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Abstract. This work is concerned with developing asymptotically sharp geometric rigidity estimates in thin
domains. A thin domainΩ in space is roughly speaking a shell with non-constant thickness around a regular
enough two dimensional compact surface. We prove a sharp geometric rigidity interpolation inequality that
permits one to bound the Lp distance of the gradient of a u ∈W 1,p field from any constant proper rotation R ,
in terms of the average Lp distance (nonlinear strain) of the gradient from the rotation group, and the average
Lp distance of the field itself from the set of rigid motions corresponding to the rotation R . The constants in
the estimate are sharp in terms of the domain thickness scaling. If the domain mid-surface has a constant
sign Gaussian curvature then the inequality reduces the problem of estimating the gradient ∇u in terms of
the nonlinear strain

∫
Ωdistp (∇u(x),SO(3))dx to the easier problem of estimating only the vector field u in

terms of the nonlinear strain with no asymptotic loss in the constants. This being said, the new interpolation
inequality reduces the problem of proving “any” geometric one well rigidity problem in thin domains to
estimating the vector field itself instead of the gradient, thus reducing the complexity of the problem.
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1. Introduction

Let S ⊂ R3 be a bounded connected regular enough1 surface (while the standard regularity that
we will impose on S will be bi-Lipschitz, we will also impose a stronger piecewise C 2 regularity
on S for the purpose of construction of an Ansatz). Given a small parameter h > 0, a shell Sh of
thickness h is the h/2 neighborhood of S in the normal direction, i.e., Sh = {x + tn(x) : x ∈ S, t ∈
(−h/2,h/2)}, where for any point x ∈ S, the vector n(x) is the unit normal to S at x. Thin spatial
domains are roughly shells with non-constant thickness. Namely, assume again h > 0 is a small
parameter and the functions g h

1 (x), g h
2 (x) : S → (0,∞) are order h Lipschitz functions, i.e., they

fulfill the uniform conditions

h ≤ g h
1 (x), g h

2 (x) ≤ c1h, and |∇g h
1 (x)|+ |∇g h

2 (x)| ≤ c2h, for a.e. x ∈ S, (1)

1So that it has a unit normal a.e.
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for some fixed constants c1,c2 > 0. Then the setΩh given by

Ωh = {x + tn(x) : x ∈ S, t ∈ (−g h
1 (x), g h

2 (x))}, (2)

is a thin domain with (possibly varying) thickness of order h. Determining the rigidity of thin
domains is a central task in nonlinear elasticity. The problem has been solved for plates only2

by Friesecke, James and Müller [3]. The term “rigidity” here refers to the geometric rigidity of a
thin domain, which despite the physical intuition, seems to have no mathematical definition at
present. A natural way of defining it would be through the celebrated geometric rigidity estimate
of Friesecke, James and Müller, which reads as follows: AssumeΩ⊂R3 is open bounded connected
and Lipschitz. Then there exists a constant C I = C I (Ω), such that for every vector field u ∈ H 1(Ω),
there exists a constant proper rotation R ∈ SO(3), such that

‖∇u −R‖2
L2(Ω) ≤C I

∫
Ω

dist2(∇u(x),SO(3))dx. (3)

It is known that for thin domains Ω, the constant C I in (3) blows up as h → 0 and it typically has
the asymptotic form C I = chα for some c > 0 andα< 0. In particular, in the case whenΩ is a plate,
i.e., Ω = ω× (−h/2,h/2) for some open bounded connected set ω ⊂ R2 with Lipschitz boundary,
then C I = ch−2 in (3), see [3]. Given now any thin domain Ω ⊂ Rn , it would be mathematically
adequate to say that the geometric rigidity ofΩ is the exponent α in C = chα provided it exists as
h → 0. There is a large amount of evidence in the literature pointing to the yet unproven fact that
α should depend only on the domain mid-surface S, while the constant c will depends also on the
constants c1 and c2 in (1), we refer the reader to [1–5] for details. The present work is concerned
with studying (3) for any thin domains Ω⊂ R3. Namely, we prove an interpolation version of (3),
which reduces the problem to the estimation of the deviation of the vector field u itself (not
the gradient) from the group of rigid motions. This is apparently a significant reduction of the
complexity of the problem, taking into account the fact, that in the case of uniformly positive
or negative Gaussian curvature thin domains (this refers to the Gaussian curvature of the mid-
surface S), no asymptotic loss of the constant is expected as the lower bounds and the Ansätze
in [5] suggest. A somewhat more detailed observation appears in the next section.

2. Main result

Theorem 1. Let S ⊂ R3 be a connected compact bi-Lipschitz surface with nonempty relative
interior, and let h ∈ (0,1). Assume the family of Lipschitz functions g h

1 , g h
2 : S → (0,∞) fulfills the

uniform conditions

h ≤ g h
1 (x), g h

2 (x) ≤ c1h, and |∇g h
1 (x)|+ |∇g h

2 (x)| ≤ c2h, for a.e. x ∈ S, (4)

for some constants c1,c2 > 0, and denote the family of thin domains

Ωh = {x + tn(x) : x ∈ S, t ∈ (−g h
1 (x), g h

2 (x))}.

Let 1 < p <∞ and let ‖·‖p denote the Lp (Ωh) norm. Then there exists constants C ,h0 > 0, depending
only on p, S and the constants c1,c2 > 0 such that for any vector field u ∈ W 1,p (Ω), any proper
rotation R ∈ SO(3), and any constant vector b ∈R3 one has the estimate

‖∇u −R‖2
p ≤C

(‖u −R x −b‖p‖dist(∇u,SO(3))‖p

h
+‖u −R x −b‖2

p +‖dist(∇u,SO(3))‖2
p

)
, (5)

for all h ∈ (0,h0). Moreover, if in addition S has a patch that is C 2−regular, then the exponent of h
in the inequality (5) is optimal for Ωh , i.e., there exists a family of deformations uh ∈ W 1,p (Ω,R3)
realizing the asymptotics of h in (5).

2Or for shells that have a flat part
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Some remarks are in order. Note first that for any given displacement v ∈C 2(Ωh ,R3), taking the
sequence of deformations uε = x + εv , we have for small enough ε by linearizing at the identity
matrix the point-wise approximate formula:

dist(∇uε(x),SO(3)) = dist(I +ε∇v (x),SO(3)) ≈ ε

2
|∇v (x)+∇v T (x)| = ε|e(v (x))|, x ∈Ωh ,

thus taking R = I and b = 0 in (5) and then letting ε go to zero we derive from (5) the estimate

‖∇v‖2
p ≤C

(‖u‖p‖e(v )‖p

h
+‖v‖2

p +‖e(v )‖2
p

)
for all v ∈C 2(Ωh ,R3), (6)

where e(v ) = 1
2 (∇v +∇v T ) is the linear strain. Of course (6) holds for all v ∈ W 1,p (Ωh ,R3) too

by density. The estimate (6) is a Korn interpolation inequality and is the linear version of (5). A
slightly stronger version of (6) has been proven in [6, 7] for the L2 norm, where in place of the
product ‖u‖2‖e(v )‖2 one has ‖n ·u‖2‖e(v )‖2, i.e., only the normal component of the field enters
the estimate.

Let now K denote the Gaussian curvature of S. Tovstik and Smirnov have constructed an
Ansatz [8] that realizes the asymptotics α=−4/3 in the constant C = chα in (3) in the case K < 0.
Also the author has constructed an Ansatz [7] that gives the asymptotics α=−1 in (3) in the case
K > 0. Furthermore, it has been proven in [7] that if zero boundary condition is imposed on the
vector field u on the thin face of the thin domainΩh , then in the linear version of (3), i.e., in Korn’s
first inequality

‖∇u‖2
L2(Ωh )

≤ chα‖e(u)‖2
L2(Ωh )

one indeed hasα=−4/3 andα=−1 in the cases K < 0 and K > 0 respectively, (see [7] for details).
Also, it has been shown [7] that

‖u‖2
L2(Ωh )

≤C hβ‖e(u)‖2
L2(Ωh )

,

where β = −1/3 for K < 0 and β = 0 for K > 0. This implies that the estimate (5) indeed does
not suffer an asymptotic loss of constants (this means that when one utilizes the interpolation
inequality to prove that regular geometric rigidity estimate, the constant obtained in the latter
one is still asymptotically optimal) at least in the cases K >< 0, and thus from this point on, the
interpolation estimate (5) (and the linear analog (6)) can be utilized for the purpose of proving
asymptotically optimal rigidity estimates on gradient fields, where one needs to only estimate
the vector field in terms of the energy, instead of the gradient.

3. Proof of the main result

Proof of Theorem 1. We divide the proof into several steps for the convenience of the reader.

Step 1. We first somewhat simplify the estimate (5). Namely, first of all a translation by a fixed
vector u = v +b does not change the gradient, thus we can assume without loss of generality that
b = 0. Next, denoting u = R v , the left hand side of (5) will become ‖v − I‖2

p , and the right hand
side of (5) will remain the same expression written out for v in place of u. This being said we can
assume without loss of generality that R = I and b = 0 in (5). Finally, making a change of variables
u = v +x will transform the new form of (5) to the estimate

‖∇v‖2
p ≤C

(‖v‖p‖dist(∇v + I ,SO(3))‖p

h
+‖v‖2

p +‖dist(∇v + I ,SO(3))‖2
p

)
(7)

to be now proven.

C. R. Mathématique, 2020, 358, n 7, 811-816



814 Davit Harutyunyan

Step 2. In the second step we prove the following statement: Under the conditions of Theorem 1,
the estimate (7) holds if and inly if one has for any field v ∈W 1,p (Ωh ,R3) the estimate

‖∇v‖2
p ≤C1

(‖v‖2
p

ht +
‖dist(∇v + I ,SO(3))‖2

p

h2−t

)
, (8)

for any t ∈ [0,2]. Here C1 > 0, and C and C1 in (7) and (8) are comparable, namely, 1/2 ≤ C1
C ≤ 2.

Evidently as h > 0 is small, we have ht ,h2−t ≤ 1 for t ∈ [0,2] and (7) implies (8) by the arithmetic-
geometric mean inequality with C1 = 3

2C . Assume now (8) holds. Given the fixed vector field

v ∈ W 1,p (Ωh ,R3), if
‖v‖2

p

ht0
= ‖dist(∇v+I ,SO(3))‖2

p

h2−t0
for some t0 ∈ [0,2], then we choose t = t0 in (8) and

get the estimate

‖∇v‖2
p ≤ 2C1

‖v‖p‖dist(∇v + I ,SO(3))‖p

h
.

If
‖v‖2

p

ht < ‖dist(∇v+I ,SO(3))‖2
p

h2−t for any t ∈ [0,2] then (8) implies by choosing t = 2 in (8) the bound

‖∇v‖2
p ≤ 2C1‖dist(∇v + I ,SO(3))‖2

p ,

which in tern yields (7) with C = 2C1. The case
‖v‖2

p

ht > ‖dist(∇v+I ,SO(3))‖2
p

h2−t for any t ∈ [0,2] is
analogous.

Step 3. Now we focus our attention to the simplified estimate (8) with no product terms. Fix
γ ∈ [0,1]. We divide the shellΩh into small compact shells with in-plane size of order hγ. Denoting
m = [1/hγ]+1, we have N = O(m2) shells Ωh

1 ,Ωh
2 , . . . ,Ωh

N , with thickness of order h and in plane
size roughly hγ. The constant C I in the estimate (3) is in fact invariant under change of variables
x ′ = λx, with λ > 0, and it depends only on the Lipschitz constant of the boundary ∂Ω. Thus by
choosing the partition ofΩh such that all composing partsΩh

i have a uniform Lipschitz constant,
we get by the estimate (3) for the vector field v +x ,

‖∇v + I −Ri‖Lp (Ωh
i ) ≤

C

h1−γ ‖dist(∇v + I ,SO(3))‖Lp (Ωh
i ), i = 1,2, . . . , N , (9)

for some rotations Ri ∈ SO(3) and some uniform constant C > 0 that depends only on S and the
constants c1 and c2 in (4). Consequently we obtain from (9) the bound

‖∇v‖Lp (Ωh
i ) ≤ ‖I −Ri‖Lp (Ωh

i ) +
C

h1−γ ‖dist(∇v + I ,SO(3))‖Lp (Ωh
i ), i = 1,2, . . . , N . (10)

Denoting bi = −∫
ωh

i
(v (x)+ (I −Ri )x)dx, we have by the Poincaré inequality and (9),

‖v + (I −Ri )x −bi‖Lp (Ωh
i ) ≤C hγ‖∇v + I −Ri‖Lp (Ωh

i )

≤C h2γ−1‖dist(∇v + I ,SO(3))‖Lp (Ωh
i ),

(11)

which gives the bound

‖(I −Ri )x −bi‖Lp (Ωh
i ) ≤ ‖v‖Lp (Ωh

i ) +C h2γ−1‖dist(∇v + I ,SO(3))‖Lp (Ωh
i ), i = 1,2, . . . , N . (12)

Next we claim that

‖(I −Ri )x −bi‖Lp (Ωh
i ) ≥C hγ‖I −Ri‖Lp (Ωh

i ), (13)

for some C > 0 uniformly in i = 1,2, . . . , N . Indeed we have the obvious formula

‖I −Ri‖p

Lp (Ωh
i )
= |I −Ri |p |Ωh

i |, i = 1,2, . . . , N . (14)

To estimate the other term we interpret it geometrically. First of all the fact that S is bi-Lipschitz
means that it has a finite atlas with bi-Lipschitz patches, thus S is locally the graph of a Lipschitz
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map upon a rotation of coordinates. Next, as S is compact, it satisfies the following geometric
condition: There exist σ,δ ∈ (0,1) such that for every r ∈ (0,δ) and every x ∈ S one has

H 2(Br (x)∩S)

H 2(B2r (x)∩S)
≤σ, (15)

where H 2 is the two-dimensional Hausdorffmeasure (surface measure in this case). Condition (4)
roughly means that there can be no infinitesimal local concentrations of the surface S. Note next
that each local rotation Ri rotates around a unit vector ni ∈ R3, which means that the operator
Ri x −bi : R3 → R3 projects onto the plane πi orthogonal to ni , then rotates by Ri inside πi , and
then translates by the vector −bi . Assume the plane πi is applied at the tip of the vector bi . Note
that as each shell Sh

i has in-plane size of order hγ, then keeping in mind condition (15) (first
uncsaling each piece by hγ) at most half of Sh

i (in terms of the measure) gets projected into the

disc Di (bi , σhγ

2 ), which is centered at bi , lies in πi and has radius σhγ

2 . As in two dimensions one
always has |(I −R)x| = 1p

2
|I −R ||x| for any rotation R ∈ SO(2) and any vector x ∈ R2, then taking

into account the above observation, we have for small enough h the obvious estimate

‖(I −Ri )x −bi‖p

Lp (Sh
i )
≥ (σhγ)p |I −Ri |p |Sh

i |
22p , i = 1,2, . . . , N . (16)

The estimate (13) immediately follows from (14) and (16). Finally putting together (10), (12)
and (13) and summing up the obtained estimates in i , we discover the bound

‖∇v‖Lp (Ωh ) ≤C

(
1

hγ
‖v‖Lp (Ωh ) +

1

h1−γ ‖dist(∇v + I ,SO(3))‖Lp (Ωh )

)
, (17)

which is equivalent to (8). In the case when S has patch that is C 2, then an Ansatz realizing the
asymptotics of h in Korn’s first inequality for shells with positive Gaussian curvature has been
constructed in [7]. It turns out that the same Ansatz works for (5) too. For convenience of the
reader we present the Ansatz here. We choose a patch S0 ⊂ S that is given by S0 = {r (θ, z) : θ ∈
[0, s], z ∈ [0, s]} in the principal coordinate (θ, z) parametrization r = r (θ, z), where s > 0 is fixed.
Denote next Az = ∣∣ ∂r

∂z

∣∣, Aθ = ∣∣ ∂r
∂θ

∣∣, the two nonzero components of the metric tensor of S0 and
the two principal curvatures by κz and κθ. The signs of κz and κθ are chosen such that κz and
κθ are positive for a sphere. Denoting the normal to S0 coordinate variable by t , we have that the
gradient of a vector field u = (ut ,uθ ,uz ) ∈W 1,p (Sh

0 ,R3) has the form

∇y =



ut ,t
yt ,θ− Aθκθuθ

Aθ(1+ tκθ)

ut ,z − Azκz uz

Az (1+ tκz )

uθ,t
Az uθ,θ+ Az Aθκθut + Aθ,z uz

Az Aθ(1+ tκθ)

Aθuθ,z − Az,θuz

Az Aθ(1+ tκz )

uz,t
Az uz,θ− Aθ,z uθ
Az Aθ(1+ tκθ)

Aθuz,z + Az Aθκz ut + Az,θuθ
Az Aθ(1+ tκz )


(18)

in the orthonormal basis et , eθ , ez , where f , x = ∂x f . We finally choose u = I +εv , where
vt =W ( θp

h
, z)

vθ =− t ·W,θ

(
θp
h

,z
)

Aθ
p

h

vz =− t ·W,z

(
θp
h

,z
)

Az
,

(19)

where w is a smooth function compactly supported on the mid-surface S0. For the rotation R = I
and the vector field b = 0, this choice will give equality in (5) for every fixed small enough h > 0
by choosing ε> 0 small enough. �
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