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Abstract. The eigenvalue problem of stochastic Hamiltonian systems with boundary conditions was studied
by Peng [4] in 2000. For the one-dimensional case, denoting by {λn }∞n=1 all the eigenvalues of such an
eigenvalue problem, Peng proved that λn →+∞ as n →∞. In this short note, we prove that the growth order
of λn is the same as n2. Apart from the interest of this result in itself, the statistic periodicity of solutions of
FBSDEs can be estimated directly by corresponding coefficients and time duration.
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1. Introduction and main results

Let (Ω,F ,F,P) be a complete filtered probability space, on which a standard one-dimensional
Brownian motion B = {Bt }t ≥0 is defined, and F= {Ft }t ≥0 is the natural filtration of B augmented
by all the P-null sets in F . Let T > 0 be any fixed time horizon.

In [4], Peng considered the following eigenvalue problem of stochastic Hamiltonian system
with boundary conditions:

dxt = [
Hλ

21xt +Hλ
22 yt +Hλ

23zt
]

dt + [
Hλ

31xt +Hλ
32 yt +Hλ

33zt
]

dBt , t ∈ [0, T ],

−dyt = [Hλ
11xt +Hλ

12 yt +Hλ
13zt ]dt − zt dBt , t ∈ [0, T ],

x(0) = 0, y(T ) = 0,

(1)
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where Hλ = H −λH̄ ,

H =
H11 H12 H13

H21 H22 H23

H31 H32 H33

 , H̄ =
H̄11 H̄12 H̄13

H̄21 H̄22 H̄23

H̄31 H̄32 H̄33

 ,

Hλ
i j = Hi j −λH̄i j , Hi j = H T

i j , H̄i j = H̄ T
i j , i , j = 1,2,3, which are constant matrices.

Definition 1. A real number λ is called an eigenvalue of linear stochastic Hamiltonian system
with boundary conditions (1) if there exists a nontrivial solution (x, y, z) of (1). This solution is
called an eigenfunction corresponding to λ. All eigenfunctions associated with the eigenvalue λ
constitute a linear subspace of M 2(0,T ;Rn), called the eigenfunction subspace corresponding toλ.

The above eigenvalue problem is a stochastic analogue of classical eigenvalue problem of
mechanic systems, and it is closely related to the existence of solutions to Forward–Backward
Stochastic Differential Equations (FBSDEs in short). Please refer to [1–5] and references therein
for the well-posedness of FBSDEs, among which the monotonicity condition is an important
sufficient condition for the existence and uniqueness of solutions to FBSDEs. In particular, for
linear FBSDE (1) with H̄ = 0, the monotonicity condition has the following concrete form:−H11 −H12 −H13

H21 H22 H23

H31 H32 H33

6−αI3n , (2)

where α> 0 is a constant.
For the case

H̄ =
0 0 0

0 H22 0
0 0 0

 , (3)

by using the blow-up time (as usual, the blow-up time denotes the endpoints of the maximum
existing interval of the solution to certain ODEs) of the solution for the related Riccati equation,
Peng proved the following

Theorem 2. [4, Theorem 3.2] For (1) of one dimension with perturbation (3), assume that (2) is
satisfied as well as H23 =−H33H13. Then there exist {λn}+∞n=1, all the eigenvalues of the problem (1),
such that λn →+∞ as n →+∞. Moreover, the eigenfunction space corresponding to each λn is of
one dimension.

Such a theorem was generalized to the eigenvalue problem of stochastic Hamiltonian system
driven Poison process in [6].

The existence of eigenvalues is given in the above Theorem 2. Then it is natural and meaningful
to ask that whether those eigenvalues have any relationship with the coefficients of systems and
how they tend to infinity. Towards solving these problems we have the following

Theorem 3. Under the same assumptions in Theorem 2,

λn =O
(
n2) , asn →+∞.

In detail,
π2

−2H11H22T 2 ≤ lim
n→+∞

λn

n2 ≤ lim
n→+∞

λn

n2 ≤ 4π2

−H11H22T 2 .

Remark 4. The result about order in Theorem 3 can be considered as an analogue of the well-
known result in deterministic case.
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In literature, the study of FBSDEs is mainly focused on the existence and uniqueness of
solutions and hardly any on properties of solutions. From the point of view of eigenvalue problem
of stochastic Hamiltonian system with boundary conditions, what is different is that some
concrete characteristic such as statistic periodicity and stochastic oscillations of solutions of
FBSDEs can be given in [4]. By the proof of [4, Theorem 3.2], the eigenfunction associated to the
nth eigenvalue has the statistic periods of n. Combining with Theorem 3, we have the following
Corollary 5.

Corollary 5. Let λ be an eigenvalue of the stochastic Hamiltonian system in Theorem 3, for
sufficiently large n, if

λ< n2π2

−2H11H22T 2 ,

(
resp. λ> 4n2π2

−H11H22T 2 ,

)
the statistic periods of the associate eigenfunctions (i.e., the solutions of FBSDEs) is less (resp.
greater) than n.

The rest of the paper is organized as follows. In Section 2, we recall some preliminary results
and give several lemmata. The proof of Theorem 3 is given in Section 3.

2. Preliminaries and several lemmata

For one-dimensional case with perturbation (3), the eigenvalue problem of stochastic Hamilton-
ian system with boundary conditions (1) is rewritten as{

dxt = [
H21xt + (1−λ)H22 yt +H23zt

]
dt + [

H31xt +H32 yt +H33zt
]

dBt , t ∈ [0,T ],

−dyt = [
H11xt +H12 yt +H13zt

]
dt − zt dBt , t ∈ [0,T ], x(0) = 0, y(T ) = 0.

(4)

As given in [4, Subsection 4.2], through Legendre transformation, the dual Hamiltonian H̃ of the
original Hamiltonian H corresponding to (4) is

H̃ =

 H−1
33 H 2

32 −ρH22 H−1
33 H32H31 −H21 −H−1

33 H32

H−1
33 H32H31 −H21 H−1

33 H 2
31 −H−1

33 H31

−H−1
33 H32 −H−1

33 H31 H−1
33

 ,

where ρ = 1−λ, and the relation between solution (x, y, z) of original Hamiltonian system and
solution (x̃, ỹ , z̃) of dual Hamiltonian system is:{

x(t ) = ỹ(t ), y(t ) = x̃(t ),

z(t ) =−H−1
33 H32x̃(t )−H−1

33 H31 ỹ(t )+H−1
33 z̃(t ).

In Peng [4], the idea to study the eigenvalue problem of stochastic Hamiltonian system is to
deal with the blow-up time of the following Riccati equations with terminal conditions [4, (6.2)]:{

dk
dt =−(

2H21 +H 2
13

)
k −H11 −

(
ρH22 −H33H 2

13

)
k2, t ≤ T,

k(T ) = 0,
(5)

and dual Riccati equations with terminal conditions [4, (6.4)]:{
dk̃
dt = (

2H21 +H 2
13

)
k̃ +H11k̃2 + (

ρH22 −H33H 2
13

)
, t ≤ T,

k̃(T ) = 0.
(6)

The following two lemmata 6 and 7 from [4] are needed.

Lemma 6 (See [4, Lemma 6.1]). For the Riccati equation (5), the blow-up time tρ is continuous
and strictly decreasing with respect to ρ when ρ < ρ0, where ρ0 = H−1

22 H33H 2
13. Besides,

lim
ρ→−∞ tρ = T, lim

ρ→ρ−0
tρ =−∞. (7)
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Lemma 7 (See [4, Lemma 6.2]). For the dual Riccati equation (6), the blow-up time t̃ρ is
continuous and strictly decreasing with respect to ρ when ρ < ρ0. Besides,

lim
ρ→−∞ t̃ρ = T, lim

ρ→ρ−0
t̃ρ =−∞. (8)

To simplify the notation, denote
q(ρ) =−(

ρH22 −H33H 2
13

)
, r =−H11,

r̃ (ρ) = (
ρH22 −H33H 2

13

)
, q̃ = H11,

p̃ =−p = 2H21 +H 2
13,

ρ∗ = (4H11H22)−1
(
2H21 +H 2

13

)2
.

(9)

By (2),

r =−H11 < 0, H22 < 0, H33 < 0.

Besides, by [4, Page 278], ρ0 is the critical point, which implies that all the eigenvalues of
problem (4) are located in (−∞,ρ0). Moreover, by Theorem 2, there are at most finite eigenvalues
{λi }m

i=1 of problem (4), such that 1−λi ∈ [ρ0 +ρ∗,ρ0). Since we merely try to depict the growth
order of λn in this paper, it is reasonable for us to only check those ρ ∈ (−∞,ρ0 +ρ∗). Actually,
that ρ < ρ0 +ρ∗ guarantees

1− p2

4r q(ρ)
= 1− p̃2

4r̃ (ρ)q̃
> 0. (10)

In what follows, for simplicity, we sometimes omit the ρ in q(ρ) and r̃ (ρ).
The following two Lemmata 8 and 9 depict the solutions of (5) and (6), which are essential in

proving Theorem 3.

Lemma 8. The blow-up time tρ of solution k of (5) satisfies√
r q(ρ)− p2

4
(T − tρ)+arctan

−p√
4r q(ρ)−p2

= π

2
. (11)

Proof. Under (10), pk + r +qk2 < 0 and 1− p2

4r q > 0. Then

dk
p
r k + q

r k2 +1
= dk(√

q
r k − p

2
p

r q

)2
+

(
1− p2

4r q

) = r dt .

Combined with terminal condition k(T ) = 0,

k =−
√

4r q −p2

2q
tan

√
r q − p2

4
(T − t )+arctan

−p√
4r q −p2

− p

2q
.

Therefore, for any fixed ρ (ρ < ρ0 +ρ∗), the blow-up time tρ of k satisfies√
r q − p2

4

(
T − tρ

)+arctan
−p√

4r q −p2
= π

2
.

�

Lemma 9. The blow-up time t̃ρ of solution k̃ of (6) satisfies√
q̃ r̃ (ρ)− p̃2

4

(
t̃ρ −T

)+arctan
p̃√

4q̃ r̃ (ρ)− p̃2
=−π

2
. (12)

C. R. Mathématique, 2021, 359, 1, 99-104



Guangdong Jing and Penghui Wang 103

Proof. Under (10), r̃ + p̃k̃ + q̃ k̃2 > 0 and 1− p̃2

4r̃ q̃ > 0. Then

dk̃

1+ p̃
r̃ k̃ + q̃

r̃ k̃2
= dk̃(√

q̃
r̃ k̃ + p̃

2
p

q̃ r̃

)2

+
(
1− p̃2

4q̃ r̃

) = r̃ dt .

Combined with terminal condition k̃(T ) = 0,

k̃ =
√

4q̃ r̃ − p̃2

2q̃
tan

[√
4q̃ r̃ − p̃2

2
(t −T )+arctan

p̃√
4q̃ r̃ − p̃2

]
− p̃

2q̃
.

For any fixed ρ (ρ < ρ0 +ρ∗), the blow-up time t̃ρ of solution k̃ satisfies√
q̃ r̃ − p̃2

4
(t̃ρ −T )+arctan

p̃√
4q̃ r̃ − p̃2

=−π

2
.

�

3. Proof of Theorem 3

In this section, we prove Theorem 3.

Proof of Theorem 3. By [4, Section 6, Proof of Theorem 3.2.], the nth eigenvalue λn of (4) is
uniquely determined by

t 2n−1
ρn

= 0, λn = 1−ρn , ∀ n ∈N+,

where

t 2 j−1
ρn

= T − j
(
T − tρn

)− ( j −1)
(
T − t̃ρn

)
, j = 1,2, · · ·n,

t 2 j−2
ρn

= T − ( j −1)
(
T − tρn

)− ( j −1)
(
T − t̃ρn

)
, t 1

ρ1
= tρ .

By Lemma 8 and Lemma 9, we obtain√
r q − p2

4

(
T − tρ

)+arctan
−p√

4r q −p2
= π

2

and √
q̃ r̃ − p̃2

4

(
t̃ρ −T

)+arctan
p̃√

4q̃ r̃ − p̃2
=−π

2
.

Then

lim
n→+∞

T − tρn

T − t̃ρn

= 1

and √
r q − p2

4
=

π
2 +arctan pp

4r q−p2

T − tρ
=

π
2 −arctan pp

4r q−p2

T − t̃ρ
. (13)

Besides, following the method in [4, Subsection 6.2],

T −n(T − tρn )− (n −1)
(
T − t̃ρn

)= 0. (14)

Then

max
{
T − tρn ,T − t̃ρn

}≥ T

2n −1
and for sufficiently large n,

max
{
T − tρn ,T − t̃ρn

}≤ T

2n −2
.
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Then by (13), for sufficiently large n,

(n −1)π

T
≤

√
r q(ρn)− p2

4
≤ (2n −1)π

T
.

Moreover, by (9),

r q(ρn)− p2

4
= (−H11H22)λn +H11H22 −H11H33H 2

13 −
(
2H21 +H 2

13

)2

4
.

Then
π2

−2H11H22T 2 ≤ lim
n→+∞

λn

n2 ≤ lim
n→+∞

λn

n2 ≤ 4π2

−H11H22T 2 .

�
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