence:

where S = sup{deg(Hj)}. This is a contradiction.
Suppose that the lemma is true for subvarieties of dimension  p-1, p  2.

Let {Vn} be a sequence of p-dimensional subvarieties satisfying the hypothesis of
the lemma, and suppose that deg Vn  n. Using the same general position
arguments as before we can choose a generic hyperplane H c PN so that:

(a’) H n vn is an irreducible (p-1)-dimensional subvariety of PN;
(b’) H ~ Vn ~ X’;
(c’) H n X is also irreducible and H m X gb X’.

Define D = f#(H~X) = f(H~X), and let Hl, H2,...,Hk be irreducible

hypersurfaces in Pm whose set theoretic intersection is D. Since

and f(v;, n H) is irreducible, we know that f(Vn n H) is an irreducible compo-
nent of the intersection f(Vn)~Hjo, for some jo such that f(Vn) ~ Hjo. Write
f(Vn) n Hjo = Ur Zn Z, irreducible. Therefore
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However deg(Vn n H) = deg Vn  n, which contradicts the induction hypothesis,
and proves the lemma.

Proof of Theorem 4.3. In Proposition 5.3 we saw that 03A8# takes Ip(X, X’) into
~p(Y, Y’), and hence 03A8*:p(X) ~ p(Y) restricts to a group homomorphism
03A8*:p(X, X’) ~ p(Y, Y’), since p(X, X’), (respectively Yp(1’: Y’)), is the group

completion of ~p(X, X’), (respectively Ip(1’: Y’)).
In a similar fashion to the proof of Proposition 5.3 one sees that

’P *: p(X, X’) ~ Yp(1’: Y’) is an isomorphism of discrete groups.
The whole situation is summarized in the following diagram:

We have observed that 03A8*|p(X,X’) is an isomorphism and Lemma 5.2(b) shows
that both 03C0X|p(X,X’) and 03C0Y|p(Y,Y’) are isomorphisms. By the commutativity of the
diagram we conclude that ’P * is an (continuous) isomorphism.

In Lemma 5.2 we have shown further that 03C0X(p, ~ d(X, X’)) = Qd(X, X’) and
03C0Y(p,~d(Y, Y’)) = Qd(Y, Y’). By Proposition 5.3 we know that for every d &#x3E; 0

there exists D &#x3E; 0 such that

and hence

Consequently

Now let F be a closed subset of p(X, X’), and, given d &#x3E; 0 choose D &#x3E; 0 as

above so that
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Since QD(X, X’) is compact and F is closed in C¡p(X, X’), then F n QD(X, X’) is
compact and hence 03A8*(F n QD(X, X’)) is compact. From this we conclude that
’P *(F) n Qd(1’: Y’) is closed, for all d. Therefore ’P *(F) is closed, by Lemma 5.2(a).
This last conclusion shows that ’P * is a closed map, and hence an isomorphism
of topological groups. D

6. Examples

The results we have proven, together with the functorial properties of L-
homology, allow the immediate computation of several examples.

In [23] and [25] examples are computed using the "generalized cycle map"
defined by Friedlander and Mazur in [11]. This map is a homomorphism
SP: LpHn(X) ~ Hn(X) from L-homology to singular homology, which coincides
with the classical cycle map [13] from the group of cycles modulo algebraic
equivalence to singular homology in the case n = 2p, and realizes the Dold-
Thom isomorphism when p = 0 and n is arbitrary.
The two simple cases presented here can be computed without the use of cycle

maps, however this presentation is more natural and elegant.
We need the following facts which were proven in [25]:

(1) There is a relative cycle map

for pairs of closed projective algebraic varieties. If (X, X’) and ( Y, Y’) are
relatively isomorphic and spX,X’ is an isomorphism, then so is sp

(2) The cycle maps are natural transformation of (covariant) functors and are
compatible with long exact sequences.

(3) Given a projective variety X 4 P" the following diagram commutes:

where L is the Thom isomorphism for the hyperplane bundle over X.

EXAMPLE 1. (Affine spaces). Let A" denote the n-dimensional affine space and
let (pn, pn - 1) be its usual compactification.

In [22] it is shown that the inclusion P" -1  p" induces an injection in the
level of homotopy of cycle groups taking generator to generator. Since
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as seen in Section 1, the long exact sequence for the Lawson homology of the
pair (P", p" -1) shows that

in other words

Note that the same result can be obtained using the properties of the cycle
map described above, long exact sequences and induction on dimension.

EXAMPLE 2: (Products of projective spaces). We show, by induction, that the
cycle map s’pn x Pm : LpHn(pn x Pm)~Hn(Pn x pm) is an isomorphism for all n, m.
The induction is on the sum N = n + m. For N = 1 we have that P" x P’ = P’.

In this case the result follows from the Dold-Thom theorem, since

0(P1) ~ SP~(P1) and 1(P1) ~ Z. See [21] for details.
Assume the result true for any product Pr x PS with r+sN-1, and

consider P" x Pm with n+m=N, N ~ 2.
Embed P" x Pm into pnm+m+n via the Segre embedding j : P" x pm 4 Pnm+m+n.

This is the embedding provided by the complete linear system associated to the
divisor D = H + H2, where H =pn-1 x pm and H2 = P" x Pm-1 are two effective
generators of Div(Pn Pm), and Pn-1={pt} when n ~ 1. Observe that

H1 ~ H2 = Pn-1  Pm-1 and that D is the divisor obtained by a hyperplane
section of P" x P’" in pnm+m+n.

REMARK 6.1. Since D = H1 + H2 has no weights on its irreducible compo-
nents, we use D to denote both the divisor and the algebraic set D = H1 ~ H2,
indistinctly. Also we assume n  m, p  1.

Let us compute the cycle spaces lip(D) associated to the algebraic set D,
noticing that both (H1, Hl n H2) and (D, H2) are compactifications of the affine
space An+m-1 and that i : (H1, H1 n H2)  (D, H2) is a relative isomorphism.

Since

satisfy the induction hypothesis, fact (2) above, the five lemma and the diagram
below
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show that SHmHInH2 is an isomorphism. Since i:(H1,H1~H2)  (D,H2) is a
relative isomorphism, we conclude that

is also an isomorphism, according to fact (1).
Applying (2), the induction hypothesis and the five lemma again, one obtains

that

is an isomorphism, for all i and p.
Since

fact (1) together with (3) and (4), the five lemma and the well-known isomor-
phisms for the pair (Pn+m, Pn+m-1) complete the proof.
EXAMPLE 3: Hyperquadrics fln ~ pn+1. Let fln C pn+1 be a smooth quadric,
that is, a quadric of rank n + 1 (and dimension n), and let H be a hyperplane in
Pn+1 which is tangent to -2n at some point Po E fln. Recall the following facts:

(1) The intersection H n -2n is a singular quadric of rank n -1 in H, and hence
it is isomorphic to the complex suspension n-2=p0 # n-2, where
2n-2 is the intersection H n fln n H’, with H’ being any hyperplane in
p" + 1 not containing po.

(2) With po, H and H’ chosen as before, consider the projection
03C0:Pn+1 - p0 ~ H’, away from po. Let p:2n-(2n~H) ~ H’ be the re-

striction of 03C0 to 2n-(2n ~ H). A standard argument shows that p is,
actually, an isomorphism onto H’ - (H n H’) - An. From now on, denote
n ~ H by 03A32n-2.

Using excision it follows that

and hence from fact (1) one has an isomorphism

for all p ~ 1, i ~ 0. The commutative diagram of fact (3) now reads:
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where i is the Thom isomorphism of the hyperplane bundle over fln - 2.
Using (5) and (6), the exact sequences for the pair (n, tfln-2), the previous

example and the fact that 1 ~ P 1 and 2  P1  P1, it follows by induction
that the cycle map spzn is an isomorphism for all p and n.

REMARK 6.2. A singular quadric 9f c pn + 1, of rank k, is isomorphic to the
iterated complex suspension n-kk, where -9k is a smooth hyperquadric
contained in a linear subspace Pk+1 c pn+1. Therefore, the complex suspension
theorem asserts that

which, combined with the above results yields
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