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Abstract. We consider a semi-periodic two-dimensional Schrödinger operator which is cut at an angle. When
the cut is commensurate with the periodic lattice, the spectrum of the operator has the band-gap Bloch
structure. We prove that in the incommensurable case, there are no gaps: the gaps of the bulk operator are
filled with edge spectrum.
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1. Introduction

We study the spectral properties of a half-periodic material, when this one is cut along any line.
Such materials are represented by Schrödinger operators of the form

H D [θ] :=−∆+Vθ , acting on L2(R2
+
)
, with Dirichlet boundary conditions,

where R2+ := R+ ×R is the (right) half plane, and where Vθ is an θ-rotated version of some Z2-
periodic and bounded potential V , that is

Vθ(x) :=V
(
R−1
θ x

)
, Rθ :=

(
cosθ −sinθ
sinθ cosθ

)
.

When there is no cut, the bulk operator H [θ] := −∆+Vθ is a rotated version of H := H [0]. Its
spectrum σbulk is independent of θ, and has a band-gap structure by Bloch theory.

When tan(θ) is rational, of the form tanθ = p
q , the edge operator H D [θ] is still periodic in the

x2 direction (with period (p2 + q2)1/2). One can apply partial Bloch theory in this direction, and
obtain that its spectrum has again the band-gap structure. This spectrum usually differs from
σbulk due to the presence of edge modes. This is described by the edge spectrum

σedge[θ] :=σ(
H D [θ]

)
\σbulk.

When tan(θ) is not rational, one cannot apply Bloch theory. We prove the following.

Theorem 1. If tanθ ∉Q, then there is Σ ∈R such that σ(H D [θ]) = [Σ,∞).
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In other words, in the incommensurable case, all gaps of σbulk are filled with edge spectrum.
This extends the previous work by Hempel and Kohlmann [7, 9], where the authors proved this
filling gap phenomenon in the limit θ→ 0. Here, we slightly modify their proof to handle all tan(θ)
irrational. The main tool that we use is the existence of a spectral flow when tan(θ) is rational,
and a limiting argument. Apart for the last part, we mostly follow the arguments by Hempel and
Kohlmann in [7–10].

When tan(θ) is rational, the edge spectrum is absolutely continuous by Bloch theory (see
also [5]). The corresponding eigenspace therefore describes modes that can propagate along the
cut. However, when tan(θ) is not rational, it is unclear what the nature of this edge spectrum is.
Some part (or all of it) could be pure point, hence describing Anderson-like trapped modes which
are localized near the cut. We do no investigate this interesting question in the present paper.

We choose for simplicity Dirichlet conditions at the cut {0}×R, but the result can be generalized
to other boundary conditions, such as Neumann boundary conditions. We only require that the
condition in Eqn. (4) below holds. We treat the case of domain walls in Section 3.3.

Remark 2. In the special case of Dirichlet boundary conditions, the Σ appearing in Theorem 1
is independent of θ, and equals the infimum of the bulk spectrum Σ = infσbulk. Indeed, adding
Dirichlet boundary conditions corresponds to considering a smaller core domain for the forms,
so infσ(H D ) ≥ infσ(H). The fact that we have equality is proved below. We thank the anonymous
referee for this remark.

2. Background

2.1. Bulk Hamiltonian

Let V ∈ L∞(R2) be a bounded potential which is LZ2-periodic (at the end, we take L = (p2+q2)1/2

in the rational case tanθ = p
q ), and let H := −∆+V be the corresponding Hamiltonian. Since H

commutes with LZ2-translations, we can perform a Bloch decomposition [14, Chapter XIII], and
write

H =
∫ ⊕

K∗
Hk dk,

where K∗ := [−π
L , πL

]2 is the Brillouin zone, and where Hk := −∆+V is acting on L2(K), with
K := [0,L]2 the Wigner–Seitz cell. The operator Hk has the k-dependent domain representing
the usual k-quasi-periodic boundary conditions.

The map k 7→ Hk is (2π/L)Z2-periodic. Each Hk is compact resolvent, and we denote by
ε1k ≤ ε2k ≤ ·· · the eigenvalues of Hk, counting multiplicity. The maps k 7→ εnk are continuous
and (2π/L)Z2-periodic. This gives the usual band-gap structure of the bulk spectrum

σbulk =σ(H) = ⋃
k∈K∗

σ(Hk) =
∞⋃

n=1

⋃
k∈K∗

{εnk}.

An energy E is in a spectral gap of H iff there is an integer N so that

∀ k ∈K∗, εN k < E < εN+1,k.

In what follows, we denote this integer N by N (E). It is the number of Bloch bands below the
energy E . It is also the number of particles per unit cell for the state γE := 1(H < E), in the sense
that the trace per unit cell of γE is

Tr(γE ) := 1

|K∗|
∫
K∗

Tr(γk)dk =N (E).

The number N (E) is independent of E in an open gap g ofR\σbulk, and we sometime write N (g )
for E ∈ g .
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2.2. Dislocated Hamiltonians

We now focus on a dislocated version of the bulk operator. For t ∈R, we set

Vt (x) =V (x− te1).

By periodicity of V , the map t 7→Vt is L-periodic. We also introduce the dislocated potential

Wt (x) := [V (x)1(x1 < 0)+Vt (x)1(x1 > 0)] , (1)

which represents a dislocation between the potential V on the left side x1 < 0, and a translated
(dislocated) version of it Vt on the right x1 > 0. The dislocated edge Hamiltonian is defined by

H ](t ) :=−∆+Wt , acting on L2(R2), with domain H 2(R2).

The spectral properties of such Hamiltonians have been studied e.g. by Davies and Simon [5]
and Hempel and Kohlmann [7–10]. The map t 7→ H ](t ) is L-periodic. When t ∈ LZ, we recover the
bulk Hamiltonian H (there is no dislocation), whose spectrum isσbulk. However, when t increases
from 0 to L, this spectrum may vary, as we explain now.

For all t ∈ R, the operator H ](t ) is periodic in the x2-direction, and we can write its partial
Bloch expansion

H ](t ) =
∫ ⊕

K∗
2

H ]

k (t )dk,

whereK∗
2 := [−π

L , πL
]

is the Brillouin zone in the x2-direction only, and where H ]

k (t ) =−∆+Wt acts
on the tube L2 (R× [0,L]), and with the k-dependent domain representing the k-quasi-periodic
boundary condition in the x2-direction. It turns out that the essential spectrum of H ]

k (t ) is
independent of t ∈R, see e.g. [6,8]. This comes from the fact that the essential spectrum describes
modes that escape to infinity, and that, far from the boundary, these modes only feel the bulk
operator. In addition, for t ∈ LZ, we recover the bulk spectrum, which is purely essential. Actually,
we have

∀ t ∈R, σess

(
H ]

k (t )
)
=σ

(
H ]

k (t = 0)
)
=

∞⋃
n=1

⋃
k1∈

[− π
L , πL

]{εn,k=(k1,k)}. (2)

As t varies, some additional eigenvalues may appear in the t-independent essential gaps, and
we can define a spectral flow inside these gaps [1]. If A(t ) is a continuous T -periodic family of
operators, and if g is an open interval in an essential gap of all A(t ), we denote by

Sf
(

A( · ), g , [0,T ]
)

the spectral flow of A(t ) in the gap g , which counts the net number of eigenvalues going
downwards in the gap g , when t increases from 0 to T . The following result is a reformulation
of [8, Theorem 4.3].

Theorem 3 (from [8]). For all k ∈K∗
2 and for all spectral gaps g of H ]

k (t = 0), we have

Sf
(
H ]

k ( · ), g , [0,L]
)
=N (g ).

Formally, when t increases from 0 to L, a new cell has appeared at the cut. Consider the state
γE (t ) :=1(

H ]

k (t ) < E
)

which describes a state with N (E) particles per unit cell. The state γE (t = L)
must have N (E) more particles than γE (t = 0) in order to fill this new cell. These particles have
been pumped from bands with higher energy, hence the presence of the spectral flow. While
this reasoning is not accurate (we compare two infinities of particles), it describes the physics
correctly. We refer to [8, Theorem 4.3] and [9, Theorem 2.4] for the full proof. In these works,
the authors assumed V to be Lipschitz in order to ensure that the branches of eigenvalues are
continuous (actually Lipschitz). One can relax this assumption. We prove in Appendix A that the
branches of eigenvalues are continuous whenever V is bounded.
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2.3. Dirichlet Hamiltonian

We now present similar results for the Dirichlet Hamiltonian H D , which is acting on the half space
L2(R+

2 ), where we set R2+ :=R+×R. This operator is defined as

H D (t ) :=−∆+Vt , acting on L2(R2
+
)
, with domain H 2(R2

+
)∩H 1

0

(
R2
+
)
,

that is with Dirichlet boundary conditions at the cut {x1 = 0}. This operator still commutes with
L-translations in the x2-direction, and we may perform a partial Bloch theorem to write

H D (t ) =
∫ ⊕

K∗
2

H D
k (t )dk,

where H D
k (t ) acts on L2(R+× [0,L]), with Dirichlet boundary conditions at the cut {x1 = 0}, and

with k-quasi periodic boundary conditions in the x2-direction. Explicitly, a core domain of H D
k (t )

is given by{
f (x1, x2) ∈C∞(R+× [0,L])

∣∣∣∣ ∃ X > 0, ∀ x1 > X , f (x1, · ) = 0, f (0, · ) = 0,

∀α ∈N0,∀ x1 ∈R+,
(
∂α2 f

)
(x1,L) = eikL (

∂α2 f
)

(x1,0)

}
.

Lemma 4. For all k ∈K∗
2 , and all t ∈R, we have

σess
(
H D

k (t )
)=σess

(
H ]

k (t )
)

. (3)

In particular, it is independent of t ∈ R by (2). In addition, for all spectral gaps g of H ]

k (t = 0), we
have

Sf
(
H D

k ( · ), g , [0,L]
)=N (g ).

Proof. Introduce the operator H ],D
k (t ) = −∆+Wt , which is similar to the dislocated operator

H ]

k (t ), but with Dirichlet boundary condition at the cut {x1 = 0}, that is with core domain (the
function f is now defined on the whole tube R× [0,L]){

f (x1, x2) ∈C∞(R× [0,L])

∣∣∣∣ ∃ X > 0, ∀ |x1| > X , f (x1, · ) = 0, f (0, · ) = 0,

∀α ∈N0,∀ x1 ∈R,
(
∂α2 f

)
(x1,L) = eikL (

∂α2 f
)

(x1,0)

}
.

Let µ be a large negative number so that µ< infσ(H ],D
k ) and µ< infσ(H ]

k ), e.g. µ :=−‖V ‖∞−1. It
is a classical result that (see e.g. [3, Theorem 1.1], [15, Theorem XI.79] or the discussion before [9,
Theorem 2.4]) (

H ],D
k (t )−µ

)−1 −
(
H ]

k (t )−µ
)−1

is compact. (4)

This already proves that these operators have the same essential spectrum. In addition, since
the spectral flow is robust with respect to perturbation with compact operators (see e.g.1 [12,
Proposition 3]), we have

Sf

((
H ],D

k ( · )−µ
)−1

, (g −µ)−1, [0,L]

)
= Sf

((
H ]

k ( · )−µ
)−1

, (g −µ)−1, [0,L]

)
.

1 This Proposition states that Sf( · ) is a homotopy invariance for the so-called gap topology. Let (At ) be a continuous
periodic family of self-adjoint operators sharing an essential gap g , and let (Kt ) be a continuous periodic family of
compact operators. For s ∈ [0,1], consider the path

Cs (t ) :=


A0 +3t sK0 0 ≤ t ≤ 1/3

A3(t−1/3) + sK3(t−1/3) 1/3 ≤ t ≤ 2/3

A1 +3(1− t )sK1 2/3 ≤ t ≤ 1.

Since Kt is compact, this path is continuous for the gap topology. By periodicity, A0 = A1 and K0 = K1, so the contribution
of Cs to the spectral flow for t ∈ [0,1/3] cancels with the one for t ∈ [2/3,1]. Also, by continuity, s 7→ Sf(Cs ( · ), g ) is
continuous and integer-valued, hence constant. We obtain

Sf(At , g ) = Sf(Cs (t ), g ) = Sf(t 7→ At + sKt , g ) = Sf(Bt , g ), with Bt = At +Kt .
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An eigenvalue of (A( · )−µ)−1 crosses the energy (E−µ)−1 upwards iff an eigenvalue of A( · ) crosses
the energy E downwards. We deduce that

Sf
(
H ],D

k ( · ), g , [0,L]
)
= Sf

(
H ]

k ( · ), g , [0,L]
)
=N (g ).

We used Theorem 3 in the last equality. For the operator H ],D
k (t ), the left and right channels

are decoupled by the Dirichlet boundary conditions. Since the left channel is independent of t ,
it does not contribute to the spectral flow. On the right channel, we recover the Dirichlet Hamil-
tonian H D

k (t ) on the semi-tube, and the result follows. �

3. Application to half twisted Hamiltonians

We now apply the previous theory in the case of the twisted Hamiltonian H [θ].

3.1. Spectrum for rational angles

We first assume that tan(θ) is rational, of the form tanθ = p
q with p and q relatively prime, and we

set L := (p2 +q2)1/2. The matrix Rθ can be written as

Rθ =
1√

p2 +q2

(
q −p
p q

)
, and R−1

θ = 1√
p2 +q2

(
q p
−p q

)
.

In particular, since V is Z2-periodic, Vθ(x) =V (R−1
θ

x) is LZ2-periodic.
Let E be in the resolvent set of H , and let N (E) be the number of Bloch bands below E , when

H is seen as a Z2-periodic operator. The operator γE := 1(H < E) represents a state with N (E)
particles per unit cell. Since H [θ] is a rotation version of H , the energy E is also in the resolvent
set of H [θ]. Seeing H [θ] as an LZ2-periodic operator (with unit cell of area L2 = p2+q2), there are

Nθ(E) := L2N (E) = (p2 +q2)N (E)

Bloch bands below E for this operator. Applying the results of the previous section, we obtain the
following. We denote by H ][θ, t ], H D [θ, t ] the t-dislocated and Dirichlet version of the operator
H [θ] respectively.

Lemma 5. Assume tanθ = p
q ∈Q, and set L :=

√
p2 +q2. Then, for all essential gap g ⊂ R \σbulk,

and all k ∈K∗
2 = [−π

L , πL
]
, we have

Sf
(
H ]

k [θ, · ], g , [0,L]
)
= Sf

(
H D

k [θ, · ], g , [0,L]
)= L2N (E).

Actually, the Dirichlet operators H D
k [θ, t ] and H D

k

[
θ, t + 1

L

]
have the same spectrum. One way

to see this goes as follows. In the cell [0,L)2, there are L2 points from the grid RθZ
2. When t

swipes from 0 to L, each one of these points crosses the line {0}×R, for a total of L2 crossings.
By periodicity, these crossings are regularly spaced, with spacing 1/L. When one of them occurs,
we recover the operator H D

k [θ,0], translated in the x2-direction. So, we may formally write

Sf
(
H D

k [θ, · ], g ,
[
0,L−1])=N (E). (5)

We deduce the following side result.

Lemma 6. Assume V is ν-Lipschitz. Then, for all t ∈ R, for all k ∈K∗
2 and for all gaps g = (a,b) of

σbulk, there are at least ⌊
(b −a)L

ν

⌋
N (E)

eigenvalues of H D
k [θ, t ] in this gap, counting multiplicities.
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So, when L →∞, the gap g is filled with eigenvalues. This is already an indication that the gap
g is completely filled for tanθ ∉Q. We prove this fact in the next section.

Proof. If N (E) 6= 0, there is t0 ∈ [0,L−1) so that H D
k [θ, t0] has at least one eigenvalue λ0 in g .

Without loss of generality, we may assume t0 = 0. We write

· · · ≤λ−1(t ) ≤λ0(t ) ≤λ1(t ) ≤ ·· ·
the continuous branches of eigenvalues of H D

k (t ) counting multiplicities, and with λ0(0) = λ0.
These functions are defined for all t ∈ R, with the convention λ j (t ) = a (resp. b) if the branch
merges to the lower (resp. upper) essential band. There may be a finite or a countable number of
such branches.

Since V is ν-Lipschitz, we have ‖Vt ′ −Vt‖∞ ≤ ν|t ′ − t |. In particular, for µ negative enough,
the map t 7→ (

µ−H D
k (t )

)−1
is Lipschitz for the operator norm, and we deduce that the functions

λ j ( · ) are also ν-Lipschitz (see also [10, Theorem 1.2]). So we have |λ0(L−1) −λ0(0)| ≤ ν/L. By
periodicity of the spectrum, λ0(L−1) also corresponds to an eigenvalue of H D

k [t = 0] (unless this
branch already merged to the essential spectrum). Eqn. (5) states that λ0(L−1) = λ−N (E)(0). We
deduce that there are at least N (E) eigenvalues in any interval of size ν/L. There are b(b−a)L/νc
disjoint intervals of this size in g = (a,b), and the result follows. �

3.2. The spectrum for irrational angles

We finally consider the case where tanθ ∉ Q. We want to study the spectrum of H D [θ, t ]. Since
tanθ ∉Q, this spectrum is independent of t ∈R by ergodicity.

The main idea is to approximate θ by a sequence θn → θ with tanθn = pn
qn

∈Q, and to control

the corresponding eigenstates in suitable spaces. We set Ln :=
√

p2
n +q2

n .

Step 1: Construction of a subsequence. Fix E an energy in a gap g of σbulk, and above the first
Bloch band (N (E) ≥ 1). By Eqn. (5) at k = 0, there is tn ∈ [0,L−1

n ] and a wave-function Ψn(x1, x2)
in the domain of H D

k=0 with

H D
k=0[θn , tn]Ψn = EΨn .

We may assume that Ψn is real-valued. The main idea of the proof is to normalize Ψn for the L∞

norm, that is with ‖Ψn‖L∞ = 1. This idea was used for instance in [2, Theorem 3.6] in the context
of almost periodic one-dimensional operators.

We have

‖(−∆)Ψn‖∞ = ‖(E −Vθn ,tn )Ψn‖∞ ≤ ‖V ‖∞+|E |,
so ‖(−∆)Ψn‖∞ is also uniformly bounded in n. In addition, by elliptic regularity, we have Ψn ∈
W 2,p

loc for all 1 < p <∞, and, if Qi j is the square Qi j := (i , i+2)×( j , j+2), we have ‖Ψn‖W 2,p (Qi j ) ≤C ′

for some constant C ′ independent of (i , j ) and of n. Together with the Morrey and Sobolev
embeddings, we deduce that Ψn is in C 1,α for all 0 ≤α< 1, and that ‖∇Ψ‖L∞ ≤C ′′ for a constant
C ′′ independent of n.

We now extend Ψn by periodicity in the x2-direction to obtain a function on the whole half
plane R2+, still denoted byΨn , and for which

‖Ψn‖L∞
(
R2+

) = 1,

‖(−∆)Ψn‖L∞
(
R2+

) ≤C ,

‖∇Ψn‖L∞
(
R2+

) ≤C ′′,

(−∆+Vθn ,tn −E)Ψn = 0 in the distributional sense.
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We would like to extract a subsequence which converges to some Ψ∗ weakly-* in L∞(
R2+

)
.

However, should we take limits directly, one could end up with Ψ∗ = 0 at the limit. We first need
to control that the mass ofΨn does not escape.

Step 2: Controlling the mass “vertically”. Let xn ∈ R2+ be a point for which |Ψn |(xn) ≥ 1
2 . Up to

multiplying Ψn by a global sign (recall that Ψn is real-valued), we may assume Ψn(xn) ≥ 1
2 . We

now translate the whole system vertically, in order to put the point xn on the horizontal semi-
line {x2 = 0}. This will guarantee that some mass of Ψn stays around the this semi-line. More
specifically, we have (

−∆+V
(
R−1
θn

(
x− tn e1 −x2,n e2

))−E
)
Ψn( ·−x2,n e2) = 0.

We introduce the vector tn ∈ Rθn [0,1]2 so that

tn := tn e1 +x2,n e2 mod RθnZ
2.

By periodicity of V , and by setting Vθn ,tn (x) :=Vθn (x− tn), we have

(−∆+Vθn ,tn −E)Ψ̃n = 0,

where Ψ̃n(x) :=Ψn(x− x2,n e2) is a x2-translated version ofΨn . Setting x̃n = xn − x2,n e2 = (x1,n ,0),
the point x̃n belongs to the semi-line R+× {0}, and we have Ψ̃n(x̃n) ≥ 1

2 for all n. In what follows,
we drop the tilde notation, and writeΨn and xn for Ψ̃n and x̃n .

Step 3. Controlling the mass “horizontally”. Let χ1(x1, x2) =χ1(x1) be a smooth switch function
in the x1 direction, such that χ1(x1) = 0 for x1 < 1

2 and χ1(x1) = 1 for x1 > 1. We introduce the
function

fn := (−∆+Vθn ,tn −E)
(
χ1Ψn

)=−2χ′1(∂1Ψn)−Ψnχ
′′
1 .

This function has support in the vertical band (0,1)×R, and is bounded by

‖ fn‖∞ ≤ 2‖χ′1‖∞‖∂1Ψn‖∞+‖χ′′1‖∞‖Ψn‖∞ ≤C ,

for some constant C > 0 independent of n.
Let Gn(x,y) be the kernel of the bulk resolvent (H [θn ,tn]−E)−1. Since E ∈σbulk, the Combes–

Thomas argument (see [4] and [16, Theorem B.7]) states that there is C ≥ 0 and α,α′ > 0,
independent of n, so that

|Gn(x,y)| ≤C e−α
′|x−y| ≤C e−α|x1−y1|e−α|x2−y2|.

Let x1 > 1 and set x := (x1,0). We have

Ψn(x) =χ1(x)Ψn(x) = [
(H [θn ,tn]−E)−1(−∆+Vθn ,tn −E)

(
χΨn

)]
(x)

=
∫
R2

Gn(x,y) fn(y)dy =
∫

[0,1]×R
Gn(x,y) fn(y)dy.

This gives

|Ψn | (x) ≤
∫

[0,1]×R
|Gn |(x,y)‖ fn‖∞dy ≤C

∫
[0,1]

e−α|x1−y1|dy1 ≤C e−α|x1−1|.

In other words, Ψn is exponentially localized near the cut. We deduce that there is X > 1 so that,
for all x1 > X , we have |Ψn(x1,0)| < 1/2. In particular, the point xn belongs to the (compact)
segment [0, X ]× {0}. In addition, since (∇Ψn) is bounded, there is δ> 0 independent of n so that
Ψn(x) > 1

4 for all x in the ball Bδ(xn) := {
x ∈R2+

∣∣ |x−xn | < δ
}
.
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Step 4. Extracting a subsequence. At this point, the sequence (tn) is bounded in R2, the se-
quence (xn) belongs to the compact set [0, X ]×{0}, and (Ψn) and (−∆Ψn) are bounded in L∞(

R2+
)
.

Up to a subsequence, still denoted by n, we may assume that

tn −−−−→
n→∞ t∗, xn −−−−→

n→∞ x∗,

Ψn −−−−→
n→∞ Ψ∗ weakly-* in L∞(

R2+
)
,

(−∆)Ψn −−−−→
n→∞ T weakly-* in L∞(

R2+
)
.

Since Ψn →Ψ∗ in the distributional sense, we have T = (−∆)Ψ∗. In addition, we have Ψ∗(x) > 1
4

on Bδ(x∗) so Ψ∗ is non-null. It remains to prove that (−∆+Vθ,t∗ −E)Ψ∗ = 0 in the distributional
sense. For φ ∈C∞

0

(
R2+

)
a test function, we have,

0 = 〈φ, (−∆+Vθn ,tn −E)Ψn〉 = 〈(−∆−E)φ,Ψn〉+
∫
R2+
φVθn ,tnΨn .

The first term goes to 〈(−∆−E)φ,Ψ∗〉 by the weak-* convergence of Ψn to Ψ∗. For the second
term, we get, after changing variables in order to put the rotation on the test functions,∫ ∣∣φ(

Vθn ,tnΨn −Vθ,t∗Ψ∗
)∣∣= ∫ ∣∣V (x)

(
[φΨn](Rθn x+ tn)− [φΨ∗](Rθx+ t∗)

)
(x)

∣∣
≤ ‖V ‖∞

∫ ∣∣[φΨn](Rθn x+ tn)− [φΨ∗](Rθx+ t∗)
∣∣dx

≤ ‖V ‖∞
(∫ ∣∣φ(Ψn −Ψ∗)

∣∣+∫ ∣∣[φΨ∗](Rθn x+ tn)− [φΨ∗](Rθx+ t)
∣∣) .

Note that all integrals are set on compact supports. Since rotations and translations are continu-
ous operators in all Lp spaces 1 ≤ p <∞, together with the fact that Ψn →Ψ strongly in Lp

loc for
all 1 ≤ p <∞ by Rellich embedding, we conclude that this term vanishes as well as n →∞. This
proves that

〈φ, (−∆+Vθ,t∗ −E)Ψ∗〉 = 0, for all φ ∈C∞
0

(
R2
+
)
,

hence Ψ∗ is a distributional solution to (−∆+Vθ,t∗ − E)Ψ∗ = 0, which belongs to L∞(
R2+

)
. We

conclude that E ∈σ (H [θ,t∗]) =σ (H [θ]), as wanted.

3.3. Domain wall Hamiltonians

Our proof also allows to treat the case of half materials set in the whole space R2. Let χ be a
bounded switch function with χ(x) = 0 for x1 < X and χ(x) = 1 for x1 > X , where X ≥ 0 is some
large number. We study the domain wall edge operator

Hχ[θ] :=−∆+χ(x)Vθ(x). (6)

The potential χVθ vanishes on the left, and equals Vθ on the right, so Hχ[θ] models a semi-
material embedded in the full R2 space, and cut with an angle θ. Again, if tanθ = p

q ∈Q is rational,

this operator is periodic in the x2-direction (with period (p2+q2)1/2), and therefore has the bulk-
gap spectrum. In the incommensurable case tanθ ∉ Q, the counterpart of Theorem 1 reads as
follows.

Theorem 7. If tanθ ∉Q, then there is Σ ∈R such that σ(Hχ[θ]) = [Σ,∞).

The main difference with the Dirichlet case is that the left side is now the free Laplacian −∆,
whose essential spectrum is [0,∞). In particular, the counterpart of Eqn. (3) is

σess
(
Hχ

k (t )
)=σess

(
H ]

k (t = 0)
)
∪ [0,∞).

So the bulk gaps with positive energy are filled with the essential spectrum of the free Laplacien
(−∆), and the lower energy bulk gaps are filled with edge spectrum if tanθ ∉Q. We leave the details
of the proof of Theorem 7 to the reader, as it is similar to the Dirichlet case.
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Appendix A. Continuity of the branches of eigenvalues

In this section, we prove that the eigenvalues of H ]

k (t ) are continuous in t , under the sole
assumption that V is bounded. This extends [10, Theorem 1.2]. Recall that

H ](t ) =−∆+Wt acting on L2(R2) with domain H 2(R2),

where Wt is the dislocated potential in Eqn. (1), and that H ]

k (t ) are the (partial) Bloch fibers of

H ](t ), acting on L2(R×(0,L)). In what follows, we consider an essential gap g = (a,b) for H ]

k (t = 0)

(hence for all H ]

k (t )).

Let us first prove that t 7→ H ]

k (t ) is continuous for the strong resolvent topology [13, Chap-

ter VIII.7]. All operators H ]

k (t ) share the same core domain{
f (x1, x2) ∈C∞(R× [0,L])

∣∣∣∣ ∃ X > 0, ∀ |x1| > X , f (x1, · ) = 0,

∀α ∈N0,
(
∂α2 f

)
( · ,L) = eikL (

∂α2 f
)

( · ,0)

}
.

Let u be in this domain, and set ũ(x) := u(x)1(x1 > 0). We have∥∥∥(
H ]

k (t +h)−H ]

k (t )
)

u
∥∥∥2

L2
=

∫
R×(0,L)

(Vt+h −Vt )2|ũ|2.

Since ũ is compactly supported, there is X > 0 large enough so that [−X , X ] × [0,L] contains
the support of ũ( · + te1) and ũ( · + (t +h)e1) for all |h| ≤ 1. Setting Ṽ (x) := V (x)1(|x1| ≤ X ), and
M := max |ũ|, we obtain, for |h| ≤ 1,∥∥∥(

H ]

k (t +h)−H ]

k (t )
)

u
∥∥∥2

L2
=

∫
R×(0,L)

(Ṽt+h − Ṽt )2|ũ|2 ≤ M 2 ∥∥Ṽt+h − Ṽt
∥∥2

L2 .

The function Ṽ is bounded and compactly supported, hence belongs to L2. Since translations are
continuous in L2, this term goes to 0 as h → 0. We deduce that H ]

k (t +h)u converges to H ]

k (t )u
as h → 0. Together with [13, Theorem VIII.25], this proves that t 7→ H ](t ) is strongly resolvent
continuous. In particular, gaps cannot suddenly expand (see [11, Chapter VIII §1.2]).

Next, we prove that gaps cannot suddenly shrink, in the sense that, for all t ∈R and all energies
E ∈ (a,b) \σ(H ]

k (t )), we have

∃ η,ε> 0, ∀ t ′ ∈ (t −η, t +η), σ(H ]

k (t ′))∩ (E −ε,E +ε) =;.

Assume otherwise, and let tn → t and λn → E be sequences so that λn ∈ σ(H ]

k (tn)). Recall that

σ(H ]

k (t ))∩ (a,b) only consists of eigenvalues. So there are un ∈ H 2(R× (0,L)) with

(−∆+Wtn )un =λnun .

We normalize (un) in the way ‖un‖L∞ = 1. The family (un) is bounded in L∞, hence converges
weakly-∗ to some u in L∞(R× (0,L)) up to a subsequence. We can now repeat the arguments of
Section 3.2 to deduce that u does not vanish almost everywhere, and satisfies

(−∆+Wt )u = Eu.

We deduce that E ∈σ(
H ]

k (t )
)
, a contradiction.

Finally, let λ ∈ σ
(
H ]

k (t )
)

be an isolated eigenvalue of multiplicity m, and let C be a small

positively oriented loop in the complex plane enclosing λ and no other eigenvalue of H ]

k (t ). By

the stability of the gaps, there is η > 0 so that the spectrum of H ]

k (t ′) does not touch C for all
t ′ ∈ (t −η, t +η). We set

∀ t ′ ∈ (t −η, t +η), Pt ′ := 1

2iπ

∮
C

dz

z −H ]

k (t ′)
.
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By the Cauchy residual formula, this defines a family of projectors. Reasoning as before (with a
family of orthogonal functions), we can prove that there is η′ > 0 so that, for all t ′ ∈ (t −η′, t +η′),
we have dim Pt ′ ≤ m. We are now in the setting of [11, Chapter VIII §1.4] and we conclude that
the branches of eigenvalues are continuous.
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