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Introduction

In a series of important papers ([15-20]) D. Vogt and M.J. Wagner study
the structure of subspaces and quotients of some classes of nuclear Kôthe
spaces. They are able to give a complete basis free characterization in the
case of stable power series spaces thus completing and generalizing to the
basis free setting the study carried out by Alpseymen, Dubinsky, Robin-
son and Wagner in [2], [4], [5]-[9], [21] and [22].

The method of Vogt and Wagner can be briefly described as a

combination of the following steps: (1) Proving that under suitable

topological conditions concerning the Fréchet spaces E and F, a short
exact sequence of the form 0 - E - G - F - 0 splits. (2) Constructing
exact sequences of power series spaces of the form 0 ~ ^r(03B1) ~ ^r(03B1) ~

0. (3) Using a suitable generalization of the Komura embed-
ding theorem.

The purpose of the present paper is to study to which extent this
method can be further generalized to cover a wider class of nuclear
Kôthe spaces. We first introduce a relation called S concerning pairs of
Fréchet spaces and prove two forms of splitting theorems using this

relation. These splitting criteria along with suitable generalizations of the
two other steps described above allow us to characterize subspaces and
quotients of nuclear Lf ( a, 00 )-spaces. As a special case, assuming the
subspace to have a basis, we get the result of Alpseymen [2] 111.1. The
quotient space case is new even in the case of a quotient with basis.
We hope that the ideas developed in this paper will find further

applications in the structure theory of nuclear Fréchet spaces. Reference
[3] can be regarded as an example of such an application, which is also
the reason for out stating some of the present results in a more general
form than would be necessary for the needs of this paper.

At this point 1 would like to express my gratitude to Ed Dubinsky for
inviting me to Clarkson College and for his kind hospitality during my
visit. 1 am especially happy about his active interest in my work as well as
the work of the whole functional analysis group in Finland. 1 would also
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like to thank D. Vogt and M.J. Wagner for providing me with several of
their preprints. Needless to say, this paper is strongly influenced by their
work.

0. Preliminaries and notation

This paper will deal exclusively with Fréchet spaces, i.e. locally convex
metrizable linear spaces. The main interest will be on nuclear and

Schwartz spaces, i.e. reduced projective limits of Banach spaces with
nuclear, resp. compact linking maps. We shall use the abbreviations (F)-,
(NF)-, (FS)-space respectively.

By a subspace we shall mean a closed linear subspace which is usually
understood to be infinite dimensional. If M is a set in an (F)-space E, we
denote by sp(M) its closed linear span. By a fundamental system of
seminorms, or equivalently a seminorm basis, we shall always mean a
sequence ... such that the corresponding unit balls form a
neighborhood basis of the origin. If  is a continuous seminorm on the
space E and if U is the corresponding unit ball, we shall use the

notations: Ej = U = the completion of the normed space E/ker
E’j = the dual of Ej = the linear span of UJ0 in E’. For 1 E E’ we let

= supx~Uj|f(x)|~ [0, oo ]. The restriction of  on E’j defines the
usual dual norm.

By the absolute basis theorem, every (NF)-space E with a basis ( xn )
can be identified with a Kôthe sequence space K(a), where a = (ank) =
(II x n Il k)’ The matrix a is called a representation of (E, (xn)). If E is

nuclear (resp. Schwartz), the representation a can be so chosen that
(ank/ak+1n)n ~ ~1, (resp. c0). The natural system of seminorms in K(a) is
understood to be . In the nuclear case the system 03BE ~
supn|03BEn|akn is equivalent to this. We shall make the slightly unconven-
tional agreement that our representations always correspond to a semi-
norm basis, which means that the unit balls (rather than the --balls) of
the corresponding seminorms form a neighborhood basis.

The dual of Kôthe space K(a) can be identified with the set of

sequences (~n) such that l11n  03BCakn for some IL &#x3E; 0 and some k. If

f = (~n) ~ K(a)’, then ’k = the infimum of the above it’s =

supn(|~n|/akn), where the conventions 0/0 = 0 and a/0 = 00 for a &#x3E; 0 are

used. Especially, if f = em = the mth coordinate vector in K(a)’, then
Ilf Ilk = em’k = 1/akm.

The Kôthe spaces of special interest to us are the Lf(03B1, oo )-spaces
introduced by Dragilev [ 10]. Here f is a strictly increasing odd function in
the real line, logarithmically convex on the positive axis (i.e. log 0 10 exp
is convex) and a = ( an ) is an increasing unbounded sequence, called an
exponent sequence. We shall refer to a function f with the above proper-
ties as a Dragilev function. The space Lf(03B1, (0) is then defined to be the
Kôthe space with respect to the matrix (ef(k03B1n)). The special case f = id
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gives us the infinite type power series spaces. Our main interest will be in
the case where f is a rapidly increasing Dragilev function, i.e.

limt~~(f(at)/f(t)) =00 for all a &#x3E; 1 and ( «n ) is a stable exponent
sequence, i.e. supn(03B12n/03B1n)  00. The latter condition is equivalent to

Lf(03B1, ~) being isomorphic to its Cartesian square.
For details of the above discussion and for unexplained standard

concepts and notation the reader is referred to [8], [11] and [12].

1. Splitting of exact séquences of Fréchet spaces

1.1. DEFINITION: Let E and F be (F)-spaces with fundamental systems
(·k) and (·p) of seminorms respectively. We say that (E, F) ~ S if

The definition is clearly independent of the particular fundamental
systems. The following fact is an immediate consequence of the defini-
tion :

1.2. PROPOSITION: Let (E, F) ~ S. If E1 is isomorphic to a quotient of E
and if F1 is isomorphic to a subspace of F, then (E1, FI) E S.

Let us next consider the relation S in the case where either one of the

spaces E or F is a Kôthe space. If ( K( a ), F) ~ S, then choosing for f in
(1) the n t h coordinate functional with respect to the canonical basis of
K(a), we get the following:

If ( E, K(b)) ~ S, then choosing for x in (1) the nth basis vector of K(b),
we get
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In fact SI (resp. S2) is equivalent to S in case E (resp. F) is a Kôthe
space as will be shown in the next two propositions.

1.3. PROPOSITION: Let E and F be (F)-spaces and assume E to have an
absolute basis. The following conditions are equivalent:

(i) ( E, F) ~ S.
(ii) There exists an absolute basis (xn) such that ((E, (xn))’ F) E SI’
(iii) For all absolute bases ( xn ) of quotients of E, ((sp(xn), (xn)),

F) E SI’

PROOF: (i) ~ (iii) follows from 1.2 and the discussion following it.

(iii) - (ii) is trivial. (ii) - (i) : Let (akn) be a representation of (x n)’ By the
S1-assumption,

Let f = (~n) E K( a )’. Multiplying both sides of the above inequality by
|~n|, taking sup over n and remembering that ’k = supn(|~n|/akn), we
are led to condition S. 0

The proof of the corresponding fact about S2 is analogous and will be
omitted.

1.4. PROPOSITION: Let E and F be (F)-spaces and assume F to have an
absolute basis. The following conditions are equivalent:

(i) (E, F) E S.
(ii) There exists an absolute basis (yn) in F such that ( E, ( F, (yn))) ~ S2 .
(iii) For all absolute basic sequences (yn) in F, ( E, (sp(yn), (yn))) E S2.

The next lemma will serve as a preparation for the first splitting
theorem, which is one of the two main results of this section.

1.5. LEMMA: Let K(c) be a Kôthe space with a continuous norm and let

(Vp) be a neighborhood basis in an (F)-space F. If (K(c), F) E SI’ there
exists a representation (akn) of the canonical basis of K(c) such that

~p~q~k~r = r(k, q):3

PROOF: Choose p according to the definition of property SI and proceed
by induction as follows:
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For j = 0 choose k = k 1 such that ~~~q~r(0,~, q) ~

Having chosen k 1, ... , km _ 1, take j = km _ and denote the corresponding
k in the definition of S1 by k = km . This gives us a sequence ( k, ) and a
function r(i, ~, q ) such that

Now, given i, choose ~ = ki+1. Then the matrix (a1n) = (c k, )gives us the
desired representation. ~

T

1.6. THEOREM: Let 0 ~ K(a) ~ G - F - 0 be an exact sequence of
(NF)-spaces and assume K(a) to have a continuous norm. If (K(a),
F) E SI’ the sequence splits.

PROOF : Identify K(a) with Ker T and assume that the representation a is
chosen according to 1.5. The nuclearity allows us to use the sup-norms,
thus Ker T = K(a) is the reduced projective limit of the Banach spaces

Let Pk: K(a) ~ Kk and pm,k: Km ~ Kk for m &#x3E; k be the inclusion maps.
Then we have the canonical commutative diagrams: Pk = Pm,k 0 Pm for
m &#x3E; k. Our aim is to extend the mappings Pk to the whole of G in such a
manner that the extended diagram also commutes for m &#x3E; k.

By the nuclearity of K( a ), the mapping Pk is nuclear for each k, hence
admits an extension to G. Let’s denote such an extension by Fk and let

As G, IKer T = 0, there exists Gk E L ( F, Kk ) such that Gk = Gk - T.
Let fn(03BE) = 03BEn for 03BE ~ Kk - It follows from the nuclearity of F that Gk is

nuclear, hence admits a representation

where ( a n ) n is equicontinuous in F’, (yn)n bounded in Kk and (03BEn) ~ ~1.
From this and the fact that  = 1 la n k it follows easily that the set
{aknfn ° Gk}n is equicontinuous in F’ for each k. Denote Gn = fn ° Gk . We
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shall next construct a neighborhood basis (Vk), in F such that {aknGkn}n c
V k 0 and

(where means the same as V0). The construction goes as follows: We
shall pick a suitable subsequence of our given neighborhood basis (Vp)
(and relabel the indices). Start by taking V = lg according to 1.5. By the
equicontinuity of the sequence {a1nG1n}n we can pick a neighborhood VI
such that {a1nG1n}n c Vlo. Having chosen the neighborhoods V1, ... , Vk we
apply 1.5 with Vq = 2-k-1Vk . The neighborhood Vr(k,q) will be denoted
by Vk+1 and it will be chosen small enough to ensure the inclusion

V0k+1. This completes the construction.
Formula (1) implies

The rest of the proof is practically the same as Vogt’s proof of [15] 1.5,
c.f. also [16] 2.2. So we shall only give a brief outline.

The fact that Gn E (1/akn)V0k together with (2) enables us to define, for
fixed n, inductively a sequence (Akn)k in F’ such that

Now define the operator Ak : F - Kk by Akx = (Aknx)n. Let Ãk = Ak ° T
and 7Tk = Fk - Ak . Using (3) we infer that for all m and all x G G there
exists limk~~03C1k,m° 03C0k(x) which will be denoted by m(x). It is now

easy to check that the mapping x - (’"mx)m defines a continuous projec-
tion of G onto Ker T. Thus Ker T is complemented and so our exact
sequence splits. 0

To prove our second splitting theorem we shall again begin with a
lemma, which is in a sense dual to Lemma 1.5. The proof is analogous
and will hence be omitted.

1.7. LEMMA: Let E be an ( F )-space and let K(b) be a Kôthe space with a
continuous norm. If (E, K(b)) E S2, there exists a neighborhood basis
(Uk)k in E such that ~k~j~~(k, j) ~

((Uk) can be chosen as a subsequence of any given neighborhood basis in E.)
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We shall give the second splitting theorem in a generality that slightly
exceeds the needs of this paper but will be needed in [3].

q
1.8. THEOREM: Let 0 ~ E ~ G ~ F ~ 0 be an exact sequence of (NF)-
spaces. Let K(b) be a (not necessarily nuclear) Kôthe space with a

continuous norm and let H be a subspace of K(b). Assume that (E,
K(b)) ~ S2. Then for ail cpEL(H,F) there exists a lifting 03C8, that is

03C8 ~ L(H, G’) and ~ = q ° 03C8.

PROOF: By nuclearity, we can start out with a Hilbertian neighborhood
basis (W’k) in G. Let Uk = E n Wk . By 1.7 we can choose a neighborhood
basis ( Uk ) in E, which is a subsequence of ( Uk ) and

Let (Wk) be the Corresponding subsequence of the (W’k)-basis. Taking
Vk = q(Wk) and denoting Ek = EVk’ Gk = G Wk, Fk = Êvk, we have the
exact sequence

Let now H ~ K(b) and ~ ~ L(H, F). We have for each k the

following canonical diagram:

Define ~k = l1k o ~. By the nuclearity of F, the mapping ~k is nuclear for
each k, hence admits a nuclear lifting 03C8k : H ~ Gk. Let X k =

03C1k+1,k° 03C8k+1 - 03C8k. Then qk ° ~k = 0, hence Im(~k) ~ Ek. Now, X k is
nuclear considered as a mapping into Gk and Ek is complemented in Gk
(because Gk is a Hilbert space), thus X k : H ~ Ek is also nuclear.
Therefore there exists an extension k : K(b) ~ Ek . Set xn, k = k(en) ~
Ek, where ( en ) denotes the coordinate basis in K( b ). By the continuity of
k there exists a function k H m(k) such that

We want to choose a representation (call it (bkn) again) such that
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hold for all n and k. So fix n and apply (1) for j = m(l), k = 1. Let
v (2) = max{~(k,j), m(2)}. Next apply (1) for j = v (2), k = 2 and choose
03BD(3) = max{~(k,j), m(3)}. Continuing this way and denoting b03BDn(k) by bn
we get the desired representation. The rest of the proof goes exactly along
the lines of the proof of [19] 1.4 and will therefore be omitted. D

2. Properties D3( f ) and D4( f )

In what follows we shall denote by f a rapidly increasing Dragilev
function satisfying the following condition:

This will cause no loss of generality because of [8] Proposition 1.5.4.

2.1 DEFINITION: Let E be an (F)-space with a continuous norm and let
... be a fundamental system of norms in E. E is said to

have property D3(f) if 

2.2. DEFINITION: Let E be an (F)-space with a fundamental system of
seminorms  ... E is said to have property D4(f) if Vj3k &#x3E;

It is easy to see that the above definitions are independent of the
particular fundamental systems of seminorms. It is also straightforward
to verify the following:

2.3. PROPOSITION: If E has D3(f) and F is a subspace of E, then F has
D3(f). If E has D4(f) and F is a quotient space of E, then F has D4(f).

If in the above definitions we take E to be a Kôthe space K(a) and
require the inequalities to be valid for all basis vectors or all coordinate
functionals respectively, we are led to the following conditions:
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The conditions d3(f) and d4(f) were introduced by H. Ahonen [1],
d3(f) is the " representation invariant" form of the condition d f in [2] p.
42.

2.4. PROPOSITION: Let E be a nuclear (F)-space with a basis and continu-
ous norm. The following conditions are equivalent:

(1) EhasD3(f).
(2) There exists a d3(f)-basis in E.
(3) All basic sequences in E are d3(f).

PROOF: (1) ~ (3) is obtained immediately from proposition 2.3 and

(3) ~ (2) is trivial. (2) ~ (1): Let (akn) be a representation of our d3(f)-
basis (xn)’ By nuclearity we can choose the system of seminorms:

(The index qk exists because (03BEnakn)n ~ c0.) By the definition of d3(f), we
can choose an index j such that for all M &#x3E; 1 and k there exists an 1 such
that the d3(f) inequality holds. Denote g = f-1 ° log. Now,

2.5. PROPOSITION: Let E be an (FS)-space with an absolute basis. The
following conditions are equivalent:

(1) E has D4(f).
(2) There exists an absolute d4(f)-basis in E.
(3) All absolute bases 01 quotients 01 E are d4(f)

PROOF: Again, there is only one non-trivial implication: (2) ~ (1) : Let
( a n ) be a representation of the absolute d4(f)-basis (xn) in E. Given j,
choose k &#x3E; j such that for all ~ &#x3E; k there exists M such that the d4(f)-in-
equality holds. In order to prove the D4(f)-inequality, we only need to
consider those y ~ El for which   00. Let y E E’ and n EN. If

an = 0 and y( xn ) =1= 0, it follows that  = 00. Hence assuming, as we
do, that   00, we have ajn ~ 0 for all n for which y(xn) =1= 0 and hence
the d4(f)-inequality is valid for all such n. Now,
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hence

for all k &#x3E; j (because of the Schwartz-assumption). Thus for each k &#x3E; j
there is an index qk such that  = |~qk|/akqk. Let g = f-1 ° log. Then
for j  k  ~ and M as above we have

and the proof is complete. 0

The next proposition tells us how the properties D3(f) and D4(f) are
affected by changing the rapidity of growth of the function f. Recall
Dragilev’s definition [10]: If f and h are Dragilev functions such that
cp = f - ou is a rapidly increasing Dragilev function, we say that h

increases more rapidly than f and denote h &#x3E; f.

2.6. PROPOSITION: If E has D3(f) and h  f, then E has D3 ( h ). If E has
D4(f) and h&#x3E;f, then E has D4(h).

PROOF: The proofs are very similar, so let us only consider the D4(f)-case.
Let gf, N(t) = expf (Nf- log t) for N &#x3E; 1. It suffices to find for a given
N  1 an M &#x3E; 1 such that gh, M (t)  gf, N(t) for t sufficiently large. This is
done simply by taking M such that ~(M)  N~(1), where ç = f-1 0 h is
logarithmically convex by assumption. This implies that ~(Ms)  N~(s)
for all s  1. The rest of the proof is now obvious. 0

Note that the conditions D3(id) and D4(id) are the same as the ( DN )
- and (03A9) - conditions respectively, introduced by Vogt and Wagner in
[15] and [20]. The above proposition tells us especially that D3 ( f ) implies
( DN ) and (03A9) implies D4 ( f ), for any Dragilev function f.
We now turn to the study of the connection of the conditions D3 ( f )

and D4 ( f ) to the splitting condition S. We shall begin with the following
two propositions, whose proofs are very much alike, so we choose to give
only the proof of the latter one.

2.7. PROPOSITION. An (F)-space E has D3(f) if and only if 
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(equivalently :  where gM(t) =
exp f(Mf-1 log t).

2.8. PROPOSITION: An (F) - space E has D4(f) if and only if Vj3kVP3M
:3

PROOF: Assume that E has D4(f). Given j, choose k such that for all £
there exists an M such that

From this it follows in a straightforward manner that

Taking polars we get

Thus we only need to choose k’ such that Uk - c -t Uk, to complete the
first half of the proof. (To see that the statement in parentheses is

equivalent is a standard dualization argument.)
Conversely assume that ~j~k~~~g = gM 3

Fix j, k, ~, M and y E E’j and substitute r = 2 in the above
inequality. This yields the D4(f)-condition where instead of k we take k’
such that 2 f or ail y.

2.9. PROPOSITION : Let E and F be (F)-spaces such that E has D4(f) and F
has D3(f). Then ( E, F ) ~ S.

PROOF : Let (’k) [resp. (p)] be a fundamental system in E’ [resp. F].
As F has D3(f), we can choose p such that ~M  1~q~s such that
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Now, E has D4 ( f ), so given j we can choose k such that for all £ there
exists M(~, j) such that

where g’,j = gM(~,j) 
= exp f (M(~, j)f-1 log).Now, for an arbitrary q and

for M = M(~, j), pick s such that (1) holds. Fix y ~ E’j and substitute
r = . Hence we get:

and the proof is complete. 0

This combined with propositions 2.4 and 2.5 yields:

2.10. COROLLARY: If K(a) has d4(f) and E has D3(f), then (K(a),
E) ~ S1. If E has D4(f) and K(b) has d3(f), then (E, K(b)) E S2.

NOTE: It looks as if there were an omission in the latter statement

because of the nuclearity assumption in 2.4. The statement of 2.10 is

however correct as it stands, as can be proved directly.
In abbreviated notation we can write the statements of 2.9 and 2.10 as

follows:

To end this section, we shall prove the easy halves of our characteri-
zation theorems.

2 .1 1 . PROPOSITION: Lf(03B1, ~)-spaces have properties d3(f) and d4(/).

PROOF: The d3(f)-condition can be derived from [2] 111.1. (c.f. also [8]
6.2.1) although a direct proof is just as easy and analogous to the

d 4 ( f )-case, which we shall give.
Given j, choose k such that
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Then, for an arbitrary £ &#x3E; k we have

Hence we have d4(f) with M(j, ~) = 2~.

2.12. COROLLARY: Subspaces of nuclear Lf(03B1, oo)-spaces have D3(f).
Quotients of Lf(03B1, ~)-spaces have D4(f).

PROOF. 2.3, 2.4, 2.5, 2.11.

COROLLARY: If E has D3(f), then (Lf(03B1, ~), E) ~ S1. If E has D4(f),
then ( E, Lf(03B1, ~)) ~ S2.

3. Characterization of subspaces and quotients of Lf ( a, oo )-spaces

In this section we shall deal exclusively with nuclear, stable Lf(03B1,
~)-spaces. We shall say that a space E is A(f , a, N)-nuclear if it is A(a,
N)-nuclear in the sense of [13], with respect to the matrix a = (akn), where
akn = exp f(k03B1n). This is equivalent to the condition 0394(E) ~ 0394(Lf(03B1,
oo)), where 0394(E) is the diametral dimension of E (c.f. [14]). We shall
need the following Komura-type theorem due to Ramanujan and Rosen-
berger [13]: If E is a A(a, N)-Nuclear Fréchet space, then E is isomor-
phic to a subspace of (K(a)1B1 under certain conditions about K(a),
which are certainly satisfied by a nuclear, stable Lf(03B1, oo )-space. One of
the basic facts we shall also need is the existence of an exact sequence

for any stable, nuclear Lf(03B1, oo). This follows from [20] 2.3. (For a proof
of a slightly more general result we refer to [3].)

Let’s make the following convention concerning the rest of the paper.
All Lf(03B1, oo )-spaces encountered are nuclear and stable.

3.1. PROPOSITION: Let E be a A(f, a, N)-nuclear (F)-space. Then there
exists an exact sequence

where G is a subspace of Lf(03B1, ~).

PROOF: Start out with the exact sequence (1). Embed E as a subspace of
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(Lf(03B1, ~))N using the Ramanuj an-Rosenberger theorem discussed above.
Define G to be the pre-image of E under the quotient map: Lf(03B1,
~) ~ (Lf(03B1, ~))N. Restricting the quotient map to G gives us the
desired exact sequence. 0

We are now ready to prove our first main result.

3.2. THEOREM: An (F)-space E is isomorphic to a subspace of Lf(03B1, ~) if
and only if it is A (f, a, N)-nuclear and has property D3(f).

PROOF: The necessity of the conditions follows from 2.12 together with
[13] 3.8 and 3.3.

To prove the sufficiency, assume E is A(f, 03B1, N)-nuclear and has
D3 ( f ). Set up the exact sequence of 3.1. proposition. By 2.13, (Lf(03B1, ~),
E ) E S1, hence the sequence splits by 1.6. This means that there exists an
operator S: E ~ G such that q - S = id E, where q is the quotient map:
G ~ E. It follows that S is an isomorphism into G, which in turn is a
subspace of Lf(03B1, ~). This completes the proof. 0

The proof of the quotient space case uses again the same steps with
appropriate modifications, as the corresponding proof for quotients of
(s ) due to Vogt and Wagner [19]. In addition to the previous results we
shall need the following fact whose proof is standard and can be found in
[19].

3.3. LEMMA: Assume that both the row and the column of the following
commutative diagram of (F)-spaces is exact:

Then there exists the following exact sequence:

3.4. THEOREM: An (F)-space E is isomorphic to a quotient Of Lf(03B1, ~) if
and only if it is A (f, a, N)-nuclear and has property D4(f).

PROOF. The necessity follows again from 2.12 and [13] 3.8 and 3.3.
To prove the sufficiency, assume that E is A(f, a, N)-nuclear and has
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property D4(f). Using the Ramanujan-Rosenberger embedding theorem
we can identify E with a subspace of (Lf(03B1, ~))N. Let Q = (Lf(03B1,
~))N/E. Now, Q is again A(f, a, N)-nuclear, hence we can set up the
exact sequence of 3.1 with Q in the role of E. Thus we get the following
exact row and column:

where G ~ Lf(03B1, ~). By 2.13, (E, Lf(03B1, ~)) E S2, hence 1.8 Theorem

gives us a lifting ~. Then 3.3 applies and we get the exact sequence:

Set up the exact sequence (1) as a column and use again 2.13 (together
with 2.12) and 1.8 to get the following commutative diagram:

Finally, 3.3 gives us the exact sequence:

By our stability assumption, Lf(03B1, oo ) ~ Lf(03B1, oo ) is isomorphic to Lf(03B1,
~), so E ~ G and hence E is a quotient of Lf (a, ~). 0

We shall conclude the paper by characterizing complemented sub-
spaces of Lf(03B1, ~).

3.5. THEOREM: An (F)-space E is isomorphic to a complemented subspace
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of Lf(03B1, ~0) if and only if E is A (f, a, N)-nuclear and has properties
D3(f) and D4(f).

PROOF: The necessity is clear. To prove the sufficiency, assume E has
D3 ( f ), D4 ( f ) and is A(f, a, N)-nuclear. The proof of 3.4 gives us an
exact sequence:

where G is a subspace of Lf(03B1, ~). Now, E and G have D3 ( f ), hence
also E ~ G (as can be seen immediately). So the sequence splits by 2.13
and 1.6. Thus, E fl3 G is isomorphic to a complemented subspace of Lf(03B1,
(0) and so is E. D

3.6. COROLLARY: E is isomorphic to a complemented subspace of Lf(03B1, 00)
if and only if E is isomorphic to a subspace and a quotient space of Lf ( a,
00 ).

Having 3.4 theorem, the question arises of what spaces we get by
taking quotients of stable Lf(03B1a, oo )-spaces. It turns out that if we
consider the wider class of Schwartz Lf ( a, oo )-spaces, this gives us all
nuclear Fréchet spaces. This is the topic of [3].
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