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HYPERSPACES OF NONCOMPACT METRIC SPACES

D.W. Curtis

0. Introduction

For a metric space X, the hyperspace 2% of nonempty compact
subsets and the hyperspace C(X) of nonempty compact connected
subsets are topologized by the Hausdorff metric, defined by p(A, B) =
inf{e: A C N.(B) and B C N,.(A)}. It is easily seen that the hyperspace
topologies induced by p are invariants of the topology on X. It is
known that 2X = Q, the Hilbert cube, if and only if X is a non-
degenerate Peano continuum, and C(X)=Q if and only if X is a
nondegenerate Peano continuum with no free arcs [6]. In this paper
we obtain various characterization theorems for hyperspaces of non-
compact connected locally connected metric spaces.

THEOREM 1.6: 2% is an ANR (AR) if and only if X is locally
continuum-connected (connected and locally continuum-connected).

THEOREM 3.3: 2X = Q\point if and only if X ix noncompact, con-
nected, locally connected, and locally compact.

THEOREM 4.2: X admits a Peano compactification X such that
(2%, 2%X)~(Q, s) if and only if X is topologically complete, separable,
connected, locally connected, nowhere locally compact, and admits a
metric with Property S.

Analogous results are obtained for C(X). Additionally, we discuss
two examples relating to local continuum-connectedness, and an
example relating to Property S.
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140 D.W. Curtis [2]
1. Hyperspaces which are ANR’s

A growth hyperspace § of a metric space X is any closed
subspace of 2*X satisfying the following condition: if A€ % and
B €2X such that BD A and each component of B meets A, then
B € % Both 2X¥ and C(X) are growth hyperspaces of X. Another
growth hyperspace of particular interest is 44(X), the smallest growth
hyperspace containing A €2X. Thus % (X)={B€2X:BDA and
each component of B meets A}. Growth hyperspaces of Peano
continua were studied in [4].

LEMMA 1.1: (Kelley [11]). Let A, B € 2% such that B € 4,(X) and
B has finitely many components. Then there exists a path o : I - 44(B)
such that 0(0) = A and o(1) = B.

DEFINITION: A metric space X is continuum-connected if each
pair of points in X is contained in a subcontinuum. X is locally
continuum-connected if it has an open base of continuum-connected
subsets.

Note that in verifying the local property it is sufficient to produce,
for each neighborhood U of a point x, a neighborhood VC U of x
such that each y € V is connected to x by a subcontinuum in U. For
topologically complete metric spaces, the properties of local con-
nectedness, local continuum-connectedness, and local path-connec-
tedness are equivalent, since every complete connected locally con-
nected metric space is path-connected. Examples given later show
that in general these properties are not equivalent.

LeEMMA 1.2: Let A€2X, with X a locally continuum-connected
metric space. Then for arbitrary € >0 there exists A € 4G4(X) such
that p(A, A)< e and A has finitely many components.

Proor: For each n=1 choose ¢,>0 such that, whenever x€ A
and y € X with d(x, y) < ¢,, there exists a continuum in X connecting
x and y with diameter less than min{1/n, €}. For each n let A, C A be
a finite €,-net for A. Then for each p € A, there exists a continuum
L, in X with diameter less than min{1/n, €}, connecting p and some
pointof A,.Set A, = A;and A,,; = U {L,:p € A,+i}foreachn = 1. Then
A=cl(UsA,)=UTA,UA has the required properties (note that
each component of A meets the finite subset A)).

LEMMA 1.3: Let X be a connected and locally continuum-con-
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nected metric space. Then every compact subset is contained in a
continuum,

ProoF: Let A be a compact subset of X. There exists by Lemma
1.2 a compact set A D A such that A has finitely many components. It
is easily seen that X is continuum-conected. Thus the components of
A may be connected together by the addition of a finite collection of
subcontinua of X, thereby producing a continuum B D A D A.

LeEMMA 1.4: If X is a locally continuum-connected metric space,
then every growth hyperspace 4 of X is locally path-connected.

PRrROOF: Given A € ¢ and € >0, choose § >0 such that whenever
x € A and y € X with d(x, y) <38, there exists a continuum in X of
diameter less than € connecting x and y. We claim that for any B € ¢
with p(A, B) < 8, there exists a path o: I » % between A and B, with
p(A, o(t)) <e for each t. We may assume by Lemmas 1.1. and 1.2
that each of A and B has finitely many components. Adding a finite
collection of continua to A U B, which connect each component of A
to B and each component of B to A, and all of which have diameter
less than €, we obtain an element C € 44(X) N % (X) such that
p(A, C)<e. Then paths between A and C, and B and C, given by
Lemma 1.1, will provide the desired path.

LeEMMA 1.5: Let 9 C 2 be compact and connected, and let A € 9.
Then U9 € gA(X).

ProorF: Clearly, U 9 is a compact subset of X and contains A. We
show that each component of U & meets A. Let x € D € 9 be given.
For each € >0 there exists an e-chain {D,} in 9 between D and A,
and therefore an e-chain {q;} in U @ between x and some point of A.
Since A is compact, there exists a € A such that for each € > 0, there
is an e-chain in U & between x and a. Then x and a are in the same
quasi-component, hence the same component, of U .

THEOREM 1.6: If X is locally continuum-connected (connected and
locally continuum-connected), then every growth hyperspace 4§ of X is
an ANR (AR). Conversely, if there exists a growth hyperspace 4§ such
that ¥ C(X) and 4 is an ANR (AR), then X is locally continuum-
connected (connected and locally continuum-connected).

ProoFr: We use the Lefschetz-Dugundji characterization of metric
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ANR’s [9]: a metric space M is an ANR if and only if, for each open
cover a of M, there exists an open refinement 8 such that every
partial B-realization in M of a simplicial polytope K (with the
Whitehead topology) extends to a full a-realization of K. Thus, let «
be an open cover of ¥, and assume that the elements of a are open
metric balls, with respect to the Hausdorff metric on ¥. Take an open
star-refinement o' of a. By Lemma 1.4 there exists an open
refinement B of a’ such that each element of B is path-connected.
Then every partial B-realization f: L - % of a polytope K extends to
a partial a-realization g: L U K'— %, where K! is the 1-skeleton of K.
Using Lemma 1.5, we may extend g to a full a-realization h: K - %
by the following inductive procedure. Consider an n-simplex o of K,
n =2, such that h has been defined over bdo. Let r:o0 — C(bdo) be
any extension of the natural injection bdo — C(bdo). Then define h
over o by setting h(x) = U{h(p):p € r(x)}. Thus ¥ is an ANR.

If additionally X is connected, then by Lemma 1.3 every compact
subset of X is contained in a continuum. Thus for arbitrary A, B € 4,
there exists a continuum C containing AU B, and C € 4. By Lemma
1.1. there exist paths in %4(C) from A to C and in 943(C) from B to C,
hence a path in 4 between A and B. Thus ¥ is path-connected. Since
the argument of the preceding paragraph shows that ¥ is always
n-connected for n = 1, it follows that ¥ is an AR.

Conversely, suppose there exists a growth hyperspace 4 of X such
that ¢ O C(X) and ¥ is an ANR. Let x € X and a neighborhood U be
given. Since ¥ is locally path-connected, there exists a neighborhood
V of x such that for each y € V, there exists a path f: I - % between
{x} and {y} with each f(t) C U. By Lemma 1.5, U{f(¢):t€I}C U is a
continuum. Thus X is locally continuum-connected. And if ¥ is an
AR, and therefore connected, X must also be connected.

The ANR (AR) characterizations for the hyperspaces 2¥ and C(X)
of a compact metric space X were obtained by Wojdyslawski [15].
These characterizations were extended to complete metric spaces by
TaSmetov [13]. Independently, some partial results along these lines
were announced by Borges [3].

The following examples show that for noncomplete metric spaces,
the property of local continuum-conectedness lies strictly between
local connectedness and local path-connectedness.

ExAMPLE 1.7: There exists a connected and locally connected
subset of the plane which is not locally continuum-connected.

ProOOF: There exist disjoint subsets A and B of the plane E? such
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that every nondegenerate continuum in the plane meets both A and B
([10], p. 110). Thus A contains no nondegenerate subcontinuum, and
is not locally continuum-connected. However, A is connected and
locally connected. Suppose A= A;U A, is a separation. Then there
exists a closed subset C of the plane separating A, and A,. Since C
cannot be 0-dimensional, it contains a nondegenerate subcontinuum
D. Then D must meet A, impossible. Thus A is connected, and the
same argument applied locally shows that A is locally connected.

ExamMmpPLE 1.8: There exists a connected and locally continuum-
connected subset of the plane which is not locally path-connected.

Proor: We begin with the continuum

S ={(x,sin 1/x):0<|x| < 1/7} U{(0,¢):|t| = 1}.

A countable collection {S;} of progressively smaller copies of S is
then fitted inside the individual loops of S as indicated, creating local
continuum-connectedness on the limit segment L ={(0, ¢):|t| <1} C S.
Then for each i, a countable collection {S;} of copies of S is similarly
fitted inside the loops of S;. The infinite iteration of this procedure
produces the desired space X=SUui{S:i=1Hu
(U{S,‘jli,jZl})U....

X is connected and locally continuum-connected. However, X is
not locally path-connected at any point on a limit segment such as L.
It suffices to show that there exists no path in X between the
endpoints a = (—=1/m,0) and b = (1/m, 0). Suppose there exists such a
path o. Then for some i (in fact, for infinitely many i), o must
contain a subpath o; in S;U(U{S;:j=1})U... between the cor-
responding endpoints a; and b; of S;. By the same argument o; must
contain a subpath o in some S; U(U{S;u:k=1})U... between the
endpoints a; and b; of S;. Thus the path o must pass through each
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member of some nested sequence (S, S Sy, ...)- But this is im-
possible, since the limit point of such a sequence is not included in X.

2. Peano compactifications with locally non-separating remainders

Since 2¥ = Q for every non-degenerate Peano space Y, one way to
study the hyperspace of a noncompact space X is to consider, when
possible, a Peano compactification X of X, and the corresponding
Q-compactification 2% of 2X. The procedure works if the remainder
X\X is sufficiently “nice”. In this section we specify the desired
property of the remainder, and establish the conditions under which
such a compactification exists.

DEFINITION: A subset A of X is locally non-separating in X if, for
each nonempty connected open subset U of X, U\A is nonempty and
connected.

Note that if A is locally non-separating, so is every subset of A. It
is easily shown that if a locally connected space X has a connected
open base {U,} such that each U,\A is nonempty and connected, then
A is locally non-separating.

The motivation for considering locally non-separating subsets
comes from the following pair of results on positional properties of
intersection hyperspaces. For A,,..., A, €2% we define the inter-
section hyperspaces 2X(A,,..., A,)={F€2¥:FN A;# 80 for each i}
and C(X;A,,...,A)={FeC(X):FNA;#@ for each i}. For any
nondegenerate  Peano space X, 2*(A,...,A,)=Q, and
C(X;A,,...,A)=Q if additionally X contains no free arcs [7]. A
closed subset F of a metric space Y is a Z-set in Y if, for each
compact subset K of Y and € >0, there exists a map n: K-> Y\F
with d(n, id) <e.

PROPOSITION 2.1: Let A be a closed subset of a Peano continuum
X. Then 2X(A) is a Z-set in 2% if and only if A is locally non-
separating in X. More generally, for closed subsets A, B, .. ., B, of X,
2X(A, By, ..., B,) is a Z-set in 2X(B,, . . ., B,) if and only if A is locally
non-separating in X and B;\A is dense in B; for each i.

PRrOOF: Suppose A satisfies the stated conditions, and let € >0 be
given. We must construct a map 7:2X(By,...,B)—
2X(By, ..., B)\2X(A, By, ..., B,) such that p(n,id)<e For each i,
there exists a finite €/3-net B; for B; such that 8; C B;\A. By [7], there
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exists an ‘“‘expansion” map h:2X(B,,..., B,)—>2*(Bi,..., B.) such
that p(h,id)<e/3. And by [8], 2*@Bi,...,B,)=invlim
Qli(By, ..., Bx), f), where {I}} is a sequence of compact con-
nected graphs in X, with each I containing 8, U...U B, in its vertex
set, and each bonding map f;:2"+(B,, ..., B,) > 2fi(B,,. .., B,) induced
by a map ¢;:[,—>C(;) such that ¢(b)={b} for each b€
Bi1U...U B, Thus for some i the projection map p;:2X(By,..., B) =
25i(By, . . ., By) satisfies p(p;, id) < €/3.

Let U be a finite cover of I'; by connected open subsets of X with
diameters less than e/3. There exists a subdivision SdI; of I} such
that each simplex of SdI; is contained in a member of . To each
vertex v of SdI; we assign a point k(v) E N{U € U:v € UN\A, with
k(b)=b if bepBU...UpB, Then k may be extended to a map
k : SdI'; - X\A such that, for each simplex o of SdI', k() C U\A for
some U €U with 0 C U (we use the fact that each U\A is con-
nected, locally connected, and locally compact, therefore path-con-
nected). Thus d(k, id) < €/3, and the induced map k:2(B,,.. ., B) >
2X\A(B,, ..., B,) satisfies p(k,id)<e/3. The composition kph:
2X(By, . . ., By)=>2%4B,, ..., B,)C2X(By, ..., B)\2X(A, By, . . ., B,)
satisfies p(kpih,id)<e, and 2X(A,B,,...,B,) is a Z-set in
2X(By, ..., By).

Conversely, suppose the Z-set condition is satisfied. Then each B;\ A
must be dense in B;, otherwise 2X(A, B,,..., B,) has a nonempty
interior in 2X(By,..., B,). For each i, choose b; € B)\A. Given a
neighborhood U of a point yE A, let V be a connected open
neighborhood of y such that V C U\{b,,. .., b,}. We show that V\A is
connected, thus A is locally non-separating. Suppose V\A = V,U V,
is a separation. There exists a continuum M in V such that M N
VoZ@#£MNV, Let F={Fe€2X(M):F\M={b,,...,b,}}. Then ¥
is homeomorphic to the connected hyperspace 2, and FC
2X(B,,...,B,). For each € >0 there exists a map n:% —2%X\2¥(A)
with p(m, id) <e If € is sufficiently small, there exist elements F,,
F, € ¥ such that n(Fy) N Vo #@and n(F) N Ve=0,and n(F) N bdV =
@ for every FEZ. Then n(F)={n(F):n(F)N V@ U{n(F):
n(F) N V, = @} is a separation of the connected space (%), impossible.

PROPOSITION 2.2: Let A, B,,..., B, be closed subsets of a Peano
continuum X. Then C(X; A, By,...,B,)is a Z-setin C(X; By, ..., B,)
if and only if A is locally non-separating in X and B;\A is dense in B;
for each i.

Proor: The argument for obtaining the Z-set property is the exact
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parallel of the corresponding argument in the proof of Proposition
2.1. For the converse, suppose C(X;A,B,,...,B,) is a Z-set in
C(X;B,...,B,). Actually, we only use the fact that
C(X; A, By,...,B,) has empty interior in C(X; By, ..., B,). It is im-
mediate that each B;\A must be dense in B; and X\A must be
connected. Thus there exists a connected open set G in X\A such
that G N B;# @ for each i and G N A =@. Given a neighborhood U of
a point y € A, let V be a connected open neighborhood of y such that
VCU\G, and choose €>0 such that N(V)CU Let W=
{V\A, G, W, W,, ...} be an open cover of X\A such that each W; is
connected and has diameter less than €. By connectedness of X\A,
we obtain a chain in % between V\A and G, which in turn leads to
connected open sets H and W in X\A suchthat HO G, HNV =6,
HNW#@3#WNYV, and diam W <e. Then VUWCU is a con-
nected open neighborhood of y, and we claim that (VU W)\A is
connected. If there exists a separation (VU W)\A = V,U V|, with the
connected set W contained in V;, then (VUWUH)\A=
VoU (VU H) is also a separation. However, there exists a continuum
K in the connected open set VU W U H which meets each B;, and
also meets the open sets Vo, and V. Then K is in the interior of
C(X;A,By,...,B,)in C(X; By,...,B,), impossible.

DEeFINITION: A metric d for a space X has Property S if, for each
€ >0, there exists a finite connected cover of X with mesh less than
€.

If X admits a metric with Property S, then X is locally connected.
Without added conditions, the converse is not true (see Lemma 3.2
and Example 4.3).

DEFINITION: A metric d for a connected space X is strongly
connected if, for each x, y € X, d(x, y)=inf{diam M:M is a con-
nected subset containing x and y}.

A convex metric on a Peano continuum is an example of a strongly

connected metric. If X admits a strongly connected metric, then X is
locally connected. Conversely, the proof of the following lemma
shows that every connected, locally connected metric space admits a
strongly connected metric.

LeEmMA 2.3: Let X be a connected metric space which admits a
metric with Property S. Then X admits a strongly connected metric
with Property S.
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ProoF: Let d be a metric with Property S. Define a topologically
equivalent metric d* for X by d*(x, y) =inf{diam M:M is a con-
nected subset of X containing x and y}. It is easily verified that d* is
a metric function. Since d*(x, y)=d(x, y), every open set with res-
pect to d is open with respect to d*. The converse is easily
established, using the local connectedness of X. And since the
diameters of connected subsets are the same with respect to d and
d*, d* is strongly connected and has Property S.

PRrROPOSITION 2.4: A connected metric space X has a Peano com-
pactification X with a locally non-separating remainder X\X if and
only if X admits a metric with Property S.

ProOF: Suppose X admits a metric d with Property S. We may
assume by Lemma 2.3 that d is also strongly connected. Then the
completion (X, d) of (X, d) is the desired Peano compactification.
That (X, d) is connected and has Property S follows from the same
properties for (X, d). And since a complete, totally bounded metric
space is compact, (X, d) is a Peano compactification of (X, d).

Given a nonempty connected open subset U of X, we show that
the nonempty set U N X is connected, thereby verifying that X\X is
locally non-separating in X. Suppose U N X = H U K is a separation.
Since U is open in X, UNX is dense in U, and UC HUK (the
closures are taken in X). We must have H N K N U # @, otherwise
U=HNU)UK NU)is a separation. Let p € H N K N U. Choose
& > 0 such that the 35-neighborhood of p lies in U, and choose points
h and k of H and K, respectively, lying in the 8-neighborhood of p.
Then d(h, k) <28, and since d is strongly connected there exists a
connected subset M of X containing h and k, with diam M <28.
Then M lies in the 35-neighborhood of p, therefore in U. Thus
McCc UnNX is a connected set meeting both H and K, and H UK
cannot be a separation of U N X.

Conversely, suppose X has a Peano compactification X such that
X\X is locally non-separating. Take any admissible metric d on X,
and let d be its restriction to X. For every connected open cover {U;}
of X, {U;NnX} is a connected cover of X. Since (X, d) has finite
connected open covers with arbitrarily small mesh, so does (X, d),
and d has Property S.
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3. Hyperspaces which are homeomorphic to Q\point

LeEMMA 3.1: Let X be a connected, locally connected metric space,
with compact subsets A and B such that A C int B. Then only finitely
many components of the complement X\A meet X\B.

Proor: Each component U of X\A must have a limit point in A,
otherwise U is both open and closed in X. Thus if U\B# @, we must
have U NbdB#@®. Suppose there exists an infinite sequence {U;} of
distinct components of X\A, each extending beyond B. Choose
y: € U; N bdB for each i. By compactness of bdB, we may assume
that y; —» y € bdB. Since y has a connected neighborhood in X\A, the
component of X\A containing y meets U; for almost all i, contradic-
ting our supposition that the U; are distinct components.

LeEmMA 3.2: Every connected, locally connected, locally compact
metric space admits a metric with Property S.

PrOOF: Let X = X U « be the one-point compactification of such a
space X. Then X is metrizable, since X is separable metric. We claim
that for any admissible metric d on X, the restriction of d to X has
Property S (and therefore X is a Peano continuum). Given € >0,
choose a compact subset A C X such that the complement X\A lies
in the e-neighborhood of «, and let BC X be a compact neighbor-
hood of A. Then by Lemma 3.1, only finitely many components of
X\A extend beyond B. Thus a finite connected cover of B with mesh
less than e, together with the finite collection of components of X\A
extending beyond B, provides a finite connected cover of X with
mesh less than e.

THEOREM 3.3: 2¥ = Q\point if and only if X is a connected, locally
connected, locally compact, noncompact metric space. Similarly,
C(X) = Q\point if and only if X satisfies the above conditions and
contains no free arcs.

PrOOF: Suppose X satisfies the stated conditions. By Lemma 3.2, X
admits a metric with Property S, and by Proposition 2.4, X has a
Peano compactification X with locally non-separating remainder.
Since X is locally compact it must be open in its compactification X,
and the remainder X\X is closed. By Proposition 2.1, the intersection
hyperspace 2% (X\X) is a Z-set in 2%. Thus (2%, 2X(X\X)) and (Q x [0, 1],
Q x{0})) are homeomorphic as pairs, and 2X¥=2%\2%(X\X) is
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homeomorphic to Q X (0, 1], which is homeomorphic to Q\point (since
Cone Q = Q).

If in addition X contains no free arcs, then neither does X, and the
hyperspaces C(X) and C(X; X\X) are copies of Q. By Proposition
22, C(X;X\X) is a Z-set in C(X), and it follows as above that
C(X) = Q\point.

Conversely, if either 2¥ or C(X) is homeomorphic to Q\point, X
must be a connected, locally connected metric space by Theorem 1.6.
Since X has a closed imbedding into both 2X and C(X), X must be
locally compact. Obviously, X is noncompact, and if C(X) = Q\point,
X contains no free arcs (otherwise C(X) contains an open 2-cell).

4. Hyperspaces which are homeomorphic to 12

With the Hilbert cube Q coordinatized as IIT[0,1], let s=

7(0, 1) C Q. Anderson [1] showed that s is homeomorphic to the
Hilbert space 12={(x;) € R*:27 x? <}. Any subspace P of Q such
that (Q, P)=(Q, s) is called a pseudo-interior for Q, and its comple-
ment Q\P is a pseudo-boundary. A non-trivial example of a pseudo-
boundary is the subset I={(x)EQ:0<infx; and supx; <1}
Kroonenberg [12] has given the following characterization for
pseudo-boundaries, based on the original characterization by Ander-
son [2].

LEMMA 4.1: Let {K;} be an increasing sequence of subsets of Q

such that:
i) each K; = Q,

ii) each K; is a Z-set in Q,

iii) each K; is a Z-set in K;,,,

iv) for each € >0, there exists a map f: Q— K; for some i such that

d(f,id)<e.

Then \JT K; is a pseudo-boundary for Q.

THEOREM 4.2: The following conditions are equivalent:

1) X has a Peano compactification X such that (2%,2%) = (Q, s),

2) X has a Peano compactification X such that (C(X), C(X))~
(Q, ),

3) X is a topologically complete, separable, connected, locally con-
nected, nowhere locally compact metric space which admits a
metric with Property S.
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Proor: Suppose X satisfies condition 3). Then by Proposition 2.4, X
has a Peano compactification X with a locally non-separating
remainder. Let d be a convex metric for X. Since X is topologically
complete and nowhere locally compact, the remainder X\X must be a
dense countable union |JT F; of closed, locally non-separating sets in
X. We may assume that F; C F,,; and F; has empty interior in F..,, for
each i. This can be arranged inductively as follows. Select a dense
sequence {x,} in F, a sequence {y,} in X\F; such that d(x,, y,)<1/n
for each n, and a sequence {z,} in (X\X)\F; such that d(y,, z,) <1/n
for each n. Then replace F,,, by the compact set F; U F;,;U{z,:n =1}.

By Proposition 2.1, each intersection hyperspace 2X(F) is a Z-set
copy of Q in 2%, and each 2%(F;) = 2X(F, F..)) is a Z-set in 2X(F},)).
Given € > 0, we claim there exists a map f : 2% - 2% (F;) for some i, such
that p(f, id) < e. For D € 2%, define f(D) to be the closed e-neighbor-
hood of D in X (with respect to the convex metric d). Suppose
f(2’? N\2%(F;) # @ for each i. Then there exists a convergent sequence
y; =y in X such that the e-neighborhood of y; is disjoint from F, for
each i. It follows that the e-neighborhood of y is disjoint from
UTFE = X\X, contrary to the fact that X\X is dense in X. Thus by
Lemma 4.1, UTZ’?(E)=2’2\2X is a pseudo-boundary for 2%, and
2%, 2%)=~(Q, 9).

The proof that (C(X), C(X))=(Q,s) is virtually the same as
above, using Proposition 2.2.

Conversely, suppose either condition 1) or 2) is satisfied. Since s is
a topologically complete, separable, nowhere locally compact metric
AR, X must be a topologically complete, separable, connected,
locally connected, nowhere locally compact metric space. We show
that the remainder X\X is locally non-separating in X. For every
connected open subset U of X, the hyperspace 2V is a connected
open subset of 2% Since the pseudo-boundary Q\s is locally non-
separating in Q, 2%\2 is locally non-separating in 2%. Thus 2V N2X =
2VNX is connected, and U N X is connected. It follows from Proposition
2.4 that X admits a metric with Property S.

The first result of this type, (29 2°)=(C(Q), C(s))=(Q,s), was
obtained by Kroonenberg [12].

Using the very powerful Hilbert space characterization theorem of
Torunczyk [14], the author has recently shown that 2*¥ =~ C(X) =12
for every topologically complete, separable, connected, locally con-
nected, nowhere locally compact metric space X [5]. The following
example illustrates the difference between this result and Theorem
4.2,
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ExXAMPLE 4.3: There exists a space X such that 2X =~ C(X) = 1%,
but X does not admit a metric with Property S.

ProoOF: The space X is a countable union of copies of 1> meeting
at a single point 6, and given the uniform topology at §. X may be
realized in 1% as follows. Let N = T a; be a partition of the positive
integers, with each o; infinite, and for each i set 12={(x,) € 1%:x, =0
if nZ a;}. Then X = |JT1?C 12 Clearly, X is a closed, connected,
locally connected, nowhere locally compact subset of 1%, thus 2¥ =~
C(X)=1%

The argument that the space X does not admit a metric with
Property S is easy. Consider any admissible metric d for X. For some
8 >0, the §-neighborhood (with respect to d) of 6 in X must be
contained in the neighborhood {x € X :|x|| <1} of 6. Now consider
any connected cover of X with mesh less than 8. For each i, any
element of the cover intersecting {x € 17:|x||= 1} cannot contain 6,
and must therefore lie in 12\. Hence the cover is infinite, and d does
not have Property S.
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Added in proof

The condition iv) of the pseudo-boundary characterization Lemma 4.11is
insufficient, and should be replaced by the following condition iv)*:
there exists a deformation h: Q X [0, 1]- Q, with h(q, 0) = g for each
q € Q, such that for each € >0, h(Q X [¢, 1]) C K; for some i. In the
application of Lemma 4.1 contained in the proof of Theorem 4.2, this
stronger condition is easily verified (the map f of 2% is replaced by the
deformation h: 2% x [0, 1] 2%, where h(D, t) is the closed t-neighbor-
hood of D in X).



