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Abstract. In this paper, which is a direct continuation and generalization of the recent works by the au-
thors [17, 35], we show the validity of the generic multiplicity-induced-dominancy property for a general
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tral cases. The result is based on an appropriate integral representation of the corresponding characteristic
quasipolynomial functions involving some appropriate degenerate hypergeometric functions.
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Notation. In this paper, N∗ denotes the set of positive integers and N = N∗∪ {0}. The set of all
integers is denoted by Z and, for a,b ∈ R, we denote �a,b� = [a,b]∩Z, with the convention that
[a,b] = ; if a > b. For a complex number s, ℜ(s) and ℑ(s) denote its real and imaginary parts,
respectively. The open left and right complex half-planes are the sets C− and C+, respectively,
defined by C− = {s ∈C | ℜ(s) < 0} and C+ = {s ∈C | ℜ(s) > 0}.

Given k,n ∈ N with k ≤ n, the binomial coefficient
(n

k

)
is defined as

(n
k

) = n!
k !(n−k)! and this

notation is extended to k,n ∈ Z by setting
(n

k

) = 0 when n < 0, k < 0, or k > n. For α ∈ C and
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k ∈N, (α)k is the Pochhammer symbol for the ascending factorial, defined inductively as (α)0 = 1
and (α)k+1 = (α+k)(α)k .

Finally, for the sake of simplicity in the formulations, we consider that the indices of rows and
columns of matrices start from 0. More precisely, given n,m ∈N∗, an n×m matrix A is described
by its coefficients A j k for integers j ,k with 0 ≤ j < n and 0 ≤ k < m.

1. Introduction

This paper addresses the asymptotic behavior of the generic delay-differential equation (DDE):

y (n)(t )+an−1 y (n−1)(t )+·· ·+a0 y(t )+αm y (m)(t −τ)+·· ·+α0 y(t −τ) = 0, (1)

where the unknown function y is real-valued, n is a positive integer, m is a nonnegative integer
such that m ≤ n, ak ,αl ∈ R for k ∈ �0,n −1� and l ∈ �0,m� are constant coefficients, and τ > 0 is
a delay. Under the assumption that αm 6= 0, equation (1) is a delay-differential equation which is
said of retarded type if m < n and of neutral type if m = n (see, e.g., [28] and references therein).

For linear dynamical systems including delays in their model representation, spectral methods
can be used to understand the asymptotic behavior of solutions by considering the roots of some
characteristic function (see, e.g., [8, 23, 28, 39, 53, 58]) which, for (1), is the function ∆ : C → C

defined for s ∈C by

∆(s) = sn +
n−1∑
k=0

ak sk +e−sτ
m∑

k=0
αk sk . (2)

More precisely, the exponential behavior of solutions of (1) is given by the real number γ0 =
sup{ℜ(s) | s ∈C, ∆(s) = 0}, called the spectral abscissa of ∆, in the sense that, for every ε> 0, there
exists C > 0 such that, for every solution y of (1), one has |y(t )| ≤ Ce(γ0+ε)t maxθ∈[−τ,0]|y(θ)| [28,
Chapter 1, Theorem 6.2 and Corollary 7.2]. Moreover, all solutions of (1) converge exponentially
to 0 if and only if γ0 < 0. An important difficulty in the analysis of the asymptotic behavior of (1) is
that, contrarily to the delay-free case, the corresponding characteristic function ∆ has infinitely
many roots.

In all generality, the problem of characterizing the domain in the space of the equation’s
parameters that guarantee the exponential stability of solutions is a question of ongoing interest,
see for instance [39]. Since the 1950s, the complete understanding of the first-order retarded
scalar differential equation with a single delay has benefited from the seminal work by Hayes [30],
where the author gives a complete characterization of the rightmost spectral value location
as a function of the delay and system’s parameters. More recently, several works exploited
Hayes results in control problems such as in delayed feedback and in stabilization problems.
Unfortunately, Hayes approach remains complicated and natural extensions to nonscalar or
higher-order retarded or neutral DDEs do not exist.

In control theory, the first pole-placement paradigm for time-delay systems, called finite
pole placement, was introduced in the late 1970s in [34, 43], where a prediction of the state
over a delay interval is set to counteract the effect of the delay, hence reducing the closed-
loop system to a finite-dimensional plant. For an exhaustive presentation of the main ideas as
well as some comparisons with other methods devoted to the control of dynamical systems
including input delays, we refer to [56]. Later, such an idea was deeply investigated in a more
appropriate algebraic setting by [20] thanks to the introduction of the ring E defined as the set
of all the meromorphic functions in the complex plane C that are of the form of P (s,e−h s )/Q(s),
where Q is a polynomial in the Laplace complex variable s, P is a bivariate polynomial in s and
e−h s , and h is a fixed positive real number. Indeed, the major issue for the algebraic design of
controllers of linear time-invariant differential time-delay systems is the algorithmic study of
the ring E . Furthermore, in practice, the limitation of such a paradigm was remarked during
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the early 2000s in [26] through the numerical design of a delayed controller theoretically able to
stabilize a dynamical system described by a first-order scalar differential equation but leading
to a closed-loop system whose stability is extremely sensitive to infinitesimal uncertainties.
Such an instability mechanism, which is known as the spillover problem, is explained by the
infinitely many spectral values generated by the discretization of the predictor. Furthermore,
these fortuitous spectral values dominate in part the assigned spectral value.

Pole placement for delay systems goes beyond of a quasipolynomial interpolation problem.
For instance, it has been shown in the 1980s by Ackermann [1] that n poles of the system can
be assigned to (some) desired positions in the complex plane by n feedback parameters in the
same way as in the finite-dimensional case. However, it is well known that such an interpolation
is an effective placement if and only if the remaining spectral values of the closed-loop system are
located to the left of the assigned poles, thus avoiding the spillover problem. In other words, such
a strategy works if the assigned poles are dominant. But, as pointed out by [55], such a property
is in general not guaranteed as commented in [50], where the proposed pole placement relies
on rather heuristic trial-and-error placement of the dominant poles, making the pole placement
procedure repeated with a different selection of assigned poles without any attempt to prove
analytically the corresponding property.

To the best of our knowledge, the first “automated” pole placement for retarded time-delay
systems is the numerical paradigm known as continuous pole placement introduced in [38]. Un-
like finite spectrum assignment, continuous pole placement does not render the closed-loop sys-
tem finite-dimensional, but consists instead of controlling the corresponding rightmost eigenval-
ues. Such an idea represents a simple generalization of the pole placement for finite-dimensional
systems represented by ordinary differential equations. It is based on the continuous dependence
of the characteristic roots on the controller parameters, and the control strategy can be summa-
rized as follows: “Shift” the unstable characteristic roots from C+ to C− in a “quasi-continuous”
way subject to the strong constraint that, during this shifting action, stable characteristic roots
are not crossing the imaginary axis from C− to C+. We refer to [39] and references therein for fur-
ther insights on the number of controlled characteristic roots (which is related to the available
degrees of freedom induced by the controller structure) as well as the interpretation of continu-
ous pole placement as a local strategy to solve an appropriate optimization problem where the
objective function (rightmost root) is not differentiable. It is worth mentioning that continuous
pole placement, initially applied to delay systems of retarded type, was extended to neutral sys-
tems in [40].

A more recent pole placement analytical paradigm ensues from an observation on the effect
of multiple spectral values on the stability of DDEs, a property called multiplicity-induced-
dominancy (MID) in [17]. Indeed, some works have shown that, for some classes of time-delay
systems, a real root of maximal multiplicity is necessarily the rightmost root, a property we
call generic multiplicity-induced-dominancy, or GMID for short. This link between maximal
multiplicity and dominance has been suggested in [45] after the study of some simple, low-
order cases, but without any attempt to address the general case. To the best of the authors’
knowledge, very few works have considered this question in more details until recently in works
such as [9, 17–19, 35–37, 51]. These works consider only DDEs with a single delay and show either
the MID or the GMID property for each system under consideration. For instance, the MID
or GMID properties are shown to hold for retarded equations of order 1 in [19], which proves
dominance by introducing a factorization of ∆ in terms of an integral expression when it admits
a root of maximal multiplicity 2; for retarded equations of order 2 with a delayed term of order
zero in [18], using also the same factorization technique; or for retarded equations of order 2 with
a delayed term of order 1 in [17], where both the MID and the GMID properties are investigated,
using Cauchy’s argument principle to prove dominance of the multiple root. Most of these results
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are actually particular cases of a more general result on the GMID property from [35] for generic
retarded DDEs of order n with delayed “term” (polynomial) of order n −1 (i.e. m = n −1 in (1)),
which relies on links between quasipolynomials with a real root of maximal multiplicity and the
Kummer confluent hypergeometric function in terms of the location of the characteristic roots.
The GMID property was also extended to neutral DDEs of orders 1 and 2 in [9, 33, 36], as well as
to the case of complex conjugate roots of maximal multiplicity in [37].

The fact that a spectral value achieves maximum multiplicity imposes algebraic constraints on
each of the system’s “entries” (polynomial coefficients as well as the delay parameter). An MID-
based approach is proposed in [4, 5] operating the intimate representation of the quasipolyno-
mial to provide conditions for one spectral value with an eligible intermediate multiplicity. This
makes it possible to split the system parameters into two categories, some of them considered as
model parameters (assumed to be fixed and known) and the remaining ones considered as val-
ues to be adjusted. Such a classification opens interesting perspectives in control design, such as
the systematic tuning of the gains of the well-known Proportional-Integral-Derivative (PID) con-
troller, able to stabilize single-input/single-output plants including one delay in the input/output
channel, as suggested in [33].

The contributions of this paper are fourfold. First, we propose an unified analytical framework
for the characterization of the generic multiplicity-induced-dominancy of dynamical systems
represented by DDEs in both retarded and neutral cases. The proposed methodology makes
use of some degenerate hypergeometric functions and the existing links between such functions
and the factorization of the characteristic functions of DDEs. In this sense, a first step was
proposed by the same authors in [35], where only the special case of retarded equations with
m = n −1 was treated by using a result by Wynn [59] on the location of zeros of some Kummer
confluent hypergeometric functions, the latter being proved using a representation of a quotient
of Kummer functions as continued fractions. However, the underlying methodology from [59]
seems hard to extend to more general retarded cases or to the neutral one, and for this reason the
present paper is based on a different approach.

Second, our method is constructive and allows a better understanding of the existing links
between the location of the characteristic root with generic maximal multiplicity, the so-called
rightmost root, i.e., the spectral abscissa of the corresponding system, and the parameters of the
dynamical systems. In particular, in some cases, it may be useful to minimize the spectral abscissa
with respect to some of the tuning parameters with a guarantee of the exponential stability of the
zero solution if the characteristic root satisfying the GMID property is located in C−.

Third, in terms of control, as mentioned above, the paradigm of generic multiplicity-induced-
dominancy opens the perspective to a new control method, the so-called partial pole placement.
More precisely, the GMID idea may be particularly adapted for tuning low-complexity controllers,
i.e., controllers including a small number of parameters (including also the delay among the
parameters) with a guarantee on the location of the remaining characteristic roots for the closed-
loop system. For illustrating such an idea, some examples of PID controllers including a delay in
the input/output channel are proposed for low-order systems in both retarded and neutral cases.

Finally, the ideas above can be tested and illustrated by using the software “Partial pole place-
ment via delay action”, or P3δ1 for short, which offers the computation of the values of the free
parameters (typically tuning the controller gains) ensuring a prescribed multiplicity, establishes
a certified assignment region for the rightmost root, performs a numerical computation to illus-
trate the distribution of the quasipolynomial characteristics, offers the possibility of a numerical
study of the sensitivity of the spectrum with respect to uncertain parameters variations, and is

1https://cutt.ly/p3delta
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also able to perform appropriate time-domain simulations, see for instance [14]. New function-
alities are now available covering both retarded and neutral cases.

The remaining of the paper is organized as follows. Section 2 presents some prerequisites
in complex analysis. It starts by recalling some qualitative properties of quasipolynomials and
states some technical results on the distribution of zeros of some degenerate hypergeometric
functions. The main results are presented in Section 3, where the GMID property is proved for
the general retarded and neutral differential equations with a single delay. These results, which
are implemented in the control design software P3δ, helped us to study standard examples in
the design of stabilizing proportional-integral-derivative controllers as in [33]. Section 4 provides
some illustrations of the ideas above applied to a couple of comprehensive control problems.
More precisely, the stabilization of the classical pendulum and the feedback stabilization for a
scalar conservation law with PI boundary control, a description of the new features of the P3δ
software as well as some further remarks on the optimization of the trivial solution decay are
presented. Some concluding remarks end the paper.

2. Preliminaries and prerequisites

This section recalls some preliminary results on properties of quasipolynomial functions (Sec-
tion 2.1), the distribution of zeros of Laplace transform of Bernstein polynomials (Section 2.2),
and properties and the distribution of nonasymptotic zeros of degenerate hypergeometric func-
tions (Section 2.3).

2.1. Quasipolynomials

Let us start by recalling the classical definition of a quasipolynomial, also known as exponential
polynomial, and its degree (see, e.g., [10, 57]).

A quasipolynomial Q is an entire function Q :C→Cwhich can be written under the form

Q(s) = ∑̀
k=0

Pk (s)eσk s , (3)

where ` is a nonnegative integer, σ0, . . . ,σ` are pairwise distinct real numbers, and, for k ∈ �0,`�,
Pk is a nonzero polynomial of degree dk ≥ 0 with coefficients belonging to C. The integer
DPS = `+∑`

k=0 dk is called the degree of Q. When σ0 = 0 and σk < 0 for k ∈ �1,`� in the above
definition, Q is the characteristic function of a linear time-delay system with delays −σ1, . . . ,−σ`,
which motivates our study of such quasipolynomials.

Notice that, if the coefficients of a quasipolynomial Q are real, which is the case in (2), then
the corresponding zeros are necessarily either real or complex-conjugate pairs. The roots of a
quasipolynomial do not change when its coefficients are all multiplied by the same nonzero num-
ber, and hence one may always assume, without loss of generality, that one nonzero coefficient
of a quasipolynomial is normalized to 1, such as the coefficient of the term of highest degree in
P0, which is the case in (2), for instance. The degree of a quasipolynomial is the number of the re-
maining coefficients. Since each polynomial Pk of degree dk has dk+1 coefficients, the quasipoly-
nomial degree is then the sum of these numbers discounting the normalized coefficient, giving
rise to the number DPS =∑`

k=0(dk +1)−1 = `+∑`
k=0 dk .

It is worth to note that a quasipolynomial admits an infinite number of roots, except in trivial
cases when the quasipolynomial reduces to a polynomial. Fortunately, there does exist a link
between the degree of a quasipolynomial and the number of its roots in horizontal strips of the
complex plane, thanks to a classical result known as Pólya–Szegő bound (see [48, Part Three,
Problem 206.2]), which we state in the next proposition.

C. R. Mathématique — 2022, 360, 349-369



354 Islam Boussaada, Guilherme Mazanti and Silviu-Iulian Niculescu

Proposition 1. Let Q be a quasipolynomial of degree DPS given under the form (3), α,β ∈ R be
such that α≤β, and σδ = max j ,k∈�0,`�σ j −σk . Let mα,β denote the number of roots of Q contained
in the set {s ∈C |α≤ℑ(s) ≤β} counting multiplicities. Then

σδ(β−α)

2π
−DPS ≤ mα,β ≤

σδ(β−α)

2π
+DPS .

Notice that the above result was first introduced and claimed in the problems collection
published in 1925 by G. Pólya and G. Szegő. In the fourth edition of their book [48, Part Three,
Problem 206.2], G. Pólya and G. Szegő emphasized that the proof was obtained in the meantime
by N. Obreschkoff using the argument principle, see [42].

As an immediate consequence of Proposition 1, given a root s0 ∈ C of a quasipolynomial Q of
degree DPS , by letting β=α=ℑ(s0) in the statement of Proposition 1, one concludes that s0 has
multiplicity at most DPS . Hence, for a quasipolynomial ∆ under the form (2), which is of degree
m +n +1, any of its roots has multiplicity at most m +n +1.

Since quasipolynomial functions admit an infinite number of zeros, an important information
on the distribution of such zeros is the location of the corresponding dominant or rightmost root.
Let us consider a function Q : C→ C and a value s0 ∈ C such that Q(s0) = 0. We say that s0 is a
dominant (respectively, strictly dominant) root of Q if, for every s ∈C\{s0} such that Q(s) = 0, one
has ℜ(s) ≤ℜ(s0) (respectively, ℜ(s) <ℜ(s0)).

The next lemma, which is a key ingredient to simplify the proofs of our main results in
Section 3, describes how the coefficients of a quasipolynomial change under a translation and
a dilation of the complex plane. Its proof, omitted here, can be carried out by straightforward
computations and is very similar to that of [35, Lemma 4.1].

Lemma 2. Let s0 ∈ R, ∆ be the quasipolynomial from (2), and consider the quasipolynomial
∆̃ :C→C obtained from ∆ by the change of variables z = τ(s − s0) and multiplication by τn , i.e.,

∆̃(z) = τn∆
(
s0 + z

τ

)
. (4)

Then

∆̃(z) = zn +
n−1∑
k=0

bk zk +e−z
m∑

k=0
βk zk , (5)

where 
bk =

(
n

k

)
τn−k sn−k

0 +τn−k
n−1∑
j=k

(
j

k

)
s j−k

0 a j , for every k ∈ �0,n −1�,

βk = τn−k e−s0τ
m∑

j=k

(
j

k

)
s j−k

0 α j , for every k ∈ �0,m�.

(6)

The relations between the coefficients b0, . . . ,bn−1,β0, . . . ,βm and a0, . . . , an−1,α0, . . . ,αm ex-
pressed in (6) can be expressed under matrix form as

b = Tn a + v, β= τn−m−1e−s0τTm+1α,

where

b =

 b0
...

bn−1

 , β=

β0
...
βm

 , a =

 a0
...

an−1

 , α=

α0
...
αm

 , v =


(n

0

)
τn sn

0(n
1

)
τn−1sn−1

0
...( n

n−1

)
τs0

 ,
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and, for k ∈N∗, the matrix Tk ∈Mk (R) is defined by

Tk =



(0
0

)
τk

(1
0

)
τk s0

(2
0

)
τk s2

0 · · · (k−2
0

)
τk sk−2

0

(k−1
0

)
τk sk−1

0

0
(1

1

)
τk−1

(2
1

)
τk−1s0 · · · (k−2

1

)
τk−1sk−3

0

(k−1
1

)
τk−1sk−2

0

0 0
(2

2

)
τk−2 · · · (k−2

2

)
τk−2sk−4

0

(k−1
2

)
τk−2sk−3

0
...

...
...

. . .
...

...

0 0 0 · · · (k−2
k−2

)
τ2

(k−1
k−2

)
τ2s0

0 0 0 · · · 0
(k−1

k−1

)
τ


.

Noticing that the confluent functional Vandermonde matrix Tk is invertible for every k ∈N∗, we
may thus express a and α in terms of b and β as

a = T −1
n (b − v), α= τm+1−ne s0τT −1

m+1β. (7)

As computed in [35, Lemma 4.2], the inverse of Tk is the matrix T −1
k = (S(k)

j ,`) j ,`∈�0,k−1� whose
coefficients are given, for j ,` ∈ �0,k −1�, by

S(k)
j ,` =


0, if j > `,

(−1)`− j

(
`

j

)
1

τk−` s`− j
0 , if j ≤ `.

As a consequence, we can provide explicit expressions for a0, . . . , an−1,α0, . . . ,αm in terms of
b0, . . . ,bn−1,β0, . . . ,βm , which are given in the next lemma. Its proof, omitted here, follows the
same lines as that of [35, Lemma 4.2] and is based on explicit computations from (7) and the
identity

∑n−1
j=k (−1) j−k

( j
k

)(n
j

)=−(−1)n−k
(n

k

)
, which can be found, e.g., in [35, Proposition 2.11].

Lemma 3. Let τ > 0, s0 ∈ R, and a0, . . . , an−1,α0, . . . ,αn−1,b0, . . . ,bm ,β0, . . . ,βm be real numbers
satisfying (6). Then, the following equalities hold:

ak =
(

n

k

)
(−s0)n−k +

n−1∑
j=k

(−1) j−k

(
j

k

)
s j−k

0

τn− j
b j , for every k ∈ �0,n −1�,

αk = e s0τ
m∑

j=k
(−1) j−k

(
j

k

)
s j−k

0

τn− j
β j , for every k ∈ �0,m�.

2.2. Zeros’ distribution of finite Laplace transform

We discuss in this section Laplace transforms of some integrable functions f concentrated on a
finite support, which, without loss of generality, can be taken as the interval (0,1), i.e.,

F (s) =
∫ 1

0
e s t f (t )dt . (8)

Before turning to the core of this section, we present the following result on the integral of the
product of a polynomial and an exponential, which is rather simple but of crucial importance to
prove our main result. Its proof is straightforward and can also be found in [35, Proposition 2.1].

Proposition 4. Let d ∈N and p be a polynomial of degree at most d. Then, for every z ∈C\ {0},∫ 1

0
p(t )e−zt dt =

d∑
k=0

p(k)(0)−p(k)(1)e−z

zk+1
.

The question of locating the zeros of functions F under the form (8) is not new and was for
instance the subject of several pioneering works by Hardy [29], Pólya [46], and Titchmarsh [54].
Furthermore, beyond its strict mathematical importance, the location of zeros of (8) is related to
a wide range of problems coming from physics and engineering. Despite having been established
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more than a century ago, the following result from [46] remains relevant and can be found in [47,
Part Five, Chapter 3, Problem 177, p. 66] (see also [52] for further related results).

Theorem 5 (G. Pólya, 1918). Let f be a positive and continuously differentiable function defined
in the interval [0,1] and satisfying f ′(t ) < 0 for every t ∈ [0,1]. Consider the function F : C→ C

defined from f as in (8). Then all the zeros of F lie in the open right half-plane C+.

The assumptions on f in Theorem 5 (namely, positivity and monotonicity of the function f )
are quite restrictive for our purpose. Similar results in locating the zeros of (8) can be obtained
when f is a Bernstein polynomial [11], that is,

f (t ) =
(

m

n

)
t m (1− t )n where m,n ∈N, (9)

see also [6] for further insights on Bernstein polynomials. The following simple example provides
an illustration of that fact.

Example 6 (Zeros’ frequency bound approach). Consider the function F : C→ C defined for
s ∈C by

F (s) =
∫ 1

0
t (1− t )2 e s t dt . (10)

We will show that all zeros of F lie in the open right half-plane C+.
Notice first that, using Proposition 4, one obtains

F (s) = (2 s −6)e s + s2 +4 s +6

s4 . (11)

Obviously, F is an analytic function since the numerator of the right-hand side of (11) admits a
root at zero with multiplicity four. Noticing that this numerator is a quasipolynomial of degree 4,
we deduce, as a consequence of Proposition 1, that the function F does not admit any real root.
One can also show that no zero of F lies on the imaginary axis. As a matter of fact, assume that
there exists a root s0 of F such that s0 = i ω0 with ω0 6= 0. Then

s4
0 F (i ω0) =−6 cos(ω0)−2ω0 sin(ω0)−ω0

2 +6+ i (2ω0 cos(ω0)−6 sin(ω0)+4ω0) = 0.

The vanishing of the corresponding real and imaginary parts allows to eliminate the trigonomet-
ric functions as rational expressions of the crossing frequency ω0. Namely, one obtains

cos(ω0) = −7ω2
0 +18

2ω2
0 +18

, sin(ω0) =−ω0
(
ω2

0 −18
)

2ω2
0 +18

.

Further, using the standard property sin2(ω0)+ cos2(ω0) = 1, one deduces that ω0 must satisfy
ω4

0(ω2
0 +9) = 0, which is impossible since ω0 6= 0, yielding the required conclusion.

We are left to show that F has no zeros with negative real part. To investigate the potential
roots of F with negative real parts we rather investigate the roots of s 7→ F (−s) with positive real
parts. Indeed, define the auxiliary function G :C→C by

G(s) = e s s4 F (−s) = (
s2 −4 s +6

)
e s −2 s −6. (12)

Obviously, any nontrivial zero s0 = ξ+i ω of G satisfies F (−s0) = 0. We will first show that any such
s0 with positive real part must necessarily satisfy 0 < |ω| <π.

Since ξ is assumed to be positive, we have e2ξ > 1+2ξ and then one deduces from equation (12)
that the pair (ξ,ω) necessarily satisfies∣∣s2

0 −4 s0 +6
∣∣2

(1+2ξ)−4 |s0 +3|2 < 0

which, using the notationΩ=ω2, is equivalent to Hξ(Ω) < 0, where

Hξ(Ω) = (1+2ξ)Ω2 +2(2ξ−7) ξ2Ω+ (
2ξ3 −15ξ2 +48ξ−72

)
ξ2.
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Since the leading coefficient of the polynomial Hξ is positive, then the inequality Hξ(Ω) < 0
holds if and only if Hξ admits two distinct real roots and Ω belongs to the open interval whose
extremities are those two roots. The polynomial Hξ admits two distinct real roots if and only if ξ ∈(
0, 3

(
1+p

2
)

/2
)
, and in that case those roots areΩ± = ξ

(
7ξ−2ξ2 ±2

√
−8ξ2 +24ξ+18

)
/(1+2ξ).

Notice that Ω− is necessarily negative and, since Ω> 0, only Ω+ is of interest. Using the fact that√
−8ξ2 +24ξ+18 ≤ 6 one easily shows that, for every ξ ∈ (

0, 3
(
1+p

2
)

/2
)
, we have the inequality

Ω+ ≤ (−2ξ2 +7ξ+12
)
ξ/(1+2ξ) <π2, which finally implies that |ω| <π, as required.

We can now use the fact that any root s0 = ξ+ iω of G with ξ> 0 satisfies 0 < |ω| <π to deduce
that no such root can exist. Indeed, taking the imaginary part of the equality F (−s0) = 0 and
using (10), we get

0 =
∫ 1

0
e−tξ sin(ωt ) t (1− t )2 dt .

The fact that |ω| < π implies that the integrand is positive, yielding the result. Hence all roots s
of (11) satisfy ℜ(s) > 0.

The location of roots of functions of type (9) with indices m and n which are not necessarily
integers remains possible thanks to the existing link between Bernstein polynomials with degen-
erate hypergeometric functions, which is the topic of our next section.

2.3. Degenerate hypergeometric functions

As it will be proved in Section 3.1, when the quasipolynomial∆ from (2) admits a root of maximal
multiplicity m + n + 1, it can be represented in terms of a Kummer confluent hypergeometric
function, whose nontrivial roots coincide with the nontrivial roots of another special function,
known as Whittaker function. These families of special functions have been extensively studied
in the literature, with, in particular, a wide range of results on the properties of the asymptotic
distribution of their zeros (see, e.g., [21], [27, Chapter VI], [44, Chapter 13]). For the purposes
of our paper, however, we need information on the location of all zeros of such functions, and
not only their asymptotic distribution, a subject that has been considered in fewer works in the
literature (we refer the interested reader to the introduction of [13] for a more detailed description
on these questions). This section provides a brief presentation of the results that shall be of use
in the sequel. We start by recalling the definition of Kummer confluent hypergeometric functions
used in this paper.

Definition 7. Let a,b ∈ C and assume that b is not a nonpositive integer. The Kummer confluent
hypergeometric functionΦ(a,b, ·) :C→C is the entire function defined for z ∈C by the series

Φ(a,b, z) =
∞∑

k=0

(a)k

(b)k

zk

k !
, (13)

where we recall that, forα ∈C and k ∈N, (α)k is the Pochhammer symbol (defined in the “Notation”
section).

Remark 8. Note that the series in (13) converges for every z ∈C. As presented in [21, 27, 44], the
functionΦ(a,b, · ) satisfies the Kummer differential equation

z
∂2Φ

∂z2 (a,b, z)+ (b − z)
∂Φ

∂z
(a,b, z)−aΦ(a,b, z) = 0, (14)

which has a regular singular point at z = 0 and an irregular singular point at z = ∞. It is
well known that (14) admits two linearly independent solutions, both of them usually called
Kummer confluent hypergeometric functions. For our purpose we are concerned only with the
solution (13).
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We shall need the following classical integral representation of Φ, which can be found, for
instance, in [21, 25, 27, 44].

Proposition 9. Let a,b ∈C and assume that ℜ(b) >ℜ(a) > 0. Then, for every z ∈C, we have

Φ(a,b, z) = Γ(b)

Γ(a)Γ(b −a)

∫ 1

0
ezt t a−1(1− t )b−a−1 dt , (15)

where Γ denotes the Gamma function.

We also recall (see, e.g., [44, (13.2.39)]), that, for every a,b, z ∈C such that b is not a nonpositive
integer, we have

Φ(a,b, z) = ezΦ(b −a,b,−z).

The following result, which is proved in [13] using the Green–Hille transformation from [31], gives
insights on the distribution of the nonasymptotic zeros of Kummer hypergeometric functions
with real arguments a and b.

Proposition 10. Let a, b ∈R be such that b ≥ 2.

(1) If b = 2a, then all nontrivial roots z of Φ(a,b, · ) are purely imaginary.
(2) If b > 2a, then all nontrivial roots z of Φ(a,b, · ) satisfy ℜ(z) > 0.
(3) If b < 2a, then all nontrivial roots z of Φ(a,b, · ) satisfy ℜ(z) < 0.
(4) If b 6= 2a, then all nontrivial roots z of Φ(a,b, · ) satisfy

(b −2a)2ℑ(z)2 − (4a(b −a)−2b)ℜ(z)2 > 0.

Remark 11. In the case a ∈ {α,α+ 1} and b = 2α+ 1 for some α > − 1
2 , the conclusions of

Proposition 10(2) and (3) were shown by P. Wynn in [59, Theorem 1]. The techniques used in that
reference do not rely on Hille’s approach, but use instead a continued fraction representation of
a ratio of Kummer functions (see [59, Theorem B(ii)]). Note that Proposition 10 does not cover all
cases of Wynn’s result, since the assumption b ≥ 2 is equivalent to α≥ 1

2 , whereas Wynn’s result is
obtained for all α>− 1

2 .

3. Main results

This section is dedicated to our main results on the location of zeros of the characteristic function
∆ given in (2) of system (1). Hereafter, we will characterize the manifold corresponding to the
existence of a spectral value of (2) with multiplicity reaching the Pólya–Szegő bound DPS =
m +n +1 and will prove that such spectral value is necessarily dominant.

3.1. Maximal multiplicity and quasipolynomial factorization

The main result of this section is the following characterization of the existence of a real root
attaining the maximal multiplicity DPS .

Theorem 12. Consider the quasipolynomial ∆ given by (2) and let s0 ∈R. The number s0 is a root
of multiplicity DPS = m +n +1 of ∆ if and only if

ak =
(

n

k

)
(−s0)n−k + (−1)n−k n!

n−1∑
j=k

( j
k

)(m+n− j
m

)
s j−k

0

j !τn− j
for every k ∈ �0,n −1�,

αk = (−1)n−1 e s0τ
m∑

j=k

(−1) j−k
(
m +n − j

)
! s j−k

0

k !
(

j −k
)
!
(
m − j

)
!τn− j

for every k ∈ �0,m�.

(16)

Before turning to the proof of Theorem 12, a few remarks are in order.
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Remark 13. By considering the first equation in (16) with k = n −1, one obtains the simple and
interesting relation between s0, τ, and an−1 given by

s0 =−an−1

n
− m +1

τ
. (17)

Remark 14. Under conditions (16), s0 is the unique real root of ∆, and, more precisely, it is the
unique root of∆ on the horizontal strip {s ∈C | |ℑ(s)| < 2π

τ } of the complex plane. Indeed, applying
Proposition 1 with α= 0 and any β ∈ (0, 2π

τ ), we deduce that the number of roots of ∆ in the strip

Sβ = {s ∈C | 0 ≤ℑ(s) ≤β}, counted according to their multiplicity, is at most DPS , since τ(β−α)
2π < 1

in this case. Since s0 ∈ Sβ and its multiplicity as a root of ∆ is exactly DPS , this shows that no
other root of ∆ can belong to Sβ. The conclusion now follows since β ∈ (0, 2π

τ ) is arbitrary, and by
remarking that ∆ has only real coefficients and thus its roots appear in complex-conjugate pairs.

Remark 15. Theorem 12 deals only with a real root s0 of ∆ attaining the maximal multiplicity
DPS . The main reason for this restriction is that, as shown in [16, Corollaries 1 and 2], nonreal
roots of∆ cannot have a multiplicity equal to the Pólya–Szegő bound DPS (see also [37] for further
discussion on the maximal multiplicity of complex roots in the case n = 2 and m = 1). Indeed, any
root s0 of ∆ attaining the maximal multiplicity DPS necessarily satisfies (17), and thus it will be
real since an−1 is real.

The proof of Theorem 12 can be simplified by noticing that s0 is a root of the quasipolynomial
∆ of a given multiplicity if and only if 0 is a root with the same multiplicity of the quasipolynomial
∆̃ defined by ∆̃(z) = τn∆(s0+ z

τ ). This transformation of∆ into ∆̃ corresponds to the linear change
of variable z = τ(s − s0), which shifts the desired multiple root s0 to 0 and reduces the delay τ to
1, and it has been described in Lemmas 2 and 3 in Section 2.1. We can then focus on providing
necessary and sufficient conditions on the coefficients of ∆̃ in order for 0 to be a root of maximal
multiplicity DPS = m +n +1, which is the main subject of our next result, Lemma 16, which also
states that, under such conditions, ∆̃ can be factorized as the product of zm+n+1 and an entire
function expressed as the Laplace transform of a Bernstein polynomial, as the one discussed in
Example 6.

Lemma 16. Let n ∈ N∗ and m ∈ N satisfy m ≤ n, b0, . . . ,bn−1,β0, . . . ,βm ∈ R, and ∆̃ be the
quasipolynomial given by (5). Then 0 is a root of multiplicity DPS = m +n +1 of ∆̃ if and only if

bk = (−1)n−k n!

k !

(
m +n −k

m

)
for every k ∈ �0,n −1�,

βk = (−1)n−1 (m +n −k)!

k !(m −k)!
for every k ∈ �0,m�.

(18)

Moreover, if (18) is satisfied, then, for every z ∈C,

∆̃(z) = zm+n+1

m!

∫ 1

0
t m(1− t )ne−zt dt . (19)

Proof. We first prove that the right-hand side of (19) is indeed a quasipolynomial of the form (5)
with coefficients b0, . . . ,bn−1,β0, . . . ,βm given by (18) and admitting 0 as a root of multiplicity DPS .
For that purpose, let us introduce the function Q : C→ C defined as the right-hand side of (19),
i.e., for every z ∈C,

Q(z) = zm+n+1

m!

∫ 1

0
t m(1− t )ne−zt dt .

Clearly, Q is an entire function and 0 is a root of multiplicity m +n +1 of Q. Let p : R→ R be the
Bernstein polynomial defined for t ∈ R by p(t ) = t m(1− t )n , whose degree is m +n. Then, using
Proposition 4, we have

Q(z) = zm+n+1

m!

m+n∑
k=0

p(k)(0)−p(k)(1)e−z

zk+1
. (20)
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We have

p(t ) = t m
n∑

k=0

(
n

k

)
(−1)k t k =

m+n∑
k=m

(−1)k−m

(
n

k −m

)
t k ,

and thus p(k)(0) = 0 for k ∈ �0, . . . ,m−1� and p(k)(0) = (−1)k−mk !
( n

k−m

)
for k ∈ �m,m+n�. Similarly,

we have

p(t ) = (1− t )n(t −1+1)m = (−1)n(t −1)n
m∑

k=0

(
m

k

)
(t −1)k = (−1)n

m+n∑
k=n

(
m

k −n

)
(t −1)k ,

and thus p(k)(1) = 0 for k ∈ �0,n − 1� and p(k)(1) = (−1)nk !
( m

k−n

)
for k ∈ �n,m + n�. Thus, (20)

becomes

Q(z) =
m+n∑
k=m

(−1)k−m k !

m!

(
n

k −m

)
zm+n−k +e−z

m+n∑
k=n

(−1)n−1 k !

m!

(
m

k −n

)
zm+n−k

=
n∑

k=0
(−1)n−k (m +n −k)!

m!

(
n

k

)
zk +e−z

m∑
k=0

(−1)n−1 (m +n −k)!

m!

(
m

k

)
zk .

Hence, Q is indeed a quasipolynomial under the form (5) with coefficients b0, . . . ,bn−1,β0, . . . ,βm

given by (18) and admitting 0 as a root of multiplicity DPS , as required.
In order to conclude the proof, it suffices to show that (18) is the unique choice of coefficients

for ∆̃ ensuring that 0 is a root of multiplicity m+n+1. To see that, notice that, since the degree of
the quasipolynomial ∆̃ is m+n+1, 0 is a root of multiplicity m+n+1 of ∆̃ if and only if ∆̃(k)(0) = 0
for every k ∈ �0,m +n�. By [15, Proposition 5.1], this is the case if and only if the coefficients
b0, . . . ,bn−1,β0, . . . ,βm satisfy

bk =−βk −
k−1∑
`=0

(−1)k−`β`
(k −`)!

, ∀ k ∈ �0,min(m,n −1)�,

bk =−
m∑
`=0

(−1)k−`β`
(k −`)!

, ∀ k ∈ �m +1,n −1�,

1 =−
m∑
`=0

(−1)n−`β`
(n −`)!

,

0 =−
m∑
`=0

(−1)k−`β`
(k −`)!

, ∀ k ∈ �n +1,m +n�.

(21)

The first two equalities in (21) allow us to compute b0, . . . ,bn−1 onceβ0, . . . ,βm are known, and the
last two equalities in (21) provide a linear system on β0, . . . ,βm . This linear system can be written
under the form Tβ=−e0, where T = (T j ,k ) j ,k∈�0,m� is defined by

T j ,k = (−1)n+ j−k

(n + j −k)!
, j ,k ∈ �0,m�,

β = (β0, . . . ,βm)T, and e0 = (1,0, . . . ,0)T ∈ Rm+1. By the previous arguments, the coefficients
b0, . . . ,bn−1,β0, . . . ,βm given by (18) necessarily satisfy (21), since they ensure that 0 is a root of
multiplicity m+n+1 of ∆̃, and thus we are left to prove that (21) admits a unique solution, which
is equivalent to showing that the matrix T is invertible.

Let us introduce the diagonal matrices D0 = diag(0!,1!, . . . ,m!) and Dn = diag(n!, (n +
1)!, . . . , (m +n)!) and set B = DnT D−1

0 . Writing B = (B j ,k ) j ,k∈�0,m�, we have

B j ,k = (−1)n+ j−k

(
n + j

k

)
, j ,k ∈ �0,m�.
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We have B = LU , where L = (L j ,k ) j ,k∈�0,m� and U = (U j ,k ) j ,k∈�0,m� are defined, for j ,k ∈ �0,m�, by

L j ,k = (−1) j−k
( j

k

)
and U j ,k = (−1)n+ j−k

( n
k− j

)
. Indeed, for j ,k ∈ �0,m�, we have

m∑
`=0

L j ,`U`,k = (−1)n+ j−k
m∑
`=0

(
j

`

)(
n

k −`

)
= (−1)n+ j−k

(
n + j

k

)
= B j ,k ,

where we use the identity
∑m
`=0

( j
`

)( n
k−`

) = (n+ j
k

)
(see, e.g., [35, Proposition 2.16]). Notice that L

is lower triangular and U is upper triangular, and hence the factorization B = LU corresponds
to the LU factorization of B . As a consequence of this factorization, we also deduce that detB =
(−1)n (m+1) and, in particular, B is invertible. Hence, T = D−1

n BD0 is also invertible, concluding
the proof. �

Proof of Theorem 12. Define ∆̃ from ∆ as in (4). One immediately verifies that s0 is a root of
multiplicity m +n +1 of ∆ if and only if 0 is a root of multiplicity m +n +1 of ∆̃. The result then
follows by a straightforward computation using Lemmas 3 and 16. �

3.2. Dominance of roots of maximal multiplicity

Theorem 12 provides necessary and sufficient conditions for a real number s0 to be a root of
maximal multiplicity of the quasipolynomial ∆ from (2). The main result of this section states
that, under those conditions, s0 is necessarily a dominant root of ∆.

Theorem 17. Consider the quasipolynomial ∆ given by (2) and let s0 ∈R.

(1) (Retarded) If m < n and (16) is satisfied, then s0 is a strictly dominant root of ∆.
(2) (Neutral) If m = n and (16) is satisfied then, s0 is a dominant root of ∆ and, for every

other complex root s of ∆, one has ℜ(s) = s0. More precisely, the set of roots of ∆ is{
s0 + i ζτ

∣∣∣ ζ ∈Ξn

}
, where

Ξn =


ζ ∈R

∣∣∣∣∣∣∣∣∣∣∣
tan

(
ζ

2

)
=
ζ

⌊ n−1
2

⌋∑
`=0

(−1)`
(2n −2`−1)!

(2`+1)!(n −2`−1)!
ζ2`

b n
2 c∑

`=0
(−1)`

(2n −2`)!

(2`)!(n −2`)!
ζ2`


. (22)

Remark 18. In the particular case of n = m = 1, the spectrum distribution described by (22), i.e.,

Ξ1 =
{
ζ ∈R

∣∣∣ tan
(
ζ
2

)
= ζ

2

}
, has been already identified in [36].

To prove Theorem 17, we rely, as in the proof of Theorem 12, on the linear change of variable
z = τ(s − s0). We thus first study the quasipolynomial ∆̃ from (5) under conditions (18), in which
case we have, by Theorem 12, the factorization (19). The factorization (19) can also be written,
thanks to (15), as

∆̃(z) = n!

(m +n +1)!
zm+n+1Φ(m +1,m +n +2,−z), (23)

whereΦ is the Kummer confluent hypergeometric function defined in (13). The next lemma uses
properties of the roots ofΦ in order to deduce that 0 is a dominant root of ∆̃.

Lemma 19. Let n ∈N∗, b0, . . . ,bn−1,β0, . . . ,βm ∈R be given by (18), and ∆̃ be the quasipolynomial
given by (5). Let z be a root of ∆̃with z 6= 0. Then ℜ(z) < 0 if m < n and ℜ(z) = 0 if m = n.

Proof. By Lemma 16, ∆̃ admits the factorization (23). Hence, if z is a root of ∆̃with z 6= 0, then −z
must be a root of Φ(m +1,m +n +2, · ). It follows from Proposition 10(2) that, for n > m, one has
ℜ(−z) > 0, and thus ℜ(z) < 0. Also, by applying Proposition 10(1), we deduce that, for n = m, one
has ℜ(−z) = 0, and thus ℜ(z) = 0. �
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In order to obtain the additional characterization of the spectrum in the neutral case stated in
Theorem 17(2), we also provide the following result on the location of the roots of ∆̃ in the case
m = n.

Lemma 20. Let n ∈N∗, m = n, b0, . . . ,bn−1,β0, . . . ,βn ∈ R be given by (18), ∆̃ be the quasipolyno-
mial given by (5), Ξn be as in the statement of Theorem 17(2), and ζ ∈ R. Then iζ is a root of ∆̃ if
and only if ζ ∈Ξn .

Proof. From (5) and (18), we have

∆̃(z) =
n∑

k=0
(−1)n−k (2n −k)!

k !(n −k)!
zk +e−z

n∑
k=0

(−1)n−1 (2n −k)!

k !(n −k)!
zk .

Hence, z = iζ is a root of ∆̃ if and only if

e i ζ2
n∑

k=0
(−1)k (2n −k)!

k !(n −k)!
(iζ)k = e−i ζ2

n∑
k=0

(2n −k)!

k !(n −k)!
(iζ)k .

The right-hand side of the above equality is equal to the complex conjugate of the left-hand side.
Hence, the above equality is equivalent to

ℑ
(

e i ζ2
n∑

k=0
(−1)k (2n −k)!

k !(n −k)!
(iζ)k

)
= 0,

which happens if and only if

sin

(
ζ

2

)b n
2 c∑

`=0
(−1)`

(2n −2`)!

(2`)!(n −2`)!
ζ2` = ζcos

(
ζ

2

)⌊ n−1
2

⌋∑
`=0

(−1)`
(2n −2`−1)!

(2`+1)!(n −2`−1)!
ζ2`.

This last equality is equivalent to ζ ∈Ξn , concluding the proof. �

Using Lemmas 19 and 20, we can easily conclude the proof of Theorem 17.

Proof of Theorem 17. Define ∆̃ from ∆ as in (4). For n > m, item (1) can be shown by noticing
that, if s is a root of ∆ with s 6= s0, then, by (4), z = τ(s − s0) is a root of ∆ with z 6= 0. Hence, by
Lemma 19, ℜ(τ(s − s0)) < 0, showing, since τ> 0, that ℜ(s) < s0. Similarly, for m = n, the first part
of item (2) can be shown by applying first Lemma 19, which gives ℜ(s) = s0 for any root s of ∆,
and the last part of item (2) follows by applying Lemma 20. �

3.3. Consequences on stability

The third main result we present in this paper is the following one on the stability of the trivial
solution of (1), which is an immediate consequence of (17), Theorem 12, and Theorem 17.

Theorem 21. Let n ∈N∗, m ∈ �0,n�, τ> 0, and consider the delay-differential equation (1). Assume
that (16) is satisfied for some s0 ∈ R. Then the trivial solution of (1) is exponentially stable if and
only if an−1 >−n (m+1)

τ .

4. Illustrative examples

PID controllers have been extensively used to control and regulate industrial processes which
are typically modeled by reduced-order dynamics. In this section, we shall illustrate how one can
tune the controller gains using the GMID property through a couple of comprehensive examples.
The first case deals with a retarded equation, while the second one corresponds to a neutral
equation.
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4.1. Stabilizing the classical pendulum via delay action

Consider the dynamical system modeling a friction-free classical pendulum. The adopted model
is studied in [3] and, in the sequel, we keep the same notations. The dynamics of a controlled
classical pendulum are governed by the following second-order differential equation

θ̈(t )+ g

L
sin(θ(t )) = u(t ) (24)

where θ(t ) stands for the angular displacement of the pendulum at time t with respect to the
stable equilibrium position, L is the length of the pendulum, g is the gravitational acceleration,
and u(t ) represents the control law, which stems from an applied external torque. The problem
we consider is to make the open-loop stable equilibrium locally asymptotically stable via the
action of the external torque u. This suggests first to linearize (24) around the trivial equilibrium
and get

θ̈(t )+ g

L
θ(t ) = u(t ). (25)

Next assume that such a system is controlled using a standard delayed PD controller of the form

u(t ) =−kp θ(t −τ)−kd θ̇(t −τ), (26)

with (kp ,kd ) ∈R2. The local stability of the closed-loop system is reduced to study the location of
the spectrum of the quasipolynomial

∆(s) = s2 + g

L
+ (

kd s +kp
)

e−τs , (27)

which is a quasipolynomial of degree 4. Remarks 14–15 allow concluding that the maximal
multiplicity 4 can be reached only by a root of ∆ on the real axis.

In this case, we apply the GMID property to establish the gains of the stabilizing delayed PD
controller. As a matter of fact, in this case, the only admissible quadruple root is given by

s0 =−
p

2√
L
g

, (28)

which is achieved if the controllers’ gains and the delay τ are taken as

kd =−e−2
p

2√
L
g

, kp =−5e−2g

L
, τ=p

2

√
L

g
.

With the proposed choice of the gains and the delay, conditions (16) are satisfied for the
quasipolynomial (27), and thus, by Theorem 17, s0 given by (28) is the spectral abscissa of the
closed-loop system (25)–(26), ensuring then the exponential stability of the trivial solution as
announced in Theorem 21.

Remark 22. Notice that the GMID consists in forcing a root to reach its maximal multiplicity,
which does not allow any degree of freedom in assigning s0, as precised in (28). In order to allow
for some additional freedom when assigning s0, one can relax such a constraint by forcing the
root s0 to have a multiplicity lower than the maximal, and also consider the delay as a free tuning
parameter. This motivates the study of a (non-generic) MID property, which was carried out, for
instance, in [17] for second-order systems.

For instance, the only admissible triple roots of (27) are given by

s± =
−2±

√
− g τ2

L +2

τ
,
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Figure 1. The behavior of the triple root (spectral abscissa) of (27) at s = s+ as a function of
the free delay parameter 0 < τ<√

2L/g for L/g = 1.

which are achieved if τ<√
2L/g and the controllers’ gains are taken as

kd = 2(τs±+1)eτs±

τ
, kp = 2

(
g τ2/L+5τs±+3

)
eτs±

τ2 .

Following [17, Theorem 4.2], the triple root at s = s+ is the rightmost root of (27). Thus the delay,
if seen as a tuning parameter, allows to assign the rightmost root at s = s+ arbitrarily large (in
absolute value) for small delay, as illustrated in Figure 1.

4.2. Feedback stabilization for a scalar conservation law with PI boundary control

As an illustrative example of the GMID for neutral equations, we consider the problem of
stabilization of solutions of a partial differential equation of hyperbolic type. More precisely, we
revisit the problem of exponential stabilization of the following scalar conservation law proposed
in [24]:

∂tϕ(t , x)+λ∂xϕ(t , x) = 0, t ∈ [0, ∞), x ∈ (0, L), (29)

where L > 0 and ϕ(t , x) denotes the system state at position x ∈ (0,L) and in time t ∈ [0,+∞). As
considered in [24], the value λ, which denotes the velocity of propagation, is assumed to be a
positive constant. Equation (29) is accompanied with a boundary condition under the form of a
PI controller:

ϕ(t , 0) = kp ϕ(t ,L)+ki

∫ t

0
ϕ(ν,L)dν, (30)

where kp and ki are the feedback parameters representing proportional and integral control
gains. Applying the Laplace transform to both sides of the boundary condition and multiplying
by s one obtains the closed-loop characteristic function

∆(s) = s − (ki +kp s)e−
L
λ

s , (31)

which corresponds to the characteristic function of a first-order neutral equation, that is, a
function under the form (2) with m = n = 1. In this case, the degree DPS of ∆ is equal to 3 and, as
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mentioned in Remarks 14–15, the maximal multiplicity can be achieved only by a root on the real
axis.

Next, by exploiting the results of Theorem 12, Theorem 17, and Theorem 21, we conclude that
forcing a triple spectral value guarantees its dominance as a root of (31), and then the exponential
stability of solutions of (29)–(30). More precisely, by tuning the controller gains as

kp =−e−2, ki =−4e−2λ

L
, (32)

one achieves the unique admissible triple root, which is s0 = − 2λ
L and corresponds to the decay

rate of solutions of (29)–(30). Furthermore, as shown in Theorem 17(2), the set of roots of ∆ is{
s0 + i λζL

∣∣∣ ζ ∈Ξ1

}
where Ξ1 =

{
ζ ∈R

∣∣∣ tan
(
ζ
2

)
= ζ

2

}
. Figure 2(a) shows the result of a numerical

computation of the roots of (31) with the parameters (32), while Figure 2(b) shows the solution
of (29)–(30) in the case L

λ = 1 with an initial condition ϕ(0, x) = sin(2πx).
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Figure 2. (a) Spectrum distribution of (31) and (b) solution of (29) with initial condition
ϕ(0, x) = sin(2πx), with L

λ = 1 and parameters kp and ki satisfying (32).

4.3. New features of P3δ

P3δ, whose name stands for Partial pole placement via delay action, is a Python software with
a friendly user interface for the design of parametric stabilizing feedback laws with time de-
lays, thanks to properties of the distribution of quasipolynomials’ zeros. It exploits mainly the
MID/GMID property as well as the coexisting real roots-induced-dominancy or CRRID for short,
established in [2, 7, 14]. Initially, P3δ has been established for the control design for retarded dif-
ferential equations. Based on the results of this work as well as the references [9, 33, 36], the soft-
ware has been updated and is now able to treat linear neutral functional differential equations as
well.

P3δ is freely available for download on https://cutt.ly/p3delta, where installation instructions,
video demonstrations, and the user guide are also available. Interested readers may also contact
directly any of the authors of the paper. Since its creation, P3δ had vocation to be available to the
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greatest number and on all possible platforms. The current version of the software is available in
local executable version as well as an online version ready to use in one click. The online version
of P3δ is hosted on servers thanks to the Binder service [49]. Binder allows to create instances
of personalized computing environment directly from a GitHub repository that can be employed
and shared by users. The Binder service is free to use and is powered by BinderHub, an open-
source tool that deploys the service in the cloud. The online version of P3δ is written in Python
and structured as a Jupyter Notebook, an open document format which can contain live code,
equations, visualizations, and text. The Jupyter Notebook is completed by a friendly user interface
built using interactive widgets from Python’s ipywidgets module.

4.4. Further remarks on the maximal damping

Although there exists a root locus approach for single delay time-delay systems [32] able to
monitor the variation of the spectrum with respect to parameters variation, then allowing to
characterize the spectral abscissa, unfortunately this method doesn’t recover the multiple root
case due to the lack of regularity with respect to parameter’s variation.

To the best of the authors’ knowledge, the problem of the selection of the system’s parame-
ters guaranteeing the maximum damping of reduced-order time-delay systems solutions goes
back to the almost forgotten contributions of Pinney in the 1960s [45], where a complex analy-
sis method based on Cauchy index theorem coupled with the D-partition method [41] are used.
Furthermore, the link between a spectral value of maximal multiplicity and the maximum damp-
ing has been emphasized for first- and second-order DDEs, however without providing explicit
proofs. As a matter of fact, it has been observed that the minimization of the spectral abscissa
suggests the “exhaustion” of the equation parameters, which is achieved in Equation (16) from
Theorem 12.

Next, in the context of the design of output feedback able to achieve a fast stabilization of
finite-dimensional systems, an optimization technique called Convex hull technique has been
proposed in [22], where the existing link between the maximum damping and the characteristic
root of maximum multiplicity has been established, see also [12]. More recently, to recover such
a link for second-order delay systems, an optimization approach has been used in [51]. Notice
that the extension of such optimization methods to neutral DDEs or even to retarded DDEs of
fixed but higher orders (greater than 3) systems is a quite complicated question especially in the
presence of free parameters.

5. Concluding remarks

In this paper, we have further investigated the multiplicity-induced-dominancy property for
single-delay linear functional differential equations. Thanks to the reduction of the corre-
sponding characteristic function to an appropriate integral representation that corresponds to
some degenerate Kummer hypergeometric function, we have shown the validity of the generic
multiplicity-induced-dominancy (GMID) property; that is, the characteristic spectral values of
maximal multiplicity are necessarily dominant for retarded as well as neutral delay-differential
equations of arbitrary order.

Notice that the MID property may hold even when it is about a spectral value with a strictly-
intermediate admissible multiplicity, as shown in [17] for second-order plants and in [5] for
nth-order retarded equations admitting a real spectral value with multiplicity n + 1 and a finite
dimensional part admitting exclusively real modes. However, in all generality, the limits of the
MID property remain an open question.
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All these arguments make our constructive method based on confluent hypergeometric func-
tions applied to linear delay-differential equations (retarded as well as neutral) of arbitrary order
particularly attractive and advantageous in many ways and, in particular, in control design prob-
lems involving free parameters to be tuned. As shown through some illustrative examples con-
cerning classical PID control schemes, the partial pole placement method that is based on the
use of GMID property may appear as a good alternative to the existing control methodologies.
Indeed, the corresponding controllers are of “low-complexity” (i.e., reduced number of parame-
ters to be tuned) and there exist explicit guarantees on the location of the remaining characteris-
tic roots if the GMID is reached.

Acknowledgments

The authors warmly thank the Editor and the Reviewer for their comments and suggestions which
contributed to improve the overall quality of the paper.

References

[1] J. Ackermann, “Der Entwurf linearer Regelungssysteme im Zustandsraum”, at-Automatisierungstechnik 20 (1972),
no. 1-12, p. 297-300.

[2] S. Amrane, F. Bedouhene, I. Boussaada, S.-I. Niculescu, “On qualitative properties of low-degree quasipolynomials:
further remarks on the spectral abscissa and rightmost-roots assignment”, Bull. Math. Soc. Sci. Math. Roum., Nouv.
Sér. 61(109) (2018), no. 4, p. 361-381.

[3] F. M. Atay, “Balancing the inverted pendulum using position feedback”, Appl. Math. Lett. 12 (1999), no. 5, p. 51-56.
[4] T. Balogh, I. Boussaada, T. Insperger, S.-I. Niculescu, “Towards an MID-based Delayed Design for Arbitrary-order

Dynamical Systems with a Mechanical Application”, IFAC-PapersOnLine 53 (2020), no. 2, p. 4375-4380, Proceedings
of the 21th IFAC World Congress.

[5] ——— , “Conditions for stabilizability of time-delay systems with real-rooted plant”, International Journal of Robust
and Nonlinear Control 32 (2022), no. 6, p. 3206-3224, Special Issue:System Theory and Delay: In honour of Vladimir
Kharitonov.

[6] R. Barrio, J. M. Peña, “Basis conversions among univariate polynomial representations”, C. R. Math. Acad. Sci. Paris
339 (2004), no. 4, p. 293-298.

[7] F. Bedouhene, I. Boussaada, S.-I. Niculescu, “Real spectral values coexistence and their effect on the stability of time-
delay systems: Vandermonde matrices and exponential decay”, C. R. Math. Acad. Sci. Paris 358 (2020), no. 9-10,
p. 1011-1032.

[8] R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press Inc., 1963, xvi+462 pages.
[9] A. Benarab, I. Boussaada, K. Trabelsi, G. Mazanti, C. Bonnet, “The MID property for a second-order neutral time-

delay differential equation”, in 2020 24th International Conference on System Theory, Control and Computing, 2020,
p. 202-207.

[10] C. A. Berenstein, R. Gay, Complex analysis and special topics in harmonic analysis, Springer, 1995, x+482 pages.
[11] S. Bernstein, “Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités”, Charkow Ges. (2) 13

(1912), no. 1, p. 1-2.
[12] V. D. Blondel, M. Gürbüzbalaban, A. Megretski, M. L. Overton, “Explicit solutions for root optimization of a polyno-

mial family with one affine constraint”, IEEE Trans. Autom. Control 57 (2012), no. 12, p. 3078-3089.
[13] I. Boussaada, G. Mazanti, S.-I. Niculescu, “Some Remarks on the Location of Non-Asymptotic Zeros of Whittaker and

Kummer Hypergeometric Functions”, Bull. Sci. Math. 174 (2022), article no. 103093 (12 pages).
[14] I. Boussaada, G. Mazanti, S.-I. Niculescu, J. Huynh, F. Sim, M. Thomas, “Partial pole placement via delay action: A

Python software for delayed feedback stabilizing design”, in 2020 24th International Conference on System Theory,
Control and Computing, 2020, p. 196-201.

[15] I. Boussaada, S.-I. Niculescu, “Characterizing the codimension of zero singularities for time-delay systems: a link
with Vandermonde and Birkhoff incidence matrices”, Acta Appl. Math. 145 (2016), p. 47-88.

[16] ——— , “Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: a
Vandermonde-based approach”, IEEE Trans. Autom. Control 61 (2016), no. 6, p. 1601-1606.

[17] I. Boussaada, S.-I. Niculescu, A. El Ati, R. Pérez-Ramos, K. Trabelsi, “Multiplicity-induced-dominancy in parametric
second-order delay differential equations: Analysis and application in control design”, ESAIM, Control Optim. Calc.
Var. (2020), article no. 57 (34 pages).

C. R. Mathématique — 2022, 360, 349-369



368 Islam Boussaada, Guilherme Mazanti and Silviu-Iulian Niculescu

[18] I. Boussaada, S. Tliba, S.-I. Niculescu, H. U. Ünal, T. Vyhlídal, “Further remarks on the effect of multiple spectral
values on the dynamics of time-delay systems. Application to the control of a mechanical system”, Linear Algebra
Appl. 542 (2018), p. 589-604.

[19] I. Boussaada, H. U. Ünal, S.-I. Niculescu, “Multiplicity and Stable Varieties of Time-Delay Systems: A Missing Link”,
in Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS), 2016,
p. 188-194.

[20] D. Brethé, J. J. Loiseau, “An effective algorithm for finite spectrum assignment of single-input systems with delays”,
Math. Comput. Simul. 45 (1998), no. 3, p. 339-348.

[21] H. Buchholz, The confluent hypergeometric function with special emphasis on its applications, Springer Tracts in Nat-
ural Philosophy, vol. 15, Springer, 1969, translated from the German by H. Lichtblau and K. Wetzel, xviii+238 pages.

[22] R. Chen, “Output feedback stabilization of linear systems”, PhD Thesis, University of Florida, 1979.
[23] K. L. Cooke, P. van den Driessche, “On zeroes of some transcendental equations”, Funkc. Ekvacioj 29 (1986), no. 1,

p. 77-90.
[24] J. M. Coron, S. O. Tamasoiu, “Feedback stabilization for a scalar conservation law with PID boundary control”, Chin.

Ann. Math., Ser. B 36 (2015), no. 5, p. 763-776.
[25] D. Drissi, “Characterization of Kummer hypergeometric Bernoulli polynomials and applications”, C. R. Math. Acad.

Sci. Paris 357 (2019), no. 10, p. 743-751.
[26] K. Engelborghs, M. Dambrine, D. Roose, “Limitations of a class of stabilization methods for delay systems”, IEEE

Trans. Autom. Control 46 (2001), no. 2, p. 336-339.
[27] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. I, Robert E. Krieger

Publishing Co., 1981, based on notes left by Harry Bateman, with a preface by Mina Rees and a foreword by E. C.
Watson, reprint of the 1953 original, xiii+302 pages.

[28] J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Applied Mathematical Sciences,
vol. 99, Springer, 1993.

[29] G. H. Hardy, “On the Zeroes of Certain Classes of Integral Taylor Series. Part II.–On The Integral Function∑∞
n=0

xn

(n+a)8n ! and Other Similar Functions”, Proc. Lond. Math. Soc. 2 (1905), p. 401-431.
[30] N. D. Hayes, “Roots of the Transcendental Equation Associated with a Certain Difference-Differential Equation”, J.

Lond. Math. Soc. s1-25 (1950), no. 3, p. 226-232.
[31] E. Hille, “Oscillation theorems in the complex domain”, Trans. Am. Math. Soc. 23 (1922), no. 4, p. 350-385.
[32] A. M. Krall, “The Root Locus Method: A Survey”, SIAM Rev. 12 (1970), no. 1, p. 64-72.
[33] D. Ma, I. Boussaada, C. Bonnet, S.-I. Niculescu, J. Chen, “Multiplicity-Induced-Dominancy extended to neutral delay

equations: Towards a systematic PID tuning based on Rightmost root assignment”, in ACC 2020 - American Control
Conference, 2020.

[34] A. Z. Manitius, A. W. Olbrot, “Finite spectrum assignment problem for systems with delays”, IEEE Trans. Autom.
Control 24 (1979), no. 4, p. 541-552.

[35] G. Mazanti, I. Boussaada, S.-I. Niculescu, “Multiplicity-induced-dominancy for delay-differential equations of re-
tarded type”, J. Differ. Equations 286 (2021), p. 84-118.

[36] G. Mazanti, I. Boussaada, S.-I. Niculescu, Y. Chitour, “Effects of Roots of Maximal Multiplicity on the Stability of Some
Classes of Delay Differential-Algebraic Systems: The Lossless Propagation Case”, in Proceeding of 24th International
Symposium on Mathematical Theory of Networks and Systems (MTNS 2021), IFAC-PapersOnLine, 2021.

[37] G. Mazanti, I. Boussaada, S.-I. Niculescu, T. Vyhlídal, “Spectral dominance of complex roots for single-delay linear
equations”, in IFAC 2020 - 21st IFAC World Congress, IFAC-PapersOnLine, IFAC, 2020.

[38] W. Michiels, K. Engelborghs, P. Vansevenant, D. Roose, “Continuous pole placement for delay equations”, Automatica
38 (2002), no. 5, p. 747-761.

[39] W. Michiels, S.-I. Niculescu, Stability, control, and computation for time-delay systems: An eigenvalue-based ap-
proach, second ed., Advances in Design and Control, vol. 27, Society for Industrial and Applied Mathematics, 2014,
xxiv+435 pages.

[40] W. Michiels, T. Vyhlidal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral
type”, Automatica 41 (2005), no. 6, p. 991-998.

[41] Y. I. Neı̆mark, “The structure of the D-decomposition of the space of quasipolynomials and the diagrams of
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