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ON THE STRUCTURE OF HILBERT CUBE MANIFOLDS
by

T. A. Chapman

1. Introduction

Let s denote the countable infinite product of open intervals and let
I® denote the Hilbert cube, i.e. the countable infinite product of closed
intervals. A Fréchet manifold (or F-manifold) is a separable metric space
having an open cover by sets each homeomorphic to an open subset of s.
A Hilbert cube manifold (or Q-manifold) is a separable metric space
having an open cover by sets each homeomorphic to an open subset of 7%,

In [2] it is shown that real Hilbert space /, is homeomorphic to s and
indeed it is known that all separable infinite-dimensional Fréchet spaces
are homeomorphic (see [2] for references). Thus F-manifolds can be
viewed as separable metric manifolds modeled on any separable infinite-
dimensional Fréchet space. Using linear space apparatus and a number
of earlier results, Henderson [9] has obtained embedding, characteri-
zation, and representation theorems concerning F manifolds (see [10] for
generalizations to manifolds modeled on more general infinite-dimen-
sional linear spaces).

In [6] a number of results similar in nature to those of [9] were obtained
concerning certain incomplete, sigma-compact countably infinite-dimen-
sional manifolds. Some results were also established in [6] concerning
the relationship of such incomplete manifolds to @-manifolds. Since the
nature of these results is such that a good bit of information about
Q-manifolds can be obtained from the ‘related’ incomplete manifolds,
we thus have a device for attacking Q-manifold problems.

It is the purpose of this paper to use ‘related’ incomplete manifolds to
establish for Q-manifolds some more results similar to those of [9]. We
list the main results of this paper in section 2.

Unfortunately we leave important questions concerning Q-manifolds
unanswered. We call particular attention to the paper Hilbert cube
manifolds [Bull. Amer. Math. Soc. 76 (1970), 1326-1330], in which the
author gives an extensive list of open questions concerning Q-manifolds.

The author is indebted to R. D. Anderson for helpful comments during
the preparation of this paper.
329



330 T. A. Chapman 2]

2. Statements of results

A (topological) polyhedron is a space homeomorphic (=) to [K]|,
where K is a complex (i.e. a countable locally-finite simplicial complex).
Unless otherwise specified all polyhedra will be topological polyhedra.
West [15] has shown that Pxs is an F-manifold and PxI® is a Q-
manifold, for any polyhedron P.

A closed set Fin a space X in said to be a Z-set in X provided that for
each non-null homotopically trivial (i.e. all homotopy groups are trivial)
open subset U of X, U\ F is non-null and homotopically trivial. We use
the representation s = IT;2,I? and I® = II>,I,, where for each i > 0
I? is the open interval (—1, 1) and I, is the closed interval [—1, 1].

In Theorem 1 we show how to ‘fatten-up’ a polyhedron which is a
Z-set in a @-manifold to a ‘nice’ neighborhood of the polyhedron. This
will be useful in the sequel.

THEOREM 1. Let X be a Q-manifold and let P be a polyhedron which is
also a Z-set in X. If g€ I°\{(0, 0, - - -)}, then there is an open embedding
h:Px(I*\{q}) > X such that h(x, (0,0, ")) = x, for all xeP.

In [9] the following results are established.

(1) Every F-manifold can be embedded as an open subset of /,.

(2) If X and Y are F-manifolds having the same homotopy type (i.e.
X~7Y),thenX =Y.

(3) If X is any F-manifold, then there is a polyhedron P for which
X xPxl,.

If J is a simple closed curve, then J x I* is a Q-manifold which cannot
be embedded as an open subset of 7®. Also, I* and I°\ {point} are Q-
manifolds of the same homotopy type which are not homeomorphic.
Thus the obvious straightforward analogues of (1) and (2) for Q-
manifolds are not valid. Most of the results that follow are concerned
with obtaining partial analogues of (1), (2), and (3) for Q-manifolds.

THEOREM 2. Let X be a Q-manifold and let P be any polyhedron such
that X ~ P. Then there is a Z-set F = X such that X\F = P x (I,
{point}).
Each Q-manifold is an ANR and it follows from [11] that each
separable metric ANR has the homotopy type of some polyhedron. Thus
each Q-manifold has the homotopy type of some polyhedron.

THEOREM 3. Let X be any Q-manifold and let P be any polyhedron such
that X ~ P. Then X% [0,1) = P x (I°\{point}).

COROLLARY 1. If X is any Q-manifold, then there is a polyhedron P
such that Xx [0, 1) ~ PxI®.
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COROLLARY 2. If X and Y are Q-manifolds such that X ~ Y, then
Xx[0,1) = ¥Yx[0,1).

COROLLARY 3. If P and R are polyhedra such that P ~ R, then PXx
(I™\{point}) = Rx (I*\{point}).

In a sense Corollary 3 is analogous to a result of West [15]. It is shown
there that if a polyhedron P is a formal deformation of a polyhedron R
(in the sense of Whitehead [16]), then P x I® =~ RxI*.

THEOREM 4. If X is a Q-manifold, then X x [0, 1) can be embedded as an
open subset of I”.

COROLLARY 4. If X is a Q-manifold, then X = U v V, where U and V
are open subsets of X which are homeomorphic to open subsets of I”.

If X is any Q-manifold, then it is shown in [5] that X =~ X'xI® (and
therefore X =~ X x [0, 1]). Thus the above results offer some information
about the internal structure of Q-manifolds.

In [10] it is shown that if X and Y are F-manifolds and f: X — Yis a
homotopy equivalence, then f is homotopic to a homeomorphism of X
onto Y. We obtain a corresponding property for Q-manifolds which
strengthens Corollary 2.

THEOREM 5. Let X, Y be Q-manifolds and let f : X — Y be a homotopy
equivalence. Then there is a homeomorphism of X% [0, 1) onto Y% [0, 1)
which is homotopic to fxid : Xx [0,1) —» Y x [0, 1).

The following results are some partial answers to questions concerning
compact @-manifolds.

THEOREM 6. Let X be a compact Q-manifold and assume that X ~ P,
where P is a compact polyhedron. Then there is a copy P’ of P in X such
that P' is a Z-set in X and X\P' = P x (I°\ {point}).

COROLLARY 5. If X is a compact homotopically trivial Q-manifold, then
X =1

THEOREM 7. Let X be a compact Q-manifold and assume that X ~ P,
where P is a compact polyhedron. Then there is an embedding h: X — I®
such that Bd(h(X)) = PxI* and CI(I*\h(X)) = I”.

In regard to Theorem 7 we remark that in [8] a similar, and somewhat
stronger, result is established for F-manifolds.

We show that if X is an open subset of I, then the factor [0,1) of
Corollary 1 can be omitted.

THEOREM 8. If X is an open subset of I®, then there is a polyhedron P
such that X =~ PxI®,
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We remark that the proof of this result is quite different from the proof
of the corresponding property for open subsets of /, (see [8]).
We also establish a Schoenflies-type result for Q-manifolds.

THEOREM 9. Let X and Y be Q-manifolds and let f,g : X — Y be closed
embeddings which are homotopy equivalences and such that f(X), g(X) are
bicollared in Y (‘bicollared’ is defined in Section 3). Then the homeomor-
phism gof~'xid : f(X)x[0,1) > g(X)x [0,1) can be extended to a
homeomorphism of Y x [0, 1) onto itself.

We remark that in the case X = ¥ = I*, the factor [0,1) can be omitted
in the statement of Theorem 9. The proof of this follows routinely from
[17].

The proof of Theorem 9 applies to give us a corresponding result for
F-manifolds.

THEOREM 10. Let X and Y be F-manifolds and let f, g : X — Y be closed
embeddings which are homotopy equivalences and such that f(X), g(X) are
bicollared in Y. Then the homeomorphism g o f~' :f(X)— g(X) can be
extended to a homeomorphism of Y onto itself.

In case X = Y = I,, Theorem 10 follows routinely from the Schoen-
flies result of [13].

3. Preliminaries

In this section we describe some of the apparatus that will be used in
the succeeding sections.

For spaces X and Y, a continuous function f: X' — Y is said to be
proper provided that the inverse image of each compact subset of Y is
compact. Then a proper homotopy is a homotopy F: X x I — Y which is a
proper map (we let I = [0, 1]).

For each integer n> 0 let W,) = {(x;,)eI®|x, =1} and W, =
{(x;)eI”|x, = —1}. We call W," and W, endslices of I°. For each
integer n > 0 we let m, : I° — II]_, I, be the natural projection and put
B(I®) = I™\s.

A subset of I of the form IT;2,J; is called a basic closed set in I®
provided that J; is a closed subinterval of I; for each i > 0, and J; = [;
for all but finitely many i. Note that any basic closed subset of /* may
be viewed as a Hilbert cube, with its topological boundary being a finite
union of endslices.

Let X and Y be spaces and 11 be an open cover of Y. Then functions
f. g : X > Y are said to be U-close provided that for each x € X, f(x) and
g(x) lie in some element of 11. A function f: ¥ — Y is said to be limited by
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11 provided that f and idy (the identity function on Y) are ll-close. A
function f: Xx I — Y is said to be limited by 1l provided that for each
x e X, f({x} xTI) lies in a member of 11.

Following Anderson [1] we say that a subset M of a metric space X
has the compact absorption property in X (or M is a cap-set for X) if

(1) M = {J1M,, where each M, is a compact Z-set in X such that
M, M,,,,and

(2) for each & > 0, each integer m > 0, and each compact subset F of
X, there is an integer n > 0 and an embedding % : F - M, such
that A|/F n M, = id and d(h, id) < e.

For each integer n>0 let X, = II2,[—n/(n+1),n/(n+1)] and

> = ()% ,Z,. In [1] it is shown that X and B(I*) are cap-sets for I*.

We will need the following properties of cap-sets in Q-manifolds. All
of these can be found in [6]. We let X represent a Q-manifold.

LemMA 3.1. Cap-sets exist in Q-manifolds, and any cap-set for X is of
the form P x X, for any polyhedron P satisfying P ~ X.

LemmMA 3.2. If M is a cap-set for X and F = X is a Z-set, then M U F
and M \F are cap-sets for X.

LemMA 3.3. If M and N are cap-sets for X and 1 is an open cover of X,
then there is a homeomorphism of X onto itself which takes M onto N
and which is limited by 1.

LemmA 3.4, If M is a cap-set for X and F < X is a closed set satisfying
Fn M =0, then Fis a Z-set in X.

LemMA 3.5. If P is a polyhedron, then Px X, is a Z-set in PxX. If M
is a cap-set for X and F = M is a Z-set in M, then Clx(F) (the closure of
Fin X)is a Z-set in X.

LEMMA 3.6. If M is a cap-set for X, then X\ M is an F-manifold satisfying
XM ~ X. In fact, M =~ X x B(I*), which is a cap-set for X xI°. If
F c X\ M is a Z-set in X\ M, then Clx(F) is a Z-set in X.

Let X be a space and let u be any open cover of X. Then define
St°(u) = u and for each n > 0 define St"(ut) to consist of all sets of the
form A v (V{Ueu|Un 4 # 0}), where 4 € St"" ! (u).

The following result on extensions of homeomorphisms in Q-manifolds
is established in [3].

LemMA 3.7. Let X be a Q-manifold, t be an open cover of X, F; and F,
be Z-sets in X, and let h: F; — F, be a homeomorphism. If there is a
proper homotopy H :F,xI— X such that Hy=1id, H, = h, and H
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is limited by U, then h can be extended to a homeomorphism of X onto
itself which is limited by St*(u).

The following characterization of Z-sets in Q-manifolds is established
in [6].

LEMMA 3.8. Let X be a Q-manifold and let F = X be a closed set. Then
F is a Z-set in X if and only if there is a homeomorphism of X onto X x I®
taking F into X x {(0,0, - - *)}.

It is shown in [3] that for any Z-set F in a Q-manifold X, there is a
homeomorphism of X onto X x I® such that x is taken to (x, (0,0, - - -),
for all x e F. It is shown in [7] that a corresponding property for F-
manifolds is also true.

We say that a subset 4 of a space X is bicollared provided that there
exists an open embedding 4 : A x (—1, 1) — X satisfying A(x, 0) = x, for
all xe 4.

Let X be a metric space and A4 be a closed subset of X. An open cover
u of X\ A4 is said to be normal with respect to A provided that for each
€ >0, there is a 6 > 0 such that if Ueu and d(4, U) <, then
diam(U) < e. Under these circumstances it is easy to see that any
homeomorphism 4 : X\ A4 — X\ 4 which is limited by ut has an extension
to a homeomorphism / : X — X which satisfies |4 = id.

4. Proof of Theorem 1

For any complex K, we use K™ to denote the n™ barycentric subdivision
of K and K, to denote the n-skeleton of K. For any subset C of |K| and
integers m, n > 0, we let St(C, Ki™) denote the subset of |K| consisting
of the union of the closed simplexes of K™ which intersect C, where
K™ will always mean the m™ barycentric subdivision of K.

We now present a sequence of lemmas that will lead up to a proof of
Theorem 1. The proof we give uses an induction on the n-skeletons of a
triangulation of the polyhedron P. The fourth lemma we establish is the
actual inductive step, and the first three are technical results that we need
there.

LemMA 4.1. Let K be a complex, n > 0 be an integer, C be a compact
subset of |K| such that St(C, K, ) < |K,|, and let L = St(|K,|, K\3,)-
Then there is a homeomorphism h : Lx I® — |K,| x I such that h|C x I* =
id, h(Lx W) =I|K,|x W, and h(x, (0,0, --)) = (x, (0,0, --)), for
all xe |[K,.

ProoOF. Let Q = II2,1;. 1t follows from Theorem 4.2 of [15] that
there is a homeomorphism 4’ : Lx Q@ — |K,| x Q. Since the collapse (see
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[15] for definitions) from L to |K,| takes place in [K|\C, an open set
missing C, the proof given there immediately implies that we may
additionally require that A4 |CxQ = id. Although the condition
h(x,(0,0--)) = (x,(0,0,---)), for all xe|K,|, is not mentioned in
[15], it can easily be obtained from the apparatus given there. All one
has to do is follow the steps in the proof of Theorem 4.2 of [15], cor-
recting at each stage of the collapse to achieve our required condition.

Now define A:LxI® — |K,|xI® so that h(x, (x;,x,, ")) =
(7, (¥15¥2,y3,°"")), for all xeL and (x,,x,, -')el®, where
R (x, (%2, X3, ) = (, (¥2, Y3, **))- Then h obviously fulfills our
requirements.

Let B} b: the n-dimensional ball of radius » (0 < r < 1) and S!! the
boundary of B;. For convenience we will assume that

B} = {(x)eI®| Y. x}
=1

r* and x; = Ofori > n},

IIA

STt ={(x)eI?| Y. x} =+* and x;=O0fori> n}.
i=1

LEMMA 4.2. Let X be a Q-manifold, F — X be a closed set, and let
f: Bf = X be an embedding such that f(BY) is a Z-set and f(B}) n F =
f(STY). For any r € (0,1) there is an embedding h : Bf x I® — X satisfying
the following properties.

(1) h(x,(0,0,---) = f(x), forall xeBy,

(2) Bd(h(ByxI%)) = h(B;x W)U h(S;™*xI%),
(3) Bd (h(B; xI%)) is bicollared,

(4) h(B; xI”) 0 (F v f(BY)) = f(BY).

PRrOOF. It is clear that there is an embedding g, : I* — X and a finite
union W of endslices of I® such that £((0,0,-**))eg;(I°\W) and
Bd(g,(I*)) = g,(W). Choose ¢ >0 so that f(B)) = g;(I°\W) and
use Lemma 3.7 to get a homeomorphism g, : X —» X satisfying
g20f(B;) =f(B}). Then (g,049,)" ' o f(B}) is a Z-set in I® missing W.

Applying Lemma 3.7 to I® there is a homomorphism g5 : I® — I®
satisfying g3(W) = W and g;0(g9,09;) " o f(x) = x, for all xe By,
where r < r; < 1. Choose m > n and 6 € (0, 1) such that Kn W =0
and Kng,o(g,09,) " (f(B) U F) = B!, where

K = m,(By)x ﬁ [—6,0]x ﬁ L.

i=n+1 i=m+1

Then put
Q =mn(B)x [] [-6,8Ix[-%1]x [ L.
1

i=n+ i=m+2
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It is obvious that there is a homeomorphism g, : By x [* — Q satisfying

ga(B x W) = n(By)x [] [—=6,0]1x{-4}x [I L,
i=n+1

i=m+2

ga(S17 xI%) = m(S )% T1 [-6,61x[~%11x [ L,
i=n+1 i=m+2
and g,4(x, (0,0, *)) = x, for all xe B}. Then h=g,0g,0g; ' 0g, is
our required embedding.

LemmA 4.3. Let K be a complex, n > 0 be an integer, C be a compact
subset of |K| satisfying St(C, K, ) < |K,|, and let L = St(|K,|, K2,).
Let X be a Q-manifold and let h : Lx I*® — X be a closed embedding such
that Bd(h(Lx I*)) = h(Lx W{") and it is bicollared. Let F = X be a
Z-set such that

F [h(Lx{(0,0,-)}) U h(CxI®) U ABA(L)x I \W;))] = 0,

where BA(L) is the topological boundary of L in |K,, |. Then there exists
a homeomorphism f : X — X such that

SIR(Lx{(0,0,--)}) v ABA(L)xI*) L A(CxI®) =id
and f(F) 0 l(Lx I®) = h(Bd(L)x W;").

ProoF. Let A =h(Lx[—1,0]1x{(0,0,---)}) v A(Lx Wi ) which is a
Z-setin X,andlet B = h(CxI®)u h(Lx {(0,0,--)}) U A(Bd(L)x I*),
which is closed in X. Let X' =X \B, A’ ' =AnX',and FF=Fn X".
Since 4’ and F’ are intersections of Z-sets in X with the open subset
X' of X, it follows that 4" and F’ are Z-sets in X’. Now choose an open
cover 1t of X’ which is normal with respect to B.

Using Lemma 3.8 there is a homeomorphism f; : X' — X' xI® such
thatf;(4" U F') = X' x{(0,0,---)}. We can obviously obtain a homeo-
morphism f, : X' X I® - X' xI* such that f, o f;(F') 0 fi(4") = ¢ and
/> is limited by f;(u). Then f; ' o f,0f; : X’ —» X’ is a homeomorphism
limited by u and satisfying f; ' o f, o f;(F’) n A’ = §. From Section 3
it follows that f;"* o f, o f; extends to a homeomorphism g : X — X such
that g|B = id and g(F) n 4 U B = h(Bd(L)x W;").

We can use a motion in L x I® in only the I;-direction and transfer it
back to X by means of 4 to obtain a homeomorphism g, : X — X such
thatg,|B = idand g, 0o g(F) n h(Lx [—1, $]x 12, I;) = 0. The problem
is now to move g, o g(F)\(A(Bd(L) x W) the rest of the way out of
h(L x I*), with no motion taking place on B. Because Bd(h(L x I*®)) is
bicollared, we can easily find a homeomorphism g, : X — X satisfying
g21B = id and g, 0 g, 0 g(F) n h(LxI*) = h(Bd(L)x W;"). Then put
f =g, 09, 0g to satisfy our requirements.
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We now combine these results to obtain the inductive step in the proof
of Theorem 1.

LeMMA 4.4 Let K be a complex, let n > 0 be an integer, and let C be a
compact subset of | K| such that St(C, K, ) < |K,|. Let X be a Q-manifold
and let ¢ : |K| — X be an embedding such that ¢(|K|) is a Z-set. Let
h, : |K,| X I® — X be a closed embedding such that Bd(h,(|K,| xI*)) =
h(\K,| x W{) and it is bicollared, h,(|K,|xI*)n ¢o(IK|) = o(St(IK,l,
K®)), and h,(x, (0,0, ) = @(x), for all x € |K,|. Then there exists a
closed embedding h, , | : |K, (| X I® — X such that Bd(h,, (I1K,+,| X I®))
= hyy 11K, 41| x W) and it is bicollared, h,, (|K,+1|xI®) n ¢(|K|) =
o(St(|K,r 11, K@), by |CXT® = h,|CxI*, and h,.y(x, (0,0, ) =
o(x), for all xe|K, 4]

PrOOF. Let L = St(|K,|, K %,) and let Bd(L) represent the boundary
of Lin |K,.,|. Let {6,};2,; be the collection of (n+ 1)-simplexes of K
and note that ¢; = Cl(s;\L) is an (n+1)-cell contained in the com-
binatorial interior of ¢;. For each i let Bd(s;) denote the combinatorial
boundary of ¢;. (We are assuming that if i # j, then o; # ;. If the
collection of (n+ 1)-simplexes of X is finite, then the argument is similar).
It follows from the given conditions that ¢(| )21 07) N A,(IK,| x I®) = 0.

Using Lemma 4.2 there is a closed embedding f: ({ J2,0})xI® - X
such that the following properties are satisfied.

(1) £ oDxI™) 0 m(IKIxI7) = .

(@) .0, = o), forallxe ] o

®) F(JoDx1) n oK) = o( Yo and

(@) BA((Y o)1) = AU o) x W) 0 AU B (o)< 17)

and it is bicollared.
For each i let Int(s;) = ¢/\Bd(s}) and put

X' = AU o) x (7)),
which is a Q-manifold containing
FY o) x Wiy o (| Ba(ei) < 17)

as a Z-set. (This last assertion easily follows since BA(f((| Ji2;6}) x I®))
is bicollared). Using Lemma 4.1 there is a homeomorphism 0 : LxI® —
|K,| xI® such that 6(x, (0,0, --)) = (x, (0,0, ")), for all xe|K,|,
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0|CxI® = id,and O(Lx W) = |K,|x W; . Then h, = h,00 : LxI® —
X' is a closed embedding such that A,(x, (0,0, )) = ¢(x), for all
xel|K,|, Bd(h,(LxI®))=h(LxW;) and it is bicollared, and
R CXI® = h|CxI>.

Let us consider the two sets /,(L x {(0,0, - - -)}) U h,(Bd(L) x I) and
F((UiZ 1 Bd(o7)) x I®) U ¢(L), which are Z-sets in X’. Define a homeo-
morphism « of the former onto the latter such that « o &,(x, (0,0, - - -)) =
o(x), forall xe L, and o h,(x, t) = f(x, t), forall xe Bd(L) and t e I*.
Using the fact that ¢(x) = h,(x, (0,0, - - -)), for all xe|K,|, and the
fact that f(x, (0,0, )) = (), for all xe ()20}, it is clear that «
is properly homotopic to the identity in X”. In fact, there is an open cover
u of X'\\4,(CxI*) which is normal with respect to 4,(CxI*) and for
which there is a proper homotopy

H : [(h,(Lx{(0,0,-)}) U h,(Bd(L) x I®))\h,(Cx I*)]
xI - X'\h,(CxI®)
satisfying H, = id,

H,y = ol [y (Lx {(0, 0, )}) U i (BAL) x I)INip(C x I?),

and H is limited by u. Using Lemma 3.7 we can extend o« to a homeo-
morphism & : X' — X' satisfying &|h,(C x I*) = id. Then

Goh,:LxI® > X'

is a closed embedding which satisfies Bd(& o i1,(L x I®)) = & o h,(Lx W)
and it is bicollared,

Goh,|CxI® = h,|CxI®, &o h,Bd(L)xI® = f|Bd(L)x I,

and do h,(x, (0,0, - ) = ¢(x), for all xe L.

Now let F = f(({JiZ,0})x W{), which is a Z-set in X' satisfying
Fn[@o h(Lx{(0,0,)})udo h(Bd(Lx I W;))] =0. Using
Lemma 4.3 there is a homeomorphism 8 : X' — X" satisfying

B(F) né&o h,(LxI®) < do h,(Bd(L)x W)
and

Bl& o h,(Lx {(0,0,--)}) udo h,(BA(L)xI®) L &o h,(CxI®) = id.

Thus f: ((Ji2,6))xI® > X and f~todoh,:LxI® — X are closed
embeddings which are compatible, i.e. we can patch them together to
obtain a closed embedding 4, :|K,,;|xI® — X which satisfies
Bd( 4 1 (IKy+ 1| X I°)) = By 1 (1K al X W), Byiq|CXT® = h,|CX T,
and £, 4(x, (0,0, --)) = ¢(x), for all xe|K,, |

Of course we have made no provision to require that
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Bd(%4 1 (1K1l X I))
be bicollared, but this presents no problem since
BA(H, 1Ky 1] % [~ 1, $1X II32, 1))
is bicollared. It is also true that we might not have
By 1 (1K1l X I®) 0 0(IK]) < @(St(IK, 441, K®)),
but this can be clearly achieved by ‘squeezing’
By 1 (1K1 X 1) close to (K, 4])-

Thus we can modify 4, , to obtain our required A, ;-

PRrROOF OF THEOREM 1.

Write X = U,‘f’: 1 X,,, where each X, is a compact set contained in the
interior of X, ;. Let K be a complex and let ¢ : |K| » P be a homeomor-
phism. Let H, be a finite subcomplex of K such that P n X; < ¢(|H,|)
and choose n, large enough so that

St(lHlla Kn1+1) < ’Knll'

One can clearly construct a closed embedding 4, : |Ko| xI®° - X
which satisfies A4 (x, (0,0, - - -)) = ¢(x), for all xe |K,|, and

Bd(ho(|Kol X I%)) = ho(|Kol x W{")

and it is bicollared. Then using Lemma 4.4 and an obvious inductive
argument we can obtain a closed embedding 4, : |K,|xXI” - X
satisfying 4, (x, (0,0, - - -)) = ¢(x), for all x € |K,,|, and

Bd(hy, (K, | X 1)) = hy (1K, X W)

and it is bicollared.
Now let H, be a finite subcomplex of K so that |H,| = Int(|H,|) and
o(IK|) n X, = ¢(|H,l). Choose n, > n, such that

St(lel’ Kn2+1) < |K,,|.

Using Lemma 4.4 and an inductive argument we can find a closed em-
bedding 4, : |K,,| xI® — X such that &,,(x, (0,0, - - -)) = ¢(x), for all
x € |K,,|, Bd(h,,(IK,,| xI*)) = h,,(IK,,| x W;") and it is bicollared, and
gl | Hy| X T = By | || x T,

In general let {H;}Z; be a collection of finite subcomplexes of K
so that for each i, |H;| < Int(|H;,,|) and ¢(|K|) n X; = ¢(|H;]). Choose
integers {n;};>, such that for each i, n; < n;,, and

St(lHll’ Km+1) c IKnil'
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Using the above techniques we find that for each i > 0 there is a closed
embedding 4,, : |K,|xI® - X such that A,(x, (0,0, *)) = ¢(x), for
all xelK,|, Bd(h,(K,|xI*)) = h,(K,|x W;) and it is bicollared,
and h,,, | |H|xI® = h,| |H,|xI®. For each xel|H|x(I*\W;)
define /'(x) = h,(x). It is clear that 4’ : |[K|x (/W7 ) - X is an open
embedding satisfying #'(x, (0,0, - - -)) = ¢(x), for all xe|K]|. Since
I°\W; =~ I°\{point} we can clearly modify 4’ to obtain our required
open embedding A.

5. Proof of Theorem 2

We will first establish two technical results concerning cap-sets in
Q-manifolds. These are used only in the proof of Theorem 2.

LemMa 5.1. Let X be a Q-manifold, P be a polyhedron, ¢ :Px2 —» X
be an embedding such that ¢(PXx X) is a cap-set for X and ¢(Px Z,) is
closed in X, and let F be a compact Z-set in X. Then there is a homeo-
morphism h: X — X such that h(F) < ¢(PxZX,) and hlo(PxZX;) = id.

ProorF. By Lemma 3.5. it follows that ¢(PxZX,) is a Z-set in X. Let
X' =X\¢PxZ), FF=FnX,and M = p(PxZ)\@(PxZX;). Then
X' is a Q-manifold, F’ is a Z-set in X', and M is a cap-set for X’. Choose
an open cover U of X’ which is normal with respect to (P x Z,).

Lemma 3.2. implies that M U F’ is a cap-set for X’. Using Lemma 3.3
there is a homeomorphism f: X’ — X’ such that f(M v F') = M and
fis limited by u. Then f clearly extends to a homeomorphism f: X - X
satisfying flp(Px Z,) = id and f(F) < o(Px X).

Put F* = 1,00~ ! o f(F), which is a compact set in Z. Clearly there is
a proper isotopy g, : F* U X; — X such that g, = id, g,(F*) < X, and
g:/Z1 = id for all . Now define an isotopy

b :J(F) U o(PxZ;) - o(PxX) by h 0 9(x, y) = o(x, :(»)),

for all (x,y)ePxZ that satisfy o(x, y) €f(F) U o(PxZ,). Note that
hy(f(F) U @(PxZX,)) is a Z-set in X and h, is a proper isotopy. Using
Lemma 3.7 we can extend A; to a homeomorphism g : X — X. Then
h = g o f fulfills our requirements.

LEMMA 5.2. Let X be a Q-manifold, P be a polyhedron, and let
@ : PxX — X be an embedding such that ¢(P x X) is a cap-set for X and
@(PxZX,)is closedin X. Let h : PxI® — X be a closed embedding so that
h(x, (0,0,--+)) = ¢(x, (0,0, --)), for all xeP, and Bd(W(PxI*) =
h(Px W). If F< X is a compact Z-set, then there is a homeomorphism
f:X > X such that f(F) < h(PxI®) and f|h(Px W) = id.
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ProoF. Let Let 0:¢(PxZX,) > h(PxZXZ,) be the homeomorphism
defined by 0 o ¢(x, y) = h(x, y), for all (x,y)e PxX,. It is clear that
0 is properly homeotopic to the identity. Let ¢, be an extension of
0 to a homeomorphism of X onto itself. Then ¢, 09 : PxX — X is an
embedding such that ¢, o (P xX) is a cap-set for X, ¢, 0p(PxZ,) =
h(Px Z,), ¢10@(PxZ;)=h(PxZ,), and ¢, o ¢(x, (0,0,--*)) =
h(x, (0,0, - - -)), for all xe P.

It is clear that there exists a homeomorphism o : A(P x 2;) > h(P x W)
such that a o A(x, (0,0, - - -)) = A(x, (—1,0,0, - - -)) for all x € P, and for
which « is properly homotopic to the identity, with the homotopy taking
place inside A(P x I*). By choosing covers appropriately and using Lem-
ma 3.7 we can extend o to a homeomorphism ¢, : X — X which satisfies
@2l XN\A(PxI®) = id. It is clear now that § =¢,0¢@, 090 :PxX > X
is an embedding such that ¢(PxX) is a cap-set for X and @(Px X)) is
a Z-setin X.

Using Lemma 5.1 there is a homeomorphism, f:X - X such that
f(F) < ¢(PxZ,) and f|@(Px X,) = id. This implies that f|h(Px W)

= id. Note that ¢, 0o o(Px Z,) = h(Px X,) and

2001 09(PXZ;) = @,0h(PxZX,;) = h(PxI®),
which implies that f(F) = h(PxI®).

PROOF OF THEOREM 2.

Roughly the idea of the proof is to find a copy of P in X which is a
Z-set, use Theorem 1 to build a ‘nice’ open set around this polyhedron,
and use Lemma 5.2 to “blow up’ this open set to engulf a cap-set. The part
of X that this open set misses is the Z-set F which we are looking for.

Using Lemma 3.1 let ¢ : PxZ —» X be an embedding such that
o(PxZ) is a cap-set for X. A routine argument proves that if 4 is any
locally compact subset of X, then CI(4)\A4 is a closed subset of X.
Thus, F; = Cl(¢(Px Z,))\@(PxZ,) is a closed subset of X missing
¢(PxX). It follows from Lemma 3.4 that F, is a Z-set in X. Put
X’ = X\F; and note that ¢(PxX) is a cap-set for X'. But we now have
o(PxZ,)a Z-setin X', because it is closed.

Using Theorem 1 there is a closed embedding 2 : PxI® — X’ such
that A(x, (0,0, --)) = ¢(x, (0,0, - - )), for all xe P, and

Bd(h(PxI®)) = h(Px W{).

Write ¢(Px 2) = | ;21 M,, a tower of compact Z-sets. Using Lemma
5.2 there is a homeomorphism f; : X’ — X’ such that

filMy) © h(Px[—1, 31X T2, L).

Then put g, = f; * to complete the first step of our construction.
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Now let X" = X'"\g,0h (Px[—1,%)xII;Z,I;), which is obviously
a Q-manifold containing g, o A(Px {4} xII}2,I;) as a Z-set. Put
M; = M, n X", which is clearly a compact Z-set in X"". One can
obviously construct a homeomorphism « : X’ — X'’ such that

®og;0h(x, (0,0, ) =g, 0h(x, (20,0, ),

for all xeP. Then ¢’ = xog;0¢p :PxZ — X" is an embedding such
that ¢’(Px Z) is a cap-set for X"’ and

¢'(x, (0,0, ) = gy 0 b(x, (3, 0,0, -*)),

forallxe P.Alsog,oh:Px [}, 1]xII2,I; > X" is a closed embedding
satisfying Bdy. (g, 0 A(Px [}, 1]x IT{2,1;)) = g, o h(Px W;").

Once more applying Lemma 5.2 there is a homeomorphism
f2 X" > X" such that f5|g, o h(Px {}} xII{2, 1) = id and

Fo(M3) = g1 0h(Px [}, 31x T2, 1)
Then let f, be the extension of £, to all of X’ such that
falgioh (Px[-1,4] x ITj2,1;) = id.

Now put g, = f, ', which is a homeomorphism of X" onto itself satis-
fying g,|g, o h(Px [—1,3] xIT2,1;) = id and

M, cg,og,0h(Px[—1,3]1xIO2,1).

It is then clear that we can obtain a sequence {g;};z,; of homeomor-
phisms of X’ onto itself such that

Mnc:gnogn_lo”-ogloh(Px [—1,1—51;:I>< Ii)
i=2

and

Iulgn_10"-" gloh(Px [—1,1— 1 ] x.ﬂli) =id,

2n! =2
for all n > 1. Then let g(x) = lim,_ g, 0 * * - 0 g,(x) for all
x€h(Px(I°\W7).

It is clear that g : A(P x (I°\\ W, )) = X' is an open embedding such that
g o h(Px (I°\W7")) contains ¢(P x X). Thus

F, = X'\\g o h(Px (I°\W}))

is a Z-set in X’ and therefore F = F,; U F, is a Z-set in X such that
XNF = Px(I°\W]).
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6. Proofs of Theorems 3, 4, 5 and their Corollaries
The following result will be used in the proof of Theorem 3.

LEmMMA 6.1. Let X be a Q-manifold and let F < X be a Z-set. Then
(XN\F)x[0,1) = Xx [0, 1), where the homeomorphism can be chosen to
be homotopic to the inclusion of (X\F)x [0, 1) in X x [0, 1).

Proor. If X, is any Q-manifold and C < X, is any Z-set, then
Cx [0, 1]is a Z-setin X, x [0, 1]. In order to see this let us take a homeo-
morphism 4, of X; onto X; x I*® taking C into X; % {(0, 0, - - -)}. Then
hyxid : X; x [0, 1] » X; xI® x [0, 1] is a homeomorphism which takes
Cx[0,1] into X; x {(0, 0, - - -)} x [0, 1]. Let

hy : Xy xI®x[0,1] » Xy xI®

be a homeomorphism in which [0,1] is factored back into X; Then
hy o (hy xid) : X{ x [0,1] > X, x I® is a homeomorphism taking C x [0, 1]
into X; x {(0, 0, - - -)}, and by Lemma 3.8 it follows that

hy o (hy xid)(C x [0, 11)

is a Z-set in X xI®, Thus Cx [0, 1] is a Z-set in X, x [0,1].

Let A= (Xx{1})u(Fx[0,1]) and B = (Xx {1}) v (Fx[4,1]) be
subsets of X'x [0, 1]. Since 4 and B are Z-sets in X x [0, 1] we can use
Lemma 3.7 to get a homeomorphism f: X' x [0, 1] » X x [0, 1] satisfying
f(4) = Band f|X x {1} = id. It follows from [3] that we can additionally
choose f to be isotopic to idyxpo,1; (With each level fixed on X'x {1}).
Therefore f|X x [0, 1) gives a homeomorphism of X x [0, 1) onto itself
which is homotopic (in X x [0, 1)) to idyxpo, 1)-

Let A :[0,1] —» [0,1] be a homotopy which satisfies the following
properties:

(1) ho = id,

) hy(B 1) = {1},

(3) A41[0, %] is a homeomorphism of [0, 1] onto [0, 1],
(4) A, :[0,1] - [0, 1] is @ homeomorphism for all ¢ # 1.

Define a continuous function g : X x [0, 1]— X x [0, 1] as follows: for
eachx e Xandy € [0, 1], letg(x, y) = (x, A(y)), where t = 1/(1+d(x, F)).
Clearly g|(X x [0, 1])\B gives a homeomorphism of (X x [0, 1])\ B onto
X x[0,1) which is homotopic to the inclusion of (X% [0, 1])\B in
Xx[0,1). Then gof|(X\F)x[0,1) gives a homeomorphism of
(X\F)x[0,1) onto Xx[0,1) which is homotopic to the inclusion of
(X\F)x[0,1) in Xx [0, 1).

We will also need the following result.
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LemMa 6.2. Let X be a Q-manifold, P be a polyhedron, and let
FiPx(I°\W;)— X be a homotopy equivalence. Then there exists an
open embedding g:Px (I°\W,) — X such that g is homotopic to f
and X\g(Px (I°\W7)) is a Z-set in X.

Proor. It follows routinely from the coordinate structure of /® that
there is a homeomorphism of 7® x I® onto I* which is homotopic to
the projection of I® xI* onto the first factor. Since X'xI® = X, it
follows that there is a homeomorphism f : X X I® — X which is homoto-
pic to my, the projection of XxI® onto X. Define f':P - X by
f'(x) = f(x, (0,0. ), for all xe P. Then f'is also a homotopy equi-
valence.

It follows from [15] that P x s is an F-manifold and it follows routinely
from the definition that X x s is an F-manifold. Note that

fixidg:Pxs— Xxs

is a homotopy equivalence. Thus f” x id; is homotopic to a homeomor-
phism o : P xs — X x s (see [10]).

Now Px X is a cap-set for Pxs (see [6]) and therefore a(P xZX) is a
cap-set for X x I (since X x I® can be deformed into X x s with ‘small’
motions). Hence fo a(PxZX) is a cap-set for X. As in the proof of
Theorem 2 let F; = Cl(p(Px Z;)\@(PxZ,), where ¢ = fo aPxZ,
and let A : PxI® —» X\ F, be a closed embedding such that

h(x’ (0’ 0,-- )) = (o(x, (O’ 0,-- )),

for all x € P, and Bd(A(P x I®)) = h(P x W;"). In the proof of Theorem 2
a homeomorphism g’ : A(P x (I*\W,")) - X\ F was constructed, where
Fisa Z-set in X containing F; . Moreover it is clear from the construction
given there that g’ is homotopic to the inclusion of (P x (I°\ W;")) in
X. Thus g =g ohlPx(I°\W;) gives an open embedding of
Px(I°\W{) in X whose complement is a Z-set in X. Moreover g is
homotopic to &' = h|Px (I°\ W,"). All that is left to do is prove that 4’
is homotopic to f.

To this end let r:Px(I™\W;)— Px{(0,0,---)} be given by
r(x, 1) = (x,(0,0,--+)), for all xe P and te I°\ W, . It is clear that
A’ is homotopic to A’ or and A or = Bo aor. Since « is homotopic to
S’ xidy it follows that fo aor is homotopic to fo (f’xid,)or. But
B o (f’xid,) o ris homotopic to mx o (f* x id;) o r. But mx o (f* xid) or =
Sfor, and since r is homotopic to idpx j=\w,+) it follows that for is
homotopic to f.

PRrROOFS OF THEOREMS 3 AND 5.
Let f: X — Y be a homotopy equivalence, where X and Y are Q-
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manifolds. Let P be a polyhedron for which there exists a homotopy
equivalence g : Px (I°\ W) — X. Using Lemma 6.2 we see that g
is homotopic to a homeomorphism « : P x (I°\W;") - X\ F,, where
F, c X is a Z-set. Also fog is homotopic to a homeomorphism
B:Px(I°\W;)— Y\F,, where F, < Yis a Z-set. Using Lemma 6.1
it follows that a xid : (P x (I°\W;))x [0, 1) - (X|F,) x [0, 1) is homo-
topic to a homeomorphism y : (Px (I°\W; ))x [0,1) = X x [0, 1), with
the homotopy taking place in X % [0, 1). Similarly 8 x id is homotopic to
a homeomorphism & : (Px (I°\W;))x[0,1) > Yx[0,1), with the
homotopy taking place in Y x [0, 1).

In order to see that X x [0, 1) = P x (I°\ {point}) note that y~* gives
a homeomorphism of Xx[0,1) onto Px(I®\W;)x[0,1). Since
INW = [-1,1)xI2, I, and since [~1,1)x [0, 1) is obviously
homeomorphic to [—1,1)x [0, 1], we have X x [0, 1) = Px (I°\W;").
To finish the proof of Theorem 3 all we need do is note that
I°NW = I°\{point}.

For the proof of Theorem 5 note that oy~ ! : Xx[0,1) » ¥Yx [0, 1)
is a homeomorphism. All that remains to be done is prove that 5oy~ 1 is
homotopic to fxid, or equivalently, to prove that é is homotopic to
(fxid) o y. But é is homotopic to f x id, which in turn is homotopic to
(fog)xid = (fxid)o (gxid). Since g xid is homotopic to « xid, and
a X id is homotopic to y, we are done.

PROOF OF COROLLARY 1.

Choose any polyhedron P for which P ~ X and use Theorem 3 to get
Xx[0,1) = Px (I°\{point}). Now I\ {point} = I* x [0, 1), hence
Px (I°\{point}) = (Px[0,1))xI®. But Px[0,1) can obviously be
triangulated by a complex.

PROOF OF COROLLARY 2.
Apply Theorem 3.

PrOOF OF COROLLARY 3.
Apply Theorem 3.

PROOF OF THEOREM 4.

Let Y = X'xs, which is obviously an F-manifold satisfying ¥ ~ X.
Using Henderson’s open embedding theorem let g : Y — s be an open
embedding. Let U be an open subset of I for which U n s = g(Y).
Then U is a Q-manifold, and as U n B(I*) is obviously a cap-set for U,
it follows from Lemma 3.6 that U ~ g(Y). Thus X ~ U. Using Corollary
2 we have X x [0, 1) = Ux [0, 1), and using the fact that Ux [0,1]= U
we have Ux[0,1) = U\F, for some closed subset F of U. Thus
Xx[0,1) = UN\F, which is open in I*.
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ProOOF OF COROLLARY 4.
Letf: X —» X %[0, 1] be a homeomorphism and put

U=r"1xx[0,1)), ¥ =f (X% (0, 1]).

7. Proofs of Theorem 6, its Corollary, and Theorem 7

The following result will be used in the proof of Theorem 6.

LEmMMA 7.1. Let X be a compact Q-manifold and assume that X ~ P,
for some compact polyhedron P. Then there is a copy P’ of P in X which is
a Z-set and a pseudo-isotopy h, : X - X which satisfies the following
properties.

(1) ko = id,

@) m(x) =P,

(3) h|P' = id for all t, and

(4) A, : X > X is an embedding for all  # 1.

PROOF. Let f: X > XxI® be a homeomorphism. Since X X s is an
F-manifold and Xxs ~ P, it follows that there is a homeomorphism
@ : Pxs — Xxs. Using the fact that o(Px {(0,0,---)}) is a compact
subset of X'xs, it is clear that there is an isotopy f; : XX I® —» X x I
such that fy = id, f{(XxI®) = Xxs, and fle(Px {(0,0,---)}) = id,
for all ¢.

One can obviously get a pseudo-isotopy g, : (P x s) > @(P xs) such
that go = id, g, 0 @(Pxs) = ¢(Px {(0,0, - - -)}), g, is an embedding for
all r# 1, and gle(Px{(0,0,---)}) =1id, for all 7 Then Ilet
hy : XX I® — XxI* be defined by

<
hi(x) = {fzt(x), for (1) <t
92t-10 f1(x), for 1 <t

Obviously 4, is a pseudo-isotopy satisfying
ho =id, By(XxI®)=(Px{(0,0,---)}), klo(Px{(0,0, --)}) =id

1
2

1

A TIA

for all ¢, and A, is an embedding for all # # 1. Then let
P =f""opPx{(0,0,)})
and let 4, : X » X be defined by A,(x) = £~ o h; o f(x).

PROOF OF THEOREM 6.
Using Theorem 3 and the fact that X =~ X x [0, 1], there is a copy X’
of X in X which is a Z-set and there is a homeomorphism

FiPX(IN\W]) » X\X'.
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Using Lemma 7.1 let P’ be acopy of Pin X' and let 4, : X' — X' be a
pseudo-isotopy satisfying hy = id, #,(X’) = P’, h, is an embedding for
all £ # 1, and A|P’ = id for all ¢. Since P’ = X’ it easily follows that
P’is a Z-setin X.

Let {U;};>, be any collection of open subsets of X such that

2,U, =P and X' < U,. Using the compactness of P and X we can
find a number ¢, € (—1,1) such that f(Px [t;, 1)xII2,1;) = U,. Let
Vy = XNS(Px[—1,t,]x IIT{2,I;), which is an open set containing X".
By choosing ¢€ (0, 1) sufficiently close to 1 we have an embedding
h,: X' - X' n U, which is properly homotopic to the identity, where
the image of the proper homotopy is entirely contained in X'. Moreover
this proper homotopy is limited by some open cover of ¥, which is
normal with respect to X\ V;. Thus we can apply Lemma 3.7 to extend
h; to a homeomorphism g, : X —» X which satisfies

gilfPx[~1, t,]x D2, 1) = id,

g1|P' = id, and g,(X") < U,.

Now choose 1, € (t;, 1) such that g, o f(Px [t,, 1)x T2, 1;) = U,
and use the above techniques to construct a homeomorphism g, : X - X
satisfying g,|g, o f(Px [— 1, t,1 X IT;2, I;) = id, ¢,|P’ = id, and

g2091(X") = U;.

It is clear that we can continue this process to obtain homeomorphisms
{9:};2, of X onto itself and numbers ¢, < f, < - -+ < 1 limiting to 1
such that

git1lgiorogiof(Px[—1,t,1x T2, 1) = id,

gio--r0gy(X')<c U;py, and gi|P' =1id, for all i. Then define
g:PX(I°\W) - X\P’ by g(x) =limg;o---o0g; of(x). Clearly g
is a homeomorphism which is what we wanted.

PrOOF OF COROLLARY 5.

It follows from [12] that any homotopically trivial metric ANR is
contractible. Thus X must be a compact contractible Q-manifold, hence
it has the homotopy type of a point. It follows from Theorem 6 that
X\ {point} > I\ {point}, thus X =~ I*.

We will need the following result for the proof of Theorem 7.

LEMMA 7.2. Let X be a compact Q-manifold for which X ~ P, for some
compact polyhedron P. Then there is an embedding h : PxI® — X such
that BA(h(PxI®)) = h(Px W;") and there is a strong deformation
retraction of X onto h(Px W ).

PROOF. Let ¢ : Pxs = X x5 be a homeomorphism and let
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B :PXI® - XxI®

be an embedding such that 4'(x, (0,0, - - -)) = ¢(x, (0,0, - - -)), for all
xeP, and Bd(h'(PxI®)) = K(Px W.). Now W(Px W) is a Z-set
in X xI®, thus Lemma 3.7 implies that there is a homeomorphism
i1 XxI® —> XxI® for which fo h'(Px W[ ) = @(PXZX,).

Using an argument similar to that used in the proof of Lemma 7.1,
there is a strong deformation retraction 4, of XxI® onto ¢(PxZ,).
Thus £~ o h,o f gives a strong deformation retraction of X x I® onto
R (Px W ). Using the fact that X >~ XxI% we can easily transfer this
information back to X.

PROOF OF THEOREM 7.

The procedure will be to attach a copy of 7® to X so that the resulting
space is a compact contractible Q-manifold.

Assume that dim(P) < n and consider P as linearly embedded in the
(2n+1)-cell T2*'1;. Let f: Px[1,2]xI® — X be an embedding such
that Bd(f(Px [1,2]xI*®)) = f(Px {2} xI*), where we consider

Px[l,2] c E+2

((2n+2)-dimensional Euclidean space), and for which there is a strong
deformation retraction of X onto f(Px {1} xI®).

Let X* be the space constructed by attaching (IT2*{*I,)xI® to X,
with the attaching map being f|Px {1} x I*. To show that X* is a Q-
manifold all we have to do is check at f(Px {1} xI®). We know from
[15] that the product of any polyhedron with I® gives a Q-manifold.
Since there is obviously a neighborhood of f(P x {1} x %) in X* which
is homeomorphic to [(ITZ2{2I;) U (P x [1,2])]xI®, we conclude that
X* is a compact Q-manifold.

To see that X* is contractible we note that there is a strong deformation
retraction of X* onto the attached copy of (IT2%;*I)x I® in X*. Thus
it follows that X* is contractible, hence X* =~ I* by Corollary 5. The
proof of the theorem is now complete.

8. Proof of Theorem 8

We will need the following preliminary result. A proof can easily be
constructed using techniques similar to those used to establish Lemma
3.1 of [4]. For this reason we do not give a proof.

LemMA 8.1. Let J* be a copy of I®°. There is a continuous function
g :I®x[1, 00) = I® x J® which satisfies the following properties.
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(1) for n an integer and n < u < n+1, g, is a homeomorphism of I° onto
Iy x- - xI,x [n—u,u—n]x{(0,0,-)})xJ®, where g, is defined
by g.(x) = g(x, u), for all x e I*, and

(2) for ue [1, ©) and n < u (n an integer),

Tty O Ty O gu((xi)) = (xl s xn)’
Sfor all (x;)eI™.

We will need one more preliminary result before we establish Theorem
8. We will need a definition first.

Let G be an open subset of 7. A continuous function ¢ : G — [1, ©)
is said to have the Jocal product property with respect to G provided that
for each x € G there is an integer m(x) < ¢(x) such that the following
properties are satisfied.

(1) forallx = (x;) € G, {(X1, " * *s X))} X I1 LG

i=m(x)+1

(2) forallx = (x;) € G and (ym(x)+1 s Ymxy+25 " e

H I, <P((xi)) = ‘P(x1 5 Xmxy s Ym(x)+10 Ym(xy+25 °° '),

i=m(x)+1
and

(3) ¢ is unbounded near I°\(G, i.e. for each x € Bd(G) and each integer
n > 0, there is an open set U containing x such that ¢(G n U) =
[n, ).

LemMMA 8.2. Let G be an open subset of I1° and assume that there is a
continuous function ¢ : G — [1, 00) which has the local product property
with respect to G. Let o.: E* — E' (where E" is the real line) be defined by
a(x) = x, for x 20, and a(x) =0, for x £ 0. Then G = G(p)xJ>,
where

G(p) = {(x;) € Gl Ix;| < a(p(x)—(i—1)), foralli = 1}.

PrOOF. Let g:I®x[1,00)— I®xJ® be the continuous function of
Lemma 8.1. For each x € G let A(x) = g(x, ¢(x)), which gives a homeo-
morphism of G onto G(¢) x J*. The details of the argument are elemen-
tary.

PROOF OF THEOREM 8.

Using a standard technique (for example see Lemma 6.1 of [6]) there
is a countable star-finite collection 11 of basic open subsets of 7® such that
G = |J{U|UeW} and CI(U) < G, for all Uell. (An open subset of
I> is basic provided that its closure is a basic closed set). It is clear that
by subdividing {CI/(U)|U € 1} we can get a countable star-finite collection
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& of basic closed subsets of I° such that (1) G = (J{F|FeF}, (2) for
each Fe @, Int (F) is a non-null basic open subset of I®, and (3) if
F,,F, e and F; # F,, then F; n F, lies in an endslice of each.

Without loss of generality we may assume that G is connected. Thus
we can order §§ as {F;};2; so that

St(Fl,%) = F1 UFZ - UE(I)
Stz(Fl, %) = Fl UF2 u-ce UFi(l) UFi(1)+1 L UFi(Z)

where 1 = i(0) < i(1) < - - - and St*(F;, ) has the usual meaning.

For each j> 0 let m(j) denote a positive integer such that
F; = A;x T2 5+ 11;, Where A4, is a basic closed subset of II7<)1,. By
subdividing {F;}{Z, sufficiently (if necessary) we can choose {m(j)};~,
so that m(j) = m(i(k))+1, for all j satisfying i(k)+1 < j < i(k+1).

For eachj > O let R; = (4;XLjy+1) % {(0,0, - )}.

Then {R;}{>, is a locally-finite collection of finite-dimensional cells
in G. It is clear that we can define a piecewise linear function
¢’ : |JiZ1R; = [1, o) which satisfies
(1) ¢'(x) = m(1)+2, for all xe R,,

(2) m(1)+j+1 < ¢'(x) < m(1)+j+2, for all integers j =1 and
xXe (Uég;(j—1)+1Ri)\U§(=j1_1)Ri)’ and
() ¢'(x) = m(1)+j+2, forall xe (Ugg)i(j—l)uRi) N (UiZigy+1R0)-

Then extend ¢’ to a continuous function ¢ : G — [1, ) by defining
o((x:)) = @' (X1, " *5 Xm(jy+1, 0,0, - - +), for all (x;) € F;. It is clear that
¢ has the local product property with respect to G. Using Lemma 8.2 we
find that G = G(p)x J®. If we can prove that G(¢) can be triangulated
by a complex, then we will be done.

We have chosen {F;};2, so that for the corresponding {R;}Z,
R; N R; lies in a face of each, for i # j. It is obvious that we could have
chosen {F;};2, so that if i > j, then R; N R; is exactly a face of R;.
This will aid in an inductive triangulation of G(¢). The details of the
triangulation are tedious, but elementary. Accordingly we only sketch
the details.

There is obviously a triangulation 4] of R, such that for each i, with
1 <i=<i(l), R;n R, is triangulated by a subcomplex of 4;. We can
extend 4] to a triangulation 4, of

By = {(x;) € Fy| Ix;| £ a(o((x)))—(i—1)), for all i = 1}

so that for 1 < i £ i(1), R; n B, is triangulated by a subcomplex of 4, .
We have chosen {R;};> , so thatforeachi > 0,R;s; n (RyU---UR))
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is a union of faces of R;, ;. Using this fact and an inductive procedure
on {R,, "+, Ryy)} we can extend 4, to a triangulation 4} of

Bl v (R2 (WA UR"(I))

so that if i(1) < i < i(2), then R; N (B; U (R, U * -+ U Ryyy)) is trian-
gulated by a subcomplex of 4;. Put

B, = {(x;)e Fy U -~ U Fyyl x| £ a(o((x;))—(i—1)), for all i = 1}

and extend 45 to a triangulation 4, of B, so that for i(1) < i £ i(2),
R; N B, is triangulated by a subcomplex of 4,. It is clear that we can
inductively continue this process to obtain our desired triangulation.

9. Proofs of Theorems 9 and 10

The following lemma is a basic separation result which will be needed
in the proofs of Theorems 9 and 10.

LEMMA 9.1. Let X be a metric ANR, A be a closed subset of X which is
an ANR and for which the inclusion map i : A - X is a homotopy equi-
valence, and let h: Ax(—1,1) > X be an open embedding such that
h(x,0) = x, for all xe A. Then we can write X\ A = U U V, where U
and V are disjoint open subsets of X satisfying h(4%(0,1)) = U and
h(Ax(—1,0)) = V. Moreover, there are strong deformation retractions
of CI(U) and CI(V') onto A.

ProoFr. The proof of the existence of disjoint open subsets U, V of X
satisfying XN\4A =UuU V, (A% (0,1)) = U, and h(4dx(—1,0)) = V is
straightforward. We merely remark that in the case A4 is connected the
desired separation follows immediately from the reduced Mayer-Vietoris
sequence of the excisive couple {h(4 x (—1,1)), X\ A4}. In case 4 is not
connected one can do a standard argument on the components of A.

The inclusion map i: A4 — X being a homotopy equivalence means
that 4 is a weak deformation retract of X. Since 4 and X are ANR’s it
follows that 4 is a strong deformation retract of X (see [14], page 31).
Let f; : X — X be a strong deformation retraction of X onto A, where
fo = id and f] is a retraction of X onto 4.

Let g : X — X be defined by

X, for x e CI(U)

6(x) = { fi(x),  for x e CI(V),

which is clearly continuous. Define 4, = g o f;, for all r € [0,1]. It is clear
that #,(CI(U)) < CI(U), for all t. Thus h|CI(U) defines a strong defor-
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mation retraction of CI(U) onto A. Similarly A4 is a strong deformation
retract of CI(V).

We will now give a proof of Theorem 9. For its proof we will use
Lemma 9.1 and some of the results that have been established for
Q-manifolds in this paper. We will not prove Theorem 10, since similar
results for F-manifolds that have been established elsewhere will permit
a proof similar to that given for Theorem 9.

PROOF OF THEOREM 9.

Note that X and Y are metric ANR’s and the inclusion maps
i:f(X)—7%,j:9(X)—> Y are obviously homotopy equivalences. Thus
we can apply Lemma 9.1 to obtain disjoint pairs U,, U, and V,, ¥, of
open subsets of Y such that the following properties are satisfied.

W) NNfX)=U,uU,and N\¢g(X) =V, U V,,

(2) (X) = CI(U,) ~ CI(U,) and g(X) = CI(¥,) n CUV,),

(3) f(X) is collared in each of CI(U,), CI(U,), and g(X) is collared in
each of CI(V,), CI(V,),

(4) f(X) is a strong deformation retract of each of CI(U,), CIi(U,), and
g(X) is a strong deformation retract of each of CI(V,), CI(V>).

From (3) it easily follows that CI(U,) and CI(V,) are Q-manifolds.
Let r: CI(U;) — f(X) be a retraction homotopic to id and note that the
map gof 'or:Cl(U;)— CI(V,) is a homotopy equivalence. Using
Theorem 6 we know that (gof ! or)xid: Cl(Uy)x[0,1) - Cl(V,)x
[0, 1) is homotopic to a homeomorphism 4, : C/(U,) % [0, 1) — CI(V,) x
[0, 1).

Now gxid: Xx[0,1) —» CI(V{)x[0,1) and ko (fxid): X% [0,1) >
Cl(V{)x[0,1) are homotopic embeddings. It is easy to see that
(gxid)(Xx[0,1)) and A, o (fxid)(Xx [0, 1)) are Z-sets in CI(V;)x
[0, 1). Using Corollary 6.1 of [3] there is a homeomorphism

hy: CI(V,)x [0, 1) > CI(V,)x [0, 1)

which satisfies h, 0 h; o (fxid) = gxid. Put 4" = h, 0 hy, which is a
homeomorphism of CI(U,)x [0,1) onto CI(V,)x [0, 1) which satisfies
A o (fxid) = gxid.

Similarly we can obtain a homeomorphism

R’ Cl(U,)%[0,1) > CI(V,) %[0, 1)

which satisfies 4" o (fxid) = gxid. Then define A:Y¥Yx[0,1) -
Yx [0, 1) by h|CI(U,)x [0, 1) = k" and A|CI(U,)x [0, 1) = h".
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