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1. Introduction

A linear recurrence of order two is a sequence of rational integers
ao, ai, a2, ... such that

where M, N E 7 are fixed. Throughout this paper we assume that the
sequence is non-degenerate, that is, the polynomial x2 - Mx + N is
irreducible in [x) and the quotient of the roots of x2 - Mx + N = 0 is
not a root of unity. We study the number of times that an assumes the
given integer value À. We denote this number by m(À). Several

estimates for m ( ) have been given so far. See for instance [1], [2],
[5]. Very recently K.K. Kubota [4] proved that m(À) 4. In this paper
we improve this result by showing that !(À)+(2013À)3, with

finitely many exceptions which can be written down explicitly.
Moreover, the upper bound for ï(À)+ m (- ) is assumed in infinitely
many cases, e.g. if M = 1, N arbitrary, ao = 1, a, _ -1 then we see
that a3 = -1. In Theorem 2 we prove our assertion for sequences with

negative discriminant, that is, M2 - 4N  0. The proof depends
essentially on a p-adic argument given in Theorem 1. No use is made
of Strassmann’s lemma however. In Theorem 3 we prove that m(À) +
ï(-A)3 for all non-degenerate sequences with positive dis-

criminant with a single exception. The last part of the paper is

devoted to Lucas-sequences of the first kind. These sequences are

linear recurrences of order 2 with ao = 0 and a 1= 1. In Theorem 4 and
the corollary to this theorem we prove that m(,k)+m(-,k):-2 if

(À ( ± 2 and m(1) + m(- 1) * 2 unless M = ±1, N = 2, 3, 5. In [3] K.K.
Kubota obtains almost the same result, but the case M = ±1, N =
2(mod 48) remained unproved. The following examples show that
there are infinitely many Lucas-sequences such that m ( 1 ) + m (-1 ) &#x3E;

0010-437X/80/02/0251-18$00.20/2.
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2 : if M = ± 1 then a2 = M = -t 1, if M2 = N ± 1 then we see that

a3 = M2 - N = ± 1 and if M = --t 12, N = 55,377 then a5 = ± 1. It is

not unreasonable to expect that apart from these cases there exist no

Lucas-sequences with m ( 1 ) + m ( -1) 2.

2. The general case

LEMMA 1: Let the non-degenerate recurrent sequence {an}:=o be
defined by an = Man-1 - Nan-2 where ao, al, M, N E 7. Let 0 be a root

of x2 - Mx + N = 0 and put a = a, - aod. Then the recurrent sequence
is given by 

where à, 8 denote the conjugates of a and 0.

PROOF: Induction.

In studying the multiplicity of the sequence {an};=o we may as well
consider the multiplicity of the sequence aO" - â8". Suppose we want
to study the multiplicity of the value a9P - âep for some p E N. By
replacing aOP by a we see that without loss of generality it is

sufficient to consider the multiplicity of the value a - à. Furthermore,
we may assume that the algebraic integers a and à have no rational
integer factor in common.
’ 

LEMMA 2: Let a, 0 be algebraic integers in a quadratic numberfield
and denote their conjugates by à, 0. Suppose a and à have no
common factor in Z. If a(}q - âjq = E(a - à) for some E E {-l, 11 then
there exists a rational integer ¡.L such that êq = E + ¡.La.

PROOF: It follows from a«(}q - 6) = a(Õq - E) that A : = a«(}q - E) is a
rational integer. Multiplication by à yields Àâ = «â(eq - E). Suppose
aâ tA. Then there exists a prime factor p of aà which divides à.
Since p is a rational integer we also have /? j a, contradicting our
assumption that a and à have no common factor in Z. We therefore
conclude that aà ) 1 À and hence 9q - E = .La for some g E Z.

In the following lemmas we assume that the recurrent sequence has
negative discriminant, that is M2 - 4N  0. This implies that a and 0
are algebraic integers in an imaginary quadratic field. We may assume
that 0  arg 0  r/2 and 0  arg a  7r. This can be achieved by taking
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the complex conjugate of the equation a8" - â8" _ --t(a - à), if

necessary, and by the replacements 0 - -0 and a - -a. Since the
recurrent sequence is non-degenerate, we have 0  arg 0  7r/2.
Moreover, a cannot be real. For, if a = à then a8" - â8" _ ±(a - à)
reduces to e" - 9n = 0 and this implies that 0/é is a root of unity. We
therefore assume that 0  arg a  7T.

THEOREM 1: Let K be an imaginary quadratic field and OK its ring
of integers. Let y, 71 E CK and let t E Z, t 0 0. Consider the equation
’)’(1 + t )’ - y(l + t )’ = y - in the unknown r E N.
A) Suppose that y. - 0 and let g E OK divide  "‘ - fl’ for all

k - 1. There are no solutions r E N if one of the following conditions
is satisfied,

1 ) t 0(mod 2) and 2t( yr -  )/g,
2) t Q 0(mod 2) and tt(-y-q - )lg.
B) Suppose that -yq - -00FFij = 0 and yn # 0. Let g E CK divide n - n.

Then r = 1 is the only solution if at least one of the following
conditions is satisfied,

1 ) t 0(mod 3) and jl(n - fi )/g,
2) t 0(mod 3), tl(,q - ij)1 g and (,q2 _ ij2)1 g == 0(mod 3),
3) t 0(mod 3) and ti( ’Tl - r,)lg.

PROOF: The equation y(1 + t’Tl)’ - y( 1 + tij)’ = y - can be written as

and since (k) = k k- we obtain

Since r= 0, the sumfactor in (1) must vanish. We first prove part A of
our theorem, so we assume that yry - 0 0. Suppose t = 0(mod 2)
and bt(yn - )lg. It is easy to see that t "‘-’ /k = 0(mod t/2) if k = 2 and
tk-1/k --- 0(mod t) if k ? 3. This implies that t/2 divides the first term in
the sumfactor, i.e. ÉÎ(yn - Yi)lg which is a contradiction. Suppose
t 0(mod 2) and tt( y - )lg. It is easy to see that t k-’/k --- 0(mod t)
for all k ? 2 and hence tl(yq -  )/g, which is a contradiction. We
therefore conclude that there exists no solution r E N in both cases.
We now prove part B. Assume YTI = §fi and r"2:= 2, then equation (1)
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reduces to

and hence

Suppose r 1, so that the sumfactor must be zero. Suppose t = 0(mod
3). Then 2tk-2/k(k - 1) --- 0(mod t/3) if k = 3 and 2tk-2/k(k - 1) ---
0(mod t) if k ± 4. This implies that t/3 divides the first term of the sum-
factor, that is (r - )/g. This contradicts the assumption we made in
B1 ). Suppose 3 ( t and 3 ( ( r 2 - 2)/g then the term corresponding to
k = 3 is also zero mod t and hence t (n - fi)/g which contradicts the
assumption made in B2). Finally, suppose that t# 0(mod 3) and ti(n -
fi)lg. In this case we know that 2tk-2Ik(k - 1) = 0(mod t) for all k &#x3E; 3.
Hence tl(1] - ij)lg which is a contradiction and thus we have proved
our theorem.

LEMMA 3: Let a and (J be integers in an imaginary quadratic field
with 0  arg a  7T, 0  arg 0  7T/2 and 8/9 is not a root of unity.
Assume that 0P = e + &#x3E;à and Bq = E’ + 03BC,’â for some p, q G N, &#x3E;,
&#x3E; ’ G Z , e, e’ G (- 1 , 1 ) with q &#x3E; p and [ &#x3E; [ &#x3E; 1 . Put q = pr + à, 0 * à  p.
Then a(J8 - a68 = E’E’(a - a)

PROOF: Observe that

Hence

If p = 1, then 8 = 0 and the term between square brackets in (2) is
divisible by JL(a - à). Hence g’aâ (a - à) divides (a - à) -
ErE/(a - à). Since IJLI&#x3E; 1 this is only possible if Er E’ = 1 and our

lemma is proved in this case. Now assume that p ? 2. The numbers a
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and 0 belong to a quadratic field, which we denote by 0(-B/ - d),
where d is a positive square-free integer. Notice that the term

between square brackets in (2) is divisible by x/ - d if d =-= - 1 (mod 4)
and by 2V-d if d -1 (mod 4). Put C(d)=Vd if d --- -1 (4) and
C(d) = 2Vd if de - 1(mod 4). Then (2) implies

Suppose This implies

Using and the triangle inequality, we obtain

and hence

We recall that then it follows
that

Hence, the only solutions of (3) are those corresponding to d = 7, 3, 1.

A simple calculation shows that there are no other solutions than
8=!+!yI-7, 1 + 1, l+yI-3, ] + §x/ - 3 , ) + §x/ - 3 . The latter four
solutions can be ignored since 81 Õ is a root of unity for these values.
We are left with 8 =!+!yI-7. From (3) we deduce that p 3. The
condition 8P = e + ILa, IL E Z, 1 IL 1 &#x3E; 1 implies that (! + !yI - 7)P ::t: 1 is

divisible by a rational integer larger than 1 and this is impossible if
p  3. We therefore conclude that a88 - âés = ~’~(. à), as

asserted.



256

LEMMA 4: Let 8 be an integer in an imaginary quadratic field, and
assume that 0  arg 8  ir/2 and 0/d is not a root of unity. Let p and q
be positive integers such that q &#x3E; p.

’or some choice of the ± signs then

then

PROOF: a) If 8 is such that 8q ± 8P = ±2 then ep 2 and p _ 2.
Furthermore, 1(Jlq  I(JIP + 2  1(J12 + 2, and hence q _ 4. If p = 2, q = 4
then we have a quadratic équation in (J2. Solving this équation yields
9 = ±i, ±B/ 2013 2 which values can be ignored. If p = 2, q = 3 we can
confine ourselves to (J3:t (J2 - 2 = O. If this équation is to have a
solution in quadratic integers, then it has also a solution in Z. This
actually happens for (J3 + (J2 - 2 = 0 and we find 8 = 1, -l±i. In the
same way we proceed in the case p = 1, q = 3. Then we obtain
(J = :t!:t!V -7. If q = 4, p = 1 then ( e 4 _ e + 2, contradicting [ 0 [ *
V2. If q = 2, p = 1 then we find that 0 = :t!:t!V - 7.

b) If 8 is such that (Jq:t 29p = ±3, then (JP 3 and p  2. Further-
more, 1(Jlq  21(JIP + 3 21(J12 + 3 and since &#x3E;B/3 we can conclude
that q _ 4. we solve the equations (Jq ± .28p = ±3 in a similar way as in
a) and we obtain the solutions given in our lemma.

c) If 9 is such that 8q ± 3 9p E {±4, :t2} then (JP , 4 and p _ 4. The
collection of values B satisfying the restrictions 8 ( 4, 0  arg 9  7T/2
and such that (JI Õ is not a root of unity is given .by {2 + )x/ - 7, 2 + !V -
7, 1 + V -7, ! +!V - 15}. It is easy to see that for thèse values (JP 4
with p &#x3E; 3 is impossible. Hence p _ 2. If p = 2 then (J214 whence
9 = 2 + 21/ - 7. We check 9 q 2 ± 3 E {:t41 (J2, :t21 (}2} f or 9 = 2 + 21/ - 7
and find that (p, q, 8) _ (2, 4, ! + lv - 7). If p = 1, then we consider
(Jq-l :t 3 E {:t41 (J, :t:21 (J } f or (J E {! + !V - 7 , + !V - 7, l+V-7, i+
1/2 - 15} and we find that (p, q, ()) = (1, 3,! +!V - 15), ( 1 , 2, ) + ]x/ - 7)
or (1, 4, ! + !V - 7).

LEMMA 5: Let 0 be a complex quadratic integer such that (JI Õ is not a
root of unity and 0  arg 0  #. Suppose there exist p, q E N with q &#x3E; p
and an algebraic integer a such that 0P = e’ + &#x3E;’à, 89 = E + câ f or
some E, e’ E {-1,1} and &#x3E;, .L’E Z. Then IILI &#x3E; [ &#x3E; ’[ .

PROOF: Suppose From

we derive 
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or equivalently,
Since it easily follows that Furthermore,
and j Hence Considering and

we find that Then

implies which is impossible.

LEMMA 6: Let a and 0 be integers in an imaginary quadratic field,
and suppose that 0/é is not a root of unity and 0  arg 0  7T/2,
0  arg a  7T. Suppose Bp = E + câ with li +E Z and 1 g ( &#x3E; 3. Then

aon - âjn = ±(a - à) has no solutions n = q with q &#x3E; p.

PROOF: Suppose a oq _ â8q =,E’(a - à). Put q = pr + 5, with 0 à à 
p, r &#x3E; 0. Then, by Lemmas 2 and 3 we have a8s - â8s = e’ er(a - à)
and the equation a9q - âeq = E’(a - à) can be written as

and hence

In order to apply Theorem 1 we distinguish between two cases.
1) 8s - 9s = 0. Since 0/6 is not a root of unity we see that 8 = 0. We

apply theorem 1 B) with y = a, q = à, g = a - à and t =,Eii. Then

(’Tl - r,)lg = -1. Since Ili &#x3E; 3 the conditions of Theorem 1 B) are
fulfilled, whence r = 1.

II) ()8 - j’:é 0. Since aO’ - àê’ =,e’,E"(a - à), Lemma 2 implies that
0’ = e" + ju’â for some e"E{-I,l} and g’ e Z. We apply Theorem
lA) with y = aO’, q = a, g = aa(a()8 - aÕ8) and t = eIL. Then (yq -
yr,)/ g = aâ (0’ - Õ8)/ aa(a()8 - aÕ8) = J.L’(a - a)/ e"(a - à) = -E yr-
Notice that g divides yq’ - yr,k for all k &#x3E;_ 1. It now follows from

Theorem 1 A) that either r = 0, contradicting r &#x3E; 0, or it 1 IL 1 if J.L ==

1(mod 2) and (11/2) 1 g’ if g 0(mod 2). By Lemma 5 we know that
03BC  03BC 1 and hence lit = 03BC or Ili ( = 211L’1. Suppose Ig _ Ig’l. Then
OP = E ± g’à and 0&#x26; = E" + li’â. Hence 0P ± Bs = -±-2 or 0. Since 0 is

not a root of unity we have OP ± es = ±2. We observe that 0’ 2 and
hence IO’l-2. This contradicts ()8 = e" + J.L 1 a because IlL ’I = IlL 1 &#x3E; 3.
Suppose Il£ = 21g’l then OP = e ± 21i’êt and 0’ = E" + J.L 1 a. Hence OP ±
2 0’ = ±3, --L- 1. Since 0 is not a root of unity we have OP ± 2 0 = ±3. By
Lemma 4 we find that (o, p, 8) (1 2 + ’.B/ - 2 11, 3, 1) or (1 + 2, 2, 1).
Since ()8 = e" + IL’ a, where Ili’l 2, one of the numbers 2 3+!yI - 11 ± 1
and one of the numbers 1 + 2 - 1 must be divisible by a rational
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integer larger than 1, which is not the case. We therefore conclude
that there exists no solution n = q with q &#x3E; p.

LEMMA 7: For given a and 8, all solutions n - 0 of the equations
aO" - â6n = ±(a - ú) are given :

PROOF: The cases i), ii), iii) and vi) can be dealt with immediately.
Notice that

respectively. Hence Lemma 6 implies that n - 12,
n :f:-c 5, n 4 and n - 6 respectively, and this finite collection of

possibilities can easily be checked by considering the corresponding
recurrent sequences.

In case iv) we notice that 04 = 1 + 59. Put n = 4k + 8, with 0  &#x26;3,
then the equation reads

Considering this equation mod 5 if 5 = 0 and mod 50d if 5 &#x3E; 0 we see

that a8s - â8s = --(a - â) (mod 5) if 5 = 0 and aO’ - âê’ = ±(a - à)
(mod 15) if 8 &#x3E; 0. This implies aO’ - âd’ = ±(a - à) and hence

We can now apply Theorem lA) with y aO’, q = à, g = -,/ - 11 and
t = 5. We find that k = 0 and hence n = ô s3 and our solutions

follow. In case v) we notice that 03 = -1 + 3a. Put q = 3k + S, 0 _ 8 
2 and suppose that a8q - âeq = E(a - à) for some E E {20131,1}. Then
Lemma 3 implies that a8s - aÕ8 = (-I)ke(a - à) and the equation
aoq _ â8q = E(« - â) can now be written as aO8(l - 3à )k _
ââs(1- 3a)k = a8s - ââs. If 5 = 0, we can apply Theorem 1 B2) with

y=aBs=a, q =à, g=a-â and t=-3, so that (n - fi )lg = - 1 ,
(112_ij2)lg=-(a+a)=3. We conclude that k = 0, 1. If 0, ap-
plication of Theorem lA) with y = aO’, 11 = a, g 6-B/ - 15 and t = -3
gives us k = 0 as the only solution. Hence q 3k + S _ 3 and our
solutions follow.
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THEOREM 2: Let the non-degenerate .recurrent sequence of rational
integers {am}m:=o be given by ao ? 0, (al, ao) = 1, am = Mam-l - Nam-2
with M, NEZ and M &#x3E; 0. Assume that M2 - 4N  0. If am = ±ao has
more than three solutions m, then one of the following cases holds :

REMARK 1: The restriction M &#x3E;_ 0 is not essential, for negative M we
may consider the sequence a’ m (- 1)’a,, which satisfies the recur-
rence relation a 2 = (-M)a m_1 - Na m_2. Furthermore, if (ao, al) = g &#x3E;

1 then we may consider the sequence am/g and therefore the con-
dition (ao, ai) = 1 is not restrictive.

REMARK 2: If a recurrent sequence assumes the value À more than

three times in absolute value, then it can be transformed into one of
the cases of theorem 2. Let mo be smallest solution of lam 1 = À and
consider the recurrent sequence starting with ani., a,+,, .... Divide

the terms of this sequence by (amo, amo+l) and, if necessary, change the
negative M into (-M) as we have done in Remark 1. The recurrence
that we have thus obtained satisfies the conditions of Theorem 2, and
it assumes its starting value more than three times in absolute value.
Conversely by reversing the process we can construct from the cases
mentioned in Theorem 2 all sequences with m (,k) + m (-,k) -- 3 for
some À E N.

PROOF: of Theorem 2. According to Lemma 1 the sequence is given
by am = (aOm - ââm)/(8 - 8), where 0 is a root of x2 - Mx + N = 0 and
a = ai - aoé. For 0 we choose the root with positive imaginary part.
Furthermore, M = 0 + i and N = Od. Since M &#x3E;_ 0, The real part of 0
is non-negative, and hence 0  arg 0 * 7T/2. Since ao = (a - à )/( 0 - i)
- 0 we see that 0  arg a _ r. Moreover, 9/ 8 is not a root of unity
and a is not real and therefore 0  arg 0  7T/2, 0  arg a  w.

The equation an = ±ao can be rewritten as

We assume that a and à have no common factor. This is no

restriction because we can divide (4) by such a factor.
Suppose that (4) has at least four solutions, which we denote by
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n = 0, p, q, r with r &#x3E; q &#x3E; p &#x3E; 0. According to Lemma 2 we have
0P = e’ + &#x3E; ’à and 0 q = E + u,â, where e’, E E {-1, 1 }, 03BC u,’ E Z .
Because there exists a larger solution r, Lemma 6 together with Lem-
ma 5 implies that ] &#x3E; ’]  ] &#x3E; )  3. We consider the following possibilities :

I) )&#x3E; = ]&#x3E;’]. Then eq ± 0P E {-2, 0, 2}. Since 0 is not a root of unity
we have (Jq::t 0P = ±2. By Lemma 4 we see that (p, q, 9) _
(1, 3, ! + lV - 7) or (1, 2, ! + lV - 7). The conditions 0P = ± 1 + &#x3E; ’a and
(Jq = ::t 1 + .La then imply a = -] + §x/ - 7 or a = % + %x/ - 7 respec-

tively.
II) ] &#x3E; ] = 3, 03BC=2. Then 20 ± 3 8p E {-5, -1, 1, 5} and since 0 is

not a root of unity we have 2(Jq ± 30P = ±5. This implies ]0]P = V5 or
5 and p 2. Furthermore [ 0[ * ][ 0[P + 2  10 and hence q _ 2. Solving
282 ± 38 = ::t5 yields no relevant solutions.
III) [ &#x3E; ] = 3, [ &#x3E;’[ = 1 . Then 0 ± 3 0P G (-4, -2, 2, 2, 4). By Lemma 4 we

see that (p,)=(2,4,i+iV-7), (l,2j+iV-7), (1,4, !+!V -7)
or (l,3,i+B/-15). The conditions 0P = ± 1 + &#x3E;’à and (Jq = ::tl + .Lâ
then imply a =!+!V-7, -!+!V-7, !+!V-7 or -i+iV-15 res-
pectively.

iv) 03BC = 2,03BC = 1. Then (Jq ::t 2(JP = ±3, ±1 and since 0 is not a root
of unity we have 8Q ± 28p = ±3. Lemma 4 implies that (p, q, B) -
(1,3,!+!V-ll) or (1,2,1 +V-2). The conditions (JP = ± 1 +&#x3E;’à and
eq = ± 1 + 03BCâ then imply a = -% + ]x/ - 1 1 or a = x/ - 2 respectively.
Summarizing, if equation (4) has at least four solutions then (a, 8)

assumes one of the following values, (i+iV-7, i+iV"7), (-2 +
bX/ - 7 , 1 + 1X/ - 7) , (-1 + 1X/ - 7, 1 + 1X/ 7), (-1 + 1X/ i i , 1 + 1X/ i i ),
(-+-15, i+iV-15) or (V-2, l+V-2). In the first case it

follows from Lemma 7 that (4) has the solutions n = 0, 1, 2, 4, 12. In
the second case equation (4) reads (-! + 1V - 7) (Ô + Ôx/ - 7) - (-i -
§x/ - 7) (] - §x/ - 7)n = ±V-7 and since ] - )3/2 1/2- 7 = -(2 + 21/ 7)2 we
see that n = 0, 1, 2, 6 are the only solutions. Since -]+)x/ - 7 =
(2 + 2 - 7)2 we see that n = 0, 1, 3, 11 are the only solutions in the third
case. In the fourth, fifth and sixth case the solutions of (4) are given
by Lemma 7 and only in the sixth case there exist more than three
solutions namely n = 0, 1, 2, 5. It is easy to see that we obtain

precisely the sequences mentioned in our theorem.

THEOREM 3: Let {an} nO be a non-degenerate recurrent

sequence of rational integers given by ao &#x3E; 0, (ao, a,) - 1, an - Man-l
- Nan-2 with M, N E and M &#x3E; 0 and M2 - 4N &#x3E; 0. The equation
an = ±ao has at most three solutions n, unless M = 1, N = - l, ao = 1,
a, _ -1. Then an = ± 1 has the solutions n = 0, 1, 3, 4.
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REMARK: The remarks we made after the statement of Theorem 2

are also valid for Theorem 3.

PROOF: Just as in the proof of Theorem 2 we consider the equation

where a and 0 are integers in a real quadratic numberfield O(Vd).
Without loss of generality we may assume that 8 &#x3E;_ 9 . Since 8 + é,
(8-Õ)/yldEZ and el é ± 1 we have 8=éIÕI and 8IÕI+l. Suppose
that (4a) has four solutions given by n = 0, k, 1, m. Eliminating a and
« from a8k - âêk = ±(« - à), «el - aÕ1 = ±(a - à) and a8m - â6’ =

±(a - « ) we obtain

At least two epsilons must be equal to either + 1 or -1. We distinguish
two cases according to whether the first possibility occurs, or the
second.

I) Suppose that 1 &#x3E; k and

If 9 &#x3E; 0 then (B’ - 1)/(Õr -1)1 increases monotonically with r E N as
can be seen from

and (6) cannot occur. If 8  0 we distinguish three cases,
i) k and 1 even. This is equivalent to considering (6) with 82 instead

of 8. Because 82 &#x3E; 0 we have already dealt with this case.
ii) k odd. Then

However, (8’ - 1)/(18Ir + 1) increases with r E N, as can be seen from
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iii) k even, 1 odd. Then comparison of the signs in (6) shows that
-1  e  o. Notice that

and

Hence (6) implies

Suppose that 1 &#x3E; k + 3, then the latter inequality implies 9  2, hence
9 = 1 2 + ’-B15, 2 which is impossible. We therefore conclude that 1 = k + 1.
There exists a third solution m however and (5) implies that

If E = 1 then we know that lm - kl = lm - Il = Il - kl = 1 which is

impossible. If E = -1 then (0- + 1)/(j’ + 1) and (Bk - 1)/(âk - 1) have
opposite signs. Thus we have shown in i, ii, iii) that in (5) at most one
epsilon equals + 1.

II) Suppose that 1 &#x3E; k and

We observe that (0’ + 1 )/( Bx + 1) is an increasing function of x &#x3E; 0 if

8 &#x3E; 0 and thus (7) cannot be satisfied. If à  0, then we distinguish
four cases,
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i) k, 1 even. This is equivalent to considering (7) with 0’ instead of 8.
ii) k even and 1 odd. By consideration of the signs in (7) we see

that - 1  à  0. Hence

which is impossible.
iii) k and 1 odd. Then (7) can be written as

The sequence (82r-1 + 1)/(IÕI2r-1 -1) increases with r E N, as can be seen
from

Note that both equality signs hold if and only if r = 1 and 0 = 1 - é.
Hence k = 1, 1 = 3 and 0 = 1 - à. We know that there exists a third
solution m and (5) implies

Suppose (0 &#x3E; 2, then i = 1 - 0  - 1 and m must be odd. Hence

which implies 20’- 5 04 +50’-60+2--0 and we may conclude
that 01+!V13. There exists no algebraic integer of the shape
0 = 2 1 + 1 2q -BId such that 2  0  1 2 + !VI3. Thus 9  2 and hence 9 = 2 +
+ !-B15. 2 Then it follows that
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and hence m  5. Checking
we find that e = -1 and m = 3, 4.

iv) k odd 1 even. Comparison of signs in (7) shows that -1  8  0.
Hence

and this implies 0’ + 1  2(0 + 1) (0’ + 1). Suppose 1 a k + 3 then (Jk+3 +
1  2( 9 + 1) (ok + 1). One easily confirms that 0  2.2 and hence 0 =

! + lV5. On using 89 = -1 we see that (0’+ 1)/(é’ + 1) = 0’ and (7) now
implies 0’ = (8k + 1)/(9k + 1) s (Bk + 1)/(ê + 1) = (J2«(Jk + 1) and con-
sequently k = 1, 1 = 4. Suppose 1 = k + 1 or k = 1, 1 = 4. We know that
there exists a third solution m and (5) implies that

If E = 1 then the terms have opposite sign, which is impossible. If

E = -1 and m &#x3E; 1 then we are in case i) or ii) since 1 is even. If E = - 1
and m  1 then it follows that either m = 1, 1 = 4, k = 3 or m = 3, 1 = 4,
k = 1 and also that 0 = 2 + lBl5.
We can conclude that the solution of (5) is given by 8 = 2 + 1B15 and

k = 1, 1 = 3, m = 4. It also follows from (5) that â/a = (2 + lBl5)4 and
hence a = ±(] - jx/5). The corresponding recurrent sequence is given
by M = 1, N = -1, ao = 1, a 1= -1. Thus our assertion follows.

3. Lucas-sequences of the first kind

A Lucas-sequence of the first kind is a recurrent sequence defined

by

LEMMA 8: Let {am}:=o be a sequence given by am+2 = Mam+i - Nam
ao = 0, al = 1. Let 8 be a solution of x2 - Mx + N = 0. Then
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PROOF: This is an immediate consequence of Lemma 1.

First, we consider the number of solutions m of the equation am = ±1.
This is equivalent to om - Õm = ±(0 - 6). For reasons of computational
smoothness we shall consider the equation on+l - jnll = --(0 - à) in n. In
the following lemma we consider only quadratic integers in an imaginary
quadratic field, merely because sequences with negative discriminant,
i.e. M2 - 4N  0, are more difficult to deal with than sequences with

positive discriminant.

LEMMA 9: Let 0 be an integer in a quadratic imaginary field and
OÉ Z. If 8n+1 - B"+1= ±(8 - à) has three or more solutions then either
8/8 is a root of unity or 0 + 6 = ±1.

PROOF: Suppose that 8/9 is not a root of unity and suppose that there
exist three solutions which we denote by n = 0, p, q with q &#x3E; p. If q
is odd then «(J2 - Õ2) 1 (Oq+l - êq+l) = ±(8 - Õ) and hence 02 - Õ2 =
-t(O-j). After division by 0-0 we obtain B + e = ±1 and our

lemma is proved. In the remaining lines we therefore assume that q is
even. It suffices to prove the lemma in case 0:5 arg 0 s 7T/2. We also
notice that 0 and 6 have no factors in common. This follows from
OP+l - ép+l = ±(e - 8), which can be written as eP + 8p-’ é + ... + éP =
± 1. Hence 0  arg 0  ir/2. By Lemma 2 we know that Bp = e(1 + lié)
for some u e Z and E E {-1, 1}. According to Lemma 6 we have
3, since there exists a larger solution q. Then OP = e(1 + ILÕ)
implies 10 IP - 1 310 1. Suppose p &#x3E;_ 3, then 10 1  2. If 10 1 = -B/2 then
0 E l 2 + 2/ - 7, / - 2, 1 + i}. In the first case our lemma is proved and
the two latter cases can be ignored because 0 and à cannot have a
common factor. If 10 1 = -B/3 then 0 e Il 2 + 2 ’-B/ - 11, 1 + / - 2, / - 3,
2 + 1B1 - 3}. In the first case our lemma is proved. If 8 = 1 + / - 2 then
we deduce from 10 IP - 1 3101 that p  3 and hence p = 3. However
(1 + -B/ - 2)’ = -5 + -B/ - 2 which contradicts 03 = -+-Çl + go), IL E Z.
The cases 0 = V 2013 3, + ’-B/ - 2 3 can be ignored. Assume that p - 2. If
p = 1, then 0 = --L(l +,go) and by comparison of the imaginary
parts we see that g = T- 1, hence 0 + i = --t 1. Suppose p = 2. Then
02 = E(1 + 1£ê) and this implies 82 - 82 = -,Eg (0 - 6), Hence 0 + à = - e&#x3E;.
Suppose that Ili &#x3E; 2. Then, according to Lemmas 2 and 3 we see that
q = pr = 2r for some r EN and (Jq+l - êq+l =,,r (0 - 6). On substituting
q = 2r and 82 = E(1 + ,£à) in Bq+’ - êq+l =,,r(o _ e), we obtain

We now apply Theorem 1 with
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Notice that ’YT/ - f’ij = o. Since (T/ - ’ij)lg = -1 and (T/2- ’ij2)lg =
-(0 + i) = eJ-L, Theorem IB implies that r = 0, 1, corresponding to the
known solutions 0 and p. We therefore conclude that Ilil = 1, hence
6 + à = ± 1 and our lemma is proved.

THEOREM 4: Let am+2 = Mam+l - Nam, ao = 0, al = 1 be a non-

degenerate Lucas-sequence. Then the equation lanl = 1 has at most
two solutions, unless

PROOF: Without loss of generality we may assume that M &#x3E; 1. We
separate the proof into two parts.

I) M2 - 4N  o. Suppose that laml = 1 or, equivalently, (Jm - 9"‘ _
±(0 - j), has three or more solutions. Then Lemma 9 implies that
B+e=±1 and since 9+9=M&#x3E;_1 we have M= O+j= 1. If N = 2,
3 or 5 then 0 = 1 2 + IV - 2 7, 2 ’+ ’V - 2 11 or 2 1 + ’-B/ - 2 19 respectively and
Lemma 7 yields all solutions given in the exceptional cases a), b) and
c) in our theorem. Assume NO 2, 3, 5. Notice that {am}:=O==0, l, l,
1, ... (mod N) and thus laml = 1 implies am = 1. Notice that f am},n=0 =
0, 1, 1, 0, -1, -1, 0, 1, 1, ... (mod(N - 1)) and thus am = 1 implies
m 1, 2 (mod 6). Hence we must solve the equation en+1- 6"+’ = 0 -
Õ with n == 0, 1 (mod 6). Suppose n - 1 (mod 6) then

Since both factors are rational integers it follows that 8(n+ 1)/2 +
Ó(n+1)/2 = (O(n+1)12 _ j(n+1)12)/(o - j) = ±1. Thus we find 28(n+I)/2 =
:L-(O - d + 1) = --t20 which implies n = 1. We now assume that n ---

0 (mod 6). Notice that 01 + 1 = (8 + 1) (02 _ 0 + 1) = _(O + 1) ( e9 -1 ) _
-(0 + 1) (N - 1). Put n = 3r then on+l _ en+1 =0 - 8 implies

We know that r is even, by 6 n, and we may as well consider

We apply Theorem 1 with y= 0, q =0+1, t=N-1, g= 0-d. Note
that (yq - y1j)lg = 2. Since t = N - 10 1, 2, 4 Theorem 1 A implies
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that r = 0. Hence there exists no third solution if N# 2, 3, 5, as
asserted.

II) M2 - 4N &#x3E; 0. In this case the solutions 0, 8 of x2 - Mx + N = 0
are real. Suppose that 88 = N  0 then it is easy to see that am+1 &#x3E; am &#x3E; 0

if m &#x3E; 1 and the theorem is proved. Suppose that 88 = N &#x3E; 0. Then
without loss of generality we may assume that 8 &#x3E; 8 &#x3E; 0. The function
8X - 8x is strictly increasing in x &#x3E; 0 and there cannot exist three

solutions for the equation 8m - 8m = :1:( (J - 8).

COROLLARY: Let {am}m:=o be a non-degenerate Lucas-sequence of the
first kind. Let À ± 2. Then lam = À has at most two solutions m.

PROOF: Let d be the smallest integer such that ladl = À or,

equivalently, 8d - 8d = ±À (0 - é). If (Jq - 8q = :1: À (8 - 8) for some q E N
then (J(q,d) == 8(q,d) (mod À(8 - 8)) where (q, d) is the largest common
divisor of q and d. Hence (J(q,d) - Õ(q,d) = ..tÀ «(J - Õ) for some &#x3E; é Z.
Furthermore, 8(q,d) - 6(q,d) divides (Jd - Õd and hence IL Il. Thus 8(q,d)-
8(q,d) = :1: À «(J - 8) and since d is minimal and À &#x3E; 2 this implies d =
(q, d), i.e. d 1 q. Put q = rd then we find that (ed)r - (8d)r = :1:( (Jd - 8d).
By Lemma 8 this implies that at = ±1 for the Lucas-sequence given
by a+2 = M*a+l - N*a with M* = 8d + éd and N* _ (88)d. Ac-
cording to Theorem 4 there exist at most two solutions for la1 = 1,
unless N* = 2, 3, 5. Since N* = (88)d is a perfect power, the latter
cases cannot occur and our corollary is proved.
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