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Bounds of matrices with regard to an
Hermitian metric 1)

by

Werner Gautschi.

§ 1. The bounds QH, KI cvH, K.

1. Introduction. In various questions concerning the solutions
of systems of equations and the errors made by rounding off,
the following definition of upper and lower bounds 03A9(A), 03C9(A) of
a matrix A has frequently been used:

where 9,, denote the eigenvalues of À’A (cf. e.g. [8] p. 1042 ff., or
[9], p. 787, for the special case in which q, z are Euclidean lengths).
In this paper we will discuss a generalization of this definition
introducing as "parameters" two positive definite Hermitian
matrices H, K. If H, K vary independently, the generalized
bounds 03A9H,K(A), COH, K (A) can in general take values in the whole
range (0, oo) (cf. § 1, section 3(vi)); to obtain appropriate values
one has to couple H, K in some way. This can be done very
naturally when A is an n X n matrix, by taking K = H. The
bounds DH, H QHI WU, H (OH are in fact often more favourable
for A than (1), but at the same time their actual calculation is
considerably more difficult, as is shown by the examples given in
§ 2. If, however, A contains only a few non-vanishing elements,
03A9H,K(A) can fairly well be estimated from above by means of our
theorem 2 in § 3, section 1, which generalizes a theorem due to
W. Ledermann [7]. We will also make use of the theorem 2 in § 3,
section 2, to determine both Inf DH ( A ) and Sup 03C9H ( A ), where H

H H

runs through all positive definite matrices. In sections 2 and 3 of
§ 1 we give the exact definitions and a few elementary properties
of 03A9H,K ( A ) and 03C9H,K ( A ), while in section 4 of § 1 a property not
quite so trivial is proved.

1) This paper is part of the thesis for the Dr. phil.-degree at the University
of Basle, Switzerland.
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. The idea of relating lengths of vectors to a positive definite
Hermitian matrix H has recently been applied to the solution of
linear equations Ax = b by M. R. Hestenes and M. L. Stein [6].
Their main problem is to minimize the "H-length" of the residual
vectors r(x) = b - Ax. Our definitio of S2H, K(A ), 03C9H,K(A) in-
volves a similar extremum problem, but in contrast to [6]) with
a side condition.

In defining the H-length of a vector we make use of the "scalar
product" (x, y) with regard to H of two vectors x, y, as given e.g.
in H. L. Hamburger and M. E. Grimshaw [4], p. 153. Such

products (x, y) have also recently been used by W. Givens [2]
to obtain theorems on the fields of values of a square matrix,
which considerably extend the well known results due to

O. Toeplitz [12] and F. Hausdorff [5].
1 am very much indebted to Prof. Dr. A. Ostrowski for having

most kindly allowed me to see through the manuscript of the yet
unpublished book [10] from which I received many suggestions.
In particular a chapter of [10] on the bounds (1) was the starting
point of our investigations, which rather closely follow the dis-
position of this chapter.

2. Notations and definitions. Let A = (ap,v) (p, =,1, ..., m;
v = 1, ..., n) be an m X n matrix with real or complex elements

a,. By A* = fI’ we denote its conjugate-transpose and by
A(p) (p = 1, ..., Min (m, n)) its pth compound matrix, i.e. the

(mp) X / nl matrix consisting of all minors of A of order p. Thep 
 

(P)
groups of p rows and columns which form the minors are supposed
to be arranged in lexicographical order. We have to use the follow-
ing rules concerning A(p):

if the product AB exists (cf. e.g. [1], p. 90ff). The first relation in
(2) (the so called Binet-Cauchy theorem) is readily extended to
more than two factors. Further if m = n and A-1 exists, from (2)
(with B = A-1) it follows that

tr A will denote the trace la., of a square matrix A, ÂA an eigen-
value of A and |03BBA| max, | 03BBA| min respectively the maximal,
minimal modulus of the eigenvalues of A.

By x ,y etc. we denote column-vectors of a k-dimensional com-
plex Euclidean space, by x* the conjugate-transposed row-vector
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’ and by x thé Euclidean length of x. In order to introduce an
Hermitian metric ive define the scalar product ( x, y ) of two vectors
x, y by

where H is an Hermitian matrix of order k ; the meaning of the
relation H &#x3E; 0 is that H is positive definite. In particular (x, x)
is real and ~ 0 with (x, r) = 0 only when x = 0. We therefore
define

as the norm o f x with regard to H. Sometimes we add the subscript
H and write 11 x ~H instead of 11 x~. By routine arguments (cf.
e.g. [11], p. 5, [3], p. 90-92, or [4], p. 4-5) the following three
properties of ~ x~ are obtained:

Now let A be an m X n matrix and H &#x3E; 0, K &#x3E; 0 be Hermitian
matrices of orders m, n respectively; we then define the upper
and lower bounds 03A9H,K(A), 03C9H,K(A) of A by

If in particular m = n and H = K we write DH, H == QHI 03C9H,H ~
(OH. The definition (7) can also (partly) be expressed in terms of
Euclidean lengths: Let K be transformed to a diagonal matrix
by the unitary matrix U:

where l fa is the n X n unity matrix. Since kv &#x3E; 0 (v = 1, ..., n)
D can further be reduced to l fa by multiplying on the right and

left by J = Diag (1 k1m ..., 1 k):

If we now apply to x the substitution x = Ud y we get
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and by (9)

Hence 11 x~K = 1 implies 1 y 1 = 1 and viceversa; we therefore
have 

where F , F denote the fields of values over the sets of vectors
~x~K=1 |v|=1

x, y with ~x 1 IK = 1, |y| 1 = 1 respectively. Since B is non-nega-
tive definite, from (10) we see that both Max, Min in (7) actually
exist and

If in particular we take H = lm’ K = I n, so that clearly U = L1 =
ln’ we obtain the bounds defined in (1).

Throughout this paper we denote respectively by h1, ..., hm&#x3E;0,
k1, ..., kn &#x3E; 0 the eigenvalues (not necessarily distinct and

arranged in any order) of H, K and we put h’ = Max h03BC,
h" - Min h03BC; k’ = Max kv, A" = Min kv. 03BC=1,...,m

03BC=1,..., m v=1, ...,n v=1, ..., n

3. Elementary properties o f 03A9H, K’ (OH, K. If not otherwise stated
in this section A, H &#x3E; 0, K &#x3E; 0 are respectively m X n, m X m,
n X n matrices.

(i) The following properties of 03A9H,K, 03C9H,K are immediate

consequences of (6) and (7):

(ii) Obviously we can also write

so that for any m X n matrix C:

Il Cx ~H ~ 03A9H,K(C)~ x ~K, Il Cx IIH ~ 03C9H,K(C) Il x IIK. Hence,
if A, B, L &#x3E; 0 respectively are m  l, l  n, l  l matrices, we
have.
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On the other hand, for any vector x with Bx ~ 0

Suppose now that for the vector x: ~Bx~L ~x~ = 03A9L,K (B). Then by
(16) and (14)

Similarly, if B is of rank n, from (16) we deduce 03C9H,K(AB) ~
03A9H,L (A)03C9L,K (B). If B is of rank  n, then the same holds for
A B (cf. e.g. [1 ], p. 96-97) and therefore COH, K (A B ) = 03C9L,K ( B ) =
0. Thus we can extend (15) as follows:

03A9H,K(AB)~03C9H,L(A)03A9L,K(B),03C9H,K(AB)~03A9H,L(A)03C9L,K(B). (17)

(iii) Suppose that m = n and A -1 exists; then putting
x = A -ly we see that

Hence in using (14) we get

(iv) Let S, T be two nonsingular matrices o f orders m, n respect-
ively ; then zve have

03A9H,K(A)=03A9S*HS, T*KT(S-1AT),03C9H,K (4 )=WS*HS, T*KT(S-lA T). (19)
Il in particular m = n, 03A9H, K’ WH, K do not change, i f a unitary
transformation S is applied both to A, H and K.

Indeed, putting x = T y we see that the field of values x*A *HAx
over the set of vectors x with x*Kx = 1 coincides with the field

of values 

taken for all vectors y with y*T*KTy = 1. Hence (19) follows
at once from the definition (7).

(v) Suppose that both A, H and K are respectively the "direct
sums " o f A1, ..., As, Hl, ..., Hs and Kl, ..., K8, i.e. that in an
obvious notation
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where A03C3 is an m03C3 X n03C3, H03C3 &#x3E; 0 an m03C3 X m03C3 and K03C3 &#x3E; 0 an

n03C3  n03C3 matrix (a = 1, ..., s). Then we have

03A9H,K(A) = Max 03A9H03C3,K03C3 (A03C3),03C9H,K(A) = Min 03C9H03C3,K03C3(A03C3). (20)
In fact, let K03C3 be transformed to a diagonal matrix by the uni-

tary matrix UQ (03C3 = 1, ..., a) and put U = Diag (U1, ..., Us),

so that clearly (8) holds. Put LI = Diag (1 K, ..., 1) =Vk1 Vkn
Diag (Ll1, ..., L1,), 039403C3 being of the same order as K03C3 (a = 1, ..., s).
Then obviously the matrix B. in (10) is the direct sum of

039403C3U*03C3A*03C3G03C3A03C3U03C3039403C3 (a = 1, ..., s ), whence (20) follows from (11).
(vi) For every H &#x3E; 0, K &#x3E; 0 we have 

where 03C9(A); 03A9(A) are the bounds de f ined in (1).
Indeed, (21) follows from (14) by putting y = Ax in

(vii) We have for any eigenvalue ÂA of a square matrix A:

In fact, let x be an eigenvector corresponding to ÂA with

~ x ~H = 1. Then Ax = AA x, ~ Ax IIH = |03BBA 1, whence (22)
follows directly from (7).

4. For the proof of our first theorem we need the following
LEMMA 1. Let S be an n X m matrix and T an m X n matrix.

Then, if m  n, we have

PROOF. Put So = (SOl), T0 = (T O2), where 01, 0. are n x (n-m),
(n - m) X n zero-matrices respectively. Obviously both So
and To are n X n matrices and ST = SoTo. Hence by (2)
(ST)(p) = So(p) To(p), and (23) follows from So(p) = To(p) = 0 (p&#x3E;m).
LEMMA 2. Suppose that D = Diag (kl, ..., kn) (kv &#x3E; 0),
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matrix and put B = 0393RDR*0393, C = 0394-1R*G-1R0394-1. Then, if
~(03BB) = 1 Âl fia - B 1, V(Â) = |03BBIn - C 1 are the characteristic poly-
nomials o f B, C, we have

PROOF. Without loss of generality we may assume m ~ n.
Put B = (b03BCv) (03BC, v = 1, ..., m), C = (c03BCv) (03BC, v = 1, ..., n); by
direct multiplication we get

Hence

We now form the pth compound matrices B(p), C(p) of B, C;
from (2), (3) it follows that

Evidently B(p), C(p) are built analogously to B, C. Therefore our
first conclusion again is applicable and we get 

If m  n by the lemma 1 with S = L1-1R*, T = G-’RA-1 we have

Since generally (-1)p tr A(p) is the coefficient of 03BBn-p in the
characteristic polynomial Âln - A| 1 of an n X n matrix A, (cf.
e.g. [1], p. 88), our assertion now follows immediately from (24)
and (25).
THEOREM 1. Let A be an m X n matrix and H &#x3E; 0, K &#x3E; 0

be respectively o f orders m, n; then we have

and,

PRO oF. Let
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be the equations corresponding to (8), (9), applied to the matrix
H. Then in using (8), (28) we have

According to (11) and (28)-(30) we have to examine the eigen-
values of

By means of (31) we can, write

putting R = V*AU. If we now apply the lemma 2, our assertion.
follows at once.

COROLLARY 1. For any square matrix A and H &#x3E; 0 we have

COROLLARY 2. 1 f A is an Hermitian matrix, then for any H &#x3E; 0

§ 2. Examples.

For the sake of simplicity in this section we only consider square
n X n matrices A and we take H = K. As to the selection of

examples we follow very closely the arrangement given by
A. Ostrowski in [10].

(i) Let A = (a03BCv) be a matrix the only non-vanishing element
of which is aik = a. Put H = (h03BCv), B = (b03BCv), U = (u03BCv), where
U satisfies (8) and B is the matrix defined in (10). By direct multi-
plication we get

If by v we denote the row-vector (03BCk1 h1, ..., ukn hn, B can be con-
sidered as the produet 1 a |2 hii v* v and is therefore of rank 1.
Hence by (11) we have
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n

On the other hand, by (31 ), hii = 03A3 hv| 1 Uiv pa and so
v=1

If in particular H is a diagonal matrix, and therefore U = I n,
we get 

Let us in this example discuss, to what extent 03A9H(A) is de-
termined by the eigenvalues of H. Clearly all Hermitian matrices
having the fixed eigenvalues hl, ..., hn &#x3E; 0 are obtained by
letting U in H = UDU*, D = Diag (h1, ..., hn), run through all
unitary n X n matrices. In the case i ~ k, from (34) we can derive
the following bounds, between which 12’, (A) varies:

where the upper and lower bounds are attained by taking in (34 )
for (uil, ..., Uin), (uxl, ..., ukn) suitable unit vectors. Similarly,

if i = k, from (34) we see that 1 |a|2 03A92H ( A ) takes values in a

certain closed interval, the left-hand end point of which by (22)
is equal to 1.

If on the other hand we let H run through all diagonal matrices,
(35) shows that in the case i ~ k the range of 03A9H(A) is the whole
interval (0, oo ), while 03A9H(A) for i = k is always equal to |a ).

Evidently in this example 03C9H(A) = 0 by (13).

(ii) Let A = (a03BCv) be a matrix all elements of which are zero
except those lying in the ith row, and put (ai1, ..., ain) =
= (a,, ..., an ) = 03B1. We suppose that H = Diag (hl, ..., hn), i.e.
U = In. Then for the matrix B in (10) we have B = 4A *HA4,

6 = hi03BCav - 
1 1 and as in our example (i) the rank of B

is equal to 1, so that

Clearly we have always WH (A ) = 0, and, by a suitable choice of
H, 03A9H (A ) can take values arbitrarily near to 1 a, 1 = 1 ÂA t maa.
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(iii) If all éléments of the matrix A are equal to a ~ 0 and if

w e take H = Diag (h1,..., hn), we have b03BCv = 1 h03BC 1 hv |a 12 S hx
and therefore’ by the Cauchy-Schwarz inequality

The lower bound for QH (A), |a| n = |03BBA| 1 max, is attained for

H = In, while 03A9H (A) is not bounded at all from above. On the
other hand WH (A ) = 0.

, so that

(v) Let A = (a03BCv) be a matrix all elements of which are zero
except those ’lying in the ith row and kth column, while we have
also aik = 0. We further assume H to be a diagonal matrix. In
applying to both A and H the same permutation to the rows and
columns, whereby in virtue of § 1, section 3(iv), 03A9H(A), roH(A)
are not changed, we cqn make k = 1. Having carried through this
transformation we denote by a = (a2l ..., an ) the ith (n - 1)-
dimensional row-vector of A (without its first element), by
fi = (b1, ..., b n ) the first (n-dimensional) column-vector of A
(where b, = 0 ) and we put H = Diag (hl, ..., hn), 03941 = Diag

(1 h2, ..., 1 hn). For the matrix B of (10) we then obtain by
direct multiplication (observing that U = In)

Since again the (n -1 ) X (n -1 ) matrix in the lower right-hand
corner of B is of rank 1, it follows from (11) that
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§ 3. A generalization of Ledermann’s theorem and the
determination of Inf QH’ Sup WH.

H&#x3E;O H&#x3E;o

1. The reason we succeeded to calculate directly QH, WH in
the examples given in § 2 was that the matrices A contained a
sufficiently large number of zeros. We now prove a general
théorem which in similar cases always yields an upper bound for
03A9H,K(A) and which is a generalization of a theorem due to
W. Ledermann [7]. More precisely:
THEOREM 2. Let A = (a03BCv) be an m X n matrix and denote by

ce its ,uth row-vector; then, if H = Diag (hl, ..., hm) (h03BC &#x3E; 0),
K = Diag (kl, ..., kt",) (kv &#x3E; 0) and i f every column-vector o f A
contains at most s non-vanishing elements, we have

where the sum on the right-hand side has to be taken over the s largest
numbers h03BC03C3~ «P,a ~K-12 (o = 1, ..., s ) among h03BC~ «p, ~K-12 (p, =

1,..., m).
PROOF. Our proof is essentially the same as that given for the

case H = Im, K = l fi by A. Ostrowski in [10].
Without loss of generality we may assume that

Indeed, let a permutation P be applied to the rows of A ; if we
further permute the rows and the columns of H according to P,
by (19) (with T = In) 03A9H,K(A) does not change and the numbers
h03BC ~ a.J.’ ~K-12 (p, = 1, ..., m ) are arranged as required.
Let Max Il Ax ~(H2 be attained for the vector x = (x1,..., xn)

~x~K-1
and put y = Ax, y = (vi, ..., ym). For every 03BC (p, = 1,..., m)
replace the coordinates xv of x for which ap,v = 0 by zeros and deno-
te the vector so obtained by ae(!J). Then we have

We further put ae(P) = (x(03BC)1, ..., xn(03BC)) (p, = 1, ..., m). Since by
the Cauchy-Schwarz inequality
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from (42) we get

If then

and a03BCv ~ 0. From this and the hypothesis it follows that for any
fixed v at most s of the x(03BC)v are ~ 0. Therefore taking the sum in
brackets on the right-hand side of (43) only over the terms with
xv(03BC) =1= 0 and using (44), (41) we see that

whence by (43)

n

This proves our assertion, since 03A3 kv | xv 2 = ~ x ~2K = 1.
v=1

REMARKS. The theorem of Ledermann is obtained by taking
H =Im, K = I n. If in particular we apply (40) with H = K to our
examples (i), (ii) and (iv) we obtain respectively as upper bounds

h |a |2, hi~ ex ~2H-1, Max a 2 which all coincide with the corres-
k v

ponding 03A92H.
Even if s = m the theorem 2 is often useful. Take e.g.

where the elements of the second column are comparatively small.
In order to get favourable bounds for Q H ( A ) in applying (40), we
choose h2 relatively small. With H = Diag (4, 1, 20) we obtain

03A92H(A) ~ 63,3, while H = I gives 03A92(A) ~ 153.
2. We now use our theorem 2 to give a refinement of (22):

THEOREM 3. For any n X n matrix A we have

Il in particular A has only simple elementary divisors both In/ and
Sup in (45) are attained for suitable matrices H &#x3E; 0.
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PROOF. Since for a nonsingular matrix 1 ÂA-1 lm" = 1/ ÂA |min

and by (18) (OH (A) = 1 03A9H(A-1), it is sufficient to prove the re-

lation concerning Inf ’QH. Let A be transformed to Jordan’s
canonical form by the nonsingular matrix S:

where 039B is a diagonal matrix the elements of which are the eigen-
values of A, and C denotes a matrix consisting of zeros except
possibly some elements c, = 1 with v = p + 1. If in (19) we
take T = S we have by (22), (12)

where K = S*HS. It suffices to show that for a suitable choice of

K the sum on the right-hand side of (46) is arbitrarily near to
1 03BBA ". Take K = Diag (kl, ..., kn); then by (38 ) 03A9K(A) =
= |03BBA |max; if on the other hand yv is the vth row-vector of C,

then 11 03B3v ~k-12={1 /k03B3+1(03B303B3~0) 0(03B3v=0) Hence by the theorem 2

which obviously can be made as small as we please.
If all elementary divisors of A are simple we have in (46) C= 0,

QK (C) = 0, so that 03A9H(A) attains the value |03BBA |max for a suit-
able matrix H &#x3E; 0.

It is natural to ask whether we could in (45) take Inf, Sup only
over the set of all diagonal matrices H &#x3E; 0. This is however not

true as the following example shows: Take

where |03BBA |max = 0. If H = Diag (hl, h2, h3), it follows from § 2,
Ex. (v), that

But by the inequality of the arithmetic and geometric mean

so that certainly 03A9H(A) ~ 2 for all diagonal matrices H &#x3E; 0.
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The second statement in theorem 3 can be made more precise
by the following
THEOREM 4. In order that for some matrix H &#x3E; 0

it is necessary and sufficient that the elementary divisors correspond-
ing to the eigenvalues o f A with maximal modulus are simple.
Similarly, i f A is a non-singular matrix, zve have

f or some H &#x3E; 0, i f and only i f all elementary divisors associated
with the eigenvalues o f A of minimal modulus are simple.

PROOF. Necessity: let 03BB be an eigenvalue of A of either maximal
or minimal modulus having multiple elementary divisors. It then
suffices to show that, given a matrix H &#x3E; 0, there always exists
a vector x for whicli

From Jordan’s canonical form of A it is easily seen that under
our hypothesis on À there exist two linearly independent vectors
ui, u2 such that Aul = Âul, Au2 = ÂU2 + UI- Put vi = ul,

V2 = aul + U2; in order to make vl, V2 orthogonal with respect to
H, using the notation (4) we must have

Clearly Av1 = Âvl, Ava = GCÂU1 + 03BBu2 + ul = Av2 + vl, and so the
vectors Wl == v1/~v1 11 Hl W2 = v2/~ V2 11 H satisfy

Awl = 03BBw1 ~H = 11 w2 ~H =1, (w2, w1) = 0), (50)Aw2 = 03BBw2 + 03B2w1

where 03B2 = ~v1 ~H/~v2 ~H &#x3E; 0. We now take

X = 03B3w1 + w2 (51)
and determine the scalar y in such a way that (49) holds. In fact,
by (50)

Substituting the expression (51) for x in 03C91*Hx we obtain
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Now (49) certainly holds, if in the case 1 Â 1 = 1 ÂA |min we choose

y such that 91(VÂ)  -03B2 2 and y = 0 if 1 Â | = |03BBA 1 ma..

Suf ficiency: suppose that all eigenvalues with maximal modulus
have simple elementary divisors. Let A be transformed to Jordan’s
canonical form S-1 A S = J = Diag( Ji, J2), where JI is a dia-
gonal matrix containing tha eigenvalues Â with |03BB| 1 = |03BBA |max.
By (19) we have S2H(A) = 03A9K(J) (K = S*HS). To show that for
a suitable matrix K &#x3E; 0: 03A9K(J) = |03BBA |max, take K = Diag
(KI, K2), where Ki, K2 &#x3E; 0 are matrices of the same order as Jl,
J2 respectively and K1 is a unity matrix. Since 03A9K1(J1) = |03BBA |max,
from (20) we get

On the other hand |03BBJ2 |max  |03BBA |max, whence, by theorem 3,
K2 can be chosen such that 03A9K2(J2)  |03BBA |max.
A similar argument shows that (48) holds for some H &#x3E; 0,

if all eigenvalues of A with minimal modulus are simple.
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