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0. Introduction

For a metric space X, the hyperspace 2x of nonempty compact
subsets and the hyperspace C(X) of nonempty compact connected
subsets are topologized by the Hausdorff metric, defined by p(A, B) =
inf {E: A C N,(B) and B C NE(A)}. It is easily seen that the hyperspace
topologies induced by p are invariants of the topology on X. It is

known that 2x ~ Q, the Hilbert cube, if and only if X is a non-

degenerate Peano continuum, and C(X) ~ Q if and only if X is a

nondegenerate Peano continuum with no free arcs [6]. In this paper
we obtain various characterization theorems for hyperspaces of non-
compact connected locally connected metric spaces.

THEOREM 1.6: 2x is an ANR (AR) if and only if X is locally
continuum-connected (connected and locally continuum-connected).

THEOREM 3.3: 2X ~ QBpoint if and only if X ix noncompact, con-
nected, locally connected, and locally compact.

THEOREM 4.2: X admits a Peano compactification X such that
(2X, 2X ) ~ (Q, s) if and only if X is topologically complete, separable,
connected, locally connected, nowhere locally compact, and admits a
metric with Property S.
Analogous results are obtained for C(X). Additionally, we discuss

two examples relating to local continuum-connectedness, and an
example relating to Property S.

0010-437X/80/02/0139-14$00.20/0
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1. Hyperspaces which are ANR’s

A growth hyperspace 19 of a metric space X is any closed

subspace of 2x satisfying the following condition: if A E G and
B E 2x such that B D A and each component of B meets A, then
B E W. Both 2x and C(X) are growth hyperspaces of X. Another
growth hyperspace of particular interest is GA(X), the smallest growth
hyperspace containing A E 2x. Thus GA(X) = {B E 2x: B D A and

each component of B meets A}. Growth hyperspaces of Peano

continua were studied in [4].

LEMMA 1.1: (Kelley [ 11 ]). Let A, B E2x such that B E GA(X) and
B has finitely many components. Then there exists a path 03C3 : I ---&#x3E; GA(B)
such that 03C3(0) = A and 03C3(1) = B.

DEFINITION: A metric space X is continuum-connected if each

pair of points in X is contained in a subcontinuum. X is locally
continuum -connected if it has an open base of continuum-connected
subsets.

Note that in verifying the local property it is sufficient to produce,
for each neighborhood U of a point x, a neighborhood V C U of x
such that each y E V is connected to x by a subcontinuum in U. For
topologically complete metric spaces, the properties of local con-
nectedness, local continuum-connectedness, and local path-connec-
tedness are equivalent, since every complete connected locally con-
nected metric space is path-connected. Examples given later show
that in general these properties are not equivalent.

LEMMA 1.2: Let A E 2X, with X a locally continuum-connected
metric space. Then for arbitrary E &#x3E; 0 there exists Â E GA(X) such
that p(A, Â)  E and Â has finitely many components.

PROOF: For each n a 1 choose En &#x3E; 0 such that, whenever x E A
and y E X with d(x, y)  En, there exists a continuum in X connecting
x and y with diameter less than min {1/n, E}. For each n let An C A be
a finite En-net for A. Then for each p E An+l there exists a continuum

Lp in X with diameter less than min{1/n, E}, connecting p and some
point of An. Set A 1= A1 and An+1 = U {Lp : p E An+1} for each n &#x3E; 1. Then
A = cl (U1~ An) = U ~1 An U A has the required properties (note that
each component of A meets the finite subset A1).

LEMMA 1.3: Let X be a connected and locally continuum-con-
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nected metric space. Then every compact subset is contained in a
continuum.

PROOF: Let A be a compact subset of X There exists by Lemma
1.2 a compact set Â ~ A such that Â has finitely many components. It
is easily seen that X is continuum-conected. Thus the components of
A may be connected together by the addition of a finite collection of
subcontinua of X, thereby producing a continuum B ~ Â J A.

LEMMA 1.4: If X is a locally continuum-connected metric space,
then every growth hyperspace G of X is locally path-connected.

PROOF: Given A E G and E &#x3E; 0, choose 8 &#x3E; 0 such that whenever

x E A and y E X with d(x, y)  3, there exists a continuum in X of
diameter less than E connecting x and y. We claim that for any B EE 19
with p(A, B)  8, there exists a path a: I - W between A and B, with
p(A, 03C3(t))  E for each t. We may assume by Lemmas 1.1. and 1.2

that each of A and B has finitely many components. Adding a finite
collection of continua to A U B, which connect each component of A
to B and each component of B to A, and all of which have diameter
less than E, we obtain an element C E wA(x) fl GB (X) such that

p(A, C)  E. Then paths between A and C, and B and C, given by
Lemma 1.1, will provide the desired path.

LEMMA 1.5: Let 2 C 2x be compact and connected, and let A E S.
Then USE GA(X).

PROOF: Clearly, U -? is a compact subset of X and contains A. We
show that each component of U S meets A. Let x E D E D be given.
For each E &#x3E; 0 there exists an E-chain {Di} in S between D and A,
and therefore an E-chain {qi} in U S between x and some point of A.
Since A is compact, there exists a E A such that for each E &#x3E; 0, there
is an E-chain in U S between x and a. Then x and a are in the same

quasi-component, hence the same component, of U S.

THEOREM 1.6: If X is locally continuum-connected (connected and
locally continuum-connected), then every growth hyperspace G of X is
an ANR (AR). Conversely, if there exists a growth hyperspace G such
that G ~ C(X) and W is an ANR (AR), then X is locally continuum-
connected (connected and locally continuum-connected).

PROOF: We use the Lefschetz-Dugundji characterization of metric
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ANR’s [9]: a metric space M is an ANR if and only if, for each open
cover a of M, there exists an open refinement /3 such that every
partial 03B2-realization in M of a simplicial polytope K (with the
Whitehead topology) extends to a full a-realization of K. Thus, let a
be an open cover of G, and assume that the elements of a are open
metric balls, with respect to the Hausdorff metric on ?. Take an open
star-refinement a’ of a. By Lemma 1.4 there exists an open
refinement /3 of a’ such that each element of f3 is path-connected.
Then every partial 03B2-realization f : L - W of a polytope K extends to
a partial a-realization g : L U K1--&#x3E; G, where K’ is the 1-skeleton of K.
Using Lemma 1.5, we may extend g to a full a-realization h :K--&#x3E; G

by the following inductive procedure. Consider an n-simplex 03C3 of K,
n a 2, such that h has been defined over bdu. Let r : a - C(bdo-) be
any extension of the natural injection bd03C3 --&#x3E; C(bdu). Then define h
over a by setting h(x) = U{h(p) : p E r(x)}. Thus W is an ANR.

If additionally X is connected, then by Lemma 1.3 every compact
subset of X is contained in a continuum. Thus for arbitrary A, B E W,
there exists a continuum C containing A U B, and C E W. By Lemma
1.1. there exist paths in WA(C) from A to C and in WB(C) from B to C,
hence a path in G between A and B. Thus W is path-connected. Since
the argument of the preceding paragraph shows that W is always
n-connected for n &#x3E; 1, it follows that W is an AR.

Conversely, suppose there exists a growth hyperspace W of X such
that W J C(X) and W is an ANR. Let x E X and a neighborhood U be
given. Since W is locally path-connected, there exists a neighborhood
V of x such that for each y E V, there exists a path f : I - W between
3{x} and 3{y} with each f(t) C U. By Lemma 1.5, u{f(t): tEI} C U is a
continuum. Thus X is locally continuum-connected. And if W is an
AR, and therefore connected, X must also be connected.
The ANR (AR) characterizations for the hyperspaces 2X and C(X)

of a compact metric space X were obtained by Wojdyslawski [15].
These characterizations were extended to complete metric spaces by
Tasmetov [13]. Independently, some partial results along these lines
were announced by Borges [3].
The following examples show that for noncomplete metric spaces,

the property of local continuum-conectedness lies strictly between
local connectedness and local path-connectedness.

EXAMPLE 1.7: There exists a connected and locally connected
subset of the plane which is not locally continuum-connected.

PROOF: There exist disjoint subsets A and B of the plane E2 such
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that every nondegenerate continuum in the plane meets both A and B
([10], p. 110). Thus A contains no nondegenerate subcontinuum, and
is not locally continuum-connected. However, A is connected and
locally connected. Suppose A = Ai U A2 is a separation. Then there
exists a closed subset C of the plane separating A1 and A2. Since C
cannot be 0-dimensional, it contains a nondegenerate subcontinuum
D. Then D must meet A, impossible. Thus A is connected, and the
same argument applied locally shows that A is locally connected.

EXAMPLE 1.8: There exists a connected and locally continuum-
connected subset of the plane which is not locally path-connected.

PROOF: We begin with the continuum

A countable collection fsil of progressively smaller copies of S is
then fitted inside the individual loops of S as indicated, creating local
continuum-connectedness on the limit segment L = {(0, t) : |t|  1} C S.
Then for each i, a countable collection {Sij} of copies of S is similarly
fitted inside the loops of Si. The infinite iteration of this procedure
produces the desired space X = S U ( U {Si: i &#x3E; 1}) U
(U{sij :i, j ~ 1})U....
X is connected and locally continuum-connected. However, X is

not locally path-connected at any point on a limit segment such as L.
It suffices to show that there exists no path in X between the

endpoints a = (-1/ 7T, 0) and b =(l/7r,0). Suppose there exists such a
path 0". Then for some i (in fact, for infinitely many i), a must
contain a subpath Ui in Si U (U{Sij : j ~ 1}) U ... between the cor-

responding endpoints ai and bi of Si. By the same argument 03C3i must

contain a subpath 03C3ij in some Sij U (U{Sijk : k ~ 1}) U ... between the
endpoints aij and bij of Sij. Thus the path a must pass through each
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member of some nested sequence (Si, Sij, Sjik, - - .). But this is im-

possible, since the limit point of such a sequence is not included in X.

2. Peano compactifications with locally non-separating remainders

Since 2’ Q for every non-degenerate Peano space Y, one way to
study the hyperspace of a noncompact space X is to consider, when
possible, a Peano compactification X of X, and the corresponding
Q-compactification 2X of 2X. The procedure works if the remainder
XBX is sufficiently "nice". In this section we specify the desired
property of the remainder, and establish the conditions under which
such a compactification exists.

DEFINITION: A subset A of X is locally non-separating in X if, for
each nonempty connected open subset U of X, UBA is nonempty and
connected.

Note that if A is locally non-separating, so is every subset of A. It
is easily shown that if a locally connected space X has a connected
open base {Ua} such that each Ua BA is nonempty and connected, then
A is locally non-separating.
The motivation for considering locally non-separating subsets

comes from the following pair of results on positional properties of
intersection hyperspaces. For A¡,..., An E 2X, we define the inter-

section hyperspaces 2x (A 1, ..., An) = {F E 2x : F fl Ai~~ for each i}
and C(X; A1, ..., An) = {F E C(X) : F n A1~~ for each i}. For any
nondegenerate Peano space X, 2X (A1, ... , An) ~ Q, and

C(X; A1, ..., An) = Q if additionally X contains no free arcs [7]. A
closed subset F of a metric space Y is a Z-set in Y if, for each

compact subset K of Y and E &#x3E; 0, there exists a map q : K - YBF
with d(n, id)  E.

PROPOSITION 2.1: Let A be a closed subset of a Peano continuum
X. Then 2X (A) is a Z-set in 2x if and only if A is locally non-
separating in X. More generally, for closed subsets A, B1, ..., Bn of X,
2X (A, Bi,..., Bn) is a Z-set in 2X (B1, ..., Bn) if and only if A is locally
non-separating in X and BiBA is dense in Bi for each i.

PROOF: Suppose A satisfies the stated conditions, and let E &#x3E; 0 be

given. We must construct a map 7y 2X (B1, ..., Bn) ~
2X (B1, ..., Bn)B2X (A, B1, ..., Bn) such that p(n, id)  E. For each i,
there exists a finite E/3-net 03B2i for Bi such that Bi C BiBA. By [7], there
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exists an "expansion" map h: 2x (B1, ..., Bn) ~ 2x ({B1, ..., Bn) such

that p(h, id) --5 E/3. And by [8], 2x (03B21, ..., 03B2n) = inv lim
(2ri({03B21, ..., 03B2n), fi), where {0393i} is a sequence of compact con-

nected graphs in X, with each Fi containing f31 U ... U f3n in its vertex
set, and each bonding map fi : 2ri+1({03B21, ..., 03B2n )~ 2ri(03B21, ..., f3n) induced
by a map ~i : 0393i+1 ~ C(0393i) such that ~i(b) _ {b} for each b E

03B21 U ... U 03B2n. Thus for some i the projection map pi: 2X (03B21 ..., 03B2n) ~
2ri(03B21, ..., 03B2n ) satisfies p(pi, id)  E/3.

Let ru be a finite cover of Fi by connected open subsets of X with
diameters less than E/3. There exists a subdivision SdTi; of Fi such
that each simplex of SdTi is contained in a member of 611. To each

vertex v of SdIi we assign a point K(v) E ~ {U E u : v E U}BA, with
K(b) = b if b E {03B21 U ... U 03B2n. Then K may be extended to a map
K : SdTi ~ X BA such that, for each simplex a of SdIi, K (U) C UBA for
some U E ru with u C U (we use the fact that each UBA is con-

nected, locally connected, and locally compact, therefore path-con-
nected). Thus d(K, id) ,E/3, and the induced map k : 2ri(03B21, ..., (03B2n ) ~
2XBA({03B21, ..., 03B2n) satisfies p(k, id)  E/3. The composition kpih :
2x (B1, ..., Bn) --&#x3E; 2xBA (03B21, ..., f3n) C 2x(Bi, ..., Bn)B2X (A, Bu ..., Bn)
satisfies p(kpih, id)  E, and 2X (A, B1, ..., Bn) is a Z-set in

2 x (B1, ..., Bn).
Conversely, suppose the Z-set condition is satisfied. Then each BiBA

must be dense in Bi, otherwise 2x(A, B1, ..., Bn) has a nonempty
interior in 2x(B,,...,B,,). For each i, choose bi E BiBA. Given a
neighborhood U of a point y E A, let V be a connected open

neighborhood of y such that V C UB{b1, ..., bn}. We show that VBA is
connected, thus A is locally non-separating. Suppose VBA = Vo U VI
is a separation. There exists a continuum M in V such that M n
Vo ~~~ M ~ V1. Let F = {F E 2X (M) : FBM = {b1 ..., bn }}. Then 9
is homeomorphic to the connected hyperspace 2M, and ’,f C

2x (B1, ..., Bn ). For each E &#x3E; 0 there exists a map n:F--&#x3E;2xB2x(A)
with p(n, id)  E. If E is sufhciently small, there exist elements Fo,
FI E F such that n (F.) n Vo ~ ~ and n(F1) fl Vo = 0, and q (F) fl bd V =
0 for every F E F. Then n(F) = {n(F): n(F)~  Vo~~} U {n(F):
n(F) fl Vo = 0} is a separation of the connected space n(F), impossible.

PROPOSITION 2.2: Let A, B1, ..., Bn be closed subsets of a Peano
continuum X. Then C(X ; A, BI, ..., Bn) is a Z-set in C(X ; BI, ..., Bn)
if and only if A is locally non-separating in X and Bi BA is dense in Bi
for each i.

PROOF: The argument for obtaining the Z-set property is the exact
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parallel of the corresponding argument in the proof of Proposition
2.1. For the converse, suppose C(X; A, B1, ..., Bn) is a Z-set in

C(X; B1, ... , Bn). Actually, we only use the fact that

C(X; A, B1, ..., Bn) has empty interior in C(X; B1, ..., Bn). It is im-
mediate that each Bi BA must be dense in Bi, and XBA must be
connected. Thus there exists a connected open set G in XBA such
that G fl Bi ~~ for each i and G fl A = 0. Given a neighborhood U of
a point y E A, let V be a connected open neighborhood of y such that
V C UBG, and choose E &#x3E; 0 such that NE(V) C U. Let W =

{VBA, G, Wl, W2, ... 1 be an open cover of XBA such that each W is
connected and has diameter less than E. By connectedness of XBA,
we obtain a chain in V between VBA and G, which in turn leads to
connected open sets H and W in XBA such that H J G, H fl V = 0,
H n W~~~ W n V, and diam W  E. Then V U W C U is a con-
nected open neighborhood of y, and we claim that (VU W)BA is

connected. If there exists a separation (VU W)BA = Vo U VI, with the
connected set W contained in VI, then ( V U W U H)BA =
Vo U ( V1 U H) is also a separation. However, there exists a continuum
K in the connected open set V U W U H which meets each Bl, and
also meets the open sets Vo and VI. Then K is in the interior of

C(X ; A, Bi,..., Bn) in C(X ; B1, ..., Bn), impossible.

DEFINITION: A metric d for a space X has Property S if, for each
E &#x3E; 0, there exists a finite connected cover of X with mesh less than
E.

If X admits a metric with Property S, then X is locally connected.
Without added conditions, the converse is not true (see Lemma 3.2
and Example 4.3).

DEFINITION: A metric d for a connected space X is strongly
connected if, for each x, y E X, d(x, y) = inffdiam M : M is a con-
nected subset containing x and y}.
A convex metric on a Peano continuum is an example of a strongly

connected metric. If X admits a strongly connected metric, then X is
locally connected. Conversely, the proof of the following lemma
shows that every connected, locally connected metric space admits a
strongly connected metric.

LEMMA 2.3: Let X be a connected metric space which admits a

metric with Property S. Then X admits a strongly connected metric
with Property S.
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PROOF: Let d be a metric with Property S. Define a topologically
equivalent metric d* for X by d*(x, y ) = inf{diam M : M is a con-
nected subset of X containing x and y}. It is easily verified that d* is
a metric function. Since d*(x, Y) - d(x, y), every open set with res-
pect to d is open with respect to d*. The converse is easily
established, using the local connectedness of X. And since the
diameters of connected subsets are the same with respect to d and

d*, d* is strongly connected and has Property S.

PROPOSITION 2.4: A connected metric space X has a Peano com-

pactification X with a locally non-separating remainder XBX if and
only if X admits a metric with Property S.

PROOF: Suppose X admits a metric d with Property S. We may
assume by Lemma 2.3 that d is also strongly connected. Then the
completion (X, d) of (X, d) is the desired Peano compactification.
That (X, à) is connected and has Property S follows from the same
properties for (X, d). And since a complete, totally bounded metric
space is compact, (X, i) is a Peano compactification of (X, d).
Given a nonempty connected open subset U of X, we show that

the nonempty set U n X is connected, thereby verifying that XBX is
locally non-separating in X. Suppose u n x = H U K is a separation.
Since U is open in X, U n X is dense in U, and U C H U K (the
closures are taken in X). We must have H n K n U~~, otherwise
U = (H n u) U (K n U) is a separation. Let p E H rl K n U. Choose
8 &#x3E; 0 such that the 303B4-neighborhood of p lies in U, and choose points
h and k of H and K, respectively, lying in the 5-neighborhood of p.
Then d(h, k)  28, and since d is strongly connected there exists a
connected subset M of X containing h and k, with diam M  28.

Then M lies in the 303B4-neighborhood of p, therefore in U. Thus

M c U n X is a connected set meeting both H and K, and H U K
cannot be a separation of U rl X.

Conversely, suppose X has a Peano compactification X such that
XBX is locally non-separating. Take any admissible metric d on X,
and let d be its restriction to X. For every connected open cover {Ui}
of X, {Ui n X} is a connected cover of X. Since (X, d) has finite

connected open covers with arbitrarily small mesh, so does (X, d),
and d has Property S.
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3. Hyperspaces which are homeomorphic to QBpoint

LEMMA 3.1: Let X be a connected, locally connected metric space,
with compact subsets A and B such that A C int B. Then only finitely
many components of the complement 3XBA meet XBB.

PROOF: Each component U of XBA must have a limit point in A,
otherwise U is both open and closed in X. Thus if UBB 0 0, we must
have U n bdB ~~. Suppose there exists an infinite sequence {Ui} of
distinct components of XBA, each extending beyond B. Choose

y; E U; n bdB for each i. By compactness of bdB, we may assume
that y; ~ y E bdB. Since y has a connected neighborhood in XBA, the
component of XBA containing y meets Ui for almost all i, contradic-
ting our supposition that the Ui are distinct components.

LEMMA 3.2: Every connected, locally connected, locally compact
metric space admits a metric with Property S.

PROOF: Let X = X U 00 be the one-point compactification of such a
space X. Then X is metrizable, since X is separable metric. We claim
that for any admissible metric d on X, the restriction of d to X has
Property S (and therefore X is a Peano continuum). Given E &#x3E; 0,
choose a compact subset A c X such that the complement XBA lies
in the E-neighborhood of 00, and let B C X be a compact neighbor-
hood of A. Then by Lemma 3.1, only finitely many components of
XBA extend beyond B. Thus a finite connected cover of B with mesh
less than e, together with the finite collection of components of XBA
extending beyond B, provides a finite connected cover of X with
mesh less than E.

THEOREM 3.3: 2x ~ QBpoint if and only if X is a connected, locally
connected, locally compact, noncompact metric space. Similarly,
C(X) ~ QBpoint if and only if X satisfies the above conditions and
contains no free arcs.

PROOF: Suppose X satisfies the stated conditions. By Lemma 3.2, X
admits a metric with Property S, and by Proposition 2.4, X has a
Peano compactification X with locally non-separating remainder.
Since X is locally compact it must be open in its compactification X,
and the remainder XBX is closed. By Proposition 2.1, the intersection
hyperspace 2X (X BX ) is a Z-set in 2X. Thus (2X, 2X (X BX )) and ( Q x [0, 1 ],
Q x {O}) are homeomorphic as pairs, and 2X = 2X B2X (X BX ) is
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homeomorphic to Q x (0, 1], which is homeomorphic to QBpoint (since
Cone Q - Q).

If in addition X contains no free arcs, then neither does X, and the
hyperspaces C(X) and C(X; XBX) are copies of Q. By Proposition
2.2, C(X; X BX ) is a Z-set in C(X ), and it follows as above that

C(X) = QBpoint.
Conversely, if either 2x or C(X) is homeomorphic to QBpoint, X

must be a connected, locally connected metric space by Theorem 1.6.
Since X has a closed imbedding into both 2x and C(X), X must be
locally compact. Obviously, X is noncompact, and if C(X) = QBpoint,
X contains no free arcs (otherwise C(X) contains an open 2-cell).

4. Hyperspaces which are homeomorphic to 12

With the Hilbert cube Q coordinatized as II i~ [0, 1], let s =

111 (0, 1) C Q. Anderson [1] showed that s is homeomorphic to the
Hilbert space 12 = f(xi) E R~ : ~~1 XI  ~). Any subspace P of Q such
that (Q, P) = (Q, s) is called a pseudo-interior for Q, and its comple-
ment QBP is a pseudo-boundary. A non-trivial example of a pseudo-
boundary is the subset ~ = {(Xi) E Q : 0  inf xi and sup xi  1}.
Kroonenberg [12] has given the following characterization for

pseudo-boundaries, based on the original characterization by Ander-
son [2].

LEMMA 4.1: Let IKil be an increasing sequence of subsets of Q
such that:

i) each Ki - Q,
ii) each Ki is a Z-set in Q,

iii) each Ki is a Z-set in Ki+1,
iv) for each E &#x3E; 0, there exists a map f : Q ~ Ki for some i such that

d(f, id)  E.
Then U 1~ Ki is a pseudo-boundary for Q.

THEOREM 4.2: The following conditions are equivalent :
1) X has a Peano compactification X such that (2X, 2X ) ~ (Q, s),
2) X has a Peano compactification X such that (C(X), C(X )) ~

(Q, s),
3) X is a topologically complete, separable, connected, locally con-

nected, nowhere locally compact metric space which admits a
metric with Property S.
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PROOF: Suppose X satisfies condition 3). Then by Proposition 2.4, X
has a Peano compactification X with a locally non-separating
remainder. Let d be a convex metric for X. Since X is topologically
complete and nowhere locally compact, the remainder XBX must be a
dense countable union U 1~ Fi of closed, locally non-separating sets in
X. We may assume that F C Fi+1 and F has empty interior in Fi+1, for
each i. This can be arranged inductively as follows. Select a dense
sequence {xn} in F, a sequence {yn } in XBFi such that d (xn, Yn)  1 /n
for each n, and a sequence {zn} in (9BX)BFi such that d(Yn, Zn)  1 / n
for each n. Then replace F+, by the compact set F U F+, U (zn : n a 1}.
By Proposition 2.1, each intersection hyperspace 2X(Fi) is a Z-set

copy of Q in 2x, and each 2x (Fi) = 2x (Fi, Fi+i) is a Z-set in 2’(Fi+,).
Given E &#x3E; 0, we claim there exists a map f : 2x --&#x3E; 2x (Fi ) for some i, such
that p(f, id) :5 e. For D E 2x, define f (D) to be the closed E-neighbor-
hood of D in X (with respect to the convex metric j). Suppose
f(2X)B2X (Fi) ~~ for each i. Then there exists a convergent sequence
yi - y in X such that the E-neighborhood of yi is disjoint from F, for
each i. It follows that the E-neighborhood of y is disjoint from
U i F = X BX, contrary to the fact that XBX is dense in X. Thus by
Lemma 4.1, UI2X(Fi) = 2XB2X is a pseudo-boundary for 2x, and
(2x, 2x)~ (Q, s).
The proof that (C(X), C(X )) = (Q, s ) is virtually the same as

above, using Proposition 2.2.
Conversely, suppose either condition 1) or 2) is satisfied. Since s is

a topologically complete, separable, nowhere locally compact metric
AR, X must be a topologically complete, separable, connected,
locally connected, nowhere locally compact metric space. We show
that the remainder XBX is locally non-separating in X. For every
connected open subset U of X, the hyperspace 2u is a connected

open subset of 2x. Since the pseudo-boundary QBs is locally non-
separating in Q, 2xB2x is locally non-separating in 2x. Thus 2un2x =
2unx is connected, andunx is connected. It follows from Proposition
2.4 that X admits a metric with Property S.
The first result of this type, (2Q, 2’) - (C(Q), C(s)) = (Q, s), was

obtained by Kroonenberg [12].
Using the very powerful Hilbert space characterization theorem of

Torunczyk [14], the author has recently shown that 2’,-::., C(X),-z- 12
for every topologically complete, separable, connected, locally con-
nected, nowhere locally compact metric space X [5]. The following
example illustrates the difference between this result and Theorem
4.2.
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EXAMPLE 4.3: There exists a space X such that 2x - C(X) - 12,
but X does not admit a metric with Property S.

PROOF: The space X is a countable union of copies of 12 meeting
at a single point 8, and given the uniform topology at 0. X may be

realized in 12 as follows. Let N U î ai be a partition of the positive
integers, with each a; infinite, and for each i set 17 = {(xn ) E 12 : xn = 0
if nÉ ai}. Then X = U, I?C 12. Clearly, X is a closed, connected,
locally connected, nowhere locally compact subset of 12, thus 2X -=
C(X) - 12.
The argument that the space X does not admit a metric with

Property S is easy. Consider any admissible metric d for X. For some
5 &#x3E; 0, the 8-neighborhood (with respect to d) of 8 in X must be

contained in the neighborhood {x E X : llxll  Il of 0. Now consider

any connected cover of X with mesh less than 8. For each i, any
element of the cover intersecting {x E 1?: Ilxll &#x3E; Il cannot contain 0,
and must therefore lie in 17B (J. Hence the cover is infinite, and d does
not have Property S.
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Added in proof

The condition iv) of the pseudo-boundary characterization Lemma 4.1 is
insufficient, and should be replaced by the following condition iv)*:
there exists a deformation h: Q x [0, 1] --&#x3E; Q, with h(q, 0) = q for each
q E Q, such that for each E &#x3E; 0, h(Q x [E, 1]) C Ki for some i. In the

application of Lemma 4.1 contained in the proof of Theorem 4.2, this
stronger condition is easily verified (the map f of 2Î is replaced by the
deformation h : 2" x [0,1] 21, where h(D, t) is the closed t-neighbor-
hood of D in X).


