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Abstract. In this note, we improve a result of Prokhorov and Shramov on the rank of finite p-subgroups of the
group of birational transformations of a rationally connected variety. Known examples show that the bounds
obtained are optimal in many cases.

Résumé. Dans cette note, nous améliorons un résultat de Prokhorov et Shramov sur le rang des p-sous-
groupes finis du groupe des transformations birationnelles d’une variété rationnellement connexe. Des
exemples connus montrent que les bornes obtenues sont optimales dans de nombreux cas.
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The goal of this note is to prove the following theorem on finite groups of birational transfor-
mations.

Theorem (Main Theorem). Let X be a rationally connected variety of dimension n over an
algebraically closed field k of characteristic 0. Let p be a prime number and let G be a finite p-
subgroup of the group of birational transformations Bir(X ). If p > n +1, then G is abelian and the
rank of G is at most n.

We shall see below in Example 1 that the inequality p > n +1 is optimal when n +1 is prime.
The same result, but with a non-optimal inequality p > L(n), was obtained in a series of papers
by Prokhorov and Shramov using – and in fact motivating – Birkar’s proof of the boundedness of
weak Fano varieties (see [2, 10]). Thus, our theorem provides a positive and optimal answer to
a question of Serre (see [13, Section 6] and [12, Question 1.1]). We refer to [12, Proposition 1.7]
and [11, 12] for surfaces and threefolds; for instance, in [12] it is shown that a finite p-subgroup
of Bir(P3

k) is abelian and of rank ≤ 3 as soon as p ≥ 17; here we improve the inequality to p ≥ 5.
Our main tool is a remarkable fixed point theorem of Haution (see [3, Theorem 1.2.1]).

Theorem (Haution’s Theorem). Let k be an algebraically closed field, of arbitrary characteristic.
Let X be a projective variety over k, and G be a finite p-group acting by automorphisms on X .
Assume that one of the following conditions holds

(i) G is cyclic;
(ii) char(k) = p;

(iii) or dim X < p −1.
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Then X (k)G = ∅ if and only if the Euler characteristic χ(X , F ) of every G-equivariant coherent
OX -module F is divisible by p.

Proof of the Main Theorem. Given a variety X , recall that it is rationally connected if for any
general points x, y ∈ X , we may find a rational curve C ⊂ X passing through x and y . This
property is a birational invariant. Therefore passing to a smooth regularization of G [9, Lemma-
Definition 3.1], we may assume that X is nonsingular and projective, and G acts regularly on X .

Observe that the structure sheaf OX is G-equivariant. Moreover, for a nonsingular projective
rationally connected variety X , one has χ(OX ) = 1, because dim H i (X , OX ) = dim H 0(X ,Ωi

X ) = 0
for all i ≥ 1 (see [4, Chapter IV, 3.8]).

Therefore by case (iii) in Haution’s Theorem, G has a fixed point x ∈ X (k). The action of G on
the Zariski tangent space Tx,X is faithful because G is finite (see [6, Lemma 4]); so, G embeds
into the general linear group GL(n,k). From the assumption that p > n +1, we deduce that Tx,X

contains no irreducible G-submodule of dimension > 1 because any such G-submodule has
dimension divisible by p. Hence the action of G on Tx,X is diagonalizable, and we conclude that
G is abelian of rank ≤ n. �

Example 1. The lower bound p > n +1 in the Main Theorem is sharp when n +1 is prime: the
Fermat hypersurface X ⊂Pn+1

k of degree n +1, defined by the equation

xn+1
0 +xn+1

1 +·· ·+xn+1
n+1 = 0,

is a smooth Fano variety, hence rationally connected, and it admits a faithful action of
(Z/(n +1)Z)n+1, an abelian group of rank n +1.

Example 2. The rank r of an elementary p-subgroup of Bir(X ) can be greater than n if p ≤ n+1.

(1) For rational surfaces, it is known that r ≤ 4 if p = 2, and r ≤ 3 if p = 3; both of these upper
bounds are sharp, see [1].

(2) Now, suppose that X is a rationally connected threefold. If p = 2, then r ≤ 6 [8, Theo-
rem 1.2], and this is sharp. If p = 3, the product of the Fermat cubic surface with P1

k gives
an example showing that (Z/3Z)4 embeds into Bir(P3

k). Therefore, our main theorem is
sharp in dimension 3. Note that we also have r ≤ 5 when p = 3 [7, Theorem 1.2], but it
is unclear whether r = 5 can be reached. In a recent manuscript, Kuznetsova obtained
some new results on the rank of 3-groups. We refer the interested readers to [5].
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