
Comptes Rendus

Mathématique

Federico Scavia

Motivic classes and the integral Hodge Question

Volume 359, issue 3 (2021), p. 305-311

Published online: 20 April 2021

https://doi.org/10.5802/crmath.178

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.178
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2021, Vol. 359, 3, p. 305-311
https://doi.org/10.5802/crmath.178

Algebraic geometry / Géométrie algébrique

Motivic classes and the integral Hodge

Question

Federico Scaviaa

a Department of Mathematics, University of British Columbia, Vancouver, BC V6T
1Z2, Canada

E-mail: scavia@math.ubc.ca

Abstract. We prove that the obstruction to the integral Hodge Question factors through the completion of
the Grothendieck ring of varieties for the dimension filtration. As an application, combining work of Peyre,
Colliot-Thélène and Voisin, we give the first example of a finite group G such that the motivic class of
its classifying stack BG in Ekedahl’s Grothendieck ring of stacks over C is non-trivial and BG has trivial
unramified Brauer group.
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1. Introduction

Let X be a smooth projective complex variety, and let d := dim(X ). For every integer i , we write
C H i (X ) for the group of algebraic cycles of codimension i on X modulo rational equivalence,
and we set C Hi (X ) :=C H d−i (X ). We have the cycle class maps

cli
X : C H i (X ) → H 2i (X (C),Z).

By convention, we set C H i (X ) = 0 and H 2i (X (C),Z) = 0 when i < 0 and i > d .
A cohomology class α ∈ H 2i (X (C),Z) is called an integral Hodge class if its image in

H 2i (X (C),C) is of type (i , i ) with respect to the Hodge decomposition of H 2i (X (C),C). We de-
note by Hdg2i (X ,Z) the subgroup of integral Hodge classes of H 2i (X (C),Z). We have an inclusion
Im(cli

X ) ⊆ Hdg2i (X ,Z). We set

Z 2i (X ) := Hdg2i (X ,Z)/Im(cli
X ), Z2i (X ) := Z 2d−2i (X ).

For every integer i , the abelian group Z 2i (X ) is finitely generated. The Hodge Conjecture for
cycles of codimension i on X predicts that Z 2i (X ) is finite. The integral Hodge Question for
cycles of codimension i on X asks whether Z 2i (X ) is zero. By the Lefschetz Theorem on (1,1)-
classes, the integral Hodge Question has an affirmative answer when i = 1. When i = 2, the
integral Hodge Question has a negative answer in general, as shown by examples of M. Atiyah
and F. Hirzebruch [1].
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We denote by K0(VarC) the Grothendieck ring of complex varieties, introduced by
A. Grothendieck in a 1964 letter to J.-P. Serre. We also let K0(Ab) the abelian group gener-
ated by isomorphism classes [A] of finitely generated abelian groups A, modulo the relations
[A ⊕B ] = [A]+ [B ]. We show that the obstruction to the integral Hodge Question factors through
the completion K̂ 0(VarC) of K0(VarC)[L−1] with respect to the dimension filtration topology.

Theorem 1. Let i be an integer.

(a) There exists a unique group homomorphism

Z2i : K0(VarC)[L−1] → K0(Ab)

which sends {X }/Lm 7→ [Z2i+2m(X )] for every smooth projective complex variety X and
every m ≥ 0.

(b) The homomorphism Z2i is continuous with respect to the dimension filtration topology
on K0(VarC)[L−1] and the discrete topology on K0(Ab). It thus extends uniquely to a group
homomorphism

Ẑ 2i : K̂ 0(VarC) → K0(Ab).

We now describe the application that motivated Theorem 1. The Grothendieck ring of complex
algebraic stacks K0(StacksC) was defined by T. Ekedahl in [6]. By definition, every algebraic
stack X of finite type over C and with affine stabilizers has a class {X } in K0(StacksC). The
multiplicative identity of K0(StacksC) is 1 = {SpecC}.

Let G be a finite group. It is an interesting problem to compute the class {BG} in K0(StacksC),
and in particular to understand whether the equality {BG} = 1 holds. Although no formal impli-
cation is known, the equality {BG} = 1 appears to be related with the stable rationality of the field
of invariants C(V )G , where V is a faithful complex representation of G . (By the no-name lemma,
the stable rationality of C(V )G does not depend on the faithful representation V .)

It turns out that {BG} = 1 in K0(StacksC) in many cases. For example, this is true when G
is a cyclic group, a symmetric group, or a finite subgroup of GL3(C); see [5, Proposition 3.2,
Theorem 4.1] and [7, Theorem 2.4]. For all these G , the fields of invariants C(V )G are known to
be stably rational.

There are also examples of finite groups G for which {BG} 6= 1 in K0(StacksC). It was shown by
Ekedahl that, if the unramified Brauer group Brnr(C(V )G /C) is not trivial, then {BG} 6= 1; see [5,
Theorem 5.1]. The unramified Brauer group had famously been used in [10] by D. J. Saltman to
give the first examples of finite groups G for which C(V )G is not stably rational. It follows from
Ekedahl’s result that Saltman’s examples also satisfy {BG} 6= 1.

In [9], E. Peyre gave the first examples of finite groups G for which C(V )G is not stably rational
and Brnr(C(V )G /C) = 0. It is natural to wonder whether similar counterexamples to {BG} = 1 can
be constructed.

Question 2. Does there exist a finite group G such that Brnr(C(V )G /C) is trivial, but {BG} 6= 1 in
K0(StacksC)?

To our knowledge, this question was first asked by Ekedahl. It was posed to us by A. Vistoli.
If K /C is a finitely generated field extension, we denote by H i

nr(K /C,Q/Z) the i -th unramified
cohomology group of K over C with Q/Z coefficients. We have H 2

nr(K /C,Q/Z) = Brnr(K /C). If
H i

nr(C(V )G /C,Q/Z) 6= 0 for some i , thenC(V )G is not stably rational; see [8, Proposition 3.4]. When
i ≥ 3, it is not known whether H i

nr(C(V )G /C,Q/Z) 6= 0 implies {BG} 6= 1 in K0(StacksC). We show
that this is the case if i = 3.

Theorem 3. Let V be a faithful complex representation of G. Assume that H 3
nr(C(V )G /C,Q/Z) is

not trivial. Then {BG} 6= 1 in K0(StacksC).
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Our proof of Theorem 3 combines Theorem 1 with a result of J.-L. Colliot-Thélène and
C. Voisin [4]; see Theorem 5 below.

For every odd prime p, Peyre constructed a central extension

1 → (Z/pZ)6 →G → (Z/pZ)6 → 1

such that H 3
nr(C(V )G /C,Q/Z) 6= 0 for any faithful complex representation V of G ; see [9, Theo-

rem 6.1]. By Theorem 3, the examples of Peyre provide an affirmative answer to Question 2.
In [11] B. Totaro asked, among other things, whether the stable rationality of C(V )G is equiv-

alent to the condition {BG} = 1 in K0(StacksC). An affirmative answer to Totaro’s question is sup-
ported by all known examples, and also by Theorem 3. However, a proof of the equivalence seems
to be out of reach of current techniques.

2. The Grothendieck rings of varieties and stacks

By definition, the Grothendieck ring of varieties K0(VarC) is the abelian group generated by
isomorphism classes {X } of schemes X of finite type over C, subject to the relations {X } =
{Y }+ {X \ Y } for every closed immersion Y ,→ X . The multiplication in K0(VarC) is defined on
generators by {X } · {Y } := {X ×C Y }, and we have 1 = {SpecC}. We set L := {A1

C
}.

Following Ekedahl [6], we define the Grothendieck ring of stacks K0(StacksC) as the abelian
group generated by isomorphism classes {X } of algebraic stacks X with affine stabilizers and
of finite type over C, modulo the relations {X } = {Y } + {X \ Y } for every closed immersion
Y ,→ X , and the relations {E } = {Ar

C
×C X } for every vector bundle E → X of constant rank r .

The multiplication is defined on generators by {X } · {Y } := {X ×CY }, and we have 1 = {SpecC}.
By [6, Theorem 1.2], the canonical ring homomorphism K0(VarC) → K0(StacksC) induces an
isomorphism

K0(StacksC) ∼= K0(VarC)[{L−1, (Ln −1)−1 : n ≥ 1}].

The dimension filtration Fil• K0(VarC)[L−1] of K0(VarC)[L−1] is defined as follows: for every
n ∈Z, Filn K0(VarC)[L−1] is the subgroup generated by the elements {X }/Lm , where X is a complex
variety and dim(X )−m ≤ n. Using resolution of singularities, we see that Filn K0(VarC)[L−1] is
generated by elements of the form {X }/Lm , where X is a smooth projective complex variety and
dim(X )−m ≤ n; see [6, Lemma 3.1]. We denote by K̂ 0(VarC) the completion of K0(VarC) with
respect to the dimension filtration. For every n,n′ ∈Z, we have

Filn K0(VarC)[L−1] ·Filn′
K0(VarC)[L−1] ⊆ Filn+n′

K0(VarC)[L−1].

It follows that the multiplication on K0(VarC) extends to K̂ 0(VarC), making the latter into a
commutative ring with identity.

For every n ≥ 1, we have (1−Ln)
∑

i≥0L
ni = 1 in K̂ 0(VarC). Therefore, we have canonical ring

homomorphisms
K0(VarC) → K0(StacksC) → K̂ 0(VarC).

The following result was observed by Ekedahl in [6, p. 14]. It follows from Bittner’s presentation
of K0(VarC), given in [2, Theorem 3.1].

Lemma 4. As an abelian group, K0(VarC)[L−1] may be presented as the abelian group generated
by formal fractions of the form {X }/Lm , where X is a smooth projective complex variety and m ≥ 0,
modulo the following relations:

(i) {;} = 0,
(ii) {X̃ }/Lm − {X }/Lm = {E }/Lm − {Y }/Lm , for every smooth projective complex variety X , every

blow-up X̃ → X at a smooth closed subscheme Y ⊆ X , with exceptional divisor E → Y , and
every m ≥ 0,
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(iii) {X ×CP1
C

}/Lm+1 − {X }/Lm+1 = {X }/Lm , for every smooth projective complex variety X and
every m ≥ 0.

3. Proof of Theorem 1

Proof of Theorem 1. (a). To show that Z2i : K0(VarC)[L−1] → K0(Ab) is well-defined, we verify
that the association {X }/Lm 7→ [Z2i+2m(X )] respects the relations of Lemma 4. It is clear that (i) is
satisfied.

Let m ≥ 0, let Y ,→ X be a closed immersion of smooth projective complex varieties, let X̃ → X
be the blow-up of X at Y , and let E be the exceptional divisor of the blow-up. Denote by d the
dimension of X , and by r the codimension of Y in X . We want to show that

[Z2i+2m(X )]− [Z2i+2m(Y )] = [Z2i+2m(X̃ )]− [Z2i+2m(E)]. (1)

in K0(Ab). Letting j = d − i −m, we see that (1) is equivalent to:

[Z 2 j (X )]− [Z 2 j−2r (Y )] = [Z 2 j (X̃ )]− [Z 2 j−2(E)]. (2)

By [13, Theorem 9.27], we have a group isomorphism

ϕ j :
⊕

0≤h≤r−2
C H j−1−h(Y )⊕C H j (X )

∼−→C H j (X̃ ).

By [12, Theorem 7.31], we have an isomorphism of Hodge structures⊕
0≤h≤r−2

H 2 j−2−2h(Y (C),Z)⊕H 2 j (X (C),Z)
∼−→ H 2 j (X̃ (C),Z),

where the Hodge structure on H 2 j−2−2h(Y (C),Z) is shifted by (h +1,h +1), and so has weight 2 j .
In particular, we have an isomorphism of groups

ψ j :
⊕

0≤h≤r−2
Hdg2 j−2−2h(Y ,Z)⊕Hdg2 j (X ,Z)

∼−→ Hdg2 j (X̃ ,Z).

Comparing the explicit descriptions of these isomorphisms, as given in the references, we see
that ϕ j and ψ j are compatible with the cycle class maps. In other words, we have a commutative
square ⊕

0≤h≤r−2 C H j−1−h(Y )⊕C H j (X ) C H j (X̃ )

⊕
0≤h≤r−2 Hdg2 j−2−2h(Y ,Z)⊕Hdg2 j (X ,Z) Hdg2 j (X̃ ,Z).

ϕ j

(
⊕

h clh
Y )⊕cl

j
X

cl
j

X̃

ψ j

We deduce that
Z 2 j (X̃ ) ∼=

⊕
0≤h≤r−2

Z 2 j−2−2h(Y )⊕Z 2 j (X ). (3)

The morphism E → Y identifies E with the projectivization of the normal bundle of Y inside X .
By [13, Theorem 9.25]1 and [12, Lemma 7.32], the pullback along E → Y induces a commutative
diagram ⊕

0≤h≤r−1 C H j−1−h(Y ) C H j−1(E)

⊕
0≤h≤r−1 Hdg2 j−2−2h(Y ,Z) Hdg2 j−2(E ,Z),

∼

⊕
h clh

Y cl
j−1
E

∼

where the horizontal arrows are isomorphisms. We deduce that

Z 2 j−2(E) ∼=
⊕

0≤h≤r−1
Z 2 j−2−2h(Y ). (4)

1Note that the formula of [13, Theorem 9.25] contains a typographical error: C Hl−r−1+k (−) should be C Hl−r+1+k (−).
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Now (2) follows from (3) and (4). Therefore, Z2i respects all relations of type (ii).
It remains to show that Z2i is compatible with relations of type (iii). Let X be a smooth

projective variety of dimension d , and let m ≥ 0 be an integer. We must show that

[Z2i+2m+2(X ×CP1
C)]− [Z2i+2m+2(X )] = [Z2i+2m(X )].

Setting j = d − i −m, the claim becomes

[Z 2 j (X ×CP1
C)]− [Z 2 j−2(X )] = [Z 2 j (X )]. (5)

Applying [13, Theorem 9.25] and [12, Lemma 7.32] to the trivial projective bundle X ×C P1
C
→ X ,

we obtain a commutative square

C H j (X )⊕C H j−1(X ) C H j (X ×CP1
C

)

Hdg2 j (X ,Z)⊕Hdg2 j−2(X ,Z) Hdg2 j (X ×CP1
C

,Z).

∼

cl
j
X ⊕cl

j−1
X

cl
j

X×CP1
C

∼

Thus
Z 2 j (X ×CP1

C) ∼= Z 2 j (X )⊕Z 2 j−2(X ),

which implies (5). It follows that Z2i respects relations of type (iii) as well, hence Z2i is a well-
defined group homomorphism.

(b). Let X be a smooth projective variety of dimension d , and let m ≥ d − i . Then 2i +2m ≥ 2d ,
and so

Z2i ({X }/Lm) = [Z2i+2m(X )] = 0.

This means that Z2i sends Fili K0(VarC)[L−1] to zero. Therefore, if we endow K0(VarC)[L−1] with
the dimension filtration topology and K0(Ab) with the discrete topology, the homomorphism
Z2i is continuous. It follows that Z2i extends uniquely to a homomorphism Ẑ 2i : K̂ 0(VarC) →
K0(Ab). �

We also denote by Z2i the composition

K0(StacksC) → K̂ 0(VarC)
Ẑ 2i−−→ K0(Ab).

4. Proof of Theorem 3

Theorem 5 (Colliot-Thélène, Voisin). Let X be a smooth projective complex variety, of dimension
d. Assume that there exists a smooth closed subvariety S ⊆ X of dimension ≤ 2, such that the
pushforward map C H0(S) →C H0(X ) is surjective. Then we have an isomorphism of finite groups

H 3
nr(C(X )/C,Q/Z) ∼= Z 4(X ).

Proof. See [4, Théorème 1.1]. �

Remark 6. It is well known that the assumptions of Theorem 5 are satisfied when X is unira-
tional. We have learned the following argument from J.-L. Colliot-Thélène.

If X is a smooth projective unirational complex variety, then there exist a dense open sub-
scheme U ⊆ X and a surjective morphism ϕ : V → U , where V is an open subscheme of some
affine space. If p1, p2 ∈U (C), we may find q1, q2 ∈V (C) such that ϕ(qi ) = pi for i = 1,2. There is a
line connecting q1 and q2, hence, since X is complete, we find a morphism P1

C
→ X whose image

contains p1 and p2. It follows that any two zero-cyles of degree 1 in U are rationally equivalent.
Now, if p ∈ X (C), a moving lemma shows that p is rationally equivalent to a zero-cycle whose

support is contained in U ; see [3, Complément, p. 599]. We conclude that the degree map
deg : C H0(X ) → Z is an isomorphism. Thus, the hypotheses of Theorem 5 are satisfied, with S
a closed point of X .
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Proposition 7. Let G be a finite group and let V be a faithful complex representation of G. Then
Z2i ({BG}) = 0 for every i ≥−1, and

Z−4({BG}) = [H 3
nr(C(V )G /C,Q/Z)].

Proof. Let d ≥ 1 be the dimension of V . By [5, Proposition 3.1(ii)], we have

{BG} = lim
m→∞{V m/G}L−md .

Fix an integer i . By Theorem 1(b), the homomorphism Ẑ 2i : K̂ 0(VarC) → K0(Ab) is continuous.
Therefore, if m is sufficiently large, we have

Z2i ({BG}) = Ẑ 2i ({BG}) = Ẑ 2i ({V m/G}L−md ) = Z2i ({V m/G}L−md ).

We fix one such m. Using resolution of singularities, we may write

{V m/G} = {X }+∑
q

nq {Xq } (6)

in K0(VarC), where X and the Xq are smooth projective varieties over C, X is birationally equiva-
lent to V m/G , dim(Xq ) ≤ md −1, and nq ∈Z for every q . Applying Z2i , we obtain:

Z2i ({BG}) = [Z2i+2md (X )]+∑
q

nq [Z2i+2md (Xq )]. (7)

By the Lefschetz Theorem on (1,1)-classes, we have Z2md−2(X ) = Z 2(X ) = 0. Therefore, if
i ≥−1 every term on the right hand side of (7) is zero. This shows that Z2i ({BG}) = 0 for all i ≥−1.

If i = −2, another application of the Lefschetz Theorem on (1,1)-classes shows that the right
hand side of (7) reduces to [Z2md−4(X )] = [Z 4(X )]. Since X is birationally equivalent to V /G , by
Theorem 5 we have:

Z 4(X ) ∼= H 3
nr(C(X )/C,Q/Z) ∼= H 3

nr(C(V )G /C,Q/Z).

Using (7) with i =−2, we conclude that

Z−4({BG}) = [Z 4(X )] = [H 3
nr(C(V )G /C,Q/Z)]. �

Proof of Theorem 3. As an abelian group, K0(Ab) is freely generated by [Z] and [Z/pnZ], where p
ranges among all prime numbers and n ≥ 1; see [6, Proposition 3.3(i)]. Since H 3

nr(C(V )G /C,Q/Z)
is not trivial, [H 3

nr(C(V )G /C,Q/Z)] 6= 0 in K0(Ab). By Proposition 7, we deduce that Z−4({BG}) 6= 0
in K0(Ab). On the other hand, it is clear that Z−4({SpecC}) = 0. We conclude that {BG} 6= 1 in
K0(StacksC). �
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