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1. Introduction

Coupled-physics or hybrid inverse problems have attracted many researchers from the inverse
problem community during the last decades.

Among results concerning these hybrid inverse problems we quote those established by Bal
and Uhlmann [8] in the isotropic case. Precisely, they considered the quantitative photoacoustic
tomography. They showed that there exists an open subset of illuminations for which we have
Lipschitz stability for the determination of two medium parameters from 2n boundary measure-
ments in a n-dimensional space. They also proved that two measurements are sufficient pro-
vided that the domain under consideration satisfies an extra geometric condition. Using a dif-
ferent method, Alessandrini, Di Cristo, Francini and Vessella [3] proved a Hölder stability esti-
mate in the case of two well chosen illuminations. Recently, Bonnetier, Choulli and Triki [10] es-
tablished also a Hölder stability estimate in the case of two arbitrary pointwise sources generat-
ing two illuminations. This situation is more suitable for real physical problems. The determina-
tion of the absorption coefficient from a single measurement was already studied by Choulli and
Triki [12, 13]. For this problem we got a weighted Hölder stability estimate.

We just quoted few results for the quantitative photoacoustic tomography. We refer to Alberti
and Capdeboscq [1] and references therein for a complete overview concerning recent progress
dealing with hybrid inverse problems for both isotropic and anisotropic cases.

We discuss in the present work the stability issue for various kind of hybrid inverse problems
that lead to the same BVP. For possible applications we list below four examples.
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1.1. Quantitative photoacoustic tomography

It is a hybrid imaging modality where high frequency electromagnetic waves are combined with
ultrasounds. Precisely, the medium is illuminated by high frequency electromagnetic wave (e.g.
laser). A part of the electromagnetic radiation is then absorbed by the tissues and therefore dissi-
pated partially into heat. The increase of temperature produces an expansion of the medium and
in consequence creates acoustic waves. From a mathematical point of view, the first step consists
in determining the absorbed electromagnetic energy density H from boundary measurements.
It turns out that H is the initial condition of an acoustic wave equation. This is typically a control
problem which is already solved and many results can be found in the literature devoted to con-
trol theory. Once we recover H , the objective is then the determination of the diffusion coefficient
or the diffusion matrix a and the absorption coefficient q from the energy

H(x) =G(x)q(x)u(x), x ∈Ω.

where Ω is the domain occupied by the medium, G is the Grüneisen parameter and u is the light
intensity. In the diffusive regime, it is shown that u is the solution of the BVP{

−div(a∇u)+qu = 0 in Ω,

u|Γ = f .
(1)

Here Γ is the boundary of Ω, a is the diffusion coefficient in the isotropic case or the diffusion
matrix in the anisotropic case and f represents the illumination.

We assume in the present work that the parameter G is known. We set for simplicity G = 1.
In fact, several energy densities H may be necessary to recover a and q. Each energy density

corresponds to a different illumination.

1.2. Quantitative dynamic elastography

In the quantitative dynamic elastography we want to recover the tissue parameters from the tis-
sue displacement. In the simplified scalar elastic model u, one component of the displacement,
is the solution of the BVP (1) in which a is the shear modulus and q=−ρk2, where ρ is the density
and k is the frequency. We assume that k > 0 is known. Then the objective in that inverse prob-
lem is the determination of the shear modulus and the density from the knowledge of values of u
corresponding to different values of the boundary data f .

1.3. Microwave imaging by elastic deformation

The construction of the conductivity in the context of electrical impedance tomography from
boundary measurements is well known to be severely ill-conditioned. It is shown in Ammari,
Capdeboscq, de Gournay, Triki and Rozanova-Pierrat [5] that the boundary measurements with
simultaneous localized ultrasonic perturbations allow the recovery of the conductivity with good
resolution. In that case the electrical impedance tomography is substituted by the problem of
reconstructing the conductivity (and permittivity) from internal electrical energy densities. In
the microwave regime, this problem leads again to the BVP (1), where a is the conductivity and
q = −k2p, k > 0 is the frequency and p is the permittivity. The internal data is given by various
electrical energy densities of the form H = pu2 or H = a|∇u|2, corresponding to several boundary
data f .

In the preceding two examples, we assume that the frequency k is known. We suppose for
simplicity that k = 1.
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1.4. Acousto-optic imaging

When a medium is exited by an acoustic radiation then its optical properties are modified. It is
known that in this case the scattered field carries informations about the medium. This principle
was the basis for the development of a hybrid imaging modality, known as acousto-optic imaging.
In the simplified model, the electromagnetic energy density u solves the BVP (1) in which a is the
diffusion coefficient and q is the absorption coefficient (e.g. Bal and Schotland [7]). The measured
internal energy density for the actual inverse problem is given by H = qu2.

1.5. Main notations and definitions

In the rest of this text we use the following notations. The norm of a Banach space E is denoted by
‖·‖E . The ball, of a Banach space E , of center x0 ∈ E and radius r > 0 will denoted by BE (x0,r ). If E
and F are two Banach spaces, the norm of B(E ,F ), the Banach space of linear bounded operators
between E and F , will denoted by ‖·‖op.

Unless otherwise specified Ω is a C 1,1 bounded domain of Rn (n ≥ 2) with boundary Γ.
We denote by λ1(Ω) the first eigenvalue of the Laplace operator on Ω with Dirichlet boundary
condition.

For µ≥ 1 and λ≥ 0, define

Aµ =
{
a= (ak`) ∈C 0,1(Ω,Rn×n)

;
a is symmetric and
µ−1|ξ|2 ≤ (aξ|ξ) ≤µ|ξ|2 for all ξ ∈Rn

}
,

A s
µ = {a ∈C 0,1(Ω); aIn ∈Aµ},

Qλ = {q ∈ L∞(Ω); q≥−λ},

Q−
λ = {q ∈ L∞(Ω); 0 ≥ q≥−λ}.

Here ( · | · ) is the Euclidian scalar product on Rn and In is the n ×n identity matrix.
Let J = {(µ,λ) ∈ [1,∞) × [0,∞); µλ < λ1(Ω)}. Define, for all (µ,λ) ∈ J , Dµ,λ = Aµ × Qλ,

D•
µ,λ =A s

µ ×Q−
λ

and

D = ⋃
(µ,λ)∈J

Dµ,λ.

1.6. Local Lipschitz stability

Let r ≥ 2. We prove in Corollary 7 (Subsection 2.1) that, for any (a,q) ∈D and f ∈W 2−1/r,r (Γ), the
BVP (1) has a unique solution ua,q ∈W 2,r (Ω).

Theorem 1. Suppose that, for some 0 < θ < 1, Ω is of class C 2,θ, a0 ∈C 1,θ(Ω,Rn×n)∩Aµ, for some
µ≥ 1, and f ∈C 2,θ(Γ) satisfies f > 0. Let j = 1 or j = 2. Then there exists U , a neighborhood of 0 in
L∞(Ω), and a constant C =C (n,Ω,µ, f ,r ) so that, for any q, q̃ ∈U , we have

‖q− q̃‖L∞(Ω) ≤C‖qu j
q− q̃u j

q̃‖L∞(Ω), (2)

where uq = ua0,q and uq̃ = ua0,q̃.

In this theorem the case q ≥ 0, q̃ ≥ 0 and j = 1 corresponds to a stability inequality for the
problem that consists in the determination of the absorption coefficient q in the quantitative
photoacoustic tomography, from the energy density H = quq. The case q≥ 0, q̃≥ 0 and j = 2 gives
a stability inequality for the problem of determining the absorption coefficient in the acousto-
optic imaging, from the energy density H = qu2

q. While the case q ≤ 0, q̃ ≤ 0 and j = 2 contains
a stability result for the determination of the permittivity in the microwave imaging, from the
energy density H = qu2

q.

C. R. Mathématique — 2021, 359, n 10, 1251-1265



1254 Mourad Choulli

Next, we state a local Lipschitz stability estimate that applies to the problem of determining
the absorption coefficient in the acousto-optic imaging from the knowledge of an internal data.
Prior to doing that, we introduce a definition. Fix µ≥ 1 and 0 < q< q<µ−1λ1(Ω), and define

Q = {q ∈ L∞(Ω); q≤ q≤ q}.

Theorem 2. Assume that r = 2 and f satisfies essinf f = m > 0 on Γ. Let a ∈Aµ. For all q, q̃ ∈ Q, we
have, with uq = ua,q and uq̃ = ua,q̃,

‖q− q̃‖L2(Ω) ≤C‖qu2
q− q̃u2

q̃‖L2(Ω),

where C =C (n,Ω,µ,q,q,m).

Theorem 1 and 2 are to our knowledge new. Theorem 1 is in some sense optimal but cannot
be extended in a neighborhood of an arbitrary q. The case q ≤ 0 and j = 2 has already be
considered. Different Hölder stability inequalities were established by Choulli and Triki [12, 13].
Alessandrini [2] proved a Hölder stability inequality in any interior subdomain for a set of
unknown coefficients q defined by an implicit relation (Alessandrini [2, Inequality (1.5)]), from
the knowledge of the energy density qu2

q.

1.7. Conditional Hölder stability

Pick two constants 0 < q− ≤ q+ <λ1(Ω) and set

Q = {q ∈ L∞(Ω); q− ≤−q≤ q+}.

Fix %> 0 sufficiently large in such a way that

Q% = {q ∈Q∩C 0,1(Ω); ‖q‖C 0,1(Ω̄) ≤ %} 6= ;.

Let q ∈ Q and r ≥ 2. Noting that (In ,q) ∈ D, we deduce from Corollary 7 (Subsection 2.1) that
the BVP (1), in which we take a= In , has unique solution uq ∈W 2,r (Ω).

Theorem 3. Suppose that Ω is of class C 3, r > n, a = In and f ∈ H 5/2(Γ)∩W 2−1/r,r (Γ) is so that
f > 0 on Γ. Then, for any q, q̃ ∈Q%, we have

‖q− q̃‖L∞(Ω) ≤C%1−γ‖uq−uq̃‖γ/3
L2(Ω)

, (3)

where C =C (n,Ω,q−,q+, f ,r ) > 0 and 0 < γ= γ(n,Ω,q−,q+, f ) < 1 are constants.

We consider more general a in Theorem 4 below.

Theorem 4. Assume that Ω is of class C 3 and f ∈ H 5/2(Γ) is non constant. Let ωbΩ, (λ,µ) ∈ J

and % > 0. Then, for any (a,q), (ã,q) ∈ D•
λ,µ so that q ∈ C 0,1(Ω), ‖a‖C 0,1(Ω̄) ≤ %, ‖ã‖C 0,1(Ω̄) ≤ % and

a= ã on Γ, we have, with ua = ua,q and uã = uã,q,

‖a− ã‖C (ω̄) ≤C%1−γ‖ua−uã‖γ/3
L2(Ω)

,

where C =C (n,Ω,ω,λ,µ,q, f ) and 0 < γ= γ(n,Ω,ω,λ,µ, f ) are constants.

The preceding two theorems can be used to obtain stability inequalities for the quantitative
dynamic elastography (at least for the simplified model described above). Theorem 3 can be
interpreted as conditional stability estimate of the problem of recovering the density from the
knowledge of tissue displacement, assuming that the shear modulus is known and it is identically
equal to 1. While Theorem 4 gives an interior Hölder stability estimate of recovering the shear
modulus when the density is supposed to be known. Here again the internal data consists in the
tissue displacement.
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It is worth pointing out that local Hölder stability inequalities were established by Bonito,
Cohen, DeVore, Petrova and Welper [9] for the problem of determining the conductivity in the
equation

−div(a∇u) = f inΩ, u|Γ = 0,

from the knowledge of the corresponding solution, u = ua. The approach carried out in [9] in
quite different from the one we used in the present paper.

Fix 0 < β < 1 and, for 0 < κ ≤ Λ, define then Dκ,Λ as the set of couples (a,q) satisfying
a ∈C 1,β(Ω), q ∈C 0,β(Ω) and

q≥ 0, a≥κ and ‖a‖C 1,β(Ω̄) +‖q‖C 0,β(Ω̄) ≤Λ.

Suppose that f ∈ C 2,β(Γ). Then, in light of Gilbarg and Trudinger [15, Theorem 6.6, p. 98 and
Theorem 6.14, p. 107], the BVP (1) admits a unique solution ua,q( f ) ∈C 2,β(Ω) so that

‖ua,q( f )‖C 2,β(Ω̄) ≤ K , for all (a,q) ∈Dκ,Λ, (4)

where K = K (n,Ω,β,κ,Λ, f ) is a constant.

Theorem 5. Let f1, f2 ∈ C 2,β(Γ) with f1 > 0. Assume that Ω is of class C 2,β, h = f2/ f1 is non
constant and the set of critical points of h consists of its extrema. For all (a,q), (ã, q̃) ∈Dκ,Λ satisfying
(a,q) = (ã, q̃) on Γ, we have, with u j = ua,q( f j ) and ũ j = uã,q̃( f j ), j = 1,2,

‖a− ã‖C 1,β(Ω̄) +‖q− q̃‖C 0,β(Ω̄) ≤
(‖u1 − ũ1‖C (Ω̄) +‖u2 − ũ2‖C (Ω̄)

)γ ,

where C =C (n,Ω,β,κ,Λ, f1, f2) > 0 and 0 < γ= γ(n,Ω,β,κ,Λ, f1, f2) < 1 are constants.

In the case of dimension two functions called almost two-to-one, as it is defined in Nachman,
Tamasan and Timonov [17], have no other critical points than their extrema. A larger class of
functions admitting such property consists in quantitatively unimodal functions (e.g. Alessan-
drini and Nesi [4] for a precise definition).

Theorem 5 establishes conditional Hölder stability estimate of the quantitative photoacoustic
tomopography consisting in determining simultaneously the diffusion and the absorption coef-
ficients from two internal energy densities, corresponding to two well-chosen illuminations. This
theorem was already established in Bonnetier, Choulli and Triki [10] when the two illuminations
are generated from two point sources located outside the medium.

Theorem 5 improve the one obtained in Alessandrini, Di Cristo, Francini and Vessella [3] under
the assumptions that h is quantitatively unimodal and Ω is diffeomorphic to the unit ball. We
are convinced that the hypotheses of Theorem 5 on the boundary data are the best possible
guaranteeing Hölder’s type stability inequality in the whole domain.

The key point in the proof of Theorem 5 is a uniform lower bound for the gradient that we
obtain by a compactness argument (see Proposition 11).

The rest of this text is devoted to the proof of the results stated in this introduction. The local
Lipschitz stability inequalities are proved in Section 2. While the proofs of the conditional Hölder
stability inequalities are given in Section 3.

The technical results we used, without a proof, in Section 3 were already established in Bon-
netier, Choulli and Triki [10], Choulli and Triki [12] and Choulli and Triki [13]. These references
contain a detailed proof of these technical results.

For simplicity reason we only considered the case when the bilinear form

b(u, v) =
∫
Ω
a∇u ·∇v dx +

∫
Ω
quv dx

is coercive on H 1
0 (Ω). However the non homogenous BVP (1) is solvable provided that 0 is not an

eigenvalue of the operator −div(a∇·)+q, under Dirichlet boundary condition, and this property
remains true if (a,q) is substituted by (ã, q̃) sufficiently “close” to (a,q). We believe that the results
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obtained in the present work may be extended, at least partially, to coefficients (a,q) so that 0 is
not an eigenvalue of the operator −div(a∇·)+q, under Dirichlet boundary condition.

2. Local Lipschitz stability inequalities

2.1. Solvability of the BVP (1) in W 2,r (Ω)

It is contained in the following theorem.

Theorem 6. Let r ≥ 2.

(i) For any (a,q) ∈D, the linear mapping

Pa,q : u ∈W 2,r (Ω) 7−→ (−div(a∇u)+qu,u|Γ) ∈ Lr (Ω)×W 2−1/r,r (Γ)

is an isomorphism.
(ii) Let (a0,q0) ∈ D. Then there exists a constant δ = δ(a0,q0) > 0 so that, for any q ∈

BL∞(Ω)(0,δ),

Pa0,q0+q : u ∈W 2,r (Ω) 7−→ (−div(a∇u)+qu,u|Γ) ∈ Lr (Ω)×W 2−1/r,r (Γ)

is an isomorphism with

‖P −1
a0,q0+q‖op ≤ 2‖P −1

a0,q0
‖op, for all q ∈ BL∞(Ω)(0,δ).

Proof. (i). Follows by modifying slightly the proof of Choulli, Hu and Yamamoto [11, Theo-
rem 4.2].

(ii). Pick (F, f ) ∈ Lr (Ω)×W 2−1/r,r (Γ) and define the mapping T as follows

T : W 2,r (Ω) −→W 2,r (Ω) : u 7−→P −1
a0,q0

(−qu +F, f ).

Clearly, we have

T (u1)−T (u2) =P −1
a0,q0

(−q(u1 −u2),0).

Hence

‖T (u1)−T (u2)‖W 2,r (Ω) ≤ ‖P −1
a0,q0

‖op‖q‖L∞(Ω)‖u1 −u2‖W 2,r (Ω).

Let δ= 1/
[
2‖P −1

a0,q0
‖op

]
. Whence, if q satisfies ‖q‖L∞(Ω) < δ then

‖T (u1)−T (u2)‖W 2,r (Ω) ≤ (1/2)‖u1 −u2‖W 2,r (Ω). (5)

According to Banach’s fixed point theorem, T admits a unique fixed point u∗ ∈ W 2,r (Ω). In
other words, we proved that there exists a unique u∗ ∈ W 2,r (Ω) satisfying Pa0,q0+qu∗ = (F, f ).
Furthermore, we get in light of (5)

‖P −1
a0,q0+q(F, f )‖W 2,r (Ω) = ‖u∗‖W 2,r (Ω)

≤ ‖T (u∗)−T (0)‖W 2,r (Ω) +‖T (0)‖W 2,r (Ω)

≤ (1/2)‖u∗‖W 2,r (Ω) +‖P −1
a0,q0

‖op‖(F, f )‖Lr (Ω)×W 2−1/r,r (Γ)

≤ (1/2)‖P −1
a0,q0+q(F, f )‖W 2,r (Ω) +‖P −1

a0,q0
‖op‖(F, f )‖Lr (Ω)×W 2−1/r,r (Γ)

and then

‖P −1
a0,q0+q‖op ≤ 2‖P −1

a0,q0
‖op.

The proof is then complete. �

Corollary 7. For any (a,q) ∈ D and f ∈ W 2−1/r,r (Γ), the BVP (1) has a unique solution u =
P −1

a,q(0, f ).
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2.2. Differentiability properties

Fix (a0,q0) ∈ D and f ∈ W 2−1/r,r (Γ) non identically equal to zero. Let δ = δ(a0,q0) be as in
Theorem 6(ii). For notational convenience we use in the sequel the notations

Sq =P −1
a0,q0+q, for each q ∈ BL∞(Ω)(0,δ)

and $= 2‖P −1
a0,q0

‖op. That is, we have, according to Theorem 6(ii),

‖Sq‖op ≤$, for each q ∈ BL∞(Ω)(0,δ). (6)

Define
Ψ : BL∞(Ω)(0,δ) −→W 2,r (Ω) : q 7−→Sq(0, f ).

We claim that the mappingΨ is Lipschitz continuous. Indeed, for q1,q2 ∈ BL∞(Ω)(0,δ), we have

Sq1 (0, f )−Sq2 (0, f ) =Sq1 (F,0),

with
F = (q2 −q1)Sq2 (0, f ).

We find by applying twice inequality (6)

‖Sq1 (0, f )−Sq2 (0, f )‖W 2,r (Ω) ≤$2‖ f ‖W 2−1/r,r (Γ)‖q1 −q2‖L∞(Ω).

That is, we have
‖Ψ(q1)−Ψ(q2)‖W 2,r (Ω) ≤ c‖q1 −q2‖L∞(Ω), (7)

where c=$2‖ f ‖W 2−1/r,r (Γ).
Let q ∈ BL∞(Ω)(0,δ) and consider the linear map

Lq : p ∈ L∞(Ω) 7−→Sq(−pΨ(q),0) ∈W 2,r (Ω).

In light of (6) we have
‖Lq(p)‖W 2,r (Ω) ≤ c‖p‖L∞(Ω),

implying that Lq is bounded.
Next, let p ∈ L∞(Ω) so that p+q ∈ BL∞(Ω)(0,δ). Then it is not difficult to check that

Ψ(q+p)−Ψ(q)−Lq(p) =Sq(−p[Ψ(q+p)−Ψ(q)],0).

We get by applying inequality (6) and then inequality (7)

‖Ψ(q+p)−Ψ(q)−Lq(p)‖W 2,r (Ω) ≤ cκ‖p‖2
L∞(Ω).

This shows that Ψ is Fréchet differentiable at q. The differential of Ψ at q, denoted by Ψ′(q), is
then given by

Ψ′(q)(p) =Sq(−pΨ(q),0), for all p ∈ L∞(Ω). (8)

Let us now prove that

Ψ′ : BL∞(Ω)(0,δ) −→B(L∞(Ω),W 2,r (Ω))

is continuous. To this end, let q ∈ BL∞(Ω)(0,δ) and q̂ ∈ L∞(Ω) so that q+ q̂ ∈ BL∞(Ω)(0,δ). We get in
light of formula (8), where p ∈ L∞(Ω),

Ψ′(q+ q̂)(p)−Ψ′(q)(p) =Sq+q̂(−pΨ(q+ q̂),0)−Sq(−pΨ(q),0)

=Sq(−p[Ψ(q+ q̂)−Ψ(q)],0)+Sq(−q̂Ψ(q+ q̂),0).

We can proceed as before to derive, with the aid of inequalities (6) and (7), the following
estimate

‖Ψ′(q+ q̂)−Ψ′(q)‖op ≤C0‖q̂‖L∞(Ω),

where C0 > 0 is a constant independent of q̂. This shows thatΨ′ is continuous at q. In other words,
we proved that Ψ in continuously Fréchet differentiable in BL∞(Ω)(0,δ).

C. R. Mathématique — 2021, 359, n 10, 1251-1265
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2.3. Proof of Theorem 1

We give the proof for j = 1. That for j = 2 is quite similar.
According to C 2,θ-Hölder regularity, we get S0(0, f ) ∈ C 2,θ(Ω). Furthermore, in light of the

strong maximum principle (e.g. Gilbarg and Trudinger [15, Theorem 3.5, p. 35]), we have
S0(0, f ) > minΓ f in Ω.

Let Ψ be as in Subsection 2.2 with q0 = 0 and introduce the mapping

Φ : BL∞(Ω)(0,δ) −→ L∞(Ω) : q 7−→Φ(q) = qΨ(q).

Since Ψ is continuously Fréchet differentiable then so is Φ. We have in addition

Φ′(q)(p) = pΨ(q)+qΨ′(q)(p), for all p ∈ L∞(Ω).

In particular

Φ′(0)(p) = pΨ(0) (= pS0(0, f )), for all p ∈ L∞(Ω).

We define the linear map ` : L∞(Ω) → L∞(Ω) by

`(h) = [Ψ(0)]−1h, h ∈ L∞(Ω).

Clearly, ` is bounded with

‖`‖op ≤ ‖[Ψ(0)]−1‖L∞(Ω).

We can check that ` is the inverse ofΦ′(0). Therefore, according to the inverse function theoremΦ

is a diffeomophism from a neighborhood U of 0 in L∞(Ω) onto a neighborhood V of 0 in L∞(Ω).
Whence the expected inequality follows.

2.4. Proof of Theorem 2

The proof is inspired by that of Bal, Ren, Uhlmann and Zhou [6, Theorem 3.1].
Pick q, q̃ ∈ Q, and set u = uq, ũ = uq̃, v = qu2 and ṽ = q̃ṽ2. In light of Gilbarg and Trudinger [15,

Theorem 8.1, p. 179] we have

u ≥ m, ũ ≥ m on Ω. (9)

On the other hand straightforward computations give

div(a∇(u − ũ))+
√
qq̃(u − ũ) = (

p
q+

√
q̃)(

p
v −

p
ṽ).

Taking into account that u − ũ ∈ H 1
0 (Ω), we find by applying Green’s formula∫

Ω
a∇(u − ũ) ·∇(u − ũ)dx −

∫
Ω

√
qq̃(u − ũ)2 dx =

∫
Ω

(
p
q+

√
q̃)(

p
ṽ −p

v)(u − ũ)dx. (10)

But ∫
Ω

√
qq̃(u − ũ)2 dx ≤ q

∫
Ω

(u − ũ)2 dx, (11)

and, using that a ∈Aµ and Poincaré’s inequality, we find∫
Ω
a∇(u − ũ) ·∇(u − ũ)dx ≥µ−1λ1(Ω)

∫
Ω

(u − ũ)2 dx. (12)

Therefore (11) and (12) in (10) yield

(µ−1λ1(Ω)−q)
∫
Ω

(u − ũ)2 dx ≤
∫
Ω

(
p
q+

√
q̃)(

p
ṽ −p

v)(u − ũ)dx,

which, combined with Cauchy–Schwarz’s inequality, entails

‖u − ũ‖L2(Ω) ≤
2
√
qµ

λ1(Ω)−µq‖
p

ṽ −p
v‖L2(Ω). (13)
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Also, elementary calculations enable us to establish the following identity√
q̃−p

q=
√
qq̃p
v

(u − ũ)+
p
qp
v

(
p

ṽ −p
v).

Whence

‖
√
q̃−p

q‖L2(Ω) ≤
q√
qm

‖u − ũ‖L2(Ω) +
√

q√
qm

‖
p

ṽ −p
v‖L2(Ω). (14)

Let

C = 2q
√
qµ√

qm(λ1(Ω)−µq)
+

√
q√
qm

.

Then (13) together with (14) imply

‖
√
q̃−p

q‖L2(Ω) ≤C‖
p

ṽ −p
v‖L2(Ω).

To complete the proof it is sufficient to use the following inequalities

‖q̃−q‖L2(Ω) = ‖(
√
q̃+p

q)(
√
q̃−p

q)‖L2(Ω) ≤ 2
√
q‖

√
q̃−p

q‖L2(Ω),

‖
p

ṽ −p
v‖L2(Ω) =

∥∥∥∥ ṽ − vp
ṽ +p

v

∥∥∥∥
L2(Ω)

≤ 1

2
√
qm

‖ṽ − v‖L2(Ω).

Remark 8. We observe that the uniqueness result corresponding to Theorem 2 holds for a larger
class of unknown coefficients q, only under the weaker assumption that f is non identically equal
to zero. We refer to Choulli and Triki [12, Theorem 2.1] for further details.

3. Hölder Stability inequalities

3.1. Proof of Theorem 3

Let 0 < γ ≤ 1. We say W ⊂ L1+(Ω) = {w ∈ L1(Ω); w ≥ 0} is a uniform set of weights for the
interpolation inequality

‖φ‖L∞(Ω) ≤C‖φ‖1−µ
C 0,γ(Ω̄)

‖φw‖µ
L1(Ω)

, (15)

if the constants C > 0 and 0 <µ< 1 can be chosen independently of w ∈W and φ ∈C 0,γ(Ω).
We note that our choice of r guarantees that W 2,r (Ω) is continuously embedded in C (Ω). Let

then ẽ denotes the norm of this embedding.
Fix 0 < m ≤ ẽM and set

S = {
u ∈W 2,r (Ω); −∆u +qu = 0 inΩ, for some q ∈Q,‖u‖W 2,r (Ω) ≤ M and |u|Γ| ≥ m

}
.

Minors modifications in the proof of Choulli and Triki [13, Theorem 2.2] yield the following
result.

Theorem 9. W = {w = u2; u ∈ S } is a uniform set of weights for the weighted interpolation
inequality (15), with C =C (n,Ω,r,q−,q+,m, M) and µ=µ(n,Ω,r,q−,q+,m, M).

We know that, according to Choulli, Hu and Yamamoto [11, Theorem 4.2], there exists a
constant M = M(n,Ω,r, f ,q−,q+) so that

‖uq‖W 2,r (Ω) ≤ M , for all q ∈Q. (16)

In light of Theorem 9 we have the following consequence.

Corollary 10. Let W = {w = u2
q; q ∈ Q}. Suppose that f > 0 on Γ. Then W is a uniform set

of weights for the weighted interpolation inequality (15), with C = C (n,Ω,r,q−,q+, f ) and µ =
µ(n,Ω,r,q−,q+, f ).
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We are now ready to complete the proof of Theorem 3. We pick q, q̃ ∈ Q% and, for sake of
simplicity, we set u = uq and ũ = uq̃.

We have {
−∆u =−qu ∈ H 1(Ω) in Ω,

u|Γ = f .

In light of Lions and Magenes [16, Theorem 5.4, p. 165] we obtain, since f ∈ H 5/2(Γ), that
u ∈ H 3(Ω) and, for some constant c = c(n,Ω), we have

‖u‖H 3(Ω) ≤ c
(‖qu‖H 1(Ω) +‖ f ‖H 5/2(Γ)

)
.

This and (16) yield in a straightforward manner that

‖u‖H 3(Ω) ≤C , (17)

where C =C (n,Ω, f ,r,q−,q+).
Similarly, ũ ∈ H 3(Ω) and

‖ũ‖H 3(Ω) ≤C , (18)

with C as in (17).
Using the identity

(q− q̃)u =∆(u − ũ)+ q̃(ũ −u),

we find

‖(q− q̃)u‖L2(Ω) ≤ ‖u − ũ‖H 2(Ω) +q+‖ũ −u‖L2(Ω).

This inequality together with the interpolation inequality, where c = c(n,Ω) is a constant,

‖w‖H 2(Ω) ≤ c‖w‖2/3
H 3(Ω)

‖w‖1/3
L2(Ω)

, w ∈ H 3(Ω), (19)

(17) and (18) imply

‖(q− q̃)u‖L2(Ω) ≤C‖ũ −u‖1/3
L2(Ω)

(20)

Here and until the end of this subsection C = C (n,Ω,r,q−,q+, f ) > 0 is a generic constant. From
Corollary 10 there exists a constant 0 <µ=µ(n,Ω,q−,q+, f ) < 1 such that

‖q− q̃‖L∞(Ω) ≤C‖q− q̃‖1−µ
C 0,1(Ω)

‖(q− q̃)u2‖µ
L1(Ω)

.

Hence

‖q− q̃‖L∞(Ω) ≤C%1−µ‖(q− q̃)u‖µ
L2(Ω)

‖u‖µ
L2(Ω)

.

Using (17) in order to get

‖q− q̃‖L∞(Ω) ≤C%1−µ‖(q− q̃)u‖µ
L2(Ω)

.

This estimate together with (20) give

‖q− q̃‖L∞(Ω) ≤C%1−µ‖u − ũ‖µ/3
L2(Ω)

.

This is the expected inequality.
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3.2. Proof of Theorem 4

In this proof sgn0 denotes the sign function given by: sgn0(t ) = −1 if t < 0, sgn0(0) = 0 and
sgn0(t ) = 1 if t > 0. Let (a,q), (ã,q) ∈D•

λ,µ with a= ã on Γ and

‖a‖C 0,1(Ω̄) ≤ %, ‖ã‖C 0,1(Ω̄) ≤ %. (21)

For notational convenience we set u = ua and ũ = uã. We obtain after some straightforward
computations

div(|a− ã|∇u) = sgn0(a− ã)[q(u − ũ)+div(ã∇(u − ũ))].

Whence ∫
Ω

div(|a− ã|∇u)u dx =
∫
Ω

sgn0(a− ã)[q(u − ũ)+div(ã∇(u − ũ))]u dx.

Taking into account that a = ã on Γ, we get by applying Green’s formula to the left hand side of
the last identity ∫

Ω
|a− ã||∇u|2 dx =

∫
Ω

sgn0(a− ã)[q(u − ũ)+div(ã∇(u − ũ))]u dx. (22)

Reducing (1) to a BVP with homogeneous boundary condition, we prove in a straightforward
manner that

‖u‖H 1(Ω) ≤C , (23)

where C =C (n,Ω,µ,λ,%, f ) is a constant. We then proceed as in Theorem 3 in order to get

‖u‖H 3(Ω) ≤C . (24)

Here and henceforward C =C (n,Ω,µ,λ,%,q, f ) is a generic constant.
We use (22) and (23) in order to get

‖|a− ã||∇u|2‖L1(Ω) ≤C‖u − ũ‖H 2(Ω). (25)

As (23) and (24) remain valid when u is substituted by ũ, we obtain by using (19) together
with (24)

‖u − ũ‖H 2(Ω) ≤C‖u − ũ‖1/3
L2(Ω)

.

This inequality in (25) entails

‖|a− ã||∇u|2‖L1(Ω) ≤C‖u − ũ‖1/3
L2(Ω)

. (26)

On the other hand, we can proceed similarly to the proof of Bonnetier, Choulli and Triki [10,
Lemma 3.7], by applying Garofalo and Lin [14, Theorem 2.1] instead of Bonnetier, Choulli and
Triki [10, Lemma 3.6], in order to obtain

‖a− ã‖C (ω̄) ≤C‖a− ã‖1−γ
C 0,1(Ω̄)

‖|a− ã||∇u|2‖γ
L1(Ω)

, (27)

where 0 < γ= γ(n,Ω,ω,µ,λ,%, f ) < 1 and C =C (n,Ω,ω,µ,λ,%, f ) are constants.
We end up getting the expected inequality by putting together (26) and (27).

3.3. Uniform lower bound for the gradient at the boundary

Fix 0 < γ< ν< 1 and, for 0 <σ0 ≤σ1, set

Σ=
{
σ ∈C 1,ν(Ω); σ≥σ0 and ‖σ‖C 1,ν(Ω̄) ≤σ1

}
.

Pick ϕ ∈C 2,γ(Γ) be non constant so that its critical points are its extrema. Consider then the BVP{
div(σ∇u) = 0 in Ω,

u|Γ =ϕ.
(28)
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As C 1,ν(Ω) is continuously embedded in C 1,γ(Ω), with reference to Gilbarg and Trudinger [15,
Theorem 6.6, p. 98 and Theorem 6.14, p. 107] we deduce that, for any σ ∈ Σ, the BVP (28) has a
unique solution uσ ∈C 2,γ(Ω) so that

‖uσ‖C 2,γ(Ω̄) ≤C , (29)

where C =C (n,Ω,ϕ,σ0,σ1,γ,ν) is a constant.

Proposition 11. There exists a constant η= η(n,Ω,ϕ,σ0,σ1,γ,ν) > 0 so that

|∇uσ(x)| ≥ η for all (x,σ) ∈ Γ×Σ. (30)

Proof. Letσ ∈Σ. We first note that, according to the strong maximum principle, uσ achieves both
its maximum and its minimum onΓ. That is, the maximum and the minimum of uσ coincide with
those of ϕ. But according to Hopf’s lemma (e.g. Gilbarg and Trudinger [15, Lemma 3.4, p. 34]), if
x ∈ Γ is an extremum point then |∂νu(x)| > 0. On the other hand, according to the assumption on
ϕ, we have |∇τuσ(x)| = |∇τϕ(x)| > 0 if x is not an extremum point of ϕ, where ∇τ stands for the
tangential gradient. In consequence |∇uσ(x)| > 0 for any x ∈ Γ.

Let Σ+ = {σ ∈C 1,γ(Ω);σ> 0} and consider the mapping

T : (x,σ) ∈ Γ×Σ+ −→ [0,∞) : (x,σ) 7−→ |∇uσ(x)|.
Fix σ ∈Σ+. Let σ′ ∈C 1,γ(Ω) so that ‖σ′‖C 1,γ(Ω̄) ≤ 1 and σ+σ′ > minσ/2. We have{

div(σ∇(uσ−uσ+σ′ )) = div(σ′∇uσ+σ′ ) in Ω,

(uσ−uσ+σ′ )|Γ = 0,

We can apply twice Gilbarg and Trudinger [15, Theorem 6.6, p. 98] in order to get

‖uσ−uσ+σ′‖C 2,γ(Ω̄) ≤C‖σ′‖C 1,γ(Ω̄), (31)

where C =C (n,Ω,ϕ,σ0,σ1,γ,ν) is a constant.
Therefore, for any x, x ′ ∈ Γ, we have∣∣|∇uσ(x)|− |∇uσ+σ′ (x ′)|∣∣≤ |∇uσ(x)|−∇uσ(x ′)|+ |∇uσ(x ′)|−∇uσ+σ′ (x ′)|

≤C
(|x −x ′|+‖σ′‖C 1,γ(Ω̄)

)
.

That is, the mapping T is continuous. We complete the proof by noting that, according to Gilbarg
and Trudinger [15, Lemma 6.36, p. 136], Γ×Σ is a compact subset of Γ×Σ+. �

3.4. Proof of Theorem 5

Hereafter, for δ> 0, we use the notations

Ωδ = {z ∈Ω; dist(z,Γ) ≤ δ},

Ωδ = {z ∈Ω; dist(z,Γ) ≥ δ}.

Lemma 12. Under the condition minΓ f > 0, we have

ua,q( f ) ≥ ε for any (a,q) ∈Dκ,Λ,

where ε= ε(n,Ω,κ,Λ, f ) > 0 is a constant

Proof. Let (a,q) ∈Dκ,Λ, u = ua,q( f ), and let K be the constant in (4). If x ∈Ω and y ∈ Γ are so that
|x − y | ≤ δ, then

u(x) ≥ u(y)−K |x − y |β ≥ m −Kδβ,

where m = minΓ f .
We get by taking δ= [m/(2K )]1/β

u(x) ≥ m/2 for any x ∈Ωδ. (32)
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We apply Harnak’s inequality (e.g. Gilbarg and Trudinger [15, Theorem 8.21, p. 199]) in order to get

sup
Ωδ/2

u ≤ c inf
Ωδ/2

u,

where c = c(n,Ω,κ,Λ, f ) > 0 is a constant.
Inequality (32) then yields

m/(2c) ≤ u(x) for any x ∈Ωδ/2. (33)

The expected inequality follows by putting together (32) and (33). �

As a consequence of estimate (4) and Lemma 12 we obtain, after making straightforward
calculations, the following result.

Corollary 13. Let (a,q) ∈Dκ,Λ, f1, f2 ∈C 2,β(Γ) with f1 > 0. Set

w = wa,q =
ua,q( f2)

ua,q( f1)
, h = f2

f1
and σ= au2

a,q( f1).

Then w ∈C 2,β(Ω) is the solution of the BVP

div(σ∇w) = 0 in Ω, w|Γ = h.

Furthermore

µ0 ≤σ, ‖σ‖C 1,β(Γ) ≤µ1 and ‖w‖C 2,β(Ω̄) ≤ M , (34)

for some positive constants µ0 = µ0(n,Ω,κ,Λ,β, f1), µ1 = µ1(n,Ω,κ,Λ, f1) and M = M(n,Ω,λ,
Λ,β, f1, f2).

Let w = wa,q be as in the preceding corollary. In light of Proposition 11 we have

|∇w(y)| ≥ η for any y ∈ Γ,

for some constant η= η(n,Ω,κ,Λ,β, f1, f2) > 0.
Pick δ> 0. Let x ∈Ωδ and y ∈ Γ so that |x − y | ≤ δ. Then

|∇w(x)| ≥ |∇w(y)|−M êδ≥ η−M êδ,

where ê is a constant depending only on the embedding C 2,β(Ω) ,→ C 1,1(Ω). We then fix δ > 0
sufficiently small in such a way that

|∇w(x)| ≥ η/2 for any x ∈Ωδ. (35)

We get by applying Bonnetier, Choulli and Triki [10, Corollary 3.1] that

Cρυ ≤ ‖∇w‖2
L2(B(x,ρ)) for any x ∈Ωδ and 0 < ρ < δ, (36)

where C =C (n,Ω,κ,Λ,β, f1, f2,δ) and υ= υ(n,Ω,κ,Λ,β, f1, f2,δ) are positive constants.

Lemma 14. If w is as in Corollary 13 then

‖φ‖C (Ω̄) ≤C‖φ‖1−γ
C 0,β(Ω̄)

‖φ|∇w |‖γ
L1(Ω)

, for anyφ ∈C 0,β(Ω), (37)

where C =C (n,Ω,β,κ,Λ, f1, f2) > 0 and 0 < γ= γ(n,Ω,β,κ,Λ, f1, f2) < 1 are constants.

Proof. By homogeneity it is sufficient to prove (37) with φ ∈C 0,β(Ω) satisfying ‖φ‖C 0,β(Ω̄) = 1.
For x ∈Ωδ and y ∈ B(x,ρ), 0 < ρ < δ, we have

| f (x)| ≤ | f (y)|+ρβ.

In consequence

|φ(x)|
∫

B(x,ρ)
|∇w(y)|2 dy ≤

∫
B(x,ρ)

|φ(y)||∇w(y)|2 dy +ρβ
∫

B(x,ρ)
|∇w(y)|2 dy.
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As w is non constant, we have ‖∇w‖L2(B(x,ρ) 6= 0 by the uniqueness of continuation property and
hence

|φ(x)| ≤ ‖φ|∇w |2‖L1(Ω)

‖∇w‖2
L2(B(x,ρ))

+ρβ.

This and (36) yield

C |φ(x)| ≤ ρ−υ‖φ|∇w |2‖L1(Ω) +ρβ for any x ∈Ωδ and 0 < ρ < δ.

That is, we have

C‖φ‖L∞(Ωδ) ≤ ρ−υ‖φ|∇w |2‖L1(Ω) +ρβ for any 0 < ρ < δ. (38)

Next, assume that ‖φ‖L∞(Ωδ) 6= 0. Pick then x0 ∈Ωδ so that |φ(x0)| = ‖φ‖L∞(Ωδ). For 0 < ρ < δ,
we have

|φ(x0)| ≤ |φ(x)|+ρβ x ∈ B(x0,ρ)∩Ωδ.

Whence

|φ(x0)| ≤ (η/2)−2|φ(x)||∇w |2 +ρβ x ∈ B(x0,ρ)∩Ωδ

implying

|φ(x0)||B(x0,ρ)∩Ωδ| ≤ (η/2)−2
∫

B(x0,ρ)∩Ωδ

|φ(x)||∇w |2 +ρα|B(x0,ρ)∩Ωδ|.

But since Ω has the uniform interior cone property, we have |B(x0,ρ) ∩Ωδ| ≥ cρn , for any
0 < ρ < δ/2, where c = c(Ω) is a constant. In consequence

C‖φ‖L∞(Ωδ) ≤ ρ−n‖φ|∇w |2‖L1(Ω) +ρβ for any 0 < ρ < δ/2. (39)

A combination of (38) and (39) gives

C‖φ‖L∞(Ω) ≤ ρ−k‖φ|∇w |2‖L1(Ω) +ρβ for any 0 < ρ < δ/2, (40)

where k = max(n,υ).
A well known argument consisting in minimizing the right hand side of (40) with respect to ρ

yields the expected inequality. �

Let (a,q), (ã, q̃) ∈Dκ,Λ satisfying (a,q) = (ã, q̃) on Γ. With the aid of the weighted interpolation
inequality (37), we can mimic the last part of the proof of Bonnetier, Choulli and Triki [10,
Theorem 1.1] in order to prove the following stability inequality, with for j = 1,2, u j = ua,q( f j )
and ũ j = uã,q̃( f j ),

‖a− ã‖C 1,β(Ω̄) +‖q− q̃‖C 0,β(Ω̄) ≤
(‖u1 − ũ1‖C (Ω̄) +‖u2 − ũ2‖C (Ω̄)

)γ ,

where C =C (n,Ω,β,κ,Λ, f1, f2) > 0 and 0 < γ= γ(n,Ω,β,κ,Λ, f1, f2) < 1 are constants. Theorem 5
is then proved.
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