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Abstract. We prove a complementary result to the probabilistic well-posedness for the nonlinear wave
equation. More precisely, we show that there is a dense set S of the Sobolev space of super-critical regularity
such that (in sharp contrast with the probabilistic well-posedness results) the family of global smooth
solutions, generated by the convolution with some approximate identity of the elements of S, does not
converge in the space of super-critical Sobolev regularity.

Résumé. On démontre un résultat complémentaire à ceux manifestant le caractère bien posé probabiliste
de l’équation des ondes avec des données initiales de régularité de Sobolev super critique par rapport au
changement d’échelle laissant invariant l’équation.
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1. Introduction

In this work, we are interested in the three dimensional nonlinear wave equation{
∂2

t u −∆u +|u|2σu = 0, (t , x) ∈R×T3,

(u,∂t u)|t=0 = ( f , g ) ∈H s
(
T3

)
,

(1)

where u is a real-valued function and

H s (
T3) := H s (

T3)×H s−1 (
T3) .

The nonlinear wave equation (1) is a Hamiltonian system with conserved energy

H [u] := 1

2

∫
T3

|∇u|2d x + 1

2σ+2

∫
T3

|u|2σ+2d x.
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It was shown (see [8, 15]) that when σ ≤ 2, the problem (1) possesses a global strong solution in
the energy space H 1(T3). By replacing T3 to R3, the scaling

u 7→ uλ(t , x) :=λ 1
σ u(λt ,λx)

keeps the equation (1) invariant. This leads to the critical regularity index sc = 3
2 − 1

σ ≤ 1.
Intuitively, for s < sc if the initial data is concentrated at the frequency scale À 1 and is of size
1 measured by the H s norm, then the nonlinear part in the dynamics of (1) is dominant and
it causes instability of the H s norm of the solution. This is called a norm inflation and it was
extensively studied, see [6,10,11] in the context of nonlinear wave equations. For instance, it was
shown in [6] that there exists a sequence of smooth initial data whose H s norms converge to
zero, while the H s norms of the obtained sequence of solutions amplifies at very short time. We
also refer to [12] where a different concentration phenomenon, related to the Lorentz invariance
of the wave equation, is observed.

In [4] and [5], by using probabilistic tools, N. Burq and the second author showed that
problem (1) with cubic nonlinearity still possesses global strong solutions for a “large class” of
functions of super-critical regularity. The result was further extended to 1 ≤σ≤ 2 in [14] and [17].
More precisely, the following statement follows from [5, 14, 17].

Theorem 1. Let 1 ≤σ≤ 2 and 1− 1
σ < s < sc = 3

2− 1
σ . Then there is a dense setΣ⊂H s (T3) satisfying

Σ∩H s′ (T3) =; for every s′ > s such that the following holds true. For every ( f , g ) ∈ Σ, let ( fn , gn)
be the sequence in C∞(T3)×C∞(T3) defined by the regularization by convolution, i.e.

fn = ρn ∗ f , gn = ρn ∗ g ,

where (ρn)n∈N is an approximate identity. Denote by (un(t ),∂t un(t )) the smooth solutions of (1)
with the smooth initial data ( fn , gn). Then there exists a limit object u(t ) such that for any T > 0,

lim
n→∞‖(un(t ),∂t un(t ))− (u(t ),∂t u(t ))‖L∞([−T,T ];H s (T3)) = 0.

Moreover u(t ) solves (1) in the distributional sense.

When 1 ≤ σ < 2, the above Theorem 1 can be extended to s = 1− 1
σ , thanks to [5] (the case

σ= 1) and a recent result [9](the case 1 <σ< 2).
In Theorem 1 the set Σ is a full measure set with respect to a suitable non degenerate

probability measure µ on the Sobolev space H s (T3) such that µ(H s′ (T3)) = 0 for every s′ > s.
One proves more than Theorem 1 in [5,14,17] but the statement of Theorem 1 is the suitable one
for our purpose here.

Theorem 1 is inspired by the seminal contribution of Bourgain [3]. There are however several
new features with respect to [3]. The first one is that more general randomisations compared
to [3] are allowed. This led to results similar to Theorem 1 in the context of a non compact spatial
domains (see e.g. [2, 13]). Next, the argument allowing to pass from local to global solutions in
Theorem 1 is very different from [3]. It is based on a probabilistic energy estimate introduced
in [5] (see also [7]) while the argument giving the globalisation of the local solutions in [3]
is restricted to a very particular distribution of the initial data. Finally, Theorem 1 deals with
functions of positive Sobolev regularity which avoids a renormalization of the equation, making
the results more natural from a purely PDE perspective.

Strictly speaking, the result of Theorem 1 is not stated as such in [5, 14, 17]. One may however
adapt the argument presented in [18] which proves Theorem 1 for σ= 1 to the case of σ ∈ [1,2].

The regularization by convolution used in Theorem 1 is essential. We refer to [18, 19] for
results showing that other regularizations of ( f , g ) ∈ Σ may give divergent sequences of smooth
solutions.
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The main result of this paper is that even if we naturally regularize the data by convolution,
there is a dense set of (pathological) initial data giving not converging smooth solutions. This is
in some sense a complementary to Theorem 1 result.

In order to state our result, we fix a bump function ρ ∈C∞
c (R3) such that

0 ≤ ρ(x) ≤ 1, ρ||x|> 1
100

≡ 0,
∫
R3
ρ(x)d x = 1.

For any ε> 0, we define ρε(x) := ε−3ρ(x/ε). With this notation, we have the following statement.

Theorem 2. Let 1
2 ≤ σ ≤ 2 and max{0, 3

2 − 2
2σ−1 } < s < sc = 3

2 − 1
σ . There exists a dense set

S ⊂ H s (T3), such that for every ( f , g ) ∈ S, the family of global smooth solutions (uε)t>0 of (1)
with initial data (ρε∗ f ,ρε∗ g ) does not converge. More precisely

limsup
ε→0

∥∥uε(t )
∥∥

L∞([0,1]; H s (T3)) =+∞.

The main ingredient of the proof of Theorem 2 is a refined version of the ill-posedness
construction in [4] (see also [16]) which uses an idea of Lebeau [10] exploiting the property of the
finite propagation speed of the wave equation. It is an interesting problem to extend the result of
Theorem 2 to the case of the nonlinear Schrödinger equation. Such a result would be a significant
extension of [1].

The results of Theorem 1 and Theorem 2 show that for data of supercritical regularity two
opposite behaviours coexiste. Both behaviours are manifested on dense sets which makes that it
would be probably interesting to try to observe these behaviours by numerical simulations.

2. Unstable profile

2.1. Explicit estimates for the ODE profile

Let V (t ) be the unique solution of the following ODE:

V ′′+|V |2σV = 0, V (0) = 1, V ′(0) = 0. (2)

It can be shown that V (t ) is periodic (see [16, Lemma 6.2]). We choose the following parameters:

κn = (logn)−δ1 , εn = 1

100n
, tn =

(
(logn)δ2 n

−
(

d
2 −s

))σ
, λn =

(
κn n

d
2 −s

)σ
, (3)

where 0 < δ1 < δ2 < 1 and their precise values are to be chosen according to different context.
Take ϕ ∈C∞

c (|x| ≤ 1), radial, 0 ≤ϕ≤ 1, and ∇ϕ 6= 0 on 0 < |x| < 1. Let

vn(0, x) := κnn
d
2 −sϕ(nx), vεn(0) := ρε∗ vn(0). (4)

Define

vεn(t , x) = vεn(0, x)V
(
t
(
vεn(0, x)

)σ)
. (5)

Then one verifies that vεn solves

∂2
t vεn + ∣∣vεn∣∣2σ vεn = 0,

(
vεn ,∂t vεn

)∣∣
t=0 =

(
vεn(0),0

)
. (6)

Lemma 3. Let 0 ≤ s < sc , then for parameters defined in (3), we have

(1) ‖vεn
n (tn)‖H s (T3)& κn(λn tn)s .

(2) ‖vεn
n (t )‖H k (T3). κn(λn tn)k nk−s , for k = 0,1,2,3, · · · and t ∈ [0, tn].

(3) ‖∂αvεn
n (t )‖L∞(T3).λ

1
σ
n n|α|(1+λn t ), for α ∈N3, |α| = 0,1 and t ∈ [0, tn].

C. R. Mathématique, 2020, 358, n 9-10, 989-999
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Proof. The proof follows from a direct calculation as in [4], with an additional attention to the
convolution. We denote by Tλ, the scaling operator Tλ( f ) := f (λ·). Without loss of generality, we
will do all the computation in R3 instead of T3, since all the functions involved are compactly
supported near the origin.

By definition, for α ∈N3, |α| = k,

vεn(0, x) =λ
1
σ
n

∫
R3
ϕ(n(x − y))

1

ε3 ρ
( y

ε

)
d y, ∂αvεn(0, x) =λ

1
σ
n nk

∫
R3

Tn(∂αϕ)(x − y)
1

ε3 ρ
( y

ε

)
d y.

Using Young’s convolution inequality, we have from (5) that∥∥∂αvεn
n (0)

∥∥
L∞ .λ

1
σ
n n|α|,

∥∥∂αvεn
n (0)

∥∥
L2 . κnn|α|−s ,

∥∥vεn
n (t )

∥∥
L∞ .λ

1
σ
n ,

and ∥∥vεn
n (t )

∥∥
L2 ≤ ‖V ‖L∞

∥∥vεn
n (0)

∥∥
L2 . κnn−s .

This proves Lemmas 3(2) and (3) for the case k = 0. From direct calculation using (5),

∇vεn
n (t , x) =σt

(
vεn

n (0, x)
)σ∇vεn(0, x)V ′ (t

(
vεn

n (0, x)
)σ)+∇vεn

n (0, x)V
(
t
(
vεn

n (0, x)
)σ)

. (7)

Thus ‖∇vεn
n (t )‖L∞ . (λn t + 1)λ

1
σ
n n. Note that λn tn = (logn)σ(δ2−δ1) À 1, the dominant part in

∂αvεn
n (t , x) comes from ((

vεn
n (0)

)σ−1∇vεn
n (0)

)|α|
t |α|vεn

n (0)V (|α|)(·),

if we estimate t by tn , hence ‖vεn
n (t )‖H k . κn(λn tn)k nk−s , for all k = 0,1,2, · · · . This proves

Lemma 3(2).
The only non-trivial part is Lemma 3(1). Since 0 < s < 1, from the interpolation∥∥vεn

n (t )
∥∥

H 1 .
∥∥vεn

n (t )
∥∥ 1

2−s
H s

∥∥vεn
n (t )

∥∥ 1−s
2−s

H 2

and the upper bound of ‖vεn
n (t )‖H 2 that we have proved, it suffices to show that∥∥vεn

n (tn)
∥∥

H 1 & κn(λn tn)n1−s . (8)

It is reduced to get a lower bound for the dominant part∥∥σtn
(
vεn

n (0, x)
)σ∇vεn

n (0, x)V ′ (tn
(
vεn

n (0, x)
)σ)∥∥

L2

=σtnnλ
1+ 1

σ
n

∥∥[(
Tn

(∇ϕ))∗ρεn

][(
Tn

(
ϕ

))∗ρεn

]σV ′ (λn tn
((

Tnϕ
)∗ρεn

)σ)∥∥
L2 (9)

Note that (Tn f )∗ρεn (x) = ∫
f (nx −nεn y)ρ(y)d y , hence

(RHS. of (9)) ∼ tnn1− d
2 λ

1+ 1
σ

n

∥∥∥∇(
ϕ∗ ρ̃) · (ϕ∗ ρ̃)σV ′

(
λn tn (nεn)σd (

ϕ∗ ρ̃)σ (x)
)∥∥∥

L2
,

where ρ̃ = T 1
nεn

ρ = T100ρ. Note that tnn− d
2 λ

1+ 1
σ

n =λn tnn1−s , hence (22) follows from the following

Lemma 4:

Lemma 4. Assume that ψ ∈ C∞
c (Rd ) and ψ(x) > 0 for all |x| < 1. Assume that there exist two

constants 0 < a < b < 1, such that dψ 6= 0 on {x : a ≤ |x| ≤ b}. Let W be a non-trivial periodic
function (i.e. W 6= 0). Then there exist c0 > 0,λ0 > 0, such that for all λ≥λ0,∥∥∇ψ(x)|ψ(x)

∣∣σW (λψ(x))
∥∥

L2(Rd ) ≥ c0 > 0.

Proof. We follow the geometric argument in [16]. Denote by Ca,b := {x : a ≤ |x| ≤ b}. By shrinking
a,b if necessary, we may assume that ψ(Ca,b) is foliated by Σs := {x : ψ(x) = s}. From the
hypothesis on ψ, there exist 0 < c1 <C1 <∞, such that c1 ≤ |∇ψ| ≤C1 on Ca,b . Let B = maxCa,b ψ

and A = minCa,b ψ, then we have for F (s) = |s|2σ|W (λs)|2 that∥∥∇ψ(F ◦ψ)1/2∥∥2
L2 ≥ c2

1

∫
Ca,b

F (ψ(x))d x.

C. R. Mathématique, 2020, 358, n 9-10, 989-999
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By the co-area formula,∫
Ca,b

F (ψ(x))d x =
∫ B

A
F (s)d s

∫
Σs

dσΣs

|∇ψ| ≥ c ′
∫ B

A
|s|2σ|W (λs)|2d s,

thanks to the fact that the mapping s 7→ M d−1(Σs ) is continuous, where M d−1 is the surface
measure on Σs . By changing variables, we obtain that∫ B

A
|s|2σ|W (λs)|2d s = 1

λ2σ+1

∫ λB

λA
|s|2σ|W (s)|2d s ≥C A,B

1

λ(B − A)

∫ λB

λA
|W (s)|2d s ≥C ′

A,B ,

where the last constant does not depend on λ, if λ is large enough. This completes the proof of
Lemma 4. �

The proof of Lemma 3 is now complete. �

2.2. Perturbative analysis

Fix (u0,u1) ∈C∞(T3)×C∞(T3), denote by uεn
n the solution of

∂2
t uεn

n −∆uεn
n + ∣∣uεn

n

∣∣2σuεn
n = 0

with the initial data (uεn
n (0),∂t uεn

n (0)) = ρεn ∗
(
(u0,u1)+ (vn(0),0)

)
, where vn(0) is given by (4). We

denote by

S(t )( f , g ) := cos(t
p
−∆) f + sin

p−∆p−∆ g

the propagator of the linear wave equation.

Proposition 5. Assume that max{ 3
2 − 2

2σ−1 ,0} ≤ s < sc = 3
2 − 1

σ , then for any 0 < θ < σ
2 ( 3

2 − s)− 1
2

and (u0,u1) ∈C∞(T3)×C∞(T3), there exist C > 0, δ2 > 0, such that for any δ1 ∈ (0,δ2), we have

sup
t ∈ [0, tn ]

∥∥uεn
n (t )−S(t )(u0,u1)− vεn

n (t )
∥∥

Hν(T3) ≤C n(ν−s)−θ ,∀ ν= 0,1,2,

where the function vεn
n (t ) is defined in (5) with parameters as in (3), and the constant C only

depends on the smooth data (u0,u1) and θ > 0. Consequently, we have

sup
t ∈ [0, tn ]

∥∥uεn
n (t )−S(t )(u0,u1)− vεn

n (t )
∥∥

H s (T3) ≤C n−θ .

In particular, for δ1 sufficiently small,∥∥uεn
n (tn)

∥∥
H s (T3)& (logn)sσ(δ2−δ1)−δ1 →∞, as n →∞.

Proof. Denote by uL(t ) = S(t )(u0,u1) the linear solution and f (v) = |v |2σv . Consider the differ-
ence wn = uεn

n −uL − vεn
n , then it satisfies the equation

∂2
t wn −∆wn =∆vεn

n − (
f
(
vεn

n +uL +wn)− f (vεn
n

))
, (wn ,∂t wn) |t=0 = 0.

Define the semi-classical energy for wn as in [4]

En(t ) := 1

n2(1−s)

(
‖∂t wn(t )‖2

L2(T3) +‖∇wn(t )‖2
L2(T3)

)
+ 1

n2(2−s)

(
‖∂t wn(t )‖2

H 1(T3) +‖∇wn(t )‖2
H 1(T3)

)
.

(10)

Here the second line in (10) is needed since we need to use it to control the L∞ norm of wn .
Let Fn(t ) =−∆vεn

n + f (vεn
n +uL+wn)− f (vεn

n ). From the energy estimate for the inhomogeneous
linear wave equation, we have

1

2

d

d t
En(t ) ≤ C n−(1−s) ∥∥n−(1−s)∂t wn(t )

∥∥
L2(T3) ‖Fn(t )‖L2(T3)

+ C n−(2−s) ∥∥n−(2−s)∂t wn(t )
∥∥

H 1(T3) ‖Fn(t )‖H 1(T3) ,

C. R. Mathématique, 2020, 358, n 9-10, 989-999
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and this implies that

d

d t
(En(t ))1/2 ≤C

(
n−(1−s) ‖Fn(t )‖L2(T3) +n−(2−s) ‖Fn(t )‖H 1(T3)

)
. (11)

To simplify the notation, we denote by

en(t ) := sup
0≤τ≤ t

(En(t ))
1
2 .

Our goal is to show that supt ∈ [0, tn ] en(t ). n−θ. Write

Gn(t ) := f
(
vεn

n +uL +wn
)− f

(
vεn

n
)

,

from Lemma 3, we have, for t ∈ [0, tn] that

‖Fn(t )‖L2(T3). κn (λn tn)2 n2−s +‖Gn(t )‖L2(T3) . (12)

By the Taylor expansion,

|Gn |. (|uL |+ |wn |)
(∣∣vεn

n

∣∣2σ+|uL |2σ+|wn |2σ
)

,

hence

‖Gn(t )‖L2(T3)

. ‖wn(t )‖L2(T3)

(
1+∥∥vεn

n (t )
∥∥2σ

L∞(T3) +‖wn(t )‖2σ
L∞(T3)

)
+∥∥vεn

n (t )
∥∥

L2(T3)
∥∥vεn

n (t )
∥∥2σ−1

L∞(T3) ,

where the implicit constants depend on ‖uL(t )‖L∞(T3). By writing wn(t , x) = ∫ t
0 ∂t wn(τ, x)dτ

(since wn(0, ·) = 0), we obtain that

‖Gn(t )‖L2(T3).
∫ t

0
‖∂t wn(τ)‖L2(T3) dτ ·

(
1+∥∥vεn

n (t )
∥∥2σ

L∞(T3) +‖wn(t )‖2σ
L∞(T3)

)
+∥∥vεn

n (t )
∥∥

L2(T3)
∥∥vεn

n (t )
∥∥2σ−1

L∞(T3) +1

.tn1−s en(t )
(
λ2

n +‖wn(t )‖2σ
L∞(T3)

)
+κnλ

2− 1
σ

n n−s ,

(13)

where we have used Lemma 3 to control ‖vεn
n (t )‖L∞ . Similarly, for t ∈ [0, tn], we have

‖∇Fn(t )‖L2(T3). κn (λn tn)3 n3−s +‖∇Gn(t )‖L2(T3) . (14)

We need to estimate ‖wn(t )‖L∞(T3). From the Gagliardo–Nirenberg inequality,

‖wn(t )‖L∞(T3). ‖wn(t )‖
3
4

H 2(T3)
‖wn(t )‖

1
4

L2(T3).
(
n2−s en(t )

) 3
4
(
ten(t )n1−s) 1

4 = t
1
4 n

7
4 −s en(t ), (15)

where we used wn(t ) = ∫ t
0 ∂t wn(τ, ·)dτ again. Since t ≤ tn = (logn)σδ2 n−( 3

2−s)σ and σ( 3
2 − s) > 1,

we have

‖wn(t )‖L∞:(T3). n
3
2 −s en(t ). (16)

Therefore,

n−(1−s)‖Fn(t )‖L2(T3).κn (λn tn)2 n +κn

(
κnn

3
2 −s

)2σ−1
n−1 + tnen(t )

((
κnn

3
2 −s

)2σ+
(
n

3
2 −s en(t )

)2σ
)

.(logn)2σ(δ2−δ1)−δ1 n + (logn)−2σδ1 n(2σ−1)
( 3

2 −s
)−1

+n
( 3

2 −s
)
σen(t )

[
(logn)σ(δ2−2δ1) + (logn)σδ2 (en(t ))2σ

]
.

Since s > 3
2 − 2

2σ−1 , we have (2σ−1)( 3
2 − s)−1 < 1, thus

n−(1−s) ‖Fn(t )‖L2(T3). (logn)σ(2δ2−3δ1)n + (logn)σδ2 n
( 3

2 −s
)
σen(t )

(
1+ (en(t ))2σ)

. (17)
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C-M. Sun and N. Tzvetkov 995

Next we estimate |∇Gn | as

|∇Gn |.
∣∣∇vεn

n

∣∣(1+ ∣∣vεn
n

∣∣2σ−1 +|wn |2σ−1
)

(1+|wn |)
+

(
1+ ∣∣vεn

n

∣∣2σ+|wn |2σ
)

(1+|∇wn |) ,

where the implicit constants depend on uL ,∇uL . To estimate the L2 norm of ∇Gn , we organize
the terms as∥∥∥∇vεn

n

(
1+ ∣∣vεn

n

∣∣2σ−1 +|wn |2σ−1
)

wn

∥∥∥
L2

≤ ‖wn‖L2

∥∥∇vεn
n

∥∥
L∞

(
1+∥∥vεn

n

∥∥2σ−1
L∞ +‖wn‖2σ−1

L∞
)

,∥∥∥(
1+ ∣∣vεn

n

∣∣2σ+|wn |2σ
)
∇wn

∥∥∥
L2

≤ ‖∇wn‖L2

(
1+∥∥vεn

n

∥∥2σ
L∞ +‖wn‖2σ

L∞
)

,∥∥∥∇vεn
n

(
1+ ∣∣vεn

n

∣∣2σ−1 +|wn |2σ−1
)∥∥∥

L2
≤ ∥∥∇vεn

n

∥∥
L2

(
1+∥∥vεn

n

∥∥2σ−1
L∞ +‖wn‖2σ−1

L∞
)

,∥∥∥(
1+ ∣∣vεn

n

∣∣2σ+|wn |2σ
)∥∥∥

L2
≤

(
1+∥∥vεn

n

∥∥2σ−1
L∞

∥∥vεn
n

∥∥
L2 +‖wn‖2σ−1

L∞ ‖wn‖L2

)
.

Putting them together and using

‖wn(t )‖H k (T3) =
∥∥∥∥∫ t

0
∂t wn(τ)dτ

∥∥∥∥
H k (T3)

≤ n1+k−s ten(t ), k = 0,1, (18)

we have

n−(2−s)‖∇Gn(t )‖L2(T3).(logn)σδ2 n
( 3

2 −s
)
σen(t )

(
1+ (en(t ))2σ)

+(logn)σ(δ2−δ1)n(2σ−1)
( 3

2 −s
)−1 (

1+ (en(t ))2σ−1)
.(logn)σδ2 n

( 3
2 −s

)
σen(t )

(
1+ (en(t ))2σ)+ (logn)σδ2 n

(
1+en(t )2σ−1) .

(19)

We observe that
den

d t
≤

∣∣∣∣ d

d t
(En(t ))1/2

∣∣∣∣ .

Therefore,

den

d t
≤ (logn)3σδ2 n + (logn)σδ2 nσ

( 3
2 −s

)
en(t )

(
1+ (en(t ))2σ)

. (20)

By the Grownwall type argument, we obtain

en(t ) ≤ n1−σ( 3
2 −s

)
(logn)2σδ2 e(logn)2σδ2

, ∀ t ∈ [0, tn].

Since 1 <σ( 3
2 − s), for any 0 < θ < σ

2 ( 3
2 − s)− 1

2 , we can choose δ2 > 0 sufficiently small, such that
the right hand side is smaller than n−θ. Consequently, from (18),

‖wn(t )‖L2(T3) ≤ n1−s en(t )t . n1−s−( 3
2 −s

)
σ(logn)δ2σn−θ . n−s−θ, ∀ t ≤ tn .

Finally, the bound for the H s norm of wn(t ) follows from the interpolation. This completes the
proof of Proposition 5. �

3. Proof of the main theorem

First we recall the following property of finite propagation speed for the wave equation.

Lemma 6. Let w1, w2 be two C∞ solutions of the nonlinear wave equation

∂2
t w −∆w +|w |2σw = 0.

If the initial data (w1(0),∂t w1(0)), (w2(0),∂t w2(0)) coincide on the ball B(x0,r0) ⊂ Rd , then for
0 ≤ t < r0, (w1(t ),∂t w1(t )) = (w2(t ),∂t w2(t )) on B(x0,r0 − t ).
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Proof. Without loss of generality, we may assume that x0 = 0. Take the difference u = w1 −w2,
then

∂2
t u −∆u +u =V (t , x)u,

where

V (t , x) = (2σ+1)
∫ 1

0
|(1−λ)w1(t , x)+λw2(t , x)|2σdλ+1 ∈ L∞

loc.

For 0 ≤ t1 < t2 < r0, denote by Ct1, t2 (r0) := {(t , x) : t1 ≤ t ≤ t2, |x| ≤ r0 − t }. Define the local energy
density

e(t , x) := 1

2

(|∇u(t , x)|2 +|∂t u(t , x)|2 +|u(t , x)|2) .

Then a direct calculation yields∫
C0, t0 (r0)

∂t u
(
∂2

t −∆+1
)

ud xd t =
∫ t0

0

∫
|x|≤r0−t

d

d t
e(t , x)d xd t −

∫ t0

0

∫
|x|=r0−t

∂t u∂r udσ(x)d t ,

where ∂r u = x
|x| ·∇u and r = |x|. Notice that d

d t 1|x|≤r0−t =−δ|x|=r0−t , we have∫
C0, t0 (r0)

∂t u
(
∂2

t −∆+1
)

ud xd t

=
[∫

|x|≤r0−t
e(t , x)d x

]t=t0

t=0
+

∫ t0

0

∫
|x|=r0−t

1

2

[|∂t u −∂r u|2 +|u|2]dσ(x)d t

≥
[∫

|x|≤r0−t
e(t , x)d x

]t=t0

t=0
.

Using the equation ∂2
t u −∆u +u =V u, we have

E(t0) ≤ E(0)+
∣∣∣∣∣
∫
C0, t0 (r0)

V u ·∂t ud xd t

∣∣∣∣∣≤ E(0)+‖V ‖L∞([0,r0]×B(0;r0))

∫ t0

0
E(t )d t ,

for all 0 ≤ t0 < r0, where E(t ) = ∫
|x|≤r0−t e(t , x)d x is the local energy. Since E(0) = 0, from

Gronwall’s inequality, we deduce that E(t ) ≡ 0 for all 0 ≤ t < r0. This completes the proof of
Lemma 6. �

To prove Theorem 2, we need to do some preparations. We use the coordinate system x =
(x1, x ′) near the origin. Let zk = (zk

1 ,0) with zk
1 = 1

k . Let nk = eek
, and define

v0,k (x) := (
lognk

)−δ1 n
3
2 −s

k ϕ
(
nk

(
x1 − zk

1

)
,nk x ′

)
= vnk

(
0, ·− zk

)
,

where vn(0) is the initial data of the ill-posed profile defined in (4). Note that there exists k0, such
that for all k ≥ k0, the supports of v0,k are pairwise disjoint. Moreover, for k0 ≤ k1 < k2,

dist
(
supp(v0,k1 ),supp

(
v0,k2

))∼ 1

k1
− 1

k2
.

Denote by Bk = B(zk ,rk ), where rk = 1
k3 . With sufficiently large k0, the balls Bk ,k ≥ k0 are mutu-

ally disjoint. Moreover, supp(ρεnk
∗ v0,k ) ⊂ Bk (recall that εnk = nk

100 ). Another simple observation
is that

dist
(
supp

(
ρεnk

∗ (
v0 − v0,k

))
,Bk

)
&

1

k2 ,

where

v0 =
∑

k≥k0

v0,k ∈ H s (
T3) .
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In particular, for any ( f , g ) ∈C∞×C∞, ρεnk
∗(( f , g )+(v0,0)) coincides with ρεnk

∗(( f , g )+(v0,k , 0))

on Bk . Let B̃k = B(zk ,rk /3) be a slightly smaller ball. We observe that for k large enough,

supp
(
ρεnk

∗ v0,k

)
⊂ B̃k .

Now we are able to prove Theorem 2.

Proof of Theorem 2. Define

S =C∞ (
T3)×C∞ (

T3)+{( ∞∑
k=k1

v0,k ,0

)
: k1 ≥ k0

}
.

Using ∥∥∥∥∥ ∞∑
k=k1

v0,k

∥∥∥∥∥
H s (T3)

≤
∞∑

k=k1

∥∥v0,k
∥∥

H s (T3) ≤
∞∑

k=k1

e−kδ1 → 0 as k1 →∞,

we deduce S is dense in H s (T3). Now fix ( f , g ) ∈ S. Then by definition, there exists (u0,u1) ∈
C∞×C∞ and k1 ≥ k0, such that

( f , g ) = (u0,u1)+
( ∞∑

k=k1

v0,k ,0

)
.

Our goal is to show that, for any N > 0 and any δ > 0, there exist τN ∈ [0, 1] and 0 < ε < δ, such
that the solution uε to (1) with initial data ρε∗ ( f , g ) satisfies∥∥uε(τN )

∥∥
H s (T3) > N . (21)

First we choose k ≥ k1, large enough, such that

κnk

(
λnk tnk

)s > N , εk = nk

100
< δ.

This can be achieved by choosing δ1 < δ2 such that sσ(δ2 −δ1) > δ1. Recall that the parameters
κnk = e−kδ1 ,λnk tnk = e(δ2−δ1)kσ are given by (3). Let ũk be the solution of (1) with the initial
data ρεnk

∗ (u0,u1)+ρεnk
∗ (v0,k ,0). Let ṽk be the solution of ∂2

t ṽk + |ṽk |2σṽk = 0 with the initial

data ρεnk
∗ (v0,k ,0). We remark that ṽk , ũk are just v

εnk
nk

,u
εnk
nk

in Proposition 5 up to translation. In
particular, ∥∥ũk (tnk )

∥∥
H s (T3)& (lognk )sσ(δ2−δ1)−δ1 , (22)

and ∥∥ũk (tnk )−S(tnk )(u0,u1)− ṽk (tnk )
∥∥

H s (T3). n−θ
k . (23)

We have that supp(ṽk (t )) ⊂ B̃k for all t ∈ [0, tnk ]. Now we apply Lemma 6 to ũk and uεnk . Since
at t = 0, (uεnk (0),∂t uεnk (0))|Bk = (ũk (0),∂t ũk (0))|Bk , we deduce that(

uεnk (t ),∂t uεnk (t )
)∣∣

B(zk ,rk−t) = (ũk (t ),∂t ũk (t ))
∣∣
B(zk ,rk−t), ∀ 0 ≤ t < rk .

In particular, for large k,(
uεnk (t ),∂t uεnk (t )

)∣∣
B(zk ,rk /2) = (ũk (t ),∂t ũk (t ))

∣∣
B(zk ,rk /2), ∀ t ∈ [

0, tnk

]
. (24)

Lemma 7. Assume that s1 ≥ 0. Let u ∈ H s1 (T3) and χ ∈C∞
c (T3). Then there exists A > 0, depending

only on the function χ and s1, such that for any R ≥ 1∥∥(1−χ(Rx))u
∥∥

H s1 (T3) +
∥∥χ(Rx)u

∥∥
H s1 (T3) ≤ AR s1‖u‖H s1 (T3).

Proof. First for s1 ∈ N, the proof follows from the direct calculation. For general s1 ≥ 0, the
conclusion follows from the interpolation. �
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Take χ ∈C∞
c (R3), such that χ(x) ≡ 1 if |x| < 1

3 and χ≡ 0 if |x| ≥ 1
2 . Define χk (x) :=χ((x −zk )/rk ),

hence χk |B̃k
≡ 1 and χk |(B(zk ,rk /2))c ≡ 0. Then (24) is translated to

χk (x)
(
uεnk (t ),∂t uεnk (t )

)=χk (x) (ũk (t ),∂t ũk (t )) , ∀ t ∈ [
0, tnk

]
.

From Lemma 7,∥∥uεnk
(
tnk

)∥∥
H s (T3)& r s

k

∥∥χk uεnk
(
tnk

)∥∥
H s (T3) ∼ (loglognk )−3s ∥∥χk (x)ũk

(
tnk

)∥∥
H s (T3) .

Therefore,∥∥χk (x)ũk
(
tnk

)∥∥
H s (T3) ≥

∥∥ũk
(
tnk

)∥∥
H s (T3) −

∥∥(1−χk )ũk
(
tnk

)∥∥
H s (T3)

=∥∥ũk
(
tnk

)∥∥
H s (T3) −

∥∥(1−χk )
(
ũk

(
tnk

)− ṽk
(
tnk

))∥∥
H s (T3) ,

where in the last equality, we use the fact that (1−χk )ṽk (tnk ) = 0, thanks to the support property
of ṽk . Therefore, we have∥∥uεnk

(
tnk

)∥∥
H s (T3)

&
(
loglognk

)−3s ∥∥ũk
(
tnk

)∥∥
H s (T3) −

(
loglognk

)−3s ∥∥(
1−χk

)
S

(
tnk

)
(u0,u1)

∥∥
H s (T3)

−(
loglognk

)−3s ∥∥(
1−χk

)(
ũk

(
tnk

)−S
(
tnk

)
(u0,u1)− ṽk

(
tnk

))∥∥
H s (T3) .

(25)

Applying Lemma 7 again, we have∥∥uεnk
(
tnk

)∥∥
H s (T3)&

(
loglognk

)−3s (
lognk

)sσ(δ2−δ1)−δ1 −∥∥S
(
tnk

)
(u0,u1)

∥∥
H s (T3) −n−θ

k . (26)

By choosing δ1 > 0 small such that sσ(δ2 −δ1)−δ1 > 0, the left hand side of (26) tends to +∞ as
k →∞. This completes the proof of Theorem 2. �
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