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On Meijer Transform III 1)
by

J. P. Jaiswal

1. Meijer [1] introduced the intégral equation

where Wk,m(z) is Whittaker’s confluent hypergeometric function.
In this equation f(t) is known as the original of ~(s), p(.9) the
image of f(t) and (A) is symbolically denoted by [2]

Particular cases of Meijer transform are :-

(a) when k = 20131 2, (A) reduces to a)

and will be known as Km-transform, and symbolically denoted as

and will be known as D,,-transform, and symbolically denoted as

(c) when k = ::l: m, (A) reduces to the Laplace Integral,

1) This paper is in continuation of my earlier papers [2] and [3].
2) K.(z) and Dn(z) are the Bessel function and the parabolic cylinder function

respectively.
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which will be denoted symbolically as

In this paper we have established some more properties of the
Meijer transform by utilising integral representations of the

Whittaker’s function, the parabolic cylinder function, and the
Bessel function, and also the integrals involving these functions.
The analogues of these properties are not known in the case of the
Laplace transform. The conditions imposed on the theorems may
in some cases be relaxed by analytic continuation. We have illus-
trated this fact in example to Theorem 1.

2. THEOREM 1. 3) Il

then

provided that 

(v) the integral in (1) is absolutely convergent.
PROOF: We have ([4], p. 441)

Replacing z by st and multiplying by (st)-k-1 2f(t) and integrating
with respect to t, from t = 0 to oo, we get

3) In all the theorems ~(s) comes out to be an analytic function regular in a
certain region which depends on the particular function f(t) chosen; and the method
employed to evaluate the integral (A ).
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whence

Regarding the change of order of integration in (2), we see
that the t-integral is absolutely convergent if R(jul + 2Â -

2013 k + 1 ± m + 03BB) &#x3E; 0, where f (t) = 0 (t03BC1) for small t,

e-1 2sut t203BB-k-1 2 Wk+03BB+1 2, m+03BB(sut) f(t) ~ 0 as t ~ ~ for R(s) ~ s0 &#x3E; 0,
u &#x3E; 0; and f(t) is continuous for t &#x3E; 0. Also the u-integral is
absolutely convergent if R(03BB) &#x3E; 0; and the repeated integral (2)
is absolutely convergent due to (1 ). Hence by de la Vallée Poussin’s
theorem the change of order of integration is justified. We may
also note that the integral on the left hand side of equation (2)
also converges under the conditions already imposed together
with R(,ul + 03BB 2013 k + m + 1) &#x3E; 0.
EXAMPLE: Let

then ([3], p. 132.) 4)

R(03BB + 03BC + 03BD 2013 k + 2 ± m) &#x3E; 0, R(s) &#x3E; 0 and |s| &#x3E; 2.
Since f(t) satisfies all the conditions of the above theorem, we
thereforè get
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As regards the absolute convergence of the integral, it easily
follows under the conditions already imposed, if we note that:

(i) the integrand is continuous for u &#x3E; 1, and R(s) ~ s0 &#x3E; 0,
(ii) the integrand = 0(u-(03BB+03BC+03BD-k+m+3)) for large u, and
(iii) the integrapd = 0(03BC203BB-1) for u = 1 + e, E &#x3E; 0.

We may also note that the conditions |s| &#x3E; 2, and R(03BB + 03BC +
v - k - m + 2) &#x3E; 0 may be waived out by the help of analytic
continuation, if we make a eut in the s-plane from 0 to - oo.
For in (B) the integral converges absolutely and the function on
the right is regular in the eut s-plane without these conditions.

3. THEOREM 2. If

and

then

provided that

1 is continuous f or t &#x3E; 0, and

PROOF: We have

Now, using the result ([5], p. 480)

we get
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where

The change of order of integration in (4) can be justified as
follows:

The x-integral is absolutely convergent if R(k)  1 2, t &#x3E; 0,
and R(s) ~ s0 &#x3E; 0; the t-integral converges absolutely if f(t) is
continuous for t &#x3E; 0; R(p - k + 3 2) &#x3E; 0, where f(t) = 0(t03BC)
for small t, and |e-s(x 2 + 1 2)tt-k+1 2f(t) | ~ 0 as t - oo for R(s) &#x3E;

so &#x3E; 0 and x &#x3E; 2013 1 2. The repeated integral (03B1) converges abso-
lutely if R(03BC 2013 k + 1 ± m) &#x3E; 0, and under the conditions al-
ready imposed. Hence the change of order of integration is justi-
fied by de la Vallée Poussin’s theorem.

EXAMPLE: Let

then ([2], p. 389)

and ([6], p; 29)

Now applying the above theorem we get
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4. THEOREM 8.

and

then

provided that

(i) R(m - k) &#x3E; 0, and (k - m) is not an integer,

(ii) R(PI + 1) &#x3E; 0, and R(03BC1 - k - m + 1) &#x3E; 0, where

f(t) = O(t03BC1) for small t,

(iv) 1(t) is continuous tor t ~ 0.

PROOF: We have

Now, using the integral representation of Wk,m(z) ([7], p. 340)

where

The change of order of integration in (7) can be justified by
de la Vallée Poussin’s theorem.
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5. THEOREM 1.

then

(8)

where

provided that

(i) R(03BC1 + m + 3 2) &#x3E; 0, where f(t) = O(t03BC1) for small t,

(ii) f(t) is continuous in t &#x3E; 0,

(iii) R(s) &#x3E; s0 &#x3E; 0, and

(iv) the Km-tramform of 1 f(t) exists.

PROOF: We have

Now, using the integral representation of Km(z) ([8] p. 193)

we get

where

The change of order of integration in (9) can be easily justified
by de la Vallée Poussin’s theorem.

EXAMPLE : Let
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then ([2], p. 387)

and

On simplifying and using the result [9]

we get

Hence applying the above theorem, we get

6. THEOREM 5.

then

(10)

where

provided that

(i) R(03BC1 + 3 2 ± m) &#x3E; 0, where f(t) = O(03C403BC1) for small t,
(ii) 1 e-stt1 2 f(t) 1 ~ 0 as t ~ oo for R(s) &#x3E; so &#x3E; 0, and

(iii) f(t) is continuous for t &#x3E; 0.

PROOF: We have
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Now, using the result ([10], p. 599)

cosh mu du,

we get

where

The change of order of integration in (11 ) can easily be justified
as before.

Further, we can find out the behaviour of 1p(s cosh2 u/2) for
large values of u in the following way:

If the function t1 2f(t) satisfies the conditions of Watson’s lemma,
regarding the asymptotic expansion of functions representable
by Laplace’s integral, and is O(t03BC1+1 2) for small t, we have from
Watson’s lemma

where p = s cosh2  and 03BC1 + 3 2 is not an integer. If we fix s,
2

and note that

then
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EXAMPLE : Let

then ([2], p. 388).

and ([6], p. 16)

Applying the above theorem, we get

7. THEOREM 6. I f

then

where

provided that

(i) R(IÀ, + 32) &#x3E; 0, R(03BC1 2013 1 2n + 1) &#x3E; 0, where f(x) = O(x03BC1)
f or small x,

(ii) 1 e-sxx-1 2n f(x) | ~ 0 as x ~ oo for R(s) &#x3E; so &#x3E; 0, and

(iii) f(t) is continuous f or t &#x3E; 0.

PROOF: We have
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Using the result ([10] p. 600)

we get

where

The change of order of integration in (13) can easily be justified.
EXAMPLE : Let

then, ([2], p. 390)

and ([6], p. 28)

Now, using the above theorem, we get
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8. THEOREM 7. I f

then

where

provided that

(i) R(03BC1 - in + 1) &#x3E; 0, where f(t) = O(t03BC1) for small t,

(ii) 1 e-stt1 4f(t) 1 ~ 0 as t ~ oo for R(s) ~ 90 &#x3E; 0, and u &#x3E; 0,

(iii) R(n)  0, and

(iv) f (t ) is continuous for t &#x3E; o.

PROOF: We have

Now, using ([11], p. 442)

we get

Hence



296

where

The change of order of integration in (15) can easily be justified.

9. THEOREM 8. I f

then

where

provided that

(i ) R(l"l - k + 1 ::i: m) &#x3E; 0, where f(t) = O(t03BC1) for small t,
(ii) |e-stI-2k-1(03BC st)K2m(ust)t1 2f(t) | ~ as t ~ ~ for

R(s) ~ 80 &#x3E; 0, and u &#x3E; 0; 1

(iii) R(2013 k ± m) &#x3E; 0,

(iv) 1(t) is continuous for t &#x3E; 0, and

(v) the integral in (16) is absolutely convergent.

PROOF: We have ([11], p. 442)

Replacing z2 by st and integrating between t = 0 and t = co,

after multiplying by e1 2stf(t)(st)1 2, we get

or
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where

The change of order of integration in (17) can easily be justified.
1 am thankful to Dr. S. K. Bose of Lucknow University (India)

for his help in the preparation of this paper.
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