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ON THE ESSENTIAL HEIGHT OF

HOMOTOPY TREES WITH FINITE

FUNDAMENTAL GROUP

Micheal N. Dyer

1. Introduction

Let G be a group. A (G, i)-complex X is a finite, connected CW
complex with dimension  i having 7riX isomorphic to G and irjx = 0
for 1  j  i. The homotopy tree HT(G, i) is a directed tree whose
vertices [X] consist of the homotopy classes of (G, i)-complexes X ; a
vertex [X ] is connected by an edge to vertex [ Y] iff Y has the

homotopy type of the sum X v S’ of X and an i-sphere S’. Let

x(X) = (-1)’X(X) be the directed Euler characteristic of a (G, i)-
complex X; Xmin - Xmin( G, i ) = min{x(X) X is a (G, i)-complex}. The
level of a vertex [X is the number X(X) - Xmin. A (G, i)-complex X is
a root provided [X has no predecessors in the tree; X is a minimal
root iff [X is at level 0.

DEFINITION: We say that HT(G, i) has essential height ~k iff for

any two (G, i)-complexes X, Y such that x(X) = X( Y) ~ Xmin + k, X
has the same homotopy type as Y [4].

THEOREM 1: For any finite group TT and integer i - 2, the homotopy
tree HT(’TT, i) has essential height ~2.

This is an easy consequence of R. Williams’ generalization [15,
theorem 4.6] of the cancellation theorem of H. Bass to the category of

pointed modules. The proof is given in section 4.

THEOREM 2: For any finite abelian group A, the homotopy tree

HT(A, i ) has essential height -1.
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Throughout this paper 7r will denote a finite group and A a finite
abelian group. In general, these are the best possible results. It is
shown in [5], that for ir equal to the generalized quaternion group of
order 32, the tree HT(7r, 3) has essential height equal to two. For A a
finite abelian group, W. Metzler [8] and A. Sieradski [9] show that
there are often distinct minimal roots in these trees. The only remain-
ing question for HT(A, i) is the number of minimal roots.
A picture of the trees HT(A, i) would be:

It would be very interesting to know about the height of the simple
homotopy tree SHT(’TT, i) as well.
The outline of the paper is as follows. In section 2 key isomor-

phisms are isolated, which are used in section 3 to show that wve may
"shuffle k-invariants" via certain automorphisms of the homotopy
modules of minimal roots. The proofs of theorems 1 and 2 are found

in section 4. In section 5 we apply our results to the problem of
C.T.C. Wall concerning spaces dominated by finite two-dimensional
complexes.
For example, we show the following theorem.

THEOREM 3: Let X be any connected CW-complex which is

dominated by a finite, connected 2-complex and suppose that the Wall
invariant of X vanishes. If ’TT1X is a finite abelian group, then X v S2 has
the homotopy type of a finite 2-complex.

A sharper (but more technical) version of theorem 3 is proved in
section 5.
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2. Certain isomorphisms

In this section we develop certain technical results necessary for
the proof of theorem 2.

Let 7T be a finite group of order n and let N = L XE1T X be the (norm)
element in Z7r consisting of the sum of all the group elements. A unit
mod N is an element u E Zjr for which there is an element u’ E Z’TT

such that u’u and uu’ are congruent to 1 modulo the ideal (N)
generated by N. Equivalently, u + (N) is a unit in the augmentation
ring Zirl(N).
The augmentation of units mod N is of some interest. The aug-

mentation E: Zir ---&#x3E; Z induces E’: Z7rl(N) ---&#x3E; Zn. There is a homomor-

phism

from the group of units in the ring Zn to the reduced projective class
group KoZ’TT of Z?r, defined by carrying the residue class p + nZ = [p ]
modulo n (p is prime to n ) to the class {(p, N)} E KoZ’TT of the

projective ideal (p, N) generated by p and N (see [10, §6] and [3,
sections 2-4]). For A a finite abelian group, [p] E ker ~ iff the ideal

(p, N) is isomorphic (as an A-module) to ZA [12, theorem 19.8 and
the discussion following]. The following is proved in [10, lemma 6.3,
page 279].

PROPOSITION 2.1. Let A be a finite abelian group. If u E ZA is a
unit mod N, then E’(u) E ker a. Furthermore, given any [p] E ker a,
then there is a unit u mod N such that E(u) = p. ~

Consider a free w-module (Z7r)t of rank t and the (ring) homomor-
phism

given by E(al, ..., 03B1t) = (E(a1), ..., E(at)). We have now the following
crucial lemma.

LEMMA 2.2: Let A be any finite abelian group and K be any

submodule of (ZA)’ such that E(K) = 0. For any unit u mod N in ZA,
the homomorphism

given by multiplication by u is an isomorphism.
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PROOF: u is a unit mod N implies the existence of a u’EE ZA such
that u’u = uu’ = 1 + aN (a E Z). x = (xi, ..., Xt) is a member of K iff

E(X) = (e(x1)’ ..., E(Xt» = 0 iff N . x == o. Thus u’ux = uu’x =

x+aNx=x for all xEK. D

Now consider the (k + 1) x (k + 1) integer matrix (k &#x3E; 1)

A straightforward induction argument shows that

PROPOSITION 2.3: Let ir be any finite group of order n and Z the
trivial 7r-module. Let v be a unit mod N in Z1T’ having E(v) = c.

Suppose that c, q, b, t, p i, ..., Pk-1 are integers such that

Then the left rr-homomorphism

with matrix

is an isomorphism.

PROOF: Let t: ZirN ---- &#x3E; Z’TT denote the natural inclusion and consider

the following exact ladder of modules:
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with a’, a" the appropriate maps induced by a. The image of a
restricted to Zk @ ZWN is contained in Zk @ ZirN because this is the
submodule (Zk @ Z’TT)1T of elements fixed under the action of 77-. The

matrix of a’ is given by

which has determinant cak + bPI... Pk-Itn = 1 and hence a’ is an

isomorphism. a" is simply multiplication by the element v E Z7r and is
an isomorphism because v is a unit mod N. By the five lemma, a is an
isomorphism. 0

3. Shuffling k-invariants

Let n denote the order of the group ’TT. For any (ir, i)-complex X, it
is known from [3, §2] that the (i + 1)-cohomology group H’+1(7r, ’TT;)
(with coefficients in the ir-module irix = iri) is isomorphic to Zn. Let
i.: Iri 4 Ci = Ci(X), where Ci is the free ir-module which is the cel-

lular chain module of the universal cover X of X. We use the fact
that

with Bi = im{Hom1T( Ci, iri) ’* &#x3E; End1T( ’TTi)}, to identify Hi+1( ’TT; 7r,) with
Zn via (4: iri --- &#x3E; iri) - q + (n), q E Z. Thus [1] E Zn corresponds to the
class of id E End( ’TTi). Notice also that if e: iri ---&#x3E; iri @ Ziri is the

natural inclusion (Z’TTi the direct sum of j copies) then

t*: Hi+1(’TT; ’TTi)Hi+I(’TT; ’TTi EB Z’TTi) is an isomorphism because

Hi+1( ’TT; Z1T) = 0 for any finite group ir (i ~ 0). We identify all these
groups using e*.
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We say that an isomorphism a : 7ri EB ZWJ -- &#x3E; lrj @ zzri has degree

PROPOSITION 3.1: (Bass-Williams [15]). For each finite group 7r,

i ~ 2, each minimal root X E HT( 7T, i) and each [q] E
ker{~: Z* n ---&#x3E; kozirl there exists an automorphism 7ri Et) Z7r 2 ___&#x3E;

PROOF. For each X E HT( ’TT, i ) and each [q E ker a it is proved in
[4, page 309] that there is an integer j &#x3E; 2 and an automorphism

having degree [q]. However, by J. Williams’ generalization [15,
theorem 4.6 and the remark following 4.9] of the Bass cancellation
theorem to the category of pointed modules, one may "cancel" all but
two factors of Z’TT while preserving the degree; i.e., there is an

automorphism

also having degree [q]. D

PROPOSITION 3.2: Let A be a finite abelian group of order n and Y
be any minimal root in HT(A, i). Let Ai denote the A-module 7ri(Y).
For each [q]Gker(à: Zt-ÀOZA) there exists an automorphism
Ai (f) ZA ~ Ai 0 ZA of degree [q].

PROOF: Consider A = Z’-l X ... X Z’-s (T11 T21...1 Ts) and let n =

Tl ... Ts denote the order of the group. Let Y denote any minimal

root of HT(A, i ). We consider the standard A-module

where Ci is the (finitely generated) free A-module which is the

cellular chain module of the universal cover Y of Y. Let v = rankA Ci,
{ej} be a ZA-basis for Ci, and qf designate the rankz £i =
im{E 1 Ai: Ai ---&#x3E; Z’I where E: Ci ---&#x3E; Z’ is the augmentation on each

coordinate and 1; is the subgroup of spherical homology classes of
Hi(Y).

As 1:i 4 Z’, use the fundamental theorem of finitely generated free
abelian groups to choose a new basis for Z’

so that the set {ala, ..., a«/1a«/1} (a; &#x3E; 1) is a basis for £i.
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Note that each aj can be chosen so that aj = 7"k(i). We do this as

follows. There is an isomorphism

this last being a finite abelian group. Let Y‘-1 denote the (i - 1)-
skeleton of Y and !i-1 denote the image of ’TTi-1 yi-1 in Hi-1( yi-l)
under the Hurewicz homomorphism. Then the following lower

sequence is an exact sequence of free abelian groups

obtained by applying the augmentation homomorphism to the upper
sequence. As 1:i-1 is free we have Z’ = Hi(Y) Et) 1:i-1. Since the

rankz Hi( Y) = rankz 1:i, ai,..., a03C8 may be chosen as a basis for Hi( Y)
and a1, ..., a, will be the torsion coefficients of Hi(A), each of which

(by the Künneth formula) is one of the torsion coefficients of A itself.

Express the new basis {aj} in terms of the old basis {E(ej)} as

follows:

Use the invertible v x v integral matrix B = (bjk) to determine a new
basis of Ci

With respect to this basis {fj}j=l for Ci, {aj . E(fj)}t=l 1 is a basis for

!i 4 zv.
Because E(Ai) = 1;, we may choose elements 03BC1, 03BC2, - - -, 03BC03C8 of Ai

such that E(03BCj) = aj . e(fj) (j = 1, ..., 03C8).
For each k = 1, ..., 03C8 - 1, define a homomorphism

by

Let E$m denote the elementary j x j matrix with a 1 in the éth row and
the mth column and zeros elsewhere. Notice that the matrix of rk with

respect to {fj} is given by N . ak+1Ek+l.k and the matrix of the map
E(rk) defined by rk on 03A3; with respect to the basis {aj . e(fj)} is given
by ak . n . Et+1.k. This last follows because rk(fk) = ak+1Nfk+1 which
implies that E(rk)(E(fk» = ak+1 . n .  E(fk+1). Hence, E(rk)(ak ’  E(fk)) =
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ak . ak+1 . n . E(fk+1) = (ak . n)(ak+1 . E(fk+1». Notice also that rk has

image in Ai, hence rk 1 Ai: Ai ---&#x3E; Ai is a map of degree 0.

Now choose a unit u mod N in ZA with E(u) = q. q is prime to n
implies that q is prime to each rj (j = 1,..., s) and hence to each aj
(j = 1,..., 03C8). Thus q e is prime to (al... al/J-1)nl/J+1, so choose integers
b, c such that

The above equation yields

and hence [c] is a member of ker a also. Choose a unit v mod N in

ZA such that E( V) = c (see 2.1).
With all these data, we may define the isomorphism

of degree [q] : a is given by a (2 x 2)-matrix of homomorphisms

Let all = U + É §Î=’ rk/Ai, a12(l) == (-l)t/1N. fl, a21 == bNpt/1IAi, and a22=
V, where Pj: Ci ~ ZA is the projection on the jth coordinate. Recall
that il: Ai ~ Ai means right multiplication by u.
To show that a is an isomorphism we decompose Ai 4 Ci by

applying E : (ZA)v ~ Z" to Ai. Thus we have

03B1 K is simply multiplication by u because K = 0 = bNpl/1 K. Thus
a 1 K is an isomorphism by lemma 2.2. a also induces a map

a ’: 1; © ZA - 1; © ZA.
It is clear (using the basis {aj . E(fj)}) that the matrix of the map

a’: Xi (D ZA - 1; (f) ZA induced by a is given by
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Because v is a unit mod N and

we have a’ is an isomorphism (Proposition 2.3). Hence, by the five
lemma, a is an isomorphism.
To see that a has degree [q], observe that degree a = degree

all = degree ù because all is ù plus maps of degree 0. But degree
û = degree 4 = [q] because E(u - q) = 0. D

4. Proof of Theorems 1 and 2

The proof of the main results require the use of the theory of
algebraic i-types, which we now outline.
An algebraic i-type is a triple (G, 1T;, k), where G is a group, 7ri a

G-module and k is an element of the group H;+l(G; ’TT;). Such triples
form the objects of a category J (i), the category of i-types. A
morphism in g is a pair of maps (a, (3): (G, ’TT;, k) ---&#x3E; (G’, ’TTi, k’) where
a: G ---&#x3E; G’ is a group homomorphism, {3: ’TT; ~ ’TTi is an a-homomor-

phism ({3(x . y) = a(x) . 03B2(y) for any x E G, y E 1T;) and a*(k’) = (3*(k)
in the following diagram:

where a’TT; is the G-module with structure induced by a. (a, 03B2) is an

isomorphism iff both a and (3 are bijective. We denote by J (G, i ) the
full subcategory of J (i) whose objects (G’, ’TT;, k) have G’ isomorphic
to G.

Let cgc G, i) denote the full subcategory of TOP whose objects are
(G, i)-complexes. By a theorem of S. MacLane and J.H.C. White-
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head, there is (homotopy) functor T: C (G, i) --&#x3E; J(G, i) defined by
T(X) = (’TT1X, 7riX, kX), where kX E H"’(7r,X, 7TiX) is the first k-in-

variant of X [7]. T(f : X - Y) = (fi#, fi#) and for each pair of objects
X, Y E Cf6(G, i), T: Map(X, Y)--&#x3E; Hom(T(X), T( Y)) is surjective. This
functor is not an equivalence of categories, but it is strong enough
that any two (G, i )-complexes X and Y have the same homotopy type
iff T(X) is isomorphic to T( Y) [7, theorem 1, page 42].

DEFINITION: Let 7T be a finite group and M be a 7r-module. M has the

cancellation property iff for any module M’ with

we have M’ = M @ (Z’TT){3-a.

For any module M over ’TT, M @ (ZIT)2 has the cancellation pro-
perty, by the theorem of H. Bass [12, §9]. If A is a finite abelian group
and Ai = 7riY, where Y is any (A, i)-complex, then Ai (D Zw has the
cancellation property [12, theorem 19.8], [3, page 267]. If 7T is any
finite group and X is a (7r, 2i)-complex, then 7T2iX @ Z7r has the

cancellation property [3, corollary 4.2, page 267]. These last two

statements are corollaries to the powerful theorem of H. Jacobinski
[12, theorem 19.8].
Using propositions 3.1 and 3.2, we now give a

PROOF OF THE MAIN THEOREMS: Let X be any (7r, i)-complex and Y
be a minimal root of HT(7r, i). Consider the algebraic i-type T(X) =
(7r,X, 7r;X, kX) of X. If x(X) &#x3E; Xmin+ 1, wet will use 3.1 to show that X
has the homotopy type of the sum Y v VS’ of the minimal root Y
with a bouquet of t X(X) - X,,i,, i-spheres Si. If 7r is a finite abelian

group and x(X) &#x3E; Xmin, a similar argument (using 3.2) will show that

X = Y v VSi.

First, we will identify ’TT1X with 77- = 7Tl Y via an arbitrary isomor-
phism 0: ’TT ~ 7r,X. The i-type T(X) is isomorphic to the i-type
(7r, 07riX, k’) via the isomorphism (0, id): (w, o7TiX, k’) --- &#x3E; (ir 1 X, ’TTiX, kX).
Notice that id : ,-ffiX ---&#x3E; 7riX is a 0-isomorphism. k’ is the image of kX
under the isomorphism

(0* is an isomorphism by [6, page 108]). Now consider the i-type
T(Y) = (’TT, 7ri, kY). It follows from Schanuel’s lemma that
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as 7T-modules, with t = j - t - 2. Because 7ri (D Z’TT2 has the cancel-
lation property (if 7r is finite abelian, one uses that iri (B Z7r has the
cancellation property) we have an isomorphism (3: ,iriX ~ 77-, Cf) (Z’TT )t.
Thus

where k" = 03B2*(k’) with (3*: Hi+l(7T, 87TiX) ~ Hi+1(’TT; ’TTi E8 (Z’TT)t) in-
duced by 03B2.
By theorem 3.5 of [3, page 264], we must have k", kY members of

ker ~, a multiplicative subgroup of Zn. Hence by proposition 3.1,
there is an isomorphism

of degree kY/k" E ker a. This yields an isomorphism of i-types carry-
ing k"~ k Y :

t

This last i-type is just T(VvVS"). Thus T(X) is isomorphic to

T(Y v VS’) and hence

5. Spaces dominated by 2-complexes

As an application of proposition 3.1, we (almost) extend C. T. C.
Wall’s theorem concerning spaces dominated by finite 2-complexes
[14, theorem F, page 66] to all finite (abelian) groups. The extension to
finite cyclic groups has been given in [2, corollary 5.3, page 242] and,
independently, in [1, theorem 4, page 261].

DEFINITION: An algebraic two-type T==(7r, IF2, k) is finitely 2-

realizable iff there is a (’TT, 2)-complex X such that T(X) ~ T.

Let 7r be a finite group of order n. We say that the two-type
T = (7F, ’TT2, k) is finitely chain2-realizable if there exists a free partial
resolution of the trivial ir-module Z of finite type realizing k ; i.e., there
exists an exact sequence of 7r-modules:

where each Ci (i = 0, 1, 2) is a finitely generated free ’TT-module, such
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that comparison with the standard bar resolution gives k E
H3( ’TT, ’TT2) ~ Zn (see [3], page 256). This means that k E ker a. The
Euler character X(C) is given by rank1T C2 - rank1T CI + rank1T Co. By
Schanuel’s lemma, X(W) depends only on T; hence we will denote it
by X(T), the Euler characteristic of the (finitely chain 2-realizable)
two-type T. If A is a finite abelian group, we will show that y(T), if
defined, is greater than or equal to Xmin(A, 2).

Let K(n) denote the CW-complex which is a K(Zn, 1) and has one
cell in each dimension. Now let A = ZTl x ... x Z,, (Tj T;+1, j = 1, 2, ...,
s - 1) and consider the Eilenberg-MacLane space KA = II1=1 K(T;).

PROPOSITION 5.1: In the tree HT(A, i) for i &#x3E; 2, the i-skeleton K’ A of
KA is a minimal root.

PROOF: We will show that Xmin(A, i) = 1)’,V(K’). Because K(n)
has one cell in each dimension, the number 03C3e(s) of e-cells in KA

« a 0) is precisely the numbers of ways one may choose an ordered
s-tuple (a,, ..., as) (allowing repetitions) from the set {O, 1, ..., f} such

that 3i J=i aj = t.
Let p be any prime dividing T,. Then, considering Zp as a trivial

Z’, -module (j = 1, ..., s ), we have

for all l &#x3E; 0. By the Kunneth theorem

Thus, the dimension of He(A; Zp) as a Zp-module = he(A; Zp) =
ue(KA). Define iii(A) to be the minimum of the directed Euler

characteristics of truncated, finitely generated free resolutions of

length i,

(each Ci is finitely generated, free A-module, Z is the trivial A-

module) [11, page 193].
Theorem 1.2 of [11] says that

But JL;(A):5 Xmin(A, i) :5 (-l);X(K i) by definition. Therefore Ki is a

minimal root and 03BCt;(A) = Xmin(A, i) = X(KÂ). D
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COROLLARY 5.2: For any finitely chain 2-realizable two type T =
(A, lr2, k), with A a finite abelian group, y(T) - Xmin(A, 2).

PROOF: By

However, for any arbitrary finite group ir, it is not known if there is
a two type T such that

This would occur, for example, if HT(’TT,2) has a minimal root X
such that lr2X M (D Zir. This two type T would then be finitely
chain 2-realizable, but not 2-realizable. Does this ever happen?

Recall that a ir-module M has the cancellation property (CP) =&#x3E; for

any M’ such that M’EB (Z7T)i = M EB (Z’TT)j ( i ~ j ) we have M’ =
M (D (Z’TT )j-i. For any (7r, 2)-complex X, the module lr2X @ Zw has
the cancellation property [4, §4].

THEOREM 5.3: Let A be a finite abelian group and let T = (A, 77-2, k)
be finitely chain 2-realizable. If x(T) &#x3E; Xmin, then T = (A, -rr2, k) is

finitely 2-realizable; if x(T) = Xmin, then T EB ZA = (A, ’TT2 EB ZA, k) is

finitely 2-realizable.

PROOF: Let T be realizable as

with each Ci a finitely generated, free A-module. By Schanuel’s
lemma [10, section 1, page 269] ’TT2(K1) EB (ZA)i = ’TT2 EB (ZA)j (i &#x3E; j ).
If i &#x3E; j, then ’TT2(K 1) O (zA)t t = ’TT2 (t = i - j = x(T) - Xmin) [3, proposi-
tion 5.1, page 267]. Thus (A,’TT2,k)==(A,’TT2(K1)EB(ZA)t,k’)=
(A, IF2(K 2) EB (ZA)t, kK2) by proposition 3.2 because k’, kKÂ are

members of ker a. Hence, T = T(KA 2 V VS2). A similar argument
shows the result if X(T) = ,Ym;n. D

For an arbitrary finite group ir, the following holds:
(a) If x(T) ~ Xmin( ’TT, 2) + 2, then T is 2-realizable
(b) If X(T)  Xmin(’TT, 2) + 2, then T @ (Z7r)j is 2-realizable, where

j = Xmin + 2 - X(T).

COROLLARY 5.4: Let X be a connected CW-complex having finite
abelian fundamental group A and suppose that X is dominated by a
finite two-dimensional complex. Let T(X) denote the algebraic two-
type of X. Suppose the Wall invariant Wa2[X ] of X vanishes. If
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x(T) &#x3E; X.i.(A, 2), then X has the homotopy type of an (A, 2)-complex.
If x(T) = Xmin, then X v S2 has the homotopy type of a (’TT, 2)-complex.

PROOF: Because the Wall invariant of X is zero, X has the

homotopy type of a finite 3-complex [14, theorem F, page 66] Y.

Furthermore, Wa2[X] = Wa2[ Y] = 0 implies that T(X) = T(Y) is

chain 2-realizable by a free chain complex 16 of finite type. If x(T(X)) =
X(C(6) &#x3E; Xmin, then T(X) is realizable as a 2-complex; if X(T(X» =
X(C(6) == Xmin, then T(X v S2) is realizable as a 2-complex. It then follows
from theorem 1.1 of [2, page 230] that X or X v S2 have the homotopy
type of a finite two-complex. D

A similar conclusion holds for w an arbitrary finite group: If

X(T) &#x3E; Xmin( ’TT, 2) + 1 (X(T):5 Xmin( 1T, 2) + 1) then X (X v jS2) has the
homotopy type of a finite 2-complex (as before, j = Xmin + 2 - x(T)).
We formalize the notions involved in the proofs of the main

theorems, 5.3 and 5.4 in the following fashion.
Let 7r be a finite group and X be a (ir, i)-complex. We say that

Aut 7r,X is transitive on k-invariants iff for each k E

ker a C Hi+1( ’TT, irix) there is a 0-automorphism a: 7riX ----&#x3E; ’TTiX, 8 E
Aut 7r, such that a*(l) = 0*(k). Recall that a 0-homomorphism a has
the property that a (x . y) = 8(x)a (y) (x G w, Y E ’TTiX). With this

definition, it is clear that proposition 3.2 simply says that Aut iri(K’ v
S’) is transitive on k-invariants. Similarly, 3.1 says that Aut 1Ti(X v
2S’) is transitive on k-invariants, for any minimal root X of HT( ’TT, i).

Consider the function

given by

Note that s (0, 0, 03B4) = 0 for all 03B4 &#x3E; 0. Then consider the following five
statements about a finite group 7r and a minimal root X of HT(ir, 2).

Tr( t, X) : For some l, 0 S é S 2, Aut(IT2X Et) (Z7T )e) is transitive on
k-invariants.

CP(E, X): ’TT2X @ (Z’TT)E has the cancellation property (E = 0, 1).
Ht(t, E): The essential height of HT(’TT, 2)  max(E, t) (E = 0, 1, 0 

t ~ 2).
q¿(t, e): Let T = (’TT, ’TT2, k) be any finitely chain 2-realizable 2-type
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such that x(T) - Xmin( ’TT, 2) = S. Then T @ (Zrr)S = (’TT, -rr2 O (Z7r)’, k) is
finitely 2-realizable, where s = s(,E,,e, 8).
15 e): Let Y be a connected complex with fundamental group IF

which is dominated by a finite 2-complex. Let the Wall invariant of Y
S 

2vanish and S = X(T( Y» - Xmin. Then Y v VS2 has the homotopy type
of a (ir, 2)-complex where s = S(E, t, 8).
The following theorem has a proof similar to those of 5.3, 5.4 and

theorems 1 and 2.

THEOREM 5.5: Let 7T be a finite group and X be a minimal (7r, 2)-
complex. If we assume Tr(X, t) and CP(X, e), then Ht(E, t), f1l(E, t)
and D(E, are true. If

EXAMPLE 1: If ’TT == A is a finite abelian group and X = Ki, then
E = l = 1 and 5.5 yields 5.3, 5.4 and theorem 2.

EXAMPLE 2: If 7r X = K(n)2 (see 5.1), then ’TT2X == I, the

augmentation ideal in Z(Zn). By [3, proposition 5.3, page 267] 1 has
CP, hence E = 0. By proposition 4.1 of [3, page 265] 1 is transitive on
k-invariants, hence t = 0. Thus we recover the theorem of [3] that the

height of HT(Zn,2) is zero (Ht(0,0» and theorem 5.2 (r(0,0)) and

corollary 5.3 (D(0,0)) of [2].

EXAMPLE 3: Let 7r = D2n, the dihedral group of order 2n, with n
odd. Let X be the cellular model associated with the efficient presen-
tation P = f x, y : y2, yxyx-n+1} of D. D is a periodic group of minimal
free period 4 and ’TT2X is transitive on k-invariants by [3, proposition
4.1] and has the cancellation property because D satisfies the Eichler
condition (see [12, page 178] and [3, page 278]). Hence E = l = 0. Thus

HT (D, 2) has height 0, any finitely chain 2-realizable 2-type (D, D2, k)
is finitely 2-realizable and any complex Y with ’TT1 Y = D which is

dominated by a finite 2-complex has the homotopy type of a (D, 2)-
complex iff the Wall invariant vanishes.

Note that the above statement is true for any group ir satisfying
Eichler’s condition and having a (ir, 2)-complex X such that 7r 2X
Zirl(N) (hence, 7r must be a periodic group with period 4).

EXAMPLE 4: Let G be the group of order 4n with efficient presen-
tation 9 = la, b : an= b2, ba = a-1b}. G is periodic of period 4 and if
X is the cellular model associated with P, then ’TT2X == ZG/(N). If n is
odd, then G satisfies the Eichler condition and e = l = 0 (see example
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3). If n is even (for n = 2’, G is called a generalized quaternion group)
then, by proposition 4.2 of [3] Aut( ’TT2X @ Z-U) is transitive on k-

invariants. Thus E = l = 1 and 5.3 and 5.4 are true with G replacing
the finite abelian group 7r. Furthermore, the homotopy tree HT(G, 2)
has essential height 1.

Question : Let G be the generalized quaternion group of order 32
(n = 8) and let P C Z’TT be the projective ideal of R. Swan [13] such
that P EB Z’TT = (Z’TT)2 but P ~ Z’TT. Is the two-type T = (G, PIP’, 1)
realizable as a two-complex? If so, then the realizing complex, say Y,
does not have the same homotopy type as X, for ’TT2X is not 0-

isomorphic to IT2y for any 03B8 E Aut G [5, corollary 3.6]. If not, this

would be the first known example of a stably realizable two-type
(T @ Z’TT is finitely 2-realizable because P/P" @ Zu Z7T/(N) @ Z7r)
which is not realizable.
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