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Bounds of matrices with regard to an
Hermitian metric!)

by

Werner Gautschi.

§ 1. The bounds Q ., wy k.

1. Introduction. In various questions concerning the solutions
of systems of equations and the errors made by rounding off,
the following definition of upper and lower bounds £2(4), w(4) of
a matrix 4 has frequently been used:

Q(A) = Max Vp,, w(4) = Min Vo, (1)

where o, denote the eigenvalues of 4’4 (cf. e.g. [8] p. 1042 ff., or
[9], p. 787, for the special case in which ¢, ¥ are Euclidean lengths).
In this paper we will discuss a generalization of this definition
introducing as ‘‘parameters” two positive definite Hermitian
matrices H,K. If H, K vary independently, the generalized
bounds Q (A4), wy x(4) can in general take values in the whole
range (0, o) (cf. § 1, section 3(vi)); to obtain appropriate values
one has to couple H, K in some way. This can be done very
naturally when 4 is an » X » matrix, by taking K = H. The
bounds 2, ; = 24, vy y = wy are in fact often more favourable
for A than (1), but at the same time their actual calculation is
considerably more difficult, as is shown by the examples given in
§ 2. If, however, 4 contains only a few non-vanishing elements,
Qy x(A) can fairly well be estimated from above by means of our
theorem 2 in § 8, section 1, which generalizes a theorem due to
W. Ledermann [7]. We will also make use of the theorem 2 in § 3,
section 2, to determine both Inf 2, (4) and Sup wy (4), where H
H H

runs through all positive definite matrices. In sections 2 and 8 of
§ 1 we give the exact definitions and a few elementary properties
of Qy ¢ (4) and wy x(4), while in section 4 of § 1 a property not
quite so trivial is proved.

1) This paper is part of the thesis for the Dr. phil.-degree at the University
of Basle, Switzerland.
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- The idea of relating lengths of vectors to a positive definite
Hermitian matrix H has recently been applied to the solution of
linear equations Az = b by M. R. Hestenes and M. L. Stein [6].
Their main problem is to minimize the ““H-length” of the residual
vectors r(z) = b — Az. Our definitiop of Q4 ,(4), wy x(4) in-
volves a similar extremum problem, bl%‘iin contrast to [6]) with
a side condition.

In defining the H-length of a vector we make use of the ‘“‘scalar
product” (2, y) with regard to H of two vectors z, y, as given e.g.
in H. L. Hamburger and M. E. Grimshaw [4], p. 158. Such
products (z, y) have also recently been used by W. Givens [2]
to obtain theorems on the fields of values of a square matrix,
which considerably extend the well known results due to
O. Toeplitz [12] and F. Hausdorff [5].

I am very much indebted to Prof. Dr. A. Ostrowski for having
most kindly allowed me to see through the manuscript of the yet
unpublished book [10] from which I received many suggestions.
In particular a chapter of [10] on the bounds (1) was the starting
point of our investigations, which rather closely follow the dis-
position of this chapter.

2. Notations and definitions. Let 4 = (a,,) (p=1,...,m;
v=1,...,m) be an m X n matrix with real or complex elements
a,, By A* = A’ we denote its conjugate-transpose and by
A® (p=1,..., Min (m, n)) its p** compound matrix, i.e. the
(m) X (Z) matrix consisting of all minors of 4 of order p. The

p
groups of p rows and columns which form the minors are supposed

to be arranged in lexicographical order. We have to use the follow-
ing rules concerning A4(?):

(AB)® = A(MB®) (4*)D = (AD)*, (2)
if the product 4 B exists (cf. e.g. [1], p. 90ff). The first relation in
(2) (the so called Binet-Cauchy theorem) is readily extended to

more than two factors. Further if m = n and 4! exists, from (2)
(with B = A1) it follows that

(A-1)» = (A™)1, (3)
tr 4 will denote the trace Xa,, of a square matrix 4, 4, an eigen-
v
value of 4 and |4, |™>* | A, |™® respectively the maximal,
minimal modulus of the eigenvalues of A.

By x,y etc. we denote column-vectors of a k-dimensional com-
plex Euclidean space, by z* the conjugate-transposed row-vector
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Z' and by | z | the Euclidean length of 2. In order to introduce an
Hermitian metric we define the scalar product (z, y) of two vectors

z, y by
(v, y) =y*Hz (H > 0), (4)

where H is an Hermitian matrix of order k; the meaning of the
relation H > 0 is that H is positive definite. In particular (z, z)
is real and = 0 with (z, ) = 0 only when # = 0. We therefore
define

llz| = V(a z) (5)

as the norm of x with regard to H. Sometimes we add the subscript
H and write || z ||, instead of || z ||. By routine arguments (cf.
e.g. [11], p. 5, [8], p. 90—92, or [4], p. 4—5) the following three
properties of || || are obtained:

|| 2z || = 0 with equality if and only if 2z =0
lly#ll = |y | |l@]|l (» any complex scalar) (6)
let+yll =+ 1yl

Now let A be an m X n matrix and H > 0, K > 0 be Hermitian
matrices of orders m, n respectively; we then define the upper
and lower bounds 2, x(A4), wy x(A) of A by

Q4 x(4) =Max || Az ||y = (Max w*A*HAw)*,

llzllg=1 llellg=1 (7)
oy x(4) = Min || Az ||y = (Min w*A*HAm)i.
lzllg=1 llzllg=1

If in particular m = n and H = K we write Q, , = Qy, oy y =
wy. The definition (7) can also (partly) be expressed in terms of
Euclidean lengths: Let K be transformed to a diagonal matrix
by the unitary matrix U:

D = U*KU = Diag (ky, .. ., k,), U*XU =1, (8)
where I, is the n X » unity matrix. Since k, >0 (v =1,...,n)
D can further be reduced to I, by multiplying on the right and

1 1
left by 4 = Dia, ( = ... —_—):
& V'k, vk,
AU*KUA =1,, 4 = Diag (L_,..., ——lz) (9)
Vi, vk,

If we now apply to  the substitution 2 = Udy we get
|Az||Z =a*A*HAzx =y*AU*A*HAU Ay (z = Udy)
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“and by (9)
2*Ke = y*AU*KU Ay = y*y.
Hence ||z ||x = 1 implies |y | = 1 and viceversa; we therefore
have '
Fll Az |3 = %y*By, B = AU*A*HAUA, (10)
l=llg=1 lvl=1

where § , & denote the ﬁelds of values over the sets of vectors
llzllig=1 lv|]=1

z,y with ||z || = 1, | y | = 1 respectively. Since B is non-nega-
tive definite, from (10) we see that both Max, Min in (7) actually
exist and

@ (A)= 12 o} ((A) = 23", B = AU*A*HAUA. (1)

If in particular we take H = I,,, K = I, so that clearly U = 4 =
I,, we obtain the bounds defined in (1).

Throughout this paper we denote respectively by &,, . . ., k,>0,
ky, ..., k, >0 the eigenvalues (not necessarily distinct and
arranged in any order) of H, K and we put A" = Max h
K = Mm h k' = Max k k" = Min k,. p=1.

M=1,. v=1,. v=1..,n

3. Elementary properties of 2y g, wy g. If not otherwise stated
in this section 4, H > 0, K > 0 are respectively m X n, m X m,
n X n matrices.

(i) The following properties of 2, x, wy , are immediate
consequences of (6) and (7):

QH,K(?’A)=|7|‘-QH,K(A), oy g (yA)=|y |wy x(4) (y any complex scalar)
Qy (A + B) =2y x(4) + 2y x(B), oy gx(A+B)=wy x(4)— 2y x(B),
0y x(A4) =0 if and only if 4 =0

(12)

13
wy x(A) = 0 if and only if the rank of 4 is < n. (13)
(ii) Obviously we can also write
A
-QH,K(A)=MX” w”H HK( )—Ml “ ”H’ (14)
20 [| @ ”K x40 ||l

so that for any m X » matrix C:

1 Cally = Ly x(C) ]l || Co |lg = wg,x(C) || @ |lg. Hence,
if A, B, L > 0 respectively are m X I, I X n, Il X Il matrices, we
have

Qu, x(AB)=8y, 1(4)2;, x (B), oy, x(AB)Zwy, 1(4)oL, k(B). (15)
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On the other hand, for any vector  with Bz 5 0
| 4Bz|ly _ |l 4(B2)|lx |l Bz |l.

Il 2 |lx | Bzl |lzllx

[| Bz |l

Il 2 |lx

(Bz #0). (16)

Suppose now that for the vector x: = £, x (B). Then by

(16) and (14)

|| ABz ||y || A(Bx) ||y
= Q K B = Wy A QLK B,

Tole ~ N Bal, —ox(B)Zon(d)0«(B)

Similarly, if B is of rank n, from (16) we deduce wy x(4B) =
Qy 1 (A)wp g (B). If B is of rank < n, then the same holds for
AB (cf. e.g. [1], p. 96—97) and therefore w; x (A B) = w; x(B) =
0. Thus we can extend (15) as follows:

‘QH,K(AB)ng, L(A)'QL,K(B)’wH,K(AB)é‘QH,L(A)wL,K(B)' 17
(iii) Suppose that m =n and A-! exists; then putting
x = Ay we see that
Il Az ||y _ Nyl _ % (ll A7y Ik
z20 |l 2|l y;éOHA_IyHK y#0 Yy lla
Hence in using (14) we get

2k (4) = s— Ol = g

wg, 5 (A7) K

(iv) Let S, T be two nonsingular matrices of orders m, n respect-
tvely; then we have

'QH, x(4 )=~QS~HS, rr (S71AT), oy g (A)=wgys, roxr(STIAT). (19)

If in particular m = n, Qy g, oy x do not change, if a unitary
transformation S is applied both to A, H and K.

Indeed, putting # = Ty we see that the field of values 2*4A*HAx
over the set of vectors # with #¥Kx = 1 coincides with the field
of values

y*T*A*HATy = y*(T*A*(S*)-1)(S*HS)(S1AT)y

taken for all vectors y with y*T*KTy = 1. Hence (19) follows
at once from the definition (7).

Q4 x(4B) 2

o=t

(18)

(v) Suppose that both A, H and K are respectively the “‘direct
sums” of Ay, ..., Ay Hyy ooy Hy and K, . . ., K,, i.e. that in an
obvious notation

A=Diag(A4,,..., A,), H=Diag(H,,...,H,), K =Diag(K,,...,K,),
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whereAdisanm,,xn,,, H,>0 an m; X my; and K, > 0 an

Ng X g matriz (¢ =1,...,8). Then we have
Qy x(4) = N{ax Qy,,k, (Ag), 0, x(4) = Mm “’H K, (4g)- (20)

In fact, let K be transformed to a dlagonal matrix by the uni-
tary matrix U; (0 =1,...,s) and put U = Diag (U,, ..., U,),

1 1
so that clearly (8) holds. Put 4 = Diag (\/ \/Ic )

Diag (4y, . . ., 4,), 4, being of the same orderas K, (6 =1, . . ., s).
Then obviously the matrix B in (10) is the direct sum of
AUYAXH AU A, (0 =1,...,s), whence (20) follows from (11).
(vi) For every H> 0, K > 0 we have
hll
V o(4) = 0y x(4) = Ly x(4)= Vk" Q(4), (21)
where w(A); 2(A) are the bounds defined in (1).
Indeed, (21) follows from (14) by putting y = Az in
R lyRP<llylz sk |y K |lzP=s|le|f =K |z
(viil) We have for any eigenvalue A, of a square matriz A:
_ wg(4) = | 24] = 24 (4). (22)
In fact, let # be an eigenvector corresponding to i, with
l@|ly=1. Then Az =i, | Az|lz=]|2,|, whence (22)
follows directly from (7).
4. For the proof of our first theorem we need the following

LEMMA 1. Let S be an n X m matriz and T an m X n matriz.
Then, if m < n, we have

(ST)®» =0 (p > m). (28)
Proor. Put Sy=(S0,), To=(g), where 0,, Oy are n X (n—m),
2

(n—m) X n zero-matrices respectively. Obviously both S,

and T, are n X n matrices and ST = S,T,. Hence by (2)

(ST)» = S T(», and (28) follows from S{» = T{® = 0 (p>m).
LemMmaA 2. Suppose that D = Diag (ky, . . ., k,) (k, > 0),

1 1
4 = Diag (\/—,7 - —\/—k_—) and G = Diag (hy, . . ., hy) (h, > 0),
i 1 n
. 1 1
I' = Diag (TIT’ e W) Further let R = (rm,) beanm X n
1 m
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matriz and put B = I'RDR*I", C = A~'R*GRA-'. Then, if
9(A) = | AI,,— B |, () = | Al, — C | are the characteristic poly-
nomials of B, C, we have
p(4) = 4""p(2).
Proor. Without loss of generality we may assume m < n.

Put B = (b,,) (,v=1,...,m), C=(cy,) (g,v=1,...,n); by
direct multiplication we get

1 1
=—= Ek Tug
w Vh”\/lz, o=1
m 1 _
Cuy= Vkl‘\/’?”tah—,rfl‘ Tope
Hence
k,
tr B = Zb”—zz lr |2—Zz—lrﬂ,|— ¢,,= trC.
Bn=1 u=10=1 (] y=17T= l T y=1

We now form the p®* compound matrices B?), C® of B, C;
from (2), (8) it follows that
B = ['® R D(»(R(» )9
C? = (4»)1 = a P=1..,m).
= )"L(R)*(G(»)-1R») (A(»)-1
Evidently B(®, C® are built analogously to B, C. Therefore our
first conclusion again is applicable and we get

tr B =trC®» (p=1,...m). (24)
If m < n by the lemma 1 with S = A-1R* T = G'RA-! we have
C?» =0 (p>m). (25)

Since generally (— 1)? tr A® is the coefficient of A*~? in the
characteristic polynomial | AI, — 4 | of an » X » matrix A4, (cf.
e.g. [1], p. 88), our assertion now follows immediately from (24)
and (25).

THEOREM 1. Let A be an m X n matrix and H >0, K > 0
be respectively of orders m, n; then we have

Qp, y(A*) = Qg g1(4), (26)

and, if m = n,
Wg, n(4%) = Oy, xk-1(4) (27)

Proor. Let
G = V*HV = Diag (hy, . . ., hy,), V*V =1, (28)

T'V*HVI =I,, I = Diag (:/}h:’ - ;/lh: ) (29)
1 'm
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be the equations corresponding to (8), (9), applied to the matrix
H. Then in using (8), (28) we have

D = U*KU, D' = U*K-WU; G =V*HV, G = V*H-V, (30)
K =UDU* K =UD-U*; H=VGV* H'=VG1V* (31)
According to (11) and (28)—(80) we have to examine the eigen-
values of
B =TV*AKA*VI, C = A U*A*H1AUA.

By means of (81) we can write

B =I'(V*AU)D(U*A*V)I' = 'RDR*I"

C =AY (U*A*V )G (V*AU)A7! = A1R*G1RA,
putting R = V*AU. If we now apply the lemma 2, our assertion.
follows at once.

CoroLLARY 1. For any square matriz A and H > 0 we have
Q4 (4%) = Qya(4), 0y (4*) = wga(4). (32)

CoroLLARY 2. If A is an Hermitian matriz, then for any H > 0
Qu(4) = 241 (4), wy(4) = wga(4). (83)

§ 2. Examples.

For the sake of simplicity in this section we only consider square
n X n matrices 4 and we take H = K. As to the selection of
examples we follow very closely the arrangement given by
A. Ostrowski in [10].

(i) Let A = (a,,) be a matrix the only non-vanishing element
of which is a,, = a. Put H = (h,,), B = (by,), U= (%), where
U satisfies (8) and B is the matrix defined in (10). By direct multi-
plication we get

1 1
b = I a I2 h Wy Wy ————= ———
uy i kp kv
V', Vh,
Uiy Ukn
If by v we denote the row-vector (—_—:, .o ——=), B can be con-
Vh, Vh,

sidered as the product |a |? h;;v* v and is therefore of rank 1.
Hence by (11) we have
raax ” I ulw l2

.Q?,(A)=13=tl‘B=|a|2h“Z h
y=1 )



[9] Bounds of matrices with regard to an hermitian metric 9
”
On the other hand, by (381), hy; = X h,|u, |? and so
=1

n 2
o) =1ar E blu,pd el (34)
y=1 h'y
If in particular H is a diagonal matrix, and therefore U =1,
we get

Q,(A)=|a| V%_ H = Diag (hy, . .., h,)- (35)
k

Let us in this example discuss, to what extent 2, (4) is de-
termined by the eigenvalues of H. Clearly all Hermitian matrices
having the fized eigenvalues h,,...,h, > 0 are obtained by
letting U in H = UDU*, D = Diag (h,, . . ., h,), run through all
unitary n X n matrices. In the case 7  k, from (84) we can derive
the following bounds, between which Q% (4) varies:

h" 1 b’

where the upper and lower bounds are attained by taking in (84)
for (Uyps « - s Uin)s (Uigs « « o Ugp) suitable unit vectors. Similarly,

if ¢ =k, from (84) we see that| 1292 2 (A) takes values in a
certain closed interval, the left-hand end point of which by (22)
is equal to 1.

If on the other hand we let H run through all diagonal matrices,
(85) shows that in the case ¢ # k the range of 2,(A4) is the whole
interval (0, o), while 2, (4) for ¢ = k is always equal to | a|.

Evidently in this example wg(4) = 0 by (13).

(ii) Let 4 = (a,,) be a matrix all elements of which are zero
except those lying in the 4** row, and put (@, ... a;,)=
= (ay ..., a,) = a. We suppose that H = Diag (hy, ..., k,), i.e.
U =1I,. Then for the matrix B in (10) we have B = 4A*HAA,

by, =h Ay By \/ \/__ and as in our example (i) the rank of B
is equal to 1, so that
” 2
2 )y=twB=n3% 2L _japsn s 2L (s
=1 ) :’;1 h’y
i

Clearly we have always wy (4) = 0, and, by a suitable choice of
H, 2, (A) can take values arbitrarily near to |a,| = |4, | ™~
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(iii) If all elements of the matrix 4 are equal to a # 0 and if

1 1 »
we take H = Diag (hy, . . ., k,), we have b, = T a2 X h,
Y x=1

[
and therefore: by the Cauchy-Schwarz inequality

n ” 1
2% (A)=trB= |a|2(2 h,,)(z —) =|al®n?  (87)
T \w=1 v=1h,
The lower bound for 2,(4), |a|n = |4, |™*, is attained for
H =1,, while 2, (A) is not bounded at all from above. On the
other hand w,(4) = 0.

(iv) Let A = Diag (ay, ..., a,), H = Diag (hy, ..., h,). Then
B = Diag (|a,/% ..., | a,|?), so that

2y (A)=Max |a,| = |4, ™, wy(4)=Min|a,| = |4, [". (38)
v v

(v) Let 4 = (a,,) be a matrix all elements of which are zero
except those lying in the ¢** row and k* column, while we have
also a;, = 0. We further assume H to be a diagonal matrix. In
applying to both 4 and H the same permutation to the rows and
columns, whereby in virtue of § 1, section 8(iv), 24 (4), wy(4)
are not changed, we can make k = 1. Having carried through this
transformation we denote by « = (ay, ..., a@,) the ¢ (n — 1)-
dimensional row-vector of 4 (without its first element), by
B = (by ..., b,) the first (n-dimensional) column-vector of A4
(where b, = 0) and we put H = Diag (hy, ..., h,), 4; = Diag

1 1 ) .
——, ..., ——=]. For the matrix B of (10) we then obtain by
(\/ﬁ; Vh,

direct multiplication (observing that U =1,)

1
— g*
B = (hl ﬂ Hﬁ 0 ).
0 h,Aa*ad,
Since again the ( — 1) X (» — 1) matrix in the lower right-hand
corner of B is of rank 1, it follows from (11) that
12 ¥
&= (;7 z hv!bm)
y=1
24(4) = Max (2,, 2,), where ' ”3&‘ L
Q, = (hi % — |a,|2)
hl’

v=2

(39)

0g(4) =0 (n>2).
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§ 3. A generalization of Ledermann’s theorem and the

determination of Inf Q,, Sup wy.
H>0  H>0

1. The reason we succeeded to calculate directly 2, wy in
the examples given in § 2 was that the matrices 4 contained a
sufficiently large number of zeros. We now prove a general
theorem which in similar cages always yields an upper bound for
Q4 x(4) and which is a generalization of a theorem due to
W. Ledermann [7]. More precisely:

THEOREM 2. Let A = (a,,)beanm X n matriz and denote by
, its u™ row-vector; then, z]‘ H = Diag (ky, . . ., hy) (k, > 0),
K Diag (ky, . . ., k,) (k, > 0) and if every column-vector of A
contains at most s non-vanishing elements, we have

'Q%I,K (A) éaglh”u “ a”a “?{—1’ (4,())

where the sum on the right-hand side has to be taken over the s largest
numbers’ hy, ||o, |2 (6 =1,...,8) among h,|la,|f- (4=
1,...,m).

Proor. Our proof is essentially the same as that given for the
case H =1,, K =1, by A. Ostrowski in [10].

Without loss of generality we may assume that

hillog e Z by llog g Z oo o Z o |l @ [ (41)

Indeed, let a permutation P be applied to the rows of A4; if we
further permute the rows and the columns of H according to P,
by (19) (with T = I,)) 4 x (A) does not change and the numbers

hyll o, g (¢ =1, ..., m) are arranged as required.
Let Max || Az ||% be attained for the vector z = (2, ..., 2,)
= llg=1

and put y = Az, y = Yy - - » Ym)- For every p (u=1,...,m)
replace the coordinates z, of z for which a,,, = 0 by zeros and deno-
te the vector so obtained by z/*. Then we have

LGx(A)=llylli= Zlh Y= Zh | oy 2 2 (42)
pn=

We further put ™ = (2%, ..., z#) (,u = 1, ... m). Since by
the Cauchy-Schwarz inequality

” 2
(I‘) ( z —}:Iapvl Vkv |w§,") I) =
y=1%V
» 1
g(gl,;la,,, a)( B by 100 2) =ty 13 5 By Lot 1,
v
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from (42) we get

Pk () S 2y lloy I X by |00 2 =
n= v=

= Eh [ 2 el iyl liz] 09)

v=1 p=1
If 2# 5 0 then .

2 = @, (@ +0) (44)
and a,, # 0. From this and the hypothesis it follows that for any
fixed » at most s of the i/ are 7 0. Therefore taking the sum in
brackets on the right-hand side of (48) only over the terms with
x# £ 0 and using (44), (41) we see that

m 8
2 0l P hy oyl < Loy 2 b llagllfn (P =1, m),
n= o=1

whence by (43)
%) = (1, 1) (2 byl 0 ).
y=1 o=1

”n
This proves our assertion, since X k, |z, 2= ||z |k = 1.
y=1

ReEMARkS. The theorem of Ledermann is obtained by taking
H=I,, K=I,. If in particular we apply (40) with H =K to our
examples (i), (ii) and (iv) we obtain respectively as upper bounds

h,;
— |a|? h;||a]||%4-1, Max |a,|? which all coincide with the corres-
hk H 4

v

pending Q%.
Even if s = m the theorem 2 is often useful. Take e.g.

2 1 8
A=|17 0 5}
01 38

where the elements of the second column are comparatively small.
In order to get favourable bounds for 2, (4) in applying (40), we
choose h, relatively small. With H = Diag (4, 1, 20) we obtain
Q3(4) < 63,3, while H =1 gives 22(4) < 158.

2. We now use our theorem 2 to give a refinement of (22):

THEOREM 8. For any n X n matriz A we have
Inf 2, (4) = | 44 |™, Sup wy(4) = |4, ™. (45)
H>0 H>0

If in particular A has only simple elementary divisors both Inf and
Sup in (45) are attained for suitable matrices H > 0.
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Proor. Since for a nonsingular matrix | 4, [™** = 1/| 4, | ™"

and by (18) wy (4) = , it is sufficient to prove the re-

1
2y (471)
lation concerning Inf Q2,. Let A be transformed to Jordan’s
canonical form by the nonsingular matrix S:
S—14AS =4 + C,

where A is a diagonal matrix the elements of which are the eigen-
values of 4, and C denotes a matrix consisting of zeros except
possibly some elements ¢,, =1 with » = g + 1. If in (19) we
take T = S we have by (22), (12)

[ A4 |7 = Qg (A) = Qg (A + C) < 2 (4) + 2, (C), (46)
where K = S*HS. It suffices to show that for a suitable choice of
K the sum on the right-hand side of (46) is arbitrarily near to
| 4, |®**. Take K = Diag (k,, ..., k,); then by (88) Q24(A) =
= | A, |™*; if on the other hand y, is the »** row-vector of C,

o(y, = 0)
then 2 = v . Hence by the theorem 2
” 7’1' ”K 1 {I/kv+1(yv # 0) y

() Max 7,

r=1,..,n—1 v+l
which obviously can be made as small as we please.

If all elementary divisors of 4 are simple we have in (46) C= 0,
2, (C) = 0, so that 2,(4) attains the value | 1, |™** for a suit-
able matrix H > 0. .

It is natural to ask whether we could in (45) take Inf, Sup only
over the set of all diagonal matrices H > 0. This is however not
true as the following example shows: Take

0 2z 1
A=(i 0 0 ) (2=1),
1 00

where | 4, |™** = 0. If H = Diag (hy, hy, hs3), it follows from § 2,
Ex. (v), that

Q h2+ h3
1=
Qy (4) = Max (2, 2y),

where Vh1 (h2 ha) Vhl(’;;: h3).

But by the inequality of the arithmetic and geometric mean

hz+h3>

0,9, = 2,

»i

so that certainly 24,(4) = > V2 for all diagonal matrices H > 0.
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. The second statement in theorem 8 can be made more precise
by the following

THEOREM 4. In order that for some matriz H > 0
Qu(d) =12, ™ (47)
it 18 necessary and sufficient that the elementary divisors correspond-
ing to the eigenvalues of A with mazimal modulus are simple.
Simalarly, if A is a non-singular matriz, we have
wg(d) = |44 ™™ (| 24 ™™ > 0) (48)
for some H > 0, if and only if all elementary divisors associated
with the eigenvalues of A of minimal modulus are simple.

Proor. Necessity: let A be an eigenvalue of A of either maximal
or minimal modulus having multiple elementary divisors. It then
suffices to show that, given a matrix H > 0, there always exists
a vector x for which

IIAwIIH{< | g 72, 0 [A] =] 44 ™"
T (g US> |24 [75 0 | 2] = [ 4, "

From Jordan’s canonical form of 4 it is easily seen that under
our hypothesis on 4 there exist two linearly independent vectors
Uy, Uy such that Awu, = u,, Au, = Auy + u,. Put v, = u,,
vy = au; + U,; in order to make v,, v, orthogonal with respect to
H, using the notation (4) we must have

(Vg 1) = (g + g, uy) = a(uy, ;) + (%g, %y) = 0,
o = — (Ug, Uy)/(Uy, Uy).

Clearly Av, = Avy, Avy = adu; + Auy + u, = Avy 4 vy, and so the
vectors w; = vy /|| vy ||y wa = vy/|| vy ||y satisfy

(49)

Awl = lwl . . .
Aw, = w, + pw, (1w llg = Il wa|lg = 1, (wq wy) = 0), (50)
where = || vy ||z /||vs ||z > 0. We now take

r = yw; + W, (51)
and determine the scalar y in such a way that (49) holds. In fact,
by (50)

Az = yiw, + lw, + pw, = Az + pw,,
| Az [} = a*A*HAz = (la* + pw!)(AHz + pHw,) =
=42z |} + 2R(Brw] He) + B2

Substituting the expression (51) for z in wfHz we obtain

[l Ao Il _ d {2m<ﬂ>+ﬂ} 8> 0).

|13 Il 1%

1412+




[15] Bounds of matrices with regard to an hermitian metric. 15

Now (49) certainly holds, if in the case |A] = |l 4 | we choose
y such that R(yA) < —F and y = 0 if | 4] =2, ["*.

Sufficiency: suppose that all eigenvalues with maximal modulus
have simple elementary divisors. Let 4 be transformed to Jordan’s
canonical form S-' 4 S = J = Diag(J,, J,), where J, is a dia-
gonal matrix containing the eigenvalues 4 with |1 | = |1, |™*.
By (19) we have 24(4) = 2¢(J) (K = S*HS). To show that for
a suitable matrix K > 0: 2.(]J) = |4, |™*, take K = Diag
(K, K,), where K,, K, > 0 are matrices of the same order as J,,
J s respectively and K, is a unity matrix. Since Qg (J,) = | 4, |™,
from (20) we get

Qx(J) = Max {| 4, ™%, Qg,(]5)}-

On the other hand | 4; |™* < |2, [™, whence, by theorem 3,
K, can be chosen such that Qg (J,) < |4, [™*.

A similar argument shows that (48) holds for some H > 0,
if all eigenvalues of A with minimal modulus are simple.
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