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1. Introduction and main results

The confluent hypergeometric function 1F1(a;b; x), which is defined as

1F1(a;b; x) =
∞∑

n=0

(a)n

(b)n

xn

n!

for b 6= 0,−1, . . . , is a particular solution of the linear differential equation

x y ′′+ (b −x)y ′−ay = 0. (1)

When a is a non-positive integer, the function 1F1(a;b; x) reduces to Laguerre polynomials, i.e.

L(b−1)
n (x) = (b)n

n!
1F1(−n;b; x), n = 0, 1, 2, . . . .

The function 1F1 is a special case of the generalized hypergeometric function

p Fq (a1, . . . , ap ;b1, . . . ,bq ; x) =
∞∑

n=0

∏p
i=1(ai )n∏q
j=1(b j )n

xn

n!
, (2)

p and q are non-negative integers, none of the numbers b j ( j = 1, . . . , q) is equal to zero or to a
negative integer. It is well known that the series p Fq (a1, . . . , ap ;b1, . . . ,bq ; x) converges absolutely
for all x if p ≤ q and for |x| < 1 if p = q +1, and it diverges for all x 6= 0 if p > q +1. If one of the
parameters ai equals zero or a negative integer, then the series (2) reduces to a polynomial.

The confluent hypergeometric function has been studied in great detail from its mathemat-
ical point of view (see, for instance, [12, 14, 18]). In particular, the estimate of the confluent hy-
pergeometric function 1F1(a;b; x) has been widely and deeply studied when x > 0 and b > a > 0
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(see [3, 13], and references therein). For instance, Luke [13], among others, proved the following
inequalities

e
a
b x < 1F1(a;b; x) < 1− a

b
+ a

b
ex , x > 0,b > a > 0,

1F1(a;b; x) < (b −1)ex

(b −a −1)(1+x)
, x > 0,b −1 > a > 0.

We remark that when x > 0, b > a and b > 1
2 , Love [11, Corollary 2] showed that

|1F1(a;b; x)| ≤ Γ(b −a)ex

|Γ(1−a)|Γ(b)
. (3)

Unfortunately, the conditions given for (3) do not seem to be correct. For instance, for a ∈N and
b > a, (3) gives 1F1(a;b; x) = 0 for any x > 0.

When the parameters verify the so called oscillatory conditions a < 0 and b−a > 1, the estimate
of 1F1(a;b; x) is much more complicated and, to the author’s knowledge, has not been studied
in the literature, except for the case when a is a negative integer and b > 0 (see, for instance,
[9, 10, 17, 21, 23], and references therein).

It is well known that, for a < 0 and b > 0, 1F1(a;b; x) has a finite number of real zeros (see [18,
Section 13.9])

x1
a,b < x2

a,b < ·· · .

Based on the Kummer transformation

1F1(a;b; x) = ex
1F1(b −a;b;−x),

it follows that the real zeros of 1F1(a;b; x) are positive when a < 0 and b > 0.
In this paper, we use the Sonin–Pólya theorem as well as the Watson–Glaeske product formula

for confluent hypergeometric functions to study the maximum value of 1F1(a;b; x) with oscilla-
tory conditions of parameters.

Here is our main results.

Theorem 1. For a < 0 and b > 1

max
x≥0

e−x |1F1(a;b; x)| = 1. (4)

Moreover, this maximum value is attained only when x = 0.

Corollary 2. When a < 0 and b > 1, let ξk , k = 1, . . . , be the successive maxima of y(x) =
e−x

1F1(a;b; x) arranged in increasing order, and let jb,k be the k-th positive zero of the Bessel
function Jb(x). Then,

y2(ξi )− y2(ξ j ) < b −a

b2

(
2b −1

2
∆ξ2

i j +
2

3
∆ξ3

i j

)
, i < j ,

where ∆ξk
i j = ξk

j −ξk
i and

ξk =
j 2

b,k

2b −4a +2

(
1+

2(b2 −1)+ j 2
b,k

3(2b −4a +2)2

)
+O

(
1

a5

)
, as a →−∞.

We remark that from the asymptotics (see [14, Section 6.8.2])

e−x
1F1(a;b; x) = Γ(b)

Γ(a)
xa−b[1+O(x−1)], x →+∞,

where a is not a negative integer or zero, it follows that e−x in Theorem 1 cannot be replaced by
any e−cx , 0 ≤ c < 1. In the case when a is a negative integer or zero, we have (see [23])

max
x≥0

e−
x
2 |1F1(a;b; x)| = 1, (5)

where b > 1.
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On the other hand, in the oscillation region of 1F1(a;b; x), we have the following result
analogous to (5).

Theorem 3. Let a < 0 and b > 1. For 0 ≤ x < (2b−1)(b−2a)
b

e−
x
2 |1F1(a;b; x)| ≤ 1. (6)

Furthermore, for 0 ≤ x < (2b−1)(b−2a)
2b

e−
x
2 |1F1(a;b; x)| ≤

√
M (x,b), (7)

where

M (x,b) = b −1

π

∫ π

0

∫ π

0
|cos(x sinθcosψ)|(sinψ)2b−3(sinθ)2b−2 dψdθ

and it has the property
0 <M (x,b) <M (0, x) = 1, x > 0.

Consequently, by applying (4) and (5), we obtain the following inequalities for the Gauss
hypergeometric function 2F1.

Corollary 4. Let a < 0, b > 1 and ℜe(σ) > 0.

(i) If a is not a negative integer and 0 ≤ x <ℜe(z)∣∣∣2F1

(
σ, a;b;

x

z

)∣∣∣≤√
cosh(πℑm(σ)) |zσ| [ℜe(z)−x]−ℜe(σ) . (8)

In particular, for σ> 0 and 0 ≤ x < 1

|2F1(σ, a;b; x)| ≤ (1−x)−σ.

(ii) If a is a negative integer and 0 ≤ x < 2ℜe(z)∣∣∣2F1

(
σ, a;b;

x

z

)∣∣∣≤√
cosh(πℑm(σ)) |zσ|

[
ℜe(z)− x

2

]−ℜe(σ)
.

In particular, for σ> 0 and 0 ≤ x < 2

|2F1(−n,σ;b; x)| ≤
(
1− x

2

)−σ
, n ∈N∪ {0}.

Under condition a > 0, several lower and upper bound inequalities for 2F1(σ, a;b; x) have been
derived in the literature using different approaches (e.g. [2–4,6,13,22] and references therein). For
instance, in [13, Theorem 13], Luke gave the following two-sided bounds(

1− a

b
x
)−σ

< 2F1(σ, a;b; x) < 1− a

b
+ a

b
(1−x)−σ , 0 < x < 1,0 <σ,0 < a < b,

whereas Karp and Sitnik [6, Theorem 5] showed that

2F1(σ, a;b; x) <
(
1− a

b −1
x
)−σ

, 0 < x < 1,0 <σ≤ 1,1 < a +1 < b.

On the other hand, in [22] the authors derived some inequalities for the Gauss hypergeometric
function 2F1(σ, a;b, x) when −1 < a < 0, 1 < b < 2, 0 <σ< 1, and x ∈ (0,1). We remark that when a
is a negative integer or zero, the estimate of the polynomial 2F1(a,σ;b; x) has been considered in
several papers from different point of views (see for instance [7, 8] and references therein)

2. Proof of the main results

One of the main tool that we need for our purpose is the well-known Sonin–Pólya theorem
(see [21, footnote to Theorem 7.31.1]) in the following form given by Szegö. Notice that this
theorem was used by Szegö [21] in a similar context to study the successive relative maxima of
classical orthogonal polynomials.

C. R. Mathématique — 2021, 359, n 10, 1217-1224
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The Sonin–Pólya theorem

Suppose that a function y = y(x) satisfies on an interval I ⊂R the differential equation

(py ′)′+q y = 0, (9)

where p = p(x) > 0, q = q(x) > 0 and both p ′ and q ′ are continuous on that interval. Define Sonin’s
function by

S(x) := y2(x)+ p(x)

q(x)
y ′2(x), (10)

then we observe that

S′(x) =−[p (x)q(x)]′
[

y ′(x)

q(x)

]2

, (11)

by which successive relative maxima of y2 form an increasing or decreasing sequence according
as pq decreases or increases on the corresponding interval.

Now, we can prove our main results.

Proof of Theorem 1. From (1), the corresponding differential equation for y(x)=e−x
1F1(a;b;x) is

x y ′′+ (b +x)y ′+ (b −a)y = 0.

By writing it in the self-adjoint form

(xbex y ′)′+ (b −a)xb−1ex y = 0,

we see that
p(x) = xbex , q(x) = (b −a)xb−1ex

and
[p (x)q(x)]′ = (b −a)(2b −1+2x)x2b−1e2x .

Thus, if a < 0 and b > 1, the successive relative maxima of |e−x
1F1(a;b; x)| are decreasing on [0,∞)

and
[e−x

1F1(a;b; x)]2 ≤ S(x) ≤ S(0) = y2(0) = 1, x ≥ 0.

This proves (4). �

Proof of Corollary 2. We observe that, using the differential equation

d

dx
[e−x

1F1(a;b; x)] =−b −a

b
e−x

1F1(a;b +1; x), (12)

ξk = xk
a,b+1, for all k = 1, . . . .

Thus, from (10) and (11) one has

y2(ξ j )− y2(ξi ) =− 1

b −a

∫ ξ j

ξi

x(2b −1+2x)[y ′(x)]2 dx, i < j .

Now we can apply (4) and (12) to yield

y2(ξi )− y2(ξ j ) < b −a

b2

∫ ξ j

ξi

x(2b −1+2x)dx

= b −a

b2

(
2b −1

2
∆ξ2

i j +
2

3
∆ξ3

i j

)
,

where ∆ξk
i j = ξk

j −ξk
i .

Finally, taking into account that the k-th positive zero xk
a,b can be approximated by (see [18,

Section 13.9])
j 2

b−1,k

2b −4a

(
1+

2b(b −2)+ j 2
b−1,k

3(2b −4a)2

)
+O

(
1

a5

)
, as a →−∞,

we can achieve the proof of the corollary. �
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Proof of Theorem 3. For the proof of (6), we proceed as in the proof of (4). According to (1), it is
straightforward to check that the function y(x) = e−

x
2 1F1(a;b; x) satisfies

x y ′′(x)+by ′(x)+ 2b −4a −x

4
y(x) = 0. (13)

In its self-adjoint form equation (13) becomes

(xb y ′(x))′+ 2b −4a −x

4
xb−1 y(x) = 0,

which corresponds to equation (9) with

p(x) = xb , q(x) = 2b −4a −x

4
xb−1,

and

[p (x)q(x)]′ = x2b−2

2
[(2b −1)(b −2a)−bx] .

Thus, for a < 0 and b > 1, the successive relative maxima of |e− x
2 1F1(a;b; x)| are decreasing if

0 < x < (2b−1)(b−2a)
b and increasing if (2b−1)(b−2a)

b < x < 2b −4a. This completes the proof of (6).
We now continue with the proof of (7). Our starting point in the proof is the Glaeske [5] product

formula for Laguerre functions, which in terms of the confluent hypergeometric functions can be
written as

1F1(a;b; x) · 1F1(a;b; y) = Γ(b)p
π

∫ π

0
e−

p
x y cosθ(sinθ)2b−2Jb− 3

2
(
p

x y sinθ)

× 1F1(a;b; x + y +2
p

x y cosθ)dθ, (14)

where x, y ≥ 0, ℜe(b) > 1
2 , and Jν(z) := ( z

2

)−ν Jν(z). For a = −n, n ∈ N, equation (14) was
first obtained by Watson [23] and later on by several authors using quite different methods
(see [5, 7, 16, 19, 20]), whereas in [15] Markett gave another, analytic proof of Glaeske’s result. In
Appendix A, we give another simple proof of (14).

Using Poisson’s integral (see [23, 3.3])

Jν(z) = 1p
πΓ

(
ν+ 1

2

) ∫ π

0
e i z cosψ(sinψ)2νdψ, ℜe(ν) >−1

2
,

the product formula (14) becomes

1F1(a;b; x) · 1F1(a;b; y) = b −1

π

∫ π

0

∫ π

0
e−

p
x y cosθ+i

p
x y sinθcosψ(sinψ)2b−3(sinθ)2b−2

× 1F1(a,b, x + y +2
p

x y cosθ)dψdθ

= b −1

π

∫ π

0

∫ π

0
e−

p
x y cosθ cos(

p
x y sinθcosψ)(sinψ)2b−3

× (sinθ)2b−2
1F1(a,b, x + y +2

p
x y cosθ)dψdθ.

(15)

We put x = y in (15) and multiply the obtained relation by e−x . As a result, we obtain[
e−

x
2 1F1(a;b; x)

]2 = b −1

π

∫ π

0

∫ π

0
cos(x sinθcosψ)(sinψ)2b−3(sinθ)2b−2

×e−x(1+cosθ)
1F1(a,b,2x(1+cosθ))dψdθ.

Then, taking into account (6), for 0 ≤ x < (2b−1)(b−2a)
2b[

e−
x
2 1F1(a;b; x)

]2 ≤ b −1

π

∫ π

0

∫ π

0
|cos(x sinθcosψ)|(sinψ)2b−3(sinθ)2b−2 dψdθ =M (x,b).

Finally, based on equation (20), we have

0 <M (x,b) <M (0,b), x > 0.

The proof of Theorem 3 is completed. �
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Proof of Corollary 4. (i). Applying inequality (4) to the confluent hypergeometric function ap-
pearing in the Laplace transform of the Gauss hypergeometric function (see [12, p. 59])

2F1

(
σ, a;b;

x

z

)
= zσ

Γ(σ)

∫ ∞

0
e−zt tσ−1

1F1(a;b; xt )dt ,

where 0 ≤ x <ℜe(z) and ℜe(σ) > 0, we have∣∣∣2F1

(
σ, a;b;

x

z

)∣∣∣≤ |zσ|
|Γ(σ)|

∫ ∞

0
e−t [ℜe(z)−x]tℜe(σ)−1 dt

= Γ(ℜe(σ))

|Γ(σ)| |zσ| [ℜe(z)−x]−ℜe(σ) .

Finally, using inequality (see [18, Section 5.6])

|Γ(p + i q)| ≥ |Γ(p)|√
cosh(qπ)

we get (8).

(ii). By making use of (5), the proof of case (ii) can be completed by following the proof of
case (i). �

Appendix A. Proof of the Watson–Glaeske formula

Substituting the integral representation for 1F1 (see [14, Section 6.5])

1F1(a;b; z) = 21−bΓ(b)e
z
2

Γ(a)Γ(b −a)

∫ 1

−1
e

zt
2 (1− t )b−2

(
1+ t

1− t

)a−1

dt , (16)

where ℜe(b) > ℜe(a) > 0, into Bailey’s product formula for confluent hypergeometric functions
(see [1])

1F1(a;b; x) · 1F1(a;b; y) =
∞∑

k=0

(−1)k (a)k (b −a)k

k !(b)k (b)2k
(x y)k

1F1(a +k;b +2k; x + y)

we get, after interchanging the order of summation and integration

1F1(a;b; x) · 1F1(a;b; y) = 21−b[Γ(b)]2e
x+y

2

Γ(a)Γ(b −a)

∫ 1

−1
e

x+y
2 t (1− t )b−2

(
1+ t

1− t

)a−1

×

 ∞∑
k=0

(−1)k
(p

x y(1−t 2)
2

)2k

k !Γ(b +k)

 dt .

Using the series expansion

Jν(z) =
∞∑

k=0

(−1)k
( z

2

)2k

k !Γ(ν+k +1)
,

we obtain

1F1(a;b; x) · 1F1(a;b; y) = 21−b[Γ(b)]2e
x+y

2

Γ(a)Γ(b −a)

∫ 1

−1
e

x+y
2 t (1− t )b−2

(
1+ t

1− t

)a−1

×Jb−1(
√

x y(1− t 2))dt . (17)

On the other hand, from Gegenbauer’s double integral representation for Jν (see [23, Sec-
tion 3.33])

Jν(ω)) = 1

πΓ(ν)

∫ π

0

∫ π

0
e i Z cosθ−i z(cosΦcosθ+sinΦsinθcosψ)(sinψ)2ν−1(sinθ)2νdψdθ,

C. R. Mathématique — 2021, 359, n 10, 1217-1224
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where ω2 = Z 2 + z2 − z Z cosΦ and ν> 0, for Z =−i t
p

x y , z =−px y ,Φ= π
2 and ν= b −1 we have

Jb−1

(√
x y(1− t 2)

)
= 1

πΓ(b −1)

∫ π

0

∫ π

0
e t

p
x y cosθ+i

p
x y sinθcosψ

× (sinψ)2b−3(sinθ)2b−2 dψdθ. (18)

Now substituting (18) into (17) and taking into account (16) yields

1F1(a;b; x) · 1F1(a;b; y) = 21−b(b −1)Γ(b)e
x+y

2

πΓ(a)Γ(b −a)

∫ π

0

∫ π

0
e i

p
x y sinθcosψ(sinψ)2b−3(sinθ)2b−2

×
[∫ 1

−1
e

(
x+y

2 +px y cosθ
)
t
(1− t )b−2

(
1+ t

1− t

)a−1

dt

]
dψdθ

= b −1

π

∫ π

0

∫ π

0
e−

p
x y cosθ+i

p
x y sinθcosψ(sinψ)2b−3(sinθ)2b−2

× 1F1(a,b, x + y +2
p

x y cosθ)dψdθ.

(19)

By using analytic continuation, equation (19) can be extended to a ∈C and ℜe(b) > 1. This proves
equation (15) and completes the proof of Glaeske’s result.

In particular, putting x = y = 0 in (19) yields

1 = b −1

π

∫ π

0

∫ π

0
(sinψ)2b−3(sinθ)2b−2 dψdθ. (20)
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