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ON THE ESSENTIAL HEIGHT OF
HOMOTOPY TREES WITH FINITE
FUNDAMENTAL GROUP

Micheal N. Dyer

1. Introduction

Let G be a group. A (G, i)-complex X is a finite, connected CW
complex with dimension <i having m,X isomorphic to G and 7 X =0
for 1 <j<i The homotopy tree HT(G,i) is a directed tree whose
vertices [X] consist of the homotopy classes of (G, i)-complexes X; a
vertex [X] is connected by an edge to vertex [Y] iff Y has the
homotopy type of the sum X v S’ of X and an i-sphere S’ Let
x(X) = (—1)x(X) be the directed Euler characteristic of a (G, i)-
complex X; xmin = Xmin(G, ) = min{x(X) | X is a (G, i)-complex}. The
level of a vertex [X] is the number x(X) — Xmin- A (G, i)-complex X is
a root provided [X] has no predecessors in the tree; X is a minimal
root iff [X] is at level 0.

DEeFINITION: We say that HT (G, i) has essential height <k iff for
any two (G, i)-complexes X, Y such that y(X)=x(Y)= xmn+k, X
has the same homotopy type as Y [4].

THEOREM 1: For any finite group w and integer i =2, the homotopy
tree HT (w, i) has essential height <2.

This is an easy consequence of R. Williams’ generalization [15,
theorem 4.6] of the cancellation theorem of H. Bass to the category of
pointed modules. The proof is given in section 4.

THEOREM 2: For any finite abelian group A, the homotopy tree
HT (A, i) has essential height <1.

209



210 M. N. Dyer (2]

Throughout this paper 7 will denote a finite group and A a finite
abelian group. In general, these are the best possible results. It is
shown in [5], that for 7 equal to the generalized quaternion group of
order 32, the tree HT (w, 3) has essential height equal to two. For A a
finite abelian group, W. Metzler [8] and A. Sieradski [9] show that
there are often distinct minimal roots in these trees. The only remain-
ing question for HT (A, i) is the number of minimal roots.

A picture of the trees HT (A, i) would be:

HT(A, Q) level
ceeee 4
P |
ceese 2
ceeee 1
. e 0

It would be very interesting to know about the height of the simple
homotopy tree SHT (1, i) as well.

The outline of the paper is as follows. In section 2 key isomor-
phisms are isolated, which are used in section 3 to show that we may
“shuffle k-invariants” via certain automorphisms of the homotopy
modules of minimal roots. The proofs of theorems 1 and 2 are found
in section 4. In section 5 we apply our results to the problem of
C.T.C. Wall concerning spaces dominated by finite two-dimensional
complexes.

For example, we show the following theorem.

THEOREM 3: Let X be any connected CW-complex which is
dominated by a finite, connected 2-complex and suppose that the Wall
invariant of X vanishes. If m, X is a finite abelian group, then X v S* has
the homotopy type of a finite 2-complex.

A sharper (but more technical) version of theorem 3 is proved in
section 5.
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2. Certain isomorphisms

In this section we develop certain technical results necessary for
the proof of theorem 2.

Let 7 be a finite group of order n and let N = 3, x be the (norm)
element in Z7 consisting of the sum of all the group elements. A unit
mod N is an element u € Z7 for which there is an element u’' € Z7
such that u'u and wuu’ are congruent to 1 modulo the ideal (N)
generated by N. Equivalently, ¥ + (N) is a unit in the augmentation
ring Zm/(N).

The augmentation of units mod N is of some interest. The aug-
mentation €: Z7 — Z induces €': Zw/(N)— Z,. There is a homomor-
phism

8: 7% —> KoZm

from the group of units in the ring Z, to the reduced projective class
group K,Zm of Zm, defined by carrying the residue class p + nZ = [p]
modulo n (p is prime to n) to the class {(p, N)}€ KoZm of the
projective ideal (p, N) generated by p and N (see [10, §6] and [3,
sections 2-4]). For A a finite abelian group, [p] € ker  iff the ideal
(p, N) is isomorphic (as an A-module) to ZA [12, theorem 19.8 and
the discussion following]. The following is proved in [10, lemma 6.3,
page 279].

PROPOSITION 2.1. Let A be a finite abelian group. If u€ ZA is a
unit mod N, then €'(u) €ker 3. Furthermore, given any [p] EKker 4,
then there is a unit u mod N such that e(u)=p. O

Consider a free m-module (Z7)' of rank ¢t and the (ring) homomor-
phism
e Zn) — 7'

given by e(ay, ..., a;) = (e(a)), ..., €(a,)). We have now the following
crucial lemma.

LEMMA 2.2: Let A be any finite abelian group and K be any
submodule of (ZA)' such that e(K)=0. For any unit u mod N in ZA,
the homomorphism

i: K — K

given by multiplication by u is an isomorphism.
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PROOF: u is a unit mod N implies the existence of a u’ € ZA such
that u’'u =uu'=1+aN (¢« €Z). x =(x4,...,%) is a member of K iff
e(x)=(e(x),...,e(x)=0 iff N-x=0. Thus u'ux=uu'x=
x+aNx=x forall xe K. I

Now consider the (k + 1) X (k + 1) integer matrix (k = 1)

r—q O - ccvemiiiia, 0 F
P 4. 0
0 P2
M, =
- .q
. Pi-1 q 0
| 0 0 b c]

A straightforward induction argument shows that
det My, = cq* + (=1)*p, - - - px-ith.
PROPOSITION 2.3: Let w be any finite group of order n and Z the

trivial w-module. Let v be a unit mod N in Zw having €(v)= c.
Suppose that ¢, q, b, t,p,, ..., px— are integers such that

cq*+bp,-- - piatn =1.
Then the left w-homomorphism

a:Z"®Zr — Z2"® Zm

with matrix

g 0 e 0 (—DF-t
Pr q. 0
0 pa,
we |
Pt q
[ RERERERRERREEE 0 BN v |

is an isomorphism.

ProoF: Let v: ZwN — Zz denote the natural inclusion and consider
the following exact ladder of modules:
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00— (2@ ZaN & (D) D Zn —> Za/(N) —> 0

|- R

0 — (2 ® ZaN)HLS () @ Zm —> Za/(N) —> 0

with a’, a” the appropriate maps induced by a. The image of a
restricted to Z¥ @ Z#N is contained in Z¥ @ Z#N because this is the
submodule (Z* @ Z7)™ of elements fixed under the action of 7. The
matrix of a’ is given by

P_q 0 covvrnennns 0 (=1)nt |

by q 0

0 P q
_ (e(v)=rc)
q
Pt 4 0

[0 0o b c |

which has determinant ca*+bp,---pioitn =1 and hence «’ is an

isomorphism. a” is simply multiplication by the element v € Z7 and is
an isomorphism because v is a unit mod N. By the five lemma, « is an
isomorphism. O

3. Shuffling k-invariants

Let n denote the order of the group #. For any (1, i)-complex X, it
is known from [3, §2] that the (i + 1)-cohomology group H (s, m;)
(with coeflicients in the m-module 7:X = ;) is isomorphic to Z,. Let
1S C = Ci(X), where C; is the free w-module which is the cel-
lular chain module of the universal cover X of X. We use the fact
that

H™'(w; m;) = End,(m)/B’,

with B = im{Hom,(C;, ) LN End,(m)}, to identify H*'(#; =;) with
Z, via (§: mi—»> m)—>q+(n), g € Z. Thus [1]E€ Z, corresponds to the
class of id € End(w;). Notice also that if ¢:m—>m @ Zn' is the
natural inclusion (Zm' the direct sum of j copies) then
b H ' (m;m)>H ™' (w; m; @ Zw') is an isomorphism because
H™'(7; Zw) =0 for any finite group = (i =0). We identify all these
groups using &,.
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We say that an isomorphism a: m; @ Z#/ SN m @ Z=' has degree
q€Z%if a,(1)=q€ H"\(m; m).

ProprosiTiON 3.1: (Bass-Williams [15]). For each finite group ,
i=2, each minimal root X € HT(m i) and each [q]l€
ker{d: Z*— KoZn} there exists an automorphism @ Zr’>
m @® Zn? of degree [q].

ProoF. For each X € HT (m, i) and each [q] € ker g it is proved in
[4, page 309] that there is an integer j =2 and an automorphism

a: X ®Zr) — 7 X @ (Zmw)

having degree [q]. However, by J. Williams’ generalization [13,
theorem 4.6 and the remark following 4.9] of the Bass cancellation
theorem to the category of pointed modules, one may ‘“‘cancel’ all but
two factors of Zm while preserving the degree; i.e., there is an
automorphism

a X D Zn)Y — 7 X D Zn)

also having degree [g]. O

PROPOSITION 3.2: Let A be a finite abelian group of order n and Y
be any minimal root in HT (A, i). Let A; denote the A-module w(Y).
For each [qlEker{d: Z*— K,ZA} there exists an automorphism
AP ZA—> A @ ZA of degree [q].

PROOF: Consider A=Z, X---XZ, (1|7]--+|7) and let n=
71+ - 7, denote the order of the group. Let Y denote any minimal
root of HT (A, i). We consider the standard A-module

Ai=m(Y)>C(Y)=C,

where C; is the (finitely generated) free A-module which is the
cellular chain module of the universal cover Y of Y. Let » = rank, C,,
{¢} be a ZA-basis for C;, and ¢ designate the rank;3;=
im{e|A;: Ai—> Z*} where e€: C;—>Z” is the augmentation on each
coordinate and 3; is the subgroup of spherical homology classes of
H(Y).

As 3, 77, use the fundamental theorem of finitely generated free
abelian groups to choose a new basis for Z”*

{al, ceey Ay Aytts - - o a,,}

so that the set {aa,, . . ., aya,} (a; = 1) is a basis for 3.
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Note that each «; can be chosen so that a; = 74;. We do this as
follows. There is an isomorphism

H(Y)/3; = Hi(A),

this last being a finite abelian group. Let Y'™' denote the (i —1)-
skeleton of Y and 3., denote the image of #_,Y"! in Hi_(Y'™")
under the Hurewicz homomorphism. Then the following lower
sequence is an exact sequence of free abelian groups

Ci_»ﬂi_lyi_—l) 0

Pl

00— H,(Y) z" 2,‘_1 0

obtained by applying the augmentation homomorphism to the upper
sequence. As 3, is free we have Z'=H(Y)® 3;_,. Since the
rank; H;(Y) =rank; 3;, a,, ..., a, may be chosen as a basis for H;(Y)
and ay, ..., a, will be the torsion coefficients of H;(A), each of which
(by the Kiinneth formula) is one of the torsion coefficients of A itself.

Express the new basis {g;} in terms of the old basis {e(¢;)} as
follows:

a; = ,;1 by - e(er) (b € Z).

Use the invertible » X v integral matrix B = (b;) to determine a new
basis of C;

fj:kzl bfkek (jzla-~-v V)'

With respect to this basis {f;}/-; for C, {e; - €(f))}/=, is a basis for
3627

Because €(A;)=23; we may choose elements w, uy,. .., uy of A;
such that e(u)=@a; - e(f;)) =1,...,¢).

For each k=1,..., ¢ —1, define a homomorphism

I Ci h— C,‘

0 if k#j

by rk(fj):{N'ILk+l if k= G=1,...,v).

Let Ei, denote the elementary j X j matrix with a 1 in the ¢th row and
the mth column and zeros elsewhere. Notice that the matrix of 7, with
respect to {f;} is given by N - a;,E}+;.« and the matrix of the map
e(r;) defined by r, on 3; with respect to the basis {a; - €(f;)} is given
by ax-n- Efi . This last follows because rc(fi) = ar+1Nfis1 which
implies that e(r)(e(fi)) = aws1 - n - €(firr). Hence, e(n)(ax - €(fi)) =
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ap c agyy N €(fisr) = (ar - n)(ars; - €(frs1)). Notice also that r, has
image in A;, hence r.|A;: A;— A; is a map of degree 0.

Now choose a unit ¥ mod N in ZA with €(u) =gq. q is prime to n
implies that g is prime to each 7; (j=1,...,s) and hence to each «;
(j=1,...,4). Thus q* is prime to (a, - - - ay,-)n**", so choose integers
b, ¢ such that

Cq'l’ + b(a1 s a.,,_l)n"’“ =1.
The above equation yields
c=q"? (modn)
and hence [c] is a member of ker 4 also. Choose a unit v mod N in
ZA such that e(V) = ¢ (see 2.1).
With all these data, we may define the isomorphism

a:AAiDZA— A DZA

of degree [q]: a is given by a (2 X 2)-matrix of homomorphisms

a=< ay: A —> A | alz:ZA——>Ai>
an: Ai —> ZA | an: ZA —> ZA)"

Let ay =i + Z{2) re| A, ap(l) = (=N - fi, ax = bNp,| A;, and ay =
v, where p;: Ci— ZA is the projection on the jth coordinate. Recall
that i: A; > A; means right multiplication by u.

To show that a is an isomorphism we decompose A; & C; by
applying €: (ZA)" - Z” to A;. Thus we have

Ci— (2" —> 0

)

0— K—> A, —> 3, — 0.

a|K is simply multiplication by u because r,|K = 0= bNp,|K. Thus
a|K is an isomorphism by lemma 2.2. a also induces a map
a'’ Zi @ ZA"Z, @ ZA.

It is clear (using the basis {a; - €(f;)}) that the matrix of the map
a3 ®ZA—-> 3 @ ZA induced by « is given by
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q O " v vt e 0 (_])'//n
an q 0
asn :
: 4
.a./,Az‘ n q 0
0 ................ 0 al/l—l -n q 0
v
__0 0 0 bN v N
1
Because v is a unit mod N and
c-q"+bla;- - a, )n""'=1 (e(v)=rc)

we have a’ is an isomorphism (Proposition 2.3). Hence, by the five
lemma, « is an isomorphism.

To see that a« has degree [q], observe that degree a = degree
a; = degree i because a, is # plus maps of degree 0. But degree
i = degree q =[q] because e(u —q)=0. O

4. Proof of Theorems 1 and 2

The proof of the main results require the use of the theory of
algebraic i-types, which we now outline.

An algebraic i-type is a triple (G, m;, k), where G is a group, ; a
G-module and k is an element of the group H"'(G; m;). Such triples
form the objects of a category (i), the category of i-types. A
morphism in J is a pair of maps (a, B): (G, m, k)= (G', 7w}, k') where
a:G—G' is a group homomorphism, B: 7;—> 7} is an a-homomor-
phism (B(x - y) = a(x) - B(y) for any x € G, y € m;) and a*(k’) = B (k)
in the following diagram:

. Bx* . a* .
H"'(G;m) —> H"'(G; 7)) «— H"(G', 7))

where .7} is the G-module with structure induced by a. (a, 8) is an
isomorphism iff both @ and B are bijective. We denote by J(G, i) the
full subcategory of 7 (i) whose objects (G', m;, k) have G’ isomorphic
to G.

Let €(G, i) denote the full subcategory of TOP whose objects are
(G, i)-complexes. By a theorem of S. MacLane and J.H.C. White-
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head, there is (homotopy) functor T: €(G,i)— J(G,i) defined by
T(X) = (m X, mX, kX), where kX € H"*' (X, mX) is the first k-in-
variant of X [7]. T(f: X = Y) = (fis fi») and for each pair of objects
X,Y €€(G, i), T: Map(X, Y)- Hom(T(X), T(Y)) is surjective. This
functor is not an equivalence of categories, but it is strong enough
that any two (G, i)-complexes X and Y have the same homotopy type
iff T(X) is isomorphic to T(Y) [7, theorem 1, page 42].

DEFINITION: Let 7 be a finite group and M be a m-module. M has the
cancellation property iff for any module M’ with

M®Zm)*=M® (Zr)f (Bza)
we have M'=M @ (Zmw)P .

For any module M over =, M @ (Zar)* has the cancellation pro-
perty, by the theorem of H. Bass [12, §9]. If A is a finite abelian group
and A; = m;Y, where Y is any (A, i)-complex, then A; @ Zm has the
cancellation property [12, theorem 19.8], [3, page 267]. If # is any
finite group and X 1is a (1, 2i)-complex, then 7, X @ Zm has the
cancellation property [3, corollary 4.2, page 267]. These last two
statements are corollaries to the powerful theorem of H. Jacobinski
[12, theorem 19.8].

Using propositions 3.1 and 3.2, we now give a

PROOF OF THE MAIN THEOREMS: Let X be any (7, i)-complex and Y
be a minimal root of HT (m, i). Consider the algebraic i-type T(X) =
(mX, mX, kX) of X. If x(X)> xmin+ 1, wetwill use 3.1 to show that X
has the homotopy type of the sum Y v VS' of the minimal root Y
with a bouquet of t = x(X) — xmin i-spheres S°. If 7 is a finite abelian
group am? X(X) > Xmin, a similar argument (using 3.2) will show that
X =Y v VS.

First, we will identify 7:X with 7 = 7Y via an arbitrary isomor-
phism 6: 7 — 7 X. The i-type T(X) is isomorphic to the i-type
(m, ¢m: X, k') via the isomorphism (0, id): (m, ¢m: X, k') = (1, X, m:X, kX).
Notice that id: ¢ym: X = m.X is a 6-isomorphism. k' is the image of kX
under the isomorphism

9*: Hi+l(7T1X, T X) —> HH](T"’ 07TiX)

(6* is an isomorphism by [6, page 108]). Now consider the i-type
T(Y) = (m, m, kY). It follows from Schanuel’s lemma that

X @ (Zm)' =m @ (Zm) (m=mY)
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as m-modules, with t =j— ¢=2. Because m @ Z=#* has the cancel-
lation property (if = is finite abelian, one uses that 7; @ Zm has the
cancellation property) we have an isomorphism 8: ymX = m; @ (Z7)".
Thus

T(X) = (7T’ 07TiX7 k’) = (7T, i @ (Zﬂ)la k”),
(0, id) (id, B)

where k"= B,(k") with B,:H"'(m, ¢ymX)> H" \(mr; m ® (Z7w)") in-
duced by B.

By theorem 3.5 of [3, page 264], we must have k", kY members of
ker 4, a multiplicative subgroup of Z%*. Hence by proposition 3.1,
there is an isomorphism

amTm@Zr) — m@®UZr) (=2

of degree kY/k" € ker 4. This yields an isomorphism of i-types carry-
ing k"— kY

(id, a): (m, m; ® (Zw)', k") = (7, m; ® (Zm)', kY).
This la§t i-type is just T(Y v \t/Si). Thus T(X) is isomorphic to
T(Y v VS') and hence
X=YvVS. O

5. Spaces dominated by 2-complexes

As an application of proposition 3.1, we (almost) extend C. T. C.
Wall’s theorem concerning spaces dominated by finite 2-complexes
[14, theorem F, page 66] to all finite (abelian) groups. The extension to
finite cyclic groups has been given in [2, corollary 5.3, page 242] and,
independently, in [1, theorem 4, page 261].

DEFINITION: An algebraic two-type T = (mw, 1, k) is finitely 2-
realizable iff there is a (m, 2)-complex X such that T(X)=T.

Let 7= be a finite group of order n. We say that the two-type
T = (m, 72, k) is finitely chain2-realizable if there exists a free partial
resolution of the trivial r-module Z of finite type realizing k; i.e., there
exists an exact sequence of w-modules:

(g(T)O'—") Ty —> Cz—‘) Cl——‘) Co——>Z——_)0

where each C; (i =0, 1, 2) is a finitely generated free 7-module, such
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that comparison with the standard bar resolution gives k€
H3(w, m)) = Z, (see [3], page 256). This means that k € ker 3. The
Euler character y(%) is given by rank, C,—rank, C;+rank, C,. By
Schanuel’s lemma, y(%) depends only on T; hence we will denote it
by x(T), the Euler characteristic of the (finitely chain 2-realizable)
two-type T. If A is a finite abelian group, we will show that y(T), if
defined, is greater than or equal to ymin(A, 2).

Let K(n) denote the CW-complex which is a K(Z,, 1) and has one
cell in each dimension. Now let A=Z, X -+ X Z, (7j|721,j = 1,2, ...,
s — 1) and consider the Eilenberg-MacLane space K, = II;_; K(1;).

PROPOSITION 5.1: In the tree HT (A, i) for i =2, the i-skeleton K j of
K, is a minimal root.

PrOOF: We will show that ymin(A, i) = (—1)'x(K}). Because K(n)
has one cell in each dimension, the number o.(s) of ¢-cells in K4
(€ =0) is precisely the numbers of ways one may choose an ordered
s-tuple (ay, ..., a;) (allowing repetitions) from the set {0, 1, ..., €} such
that ;. a; = ¢.

Let p be any prime dividing 7. Then, considering Z, as a trivial
Z,.-module (j=1,...,5), we have

IJ[(ZLp 2%)55 2;
for all [ = 0. By the Kunneth theorem

HoA Z) =D (Z) o0
Ejl a = I4

Thus, the dimension of H,(A;Z,) as a Z,-module=h,(A;Z,)=
o/ K,). Define u;(A) to be the minimum of the directed Euler
characteristics of truncated, finitely generated free resolutions of
length i,

0 Ai Ci A C| C() Z 0

(each C; is finitely generated, free A-module, Z is the trivial A-
module) [11, page 193].
Theorem 1.2 of [11] says that

i i

pi(A) = X (1) he(A, Z,) = X (1) “au(s) = (=D (K {).

=0 €=0

But p;(A) =< xmin(A, i) =(—1)’x(K }) by definition. Therefore K} is a
minimal root and pi(A) = xmin(A, i) = x(K%). O
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COROLLARY 5.2: For any finitely chain 2-realizable two type T =
(A, 73, k), with A a finite abelian group, x(T) = Xmin(A, 2).

PROOF: By 5.1, xmin(A,2) = u(A) = x(T). O

However, for any arbitrary finite group , it is not known if there is
a two type T such that

X(T) < Xmin(, 2).

This would occur, for example, if HT (w,2) has a minimal root X
such that m,X =M @ Z=u. This two type T would then be finitely
chain 2-realizable, but not 2-realizable. Does this ever happen?

Recall that a m-module M has the cancellation property (CP) &< for
any M' such that M@ Znr) =M @ (Zw) (i=j) we have M'=
M @ (Zw)~". For any (m,?2)-complex X, the module 7,X @ Z= has
the cancellation property [4, §4].

THEOREM 5.3: Let A be a finite abelian group and let T = (A, m,, k)
be finitely chain 2-realizable. If x(T)> Xmin, then T =(A, w3, k) is
finitely 2-realizable; if x(T) = Xmin, then T@ ZA=(A, m: @ ZA, k) is
finitely 2-realizable.

ProoF: Let T be realizable as

%(T) 0 T C2 C| Cy VA 0

with each C; a finitely generated, free A-module. By Schanuel’s
lemma [10, section 1, page 269] mo(K2) @ (ZA) = m, @ (ZAY (i=)).
If i>j, then m(K)® (ZA) ' =, (t=i—j= x(T)— Xm) [3, proposi-
tion 5.1, page 267]. Thus (A, m, k)= (A, m(K3) P (ZA), k') =
(A, m(K2) @ (ZA), kK% by proposition 3.2 because k’,kK3 are
members of ker d. Hence, T=T(K3iv \'/SZ). A similar argument
shows the result if x(T) = xmn. O

For an arbitrary finite group =, the following holds:

(@) If x(T)= xmin(m,2)+ 2, then T is 2-realizable

®) If x(T)<xXmin(7,2)+2, then T @ (Zw) is 2-realizable, where
J = Xmin+ 2= x(T).

COROLLARY 5.4: Let X be a connected CW-complex having finite
abelian fundamental group A and suppose that X is dominated by a
finite two-dimensional complex. Let T(X) denote the algebraic two-
type of X. Suppose the Wall invariant Wa,[X] of X vanishes. If
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X(T)> xmin(A, 2), then X has the homotopy type of an (A, 2)-complex.
If X(T) = Xumin, then X v S* has the homotopy type of a (w,2)-complex.

ProoF: Because the Wall invariant of X is zero, X has the
homotopy type of a finite 3-complex [14, theorem F, page 66] Y.
Furthermore, Wa,[X]= Wa,[Y]=0 implies that T(X)=T(Y) is
chain 2-realizable by a free chain complex % of finite type. If y(T(X)) =
X(€) > Xmin» then T(X) is realizable as a 2-complex; if x(T(X)) =
X(€) = Xumin» then T(X v S?) is realizable as a 2-complex. It then follows
from theorem 1.1 of [2, page 230] that X or X v S* have the homotopy
type of a finite two-complex. [

A similar conclusion holds for # an arbitrary finite group: If
X(T) > Xmin(m,2) + 1 (X(T) =< Xmin(7,2)+ 1) then X (X v jS?) has the
homotopy type of a finite 2-complex (as before, j = ymin +2— x(T)).

We formalize the notions involved in the proofs of the main
theorems, 5.3 and 5.4 in the following fashion.

Let 7 be a finite group and X be a (m, i)-complex. We say that
Aut mX is transitive on k-invariants iff for each k€
ker 8 C H*'(w, mX) there is a @-automorphism a: mX - mX, 0 €
Aut 7, such that a (1) = 6*(k). Recall that a §-homomorphism « has
the property that a(x-y)=0(x)a(y) (xEw, yE mX). With this
definition, it is clear that proposition 3.2 simply says that Aut 7 (K} v
S is transitive on k-invariants. Similarly, 3.1 says that Aut m;(X v
2S%) is transitive on k-invariants, for any minimal root X of HT(m, i).

Consider the function

5:{0,1}x{0,1,2} x Z—>{0, 1,2}

given by
0 if €>0and §=¢, 0or £=0and § >0.
s(e, ¢,8)={ ¢€—6 if ¢>0andé<¥¢
€ if £=0and 8 =0.

Note that s(0,0,8) =0 for all § =0. Then consider the following five
statements about a finite group 7 and a minimal root X of HT (m, 2).
Tr(¢, X): For some ¢, 0= ¢ =<2, Aut(m,X @ (Z=)’) is transitive on
k-invariants.
CP(e, X): mX @ (Zw)* has the cancellation property (e =0, 1).
Ht(¢, €): The essential height of HT (1, 2) < max(e, €) (e =0,1,0=
£=<?2).
R(¢, €): Let T = (ar, m,, k) be any finitely chain 2-realizable 2-type
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such that x(T) — xmin(7,2) = 8. Then T @ (Z7)* = (a, m. @ (Zm)*, k) is
finitely 2-realizable, where s = s(e, ¢, 8).

P (¢, €): Let Y be a connected complex with fundamental group =
which is dominated by a finite 2-complex. Let the Wall invariant of Y
vanish and 6 = x(T(Y)) — Xmin- Then Y v ‘S/Sz has the homotopy type
of a (m,2)-complex where s = s(e, ¢, 8).

The following theorem has a proof similar to those of 5.3, 5.4 and
theorems 1 and 2.

THEOREM 35.5: Let w be a finite group and X be a minimal (m,2)-
complex. If we assume Tr(X, ¢) and CP(X, €), then Ht(e, £), R(e, £)
and 9 (e, €) are true. [

ExaMmpLE 1: If 7w = A is a finite abelian group and X = K3, then
€= +¢=1 and 5.5 yields 5.3, 5.4 and theorem 2.

ExaMpPLE 2: If #=2Z, X =K(n) (see S5.1), then mX =1, the
augmentation ideal in Z(Z,). By [3, proposition 5.3, page 267] I has
CP, hence € = 0. By proposition 4.1 of [3, page 265] I is transitive on
k-invariants, hence € = 0. Thus we recover the theorem of [3] that the
height of HT(Z,,?2) is zero (Ht(0,0)) and theorem 5.2 (%(0,0)) and
corollary 5.3 (9(0, 0)) of [2].

ExaMPLE 3: Let 7 = D,,, the dihedral group of order 2n, with n
odd. Let X be the cellular model associated with the efficient presen-
tation @ = {x, y: y2, yxyx """} of D. D is a periodic group of minimal
free period 4 and 7,X is transitive on k-invariants by [3, proposition
4.1] and has the cancellation property because D satisfies the Eichler
condition (see [12, page 178] and [3, page 278]). Hence € = ¢ = 0. Thus
HT(D,?2) has height 0, any finitely chain 2-realizable 2-type (D, D,, k)
is finitely 2-realizable and any complex Y with @Y = D which is
dominated by a finite 2-complex has the homotopy type of a (D,?2)-
complex iff the Wall invariant vanishes.

Note that the above statement is true for any group = satisfying
Eichler’s condition and having a (m, 2)-complex X such that m,X =
Za/(N) (hence, = must be a periodic group with period 4).

ExaMPLE 4: Let G be the group of order 4n with efficient presen-
tation # ={a, b:a" = b?, ba = a 'b}. G is periodic of period 4 and if
X is the cellular model associated with 2, then m,X = ZG/(N). If n is
odd, then G satisfies the Eichler condition and € = € = 0 (see example
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3). If n is even (for n =2, G is called a generalized quaternion group)
then, by proposition 4.2 of [3] Aut(7,X @ Z=) is transitive on k-
invariants. Thus € = £=1 and 5.3 and 5.4 are true with G replacing
the finite abelian group #. Furthermore, the homotopy tree HT(G, 2)
has essential height <1.

Question: Let G be the generalized quaternion group of order 32
(n =8) and let P C Zw be the projective ideal of R. Swan [13] such
that P ® Zw =(Zw)* but P Zx. Is the two-type T =(G, P/IP™, 1)
realizable as a two-complex? If so, then the realizing complex, say Y,
does not have the same homotopy type as X, for #,X is not 8-
isomorphic to mY for any 8 € Aut G [5, corollary 3.6]. If not, this
would be the first known example of a stably realizable two-type
(T @ Zm is finitely 2-realizable because P/P™ @ Zw = Z7w/(N) ® Z7)
which is not realizable.
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