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ETALE COVERINGS OF A MUMFORD CURVE

by Marius van der PUT

Introduction.

For a Riemann surface X over C of genus = 2 the finite
unramified coverings Y —> X are easily obtained from the unifor-
mization of X. Indeed, from the universal covering

g={z€C|Im(z) > 0} — X

with group I' =7, (X) one obtains all possibilities for Y by
taking ¥¢/N where N is a subgroup of I' of finite index.

For an algebraic curve X defined over a complete non-archi-
medean valued field K the situation is more complicated. In order
to obtain “enough” unramified coverings Y —> X one has to
suppose that X is a Mumford curve. On further distinguishes between
merely unramified (or étale) coverings and analytic coverings. This
is done in section 1, In the next section the abelian étale coverings
of a Mumford curve over an algebraically closed field are constructed.
In section 3 the base field is a local field and the abelian unramified
extensions of the function field of the curve X are calculated. The
result of this section is due to G. Frey. We have presented here a
rigid-analytic proof of this theorem. For general background concern-
ing analytic spaces over K we refer to [1] and [3].

1. Analytic coverings and étale coverings.

The field K is supposed to be algebraically closed and to be
complete with respect to a non-archimedean valuation. A morphism
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f: Y — X of analytic spaces over K is an étale covering if f is
surjective and if f for every point x € X there exists an affinoid
subspace K of X containing x such that f~1(U) is a disjoint
union of affinoid subspaces V,(i € I) and such that each f: V;, — U
is a isomorphism.

Suppose that f: Y — X is a finite morphism. This means
that X has an admissible affinoid covering (X;),c; such that each
f7Y(X,) is a non-empty affinoid subset of Y and such that each
Ox (X)) — Oy (f~1(X,)) is a finite injective map of affinoid algebra’s.
In case that f is finite on has: f is an étale covering if and only
if for each y €Y the map f;*: éy’y — éx'f(y) is an isomorphism.

Indeed, f;,* isomorphism implies that also f,*: Oy , — Ox ()
is an isomorphism and that there are affinoid sets V, U containing
y and f(») such that f: V— U is an isomorphism. Take x € X
and put f~'(x)={y,,...,»,}. Choose affinoid neighbourhoods
V, of y; and U of x such that every V;— U is an ismorphism.
After shrinking U we may suppose that the V,; are disjoint and
that every point ¢t € U has n predimages in Y. Then clearly
fF{U)y=Vv,U...UV,, the V, are disjoint and each V;,— U
is an isomorphism.

The morphism f is called an analytic covering if there exists
an admissible affinoid covering (X;);e; of X, an admissible cover-
ing (Y,)iEJ of Y by affinoid subsets and a surjective map 7:J — 1
such that for all i:

() f7'(X,) is the disjoint union of the Y; with 7(j) =i
Gi) f: Y, —> X, is an isomorphism for each j with #(j) = i.

An analytic covering is certainly an étale covering. The map
f:K* — K* given by z+> z" (n>1 and n prime to char
K) provides an example of an étale covering which is not an analytic
covering. This is rather in contrast with the complex-analytic case
where the corresponding notions coincide. In the sequel we will
restrict ourselves to one-dimensional regular analytic spaces and
especially to complete non-singular curves over K. It is clear however
that many results will be correct for higher dimensional spaces.

LemMa 1.1. — Let f: Y — X be an étale (resp. analytic)
covering of non-singular complete irreducible algebraic curves. Then
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the minimal Galois extension g:Z —> X is also an étale (resp.
analytic) covering.

Proof — For the function fields of X, Y and Z we have the
inclusions F(X)C F(Y)C F(Z) and F(Z) is the minimal Galois-
extension of F(X) containing F(Y). Let Y, — X (i=1,...,5)
denote the morphisms corresponding to the subfields of F(Z) which
are conjugated with F(Y). Since each Y, —> X is an étale (resp.
analytic) covering the same holds for Y, xx ... xx Y, — X. In
particular Y, xx ... xxY, is non-singular and complete and every
connected component is again an étale (resp. analytic) covering of
X. The canonical map Z—> Y,xx ... xx Y, induces an iso-
morphism of Z with a connected component.

This proves the lemma.

LemMA 1.2, — Let f: Y —> X be a non-constant morphism
between (non-singular, irreducible, complete) curves. The exists a
unique maximal decomposition YL x=y 2 Y, LN X
where Y, is a curve and f, is an étale covering. There exists a unique
maximal decomposition YL x=y—% Y, Lo, X with Y,
a curve and f, an analytic covering. Moreover Y, —fl—> X factors
as Y, — Y, & X. If Y—> X is Galois thenalso Y,— X
and Y, —> X are Galois.

Proof — One has to consider subextensions of F(X) C F(Y).
For subextensions F(Z,) and F(Z,) let F(Z;) denote the least
subfield containing F(X,;) and F(X,). Then Z; —> X is an étale
(resp. analytic) covering if and only if Z, — X and Z,— X
are étale (resp. analytic) coverings.

1.3 Let now X denote the Mumford curve Q/T"; ' a Schottky
group with £ as set of ordinary points in P!. It is known that
£ —> X is the universal analytic covering of X. In particular
every finite analytic covering Y —> X . has uniquely the form
Q/Ty—> X where I'j is a subgroup of I' of finite index. The
étale coverings of X are hidden in £. We introduce the follow-
ing notion: ¢: Q4 — Q is a I'-equivariant covering if:

(i) c: Q4 —> & is a finite, connected, Galois, étale cover-
ing with group H.
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(ii) Every automorphism vy €I’ of  lifts to an automorphism
& of Q4. (ie. €6 =7vc).

Let G denote the group of analytic automorphisms & of 2
such that ¢6 = yc¢ holds forsome yET .

From the definitions one obtains a canonical exact sequence
of groups 1 — H—"> G—> I' —> 1. Let N denote a normal
subgroup of G of finite index such that NN H = {1}. With the
notations we can formulate the following results.

THEOREM 1.4. —

1) Q4/N is a non-singular, irreducible, complete curve over K.
The map S/N —> Q/T' = X is a Galois, étale-covering with Galois
group G/N. This map decomposes uniquely into

Qu/N— Q/a(N)—> X where /n(N)—/> X
is the maximal analy tic subcovering.

2) Let Y be an irreducible non-singular complete curve and let
f: Y—> X be a Galois, étalecovering. There exists a pair (S24 ,N)
(unique up to isomorphism) and an isomorphism g: Y—> S,/N
such that the diagram Y —— X is commutative.

Q4/N

Proof. —

1) The construction of £24/N as a 1-dimensional regular analytic
space over K is very similar to the construction in [3] p. 10S. One
can make this construction explicit by a choice of a fundamental
domain. Let FEQ be a good fundamental domain for the group
w(N) ([3] p. 28). Then F has the form P! —B, U...UB,, where
7(N) ={v,,...,7,? and B,,..., B,, are open discs such that the
corresponding discs B,T are still disjoint and such that v; is an iso-
morphisms of Bf — B, with B,, —B,,, (i=1,...,4).

Let §i D B; denote open discs such that the closed discs §,+ are
still disjoint. Put G = P! —B, U... UB,,. Then §/r(N) can be
constructed by glueing the affinoid pieces G, B — B,,..., B, — B,,
according to

(i) Bf — B, isgluedto G over the subset B, — B,.
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Gi) for 1<i<a, B+ — B, is glued to Bj,, — B,,, by using
the isomorphism 7;: B - B,/ Bi” Biia-

To obtam Q,/N we replace in the construction above the affi-

noid sets G, B — B,, B} — B, by the subsets ¢c~}(G), ¢~ !(Bf — B)),
¢ '(B] — B) of Q* and v; by the unique element 7; EN with

7’(7.') =%.

The only thing that one has to verify is that ¢~ !(G) etc are
affinoid subsets. Indeed, one can easily verify the more general state-
ment: “Let U—— V be a finite morphism of analytic spaces over
K. If V isaffinoid then U is also affinoid.”

Using this construction of £,/N and the given affinoid covering
of Q,/N one can calculate that dimg H(Q,/N, 0) <o and
finally prove that Q,/N is actually a complete, irreducible, non-
singular algebraic curve over K. (See [3] p. 106-107). The only state-
ment that we still have to verify is the maximality of the analytic
subextension /m(N) —> X. The normal subextensions correspond
to normal subgroups M of G containing N. We have to show that
Q,/M—> QI is an analytic covering if and only if M2 H.

Put MN H = H,. We replace

Q,— Q by Q,=Q,/H, < Q
and H by H = H/H,; G by G'=G/H; and M by M'= M/H, .
Again we have an exact sequence | — H'—> G'—> I'— |
and now M' N H'= {1}. We have to show Q, = Q if Q,/M — QT
is an analytic covering. The hypothesis implies easily that Qj — Q
is a connected analytic covering. According to [3] p. 151, (3.4), one
has Q,— Q.

2) We consider the commutative diagram
Y —Yx, Q= Q'

The fibre product £’ is as a set of points equal to
{(y, WEYXR|f(Y) =n(w)}.
One can easily give §' the structure of an analytic space over K since
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m is an analytic covering. We denote by G, the Galois group of
Y |X. The group G, XTI' acts as group of analytic automorphisms
on Q' in the following way: (0, 7) (¥, w) = (6(»), v(w)). Easy
arguments will prove the followfng statements:

a) f' is an étale covering with group G, ; possibly not connected.

b) #' is an analytic covering with group TI'; possibly not
connected.

c) /=Y and Q'/G, = Q.

d) for every connected affinoid UCQ, the set (f')~1(U)
is affinoid. G, acts transitively on the connected components and
each of them is mapped surjectively to U.

e) After applying d) to a sequence U, CU,CU;C... of
connected affinoid subsets of §2 which defines the holomorphic
structure on 2, one finds that ' has finitely many components
Q},..., ;. Each component is mapped surjectively to £ and
G, acts transitively on the components.

f) From Q'/T' =Y if follows that I' acts transitively on the
components and that /N =Y where
N ={(1,7)EGyxT[y(£2)) = Q;}.
Put Q,=Q; and let c¢: Q,—> Q denote the restriction of
f' to Q, . We make the following definitions:
G={(0,7)EGyxI'[(0,7) Qs = 04}
H={(o,DEGxI'|(0, 1) Qy = 4}
N={(1,VEGyxT[(1,7) 2y = Q4}.
From ¢) Q'/G, = & it follows that ,/H=Q and that c: Q,— Q
is a Galois €tale covering, connected, and with group H.

The sequence 1 — H —> G —> I’ —> 1 is exact since for
every vy €' there exists a 0 &€ G, such that a(£,) = v(224). So
(6!, ¥) €EG and this element maps to y. The group N is clearly
a normal subgroup of finite index in G and NN H = {1}. Finally,
according to f) we have Q,/N =Y.

Similar methods will easily give the uniqueness (up to isomor-
phism) of the pair (2, ,N).
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PROPOSITION 1.5. — Let Y be a complete, non-singular, irre-
ducible curve over K or a 1-dimensional, regular, connected affinoid
space. Then Y has a universal analytic covering. The Galois group
of this universal analytic covering is a finitely generated free (non-
commutative) group.

Proof of 1.5. — The analytic space Y has areduction r: Y — Z
which is pre-stable and such that every component of Z is non-
singular. (This is proved in [4].) The graph G of Z, i.e. the vertices
of G are the components of Z and the edges of G are the double
points of Z, is in general no a tree. Let T —> G be the universal
covering of the graph. Then T is a tree and on it operates a group
I’ = 7,(G) which is a finitely generated free group such that T/T" ~ G.
As in [3] p. 149 (3.2), one can lift the construction of T and I'
to obtain an analytic space §2 and an analytic covering u: Q2 — Y
with group I', such that £ has a reduction © and an induced
map u: © — Z which is for the Zariski-topology the universal
covering and such that the graph associated with Q is T and
u:T—> G is the universal covering of the graph mentioned
above. The proposition will follow now if we can show that £
admits only trivial analytic coverings. It suffices to show that an
affinoid space U such that its canonical reduction U consists of
non-singular affine curves intersecting normally has only trivial
analytic coverings. Indeed £ is build up out of such affinoid spaces
U in an acyclic way.

Let now ¢:V —> U be an analytic covering. According to
the definition U= U, U...UU, where the U; are affinoid sub-
spaces of U and such that ¢~!(U;) is the disjoint union of affinoid
subsets of V, each of them mapped isomorphically to U;. After
refining the covering {U,,...,U,} of U we may suppose that
it is a pure covering such that the corresponding reduction U of
U is prestable and has non-singular components (see [4]). The reduc-
tion V of V with respect to {p '(U,),..., 9 Y(U,)} is also
prestable and the induced map _\_/—-> U is a covering for the
Zariski-topology. One knows that U is obtained from U by a finite
number of steps. In each step a point is replaced by a projective
line over K. This shows that U has only trivial coverings for the
Zariski-topology. If we assume that V is connected then also \YZ
is connected. Hence V=0U and so V=U. This shows finally
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the existence of the universal analytic covering u: 2 — Y. We
want to show that £ has the usual property:

“Given a morphism f: S — Y, where S is a connected
analytic space which has only trivial analytic coverings, and given
points sE€S and wEN with u(w) = f(s), then there exists a
unique lift f': S—> Q with uf' =fand f'(s) = w.”

We consider the fibre-product Q'= Qxy S — S. This is an ana-
lytic covering S. By assumption, every component of £’ maps
isomorphically to S. Taking the component of £' which contains
the point (w,s) one finds f' and one shows that f' is unique.

COROLLARY 1.6, — Let Y,N,Q, be as in (1.4) and let (YY)
denote the universal analytic covering of Y which has group T'(Y).
There exists a normal subgroup T'y of T'(Y) such that Q, = Q(Y)/T,
and T'(Y)/T, =N.

Proof. — Easy consequence of (1.4) and (1.5).

Remark. — In general, 2, is not the universal analytic covering
of Y. In section 2 we will discuss examples. The reason is that
a connected, Galois, étale covering e: 2, —> $2, admits itself in
general non-trivial analytic coverings.

Example 1.7. — Take
Q=P —{0,n,1,%} where 0< |7|<1.

And let Q, ={(x,y)EQxK[y?=x(x —7) (x — 1)}. Assum-
ing that the characteristic of K is unequal to two, one finds that
c: Q,— Q is a connected étale covering with Galois group Z/2.
The elliptic curve, corresponding to the equation y? =x(x —m) (x — 1)
is the Tate curve K*/(q) for a suitable g, 0 < |qg| < 1. Further
Q, = K*/(qg)—{t1,+q"?}. The Tate curve has the universal
analytic covering K* —> K*/(q). This easily implies that the uni-
versal analytic covering of £, must be U= K* — {+¢q"?|n€Z}.
The resulting connected étale covering U — £2 is in this case Galois.
Its group is generated by two elements <, §, defined as automor-
phisms of U by +v(z) =qz and 8(z) =z~ !. The only relations
are 82 =1 and &y =y7'5.
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More examples 1.8. — Let I' denote a finitely generated dis-
continuous subgroup of P GR(2,K). Suppose that I'/[I',T'] is a
finite group. Let §2 denote the set of ordinary points for I'. It
is known that /I’ = P! (see [3] Ch. VIII, (4.3)). There exists a
normal subgroup I'yCTI' of finite index, which is a Schottky
group. That implies that c¢: Q — Q/' = P! is only ramified
above a finite subset S of P'. Then £ — ¢ !(S)— P! —S is
a Galois €tale map with group I'. Special cases of such groups T
are provided by Whittaker groups or by cyclic extensions of P!
(see [3, 6]).

Remark 1.9. — Let the Schottky group I' and its space of
ordinary points £ C P! be given. It is rather difficult to construct
equivariant étale coverings 24, —> 2. In the next section we will
restrict our attention to abelian extensions £, —> 2.

2. Construction of the abelian étale coverings.

We assume in this section that X is a Mumford curve over K
of genus g and we fix a presentation X = Q/I' with ' a Schottky
group on g generators and in which £ CP! is the subspace of
ordinary points of I'. According to (1.4) we have to construct the
abelian [-equivariant étale morphisms c¢: Q, —> £ such that in
the notation of (1.3), one has [G,G]N H = {1}. Indeed, there must
exists a normal subgroup N, of finite index, in G with abelian
factor group and NN H = {1}. We call an abelian I'-equivariant
étale map c: Q, — 2 strongly abelian if [G,G]NH = {1}. This
condition is clearly equivalent to “G is the direct product of H
and I'”’. Let ® denote the group of invertible holomorphic functions
f on § satisfying f(yw)/f(w) is a constant for every y€T.
According to [3] Ch. II, the group ®/K* is isomorphic to Z£. Ele-
ments 6,,..., ‘93 in © are called a basis if their images in Z¢ form
a Z-basis. The main result of this section states that every I'-equiva-
riant strongly abelian covering of §2 has the form

Dy = {(@, Ny, A EQ XK N = 0(w) for i=1,...,¢)

where we have chosen a basis 6,,...,0, of ® and where n,,...,n,
are positive integers, not divisible by char K. We start the proof by
giving 2, the structure of an analytic space over K. Let {,}
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denote a sequence of connected affinoid subsets of £ such that (i)
Q,CQ,CQ,;C... and (ii) every affinoid subset of £ is contained
in some ,. For each n we consider the affinoid space S24n corres-
ponding to the affinoid algebra

O, [X;,..., X, J(X{ —0,,..., X5 —0,).
As a point set Q,, is equal to {(w,A;,...,N)EQ| WEQ,}.

The analytic space §2, is obtained by glueing together the affi-
noid spaces £2,, according to the natural inclusions £2,, — Q..
(for n<m). The map c: Q,—>  is etale and finite of degree

Ry ... . The automorphisms of Q,——> Q are of the form

(W, A, A) — (w, ;‘1'1)\1,..., gf;!)\g) where §, denote a
primitive n;-th root of unity and 0 <qa; <n;. So Q,— Q is
Galois with group H=2Z/n &...®2Z/n,. The function theory
on £, isnot much more complicated than that of 2. Indeed O(2,)
equals lim O0(82,,) and turns out to be

O) [Xy,. ., X X — 0y, X5 —6,).

As usual we write O for the sheaf of meromorphic functions.
For any affinoid U one has NT(U) = the total ring of fractions of
o).

Again JU(2,) = ]jm N (2,,) coincides with

M) [X,,..., X YK —6,,...,X5—6,).

The space 2, is connected if and only if NUK,) is a field. Let m
denote the smallest common multiple of n,,...,n,. If suffices
to verify that O0R()[Y,,...,Y, /(Y —6;;i=1,...,8) is
a field. By Kummer-theory this is translated into: the images of
0y,...,0, in M(2)*/M()*™ are independent over Z/m .

Suppose now that 0:“... 0:3, with 0 <o; <m, equals f™
for some fE€ M(S2). Then clearly f€ O(R)*. Since (f(yw)/f(w))™
is constant for every vy € I' and since §2 is connected, one finds that
f€0©. The independance of 6,,...,0, yields oy =...=a, = 0.
This finally shows that €2, is connected. Let further a; denote
the homomorphism of I' in K* satisfying 6,(yw) = a;(v) 0(w).
Let b, € Hom(T', K*) be chosen such that b;’ =a;. Then we can
define a I'actionon £, by

Y@, Ay, A = (Y (W), Ay by ()50, Ag b (7))
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This action commutes with the H-action on £, . Hence Q,— Q
is a strongly abelian I'-equivariant étale morphism with group H.
Next we want to find a presentation of 2, which does not depend
on the choice of 6,,...,60,,n,,...,n,. This is done as follows.
Let G be the group of automorphisms of £2,, as defined in (1.3).
The group acts on JL(82,), O(R,) etc. We consider its action on
O(R,)*/K*. Let x,,...,x, € 0(R,)* be given by
X(w A5 A) =N

A straightforward calculation shows that H°(G, 0(£2,)*/K*) is the
free Z-module generated by the images of Xyse..» Xg. And this
group is a finite extension of HO(I', ©()*/K*) =0/K*. We obtain
in this way a Z-lattice T in ®/K*® Q containing ©&/K*. The
lattice T is uniquely determined by £, and determines 2,. We
will write 2, = Q(T) in the sequel. The group of automorphisms
of Q(T)— 2 is equal to the Pontryagin dual of the cokernel
of @/(K¥—— T. We can now formulate the main result of this’
section, using again the notation of (1.3). We consider only lattices
T such that char(K) does not divide the order of H.

THEOREM 2.1. — For every strongly abelian T-equivariant map
Q,.—> Q there exists a unique Z-lattice and an isomorphism
Q,— QUT).

COROLLARY 2.2. — Every finite abelian étale-covering of X = QT
has uniquely the form SUT)/N, where T is a Z-lattice and where
N is a subgroup of G with NNH = {1} and wN is a normal sub-
group of T' of finite index and with an abelian factor group.

Proof of 2.2. — The corollary follows from (1.4), (2.1) and the
fact that G is the direct product of H and I'. A further conse-
quence is:

COROLLARY 2.3. — The Galois group A of the maximal unramifi-
ed abelian extension of M(X), the function field of X = QJIT", is
isomorphic to: .

a) Z* if char K = 0

b) 2¢x Il Z§ if charK=p#0.

P

There is further a canonical surjective homomorphism of A
onto Z8 = the Galois group of the maximal abelian analytic cover-
ingof X.
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Proof of (2.1). — 1t suffices to show the following two statements:

a) if char K = p # 0 then there does not exist an equivariant
Q, —>  withgroup Z/p.

b) if Q,—> Q is a cyclic equivariant étale covering with
group H = 2Z/n such that char(K)/n and HN[G,G] = {1}, then
there is a suitable 6 €0 with 2, ~ {(w, N EQLxK*|\* = 0(w)}.

Proofofa).

The map c: Q,— & induces a field extension NU(N) C N ,)
which is supposed to be cyclic of degree p. By Schreier theory,
N (82,) is obtained from INYSK) by adjoining a root of X? — X — f.
One can change the f in this equation by adding a meromorphic
function of the form gP — g with g€ (). After a suitable change
of this type we may suppose that every pole (if any) of f has order
<p. In a pole w,€EQ of f of order <p the map Q,—>
is ramified, So we have shown that f can be supposed to belong
to O(2).

Consider the exact sequence

0— F, — 0(Q) — &Q)—— M—> 0
where 7 is given by 7(h) = h? — h. The extension T (§2,) | M(2)
determines uniquely the subgroup of M generated by 7(f). The
action of TI' of M(S2) extends to I (S24). This implies that
o(foy)=c(¥)o(f) for a certain homomorphism c:I'—> F:.
After replacing I' by a subgroup of finite index, we may suppose that
o(f) is invariant under I'. We recall that HYT", ©(R2)) = HY(Q/T, Ox)
and H\(T', 0(R2)) = HY(Q/T', 0x) with X = Q/T". For the constant
sheaf Ky on X with stalk K one also has HY(I', K) = H%(X, Ky)
and H!(I", K) = H(X, Kx). Further the canonical maps
H/(X,Ky) — H'(X,04) (i=0,1)
are bijective. Using the exact sequence of I'-modules

O— F, —@ 0Q)—/™ 0(QQ)/F, —™ 0
one finds P ) )/F,

HYT, 0(Q)/F,) = K/F, and HY(T, ©(Q)/F,) = Hom(", K/F,).
The exact sequence of I'-modules
0 — OQ)/F,—— 6(Q)— M—> 0
induces the long exact sequence
0 — K/F,—— K— HI',M)— Hom(T',K/F,)
—— Hom([,K)—/ ...
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This implies that H%(I', M) = 0. Hence 7(f) = 0. This contradicts
the assumption that the equation X? — X — f is irreducible.

Proof of b).

The map c: 2, 2 induces a field extension NU(2) C MY )
with cyclic group Z/n and irreducible equation X" — f, for some
FEM(L2). Since ,—> K is étale one may suppose that f€ O(Q)*
We consider the exact sequence

1 — 0(Q)*K*—— 0(Q)*/K*——> M — 0
where 7 is defined by 7(g) = g".

The subgroup of M generated by g = 7 (f mod K*) has Z/n
elements and is uniquely determined by the extension 1T (2) C ()
The action of ' on JIL(2) extends to MU(K2,). This implies that
v(g) = g°™ where a: T —> (Z/n)* is some group homomorphism.
This means that f(yw) = f(w)*™ b, (w)" holds for some b, € O(Q)*.
Let x denote an element of O (£2,) with x" = f. The action
of ¥ on M(2,) must have the form y(x) = x*™ b, . This action
must commute with the automorphism § of T (2,) |ML(N) given
by 6&(x) = ¢x where ¢ is a primitive n-th root of unity. Since
by(x) = §*Mx*0p, and y8(x) = §x*@ b, , one finds that
a(y)=1 for al y€I'. The map v+ b, is a l-cocycle with

valuesin ©(2)* and its n-th power is the trivial cocycle y —> fo—'y

In [5] one has derived an exact sequence
.... Hom(l', K*)— H (', 0(2)*)— Z — 0.

This implies that the image of the l-cocycle {y+— b,} in Z is
zero. Hence b, has the form d(v). c o y/c for some homomorphism
d: " —> K* and some functions c€ ©(Q)*. Hence 0 = ¢~ "f
satisfies 6 (yw) = d(¥)" 6(w) and so § belongsto ®. The extension
M(Q) C MUKL,) is then also described by the equation X" —6. It
follows easily that £, isisomorphic to {(w,) € 2 xK*|\" = 6(w)}.
This finishes the proof of (2.1).

Example 2.4. — The special case of (2.1) and (2.2) where the
genus of X is 1 is particularly simple. The statement reads:

Every finite abelian etale extension of X = K*/(q) (where
0<|ql<1) is of the form K*/q')—¥> K*/(gq) where the map
¢ is induced by z+— z* from K* — K* with n not divisible
by char K and where q' satisfies (¢")"€(q) = q?.
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PROPOSITION 2.5. — Let @: Y —> X be a finite abelian étale
of the Mumford curve X = QJT". We suppose that the order of the
group H (see (2.2)) is not divisible by charK. Let U be a pure
affinoid covering of X such that the reduction (X,U) satisfies.

(i) every component of (X, U) is non-singular.
(ii) every singular point of (X,U) is an ordinary double point.

Then ¢~ (W) is a pure affinoid covering of Y and the reduction
(Y, o TU)) of Y with respect to ¢~ '(U) also satisfies (i) and
(ii). The canonical map of (Y, 9 '(U)) to (X,U) is unramified
outside the double points of (Y, ¢~ 1(W)).

Proof. — Any small enough U€& U is isomorphic to an affinoid
subset of P!. The proof of (2.5) follows from the next lemma.

LEMMA 2.6. — Let U be an affinoid subset of P given by
the inequalities: |m|<|z|<1; |z—-a/l|=21,...,lz—a]=21;
lz—-b0=21ml,..., Iz = b, 2 |w| inwhich 0 < |w|<1; |g]=1;
la; — a;l = 1 for i#j; |bjl=|n| and |b; — b;| = |m| for iFj.
Let u,,...,u, € O(U)* and let n,,..., n, denote positive integers
not divisible by char (K). Let V denote the affinoid space be given
by its affinoid algebra

OV) = O (X,,..., X)X —uy,.., XD

[+

oL U,

Then the canonical reduction V of V has non-singular components.
The only singularities of V are ordinary double points. The map

V — U is unramified outside the double points of V.

Proof. — We may suppose that O(V) is an integral domain,
Let M denote the subgroup of O(U)* consisting of the elements
m of the form
k k kK, (T T\ ' T\
m=2z°%z-a,) ‘ (z — a) ‘(; - —b—x) (; - Z-t-) .
The kg, k,, etc. are integers and we write k, = ky(m). Then M
is a free abelian group of rank s + ¢t + 1. Every element of ©(U)*
can uniquely be decomposed as u.m with m €M and u =\ + h,
AEK* and k€ O(U) such that ||k|| < [A|. Let d = [6(V): 6(U)]
and let N denote the group of elements of ©(V)* having their d-th
power in M. Then N = N, ® N, where N, is the group of the
d-th roots of unity and where N, is a free abelian group satisfying
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[No:M] =d. Take a basis u,,...,u;,, of M such that N, is
1

the free group generated by o Upyonns P Ugyr+; (in additive
. . . . 1 +t+l
notation). With this choice one can write o

OV) = OU) [X,,..., Xyt VX —uy5 i=1,...,s + £t + 1),

It is possible to choose the u,,...,us,,, such that ky(u,) =1
and ky(u) =0 for i=2,...,t+s+1.

Consider the surjective map of O(U)(X,,Y,,X;,X;,..., Xgspsq)
to O(V) given by X, X; and Y, p X[' with pEK*
such that p"l = ¢. This map induces a norm on O(V) and the
reduction R of O(V) with respect to this norm is

G(U) [X1, Y],x2)X3’---’ Xs+t+l]
divided by the ideal generated by the elements X';‘ - u,, Y';‘ - ul ,
—_— 1
§1Y1 s X:" —u; for i>2. Further O(U) is the localization of
K[T, S]/TS at the element _ .
_ —- T m
T-a)...0-3) (s~ b—l)"' (s b, ).
A straightforward calculation shows that R has no nilpotents. Hence
R is the reduction of O(V) with respect to the spectral norm. The
only singular maximal ideals of R are

Xy Y1, Xy — a5 ey Xowprr — Coapny)

in which ¢, €K satisfies ¢" = u,(r) with |7|<|r|<1. The
completion of the local ring of R at such a maximal ideal is
= K[X,,Y,]/(X,Y,). Further ©(U) — R is unramified outside
the ideal (S, T) of @TIT) This proves the lemma.

An example 2.7. — Let X be a Mumford curve of genus 2 with
reduction X
Ll

(Two rational curves L,,L, inter-
P, P, Ps L secting in 3 points p,, p,, p;.)
2
We write 7: X—> X for the reduction map. Let 6 €O be a theta
function for the curve X. On the affinoid part r~'(L, — {p,, p,, p3})
the function 6 can be represented by a holomorphic invertible func-
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tion u which is normalized by |lu]| = 1. The reduction u is a
rational function on L, which is invertible and regular outside
{p,,p,,p3}. Let ord(f) denote the triple (a,,a,,a;) EZ> given
by aq;, = ordpi(ﬂ). This induces a group homomorphism
ord:@/K*—> {(a,,a,,a3)€2Z%| a; +a, + a; = 0}.

Using [5] one easily shows that it is an isomorphism. Let 0,, 0, €0
be a basis for the theta functions. Put ord(6,) = (a,, a,, a;) and
ord 6, = (b,, b,, b;). Asin(2.2) thecurve Y isgiven by Y = Q4/N
in which

Ry = (0,0, M) EQx (K*)? A} = 0,(w) and \}? = 0,(w)}
and where N maps bijectively to I'. We assume further that char K
does not divide nyn,. The reduction of Y obtained in (2.5)
in denoted by Y. The étale map ¢: Y— X induces some
2:Y— X. We will use (2.5) and the proof of (2.6) in order to
calculate the reduction Y.

Let ¢ be a parameteron L, = P! suchthat ¢ = 0,1, o corres-
ponds to p,,p,,p; on L,. Then ¢g~'(L, — {p,, p,, p3}) is the
affine variety over K with coordinate ring

K]y X0, X1/ (X = £1 = 12, X52 — £ — 1))

It is connected and nonwsingular. Its closure in Y is a curve M,.
The curve M, is an abelian ramified covering of L, = P'. The
genus g of M, isgiven by the Riemann-Hurwitz formula

n,n n,n
12(e1__1)+ 12(62—-1)

26 —2=2n,n, +
1 €2

+ n,n,

e; — 1),
e (e3 )
In this formula e; denotes the ramification index of a point of M,

1 a; b
above p, in L. One easly verifies that —2 = —-Z + —-

e; n, n,
for i=1,2,3. One finds in the same manner that M, = 225‘1(L2)
is a non-singular curve of the same genus. The two curves M, and

. mn,  nmn n.n
M, meetin —2% +—12 4 L2

points (namely the @-pre-images
€ €2 €3 —
of p,,p,,p;). Hence the arithmetic genus of Y is equal to
1 1 |
-1+ —+—+—.
2¢—1+nn, 3 . . »
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M, One easily computes
\>OOO<>OQO< that this number is
equal to thegenus of

— M,Y (as it should be).
(Picture of Y)

The universal analytic covering of Y (as constructed in (1.5)) has an

automorphism group I'(Y) which is free on n, n, —1— + L + L
3 € €, €3

generators. This number is equal to Y, g.cd. (nya;,n,b;) and
so = 3. i=

—

This shows that 2, cannot be the universal analytic covering of Y.

2.8 The other examples of a Mumford curve of genus 2 P q
a) X isa Mumford curve with stable reduction X:

The reduction is P! parametrized by ¢ where the two
pairs of points t =0, t=o0 and t=1, t=d are

identified. Again one has an isomorphism @/K*-(g» Z? given as
follows: 6 € © lift to a function u on r~ (X — {p, q}) with cons-
tant absolute value 1. The reduction u is a rational function on the
normalization P! of X and we put ord(8) = (ordyu, ord,u). Let
0,,0, be a basis of the theta functions and put ord(8,) = (a,, a,)
and ord(6,) = (b,,b,). Let Y be the curve obtained from X
by (2.2) with ©, = {(w, X, A))IA]} = 0,(w), \;? = 0,(w)} and N
which maps bijectively to I'. The reduction of Y is made by
using (2.5). The canonical map ¢: Y —> X inducesa ¢: Y — X.
The pre-image ;Z“(S(— —{p, q}) isaffine with coordinate ring

K[’]r«—u(r—d) [X’Y]/(Xnl - ’al(; : ;)ﬂz’ Y2 - 6%417)%) ’

The_corresponding non-singular projective curve (i.e. the normalization
of Y) has genus g given by the Riemann-Hurwitz formula

n.n
2g—2=—2nm +2 272 (¢, - 1)+ 222 (¢, — 1) and
€ . €
_1_z=_ﬁ_z+ﬂ.z and ._1_z=&2+_bi
e, n, n, e ny ny
— . nyn n.n -
The number of double points of Y is ——2 +—2. So Y isan

irreducible curve with double points. €1 €2
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nn,
€,

The group TI'(Y) (see (1.5)) is free on Ml
generates. €1

-1

b) X is Mumford curve with stable reduction X:
Ll

0 L

tl q

Let L, be described by a parameter ¢, where ¢, = 1, -1 corres-
ponds to p and ¢, = 0 correspondsto r. A parameter ¢, describes
L, in a similar way. A theta function 6 for X is lifted to a function
u on r"Y(L; — {p,r}). One can normalize « such that |[ull=1.
Put @, = ord,u. In a similar way a, is defined. One obtains again
an isomorphism ord: @/K* —> 2? with ord(0) = (a,,a,) as
given above.

Let 6,, 0, be a basis of the theta functions and let Y -4 X
be defined by “ /6, ,¥6,”. We study now the reduction Y and
the map @: Y——> X. The pre-image p~!(L,) is given by the equa-

1 ny tl - 1 bl .
, Y — (———) . Here we have written
t +1 t, +1

ord(8,) = (a,, az) and ord(8,) = (b,,b,). Let e, =1 be defined
by LZ =2z +£LZ. Then ¢~!(L,) turns out to be the
e, n, n,
disjoint union of n;nz curves M,(1),..., M, n;nz). Each M, (i)
1 1
is a rational curve with one double point. The M, (i) are isomorphic
to each other. The map M,(i) —> L; has degree e, and is only
ramified in the unique double point of M,(i). On each M,(i) lie
e, pre-images of the point r. There is a similar description for

tions X! —

~ n ) 1

P10, = My(HU ...UM, (L2 2) with -2 =12 + -1

Every M,(i) meets e, of the curves M,(j) and every M, (j) meets

e, of the curves M,(i). The reduction Y is totally split and stable.

The curve Y is a Mumford curve. We have made a picture of Y for

the values a, =1, a,=0, b, =0, b,=1, n;=e¢, =2 and
, = e, = 3.
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Q
Q

3. Mumford curves over a local field.

In this section k denotes a local field and K will be the
completion of the algebraic closure of k. Let I' CP GR(2, k) denote
a Schottky group on g generators. Then £ is a subset of P!(k).
Let £ denote the analytic space over k, given by Q = P,‘c — £,
The action of I' on  is k-rational and one can form the quotient
X = Q/I'. For every (finite) extension 2 of k the set of &-
rational points of Xx,® is equal to P!(R) —£/I'. In particular
the set of k-rational points of X is equal to P(k) — £/I'. For
our purposes we need that X has k-rational points. So we have to
assume that £ is a proper subset of P!(k). The theta functions,
corresponding to I', are elements of ©(2) since they can be
written in the form

6, = z — v(a)

= —— ", where a€PYk)—-£ and S§ET.
ver z — v8(a)

For every 8§€E€TI' the homomorphism ¢;: ' —> K*, given by
05(yw) = c5(7) 05(w), has also values in k*. As in § 2 we
want to calculate the abelian unramified field-extensions of
MX) = Ho, M()). The field M (X) is a function field of
genus g with precise field of constants k.

A contribution to those extensions are the abelian extensions
of the field of constants k. Restrictions with respect to the exten-
sionsin § 2 are:

(i) k contains only finitely many roots of unity; let » denote
their number.
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(ii) For a theta function 6 with 6(yw) = a(y) 6(w), there
exists in general no homomorphism b: I — k* with
b =a.
For any lattice T (again T is a lattice in ©/k* x®,Q contain-
ing ©/k*) there is an analytic space Q(T) over k defined by the
more or less symbolic formula

QT) = {(w, Ay, A) EQx(A¥EIN = 0(w), i=1,...,8}.

The function field M(A(T)) of Q(T) is equal to NL(L)[x,,..., x,]
where x:" = 0;. Let us write g; € Hom(I', k*) for the homo-
morphism y'—> §,(yw) 0;(w)~!. Let b,€ Hom(I',K*) denote
a homomorphism satisfying b:" = gq;. Let 2 be a finite Galois exten-
sion of k containing all the values b,(y). The analytic space (over k)
Q(T) x, £ has a group of automorphism G given by: an automorphism
5 belongs to G if & extends some automorphism y &€ of .

From our choice of the field £ it follows that we have an exact
sequence:

1— H— G- T — 1 with H= Aut(Q(T)x, 8 — ).

Let M denote the subgroup Aut(2(T)x, 2 — Qx,2) of H and
let N denote the subgroup Aut(2(T) x, 2 —> Q(T)) = Gal(®] k)
of H. Then M is a normal subgroup and we have an exact sequence
l1— M — H— Gal(Q|k) — 1 and H is the semi-direct
product of M and N.

According to § 2 every finite abelian unramified covering of

X has the form Q(T) x &/N for suitable, T, 2 and N and in which
N is a normal subgroup of G and G/N is a finite abelian group.

One clearly has [G,G'] N H is contained in N. In particular
[H,H] is contained in N. We will need the following lemma.

LEmMA 3.1. — Let H denote the automorphism group of
QM) x, 12 and let [H,H] denote the commutator subgroup
of H. Then QT) x, &/[H, H] = Q(T') x, ' where

(i) &' is the maximal abelian subextension of % .
(ii) T' is a sublattice of T, and T' satisfies nT' CO/k*.

Proof. — We choose a basis 6,,...,0, of ©® such that T is

the Z-module generated by -nl— 0, mod k*),..., n—l- (6, mod k*).
1 g
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As before the function field of (T) x, £ has the form
M(Q) B AUx,,...,x,] with 6, = X]*.

The commutator subgroup [H,H] is generated by the elements
{0, 0, ol‘l 0;'10,,0,EN} and {oho-'h"'|0EN and hEM}.
Let h; denote the element of M given by the action Ah;(X;) = X;
if j#i and h,(X,) = §;X; where §;, is a primitive n;th-root of
unity. An easy calculation shows that oh, o-1h;! = h‘;"(”) where
a,(0) is an integer depending on i and o. Let ¢; = g.cd. (n,
all g;(0)). One easily shows that [H,H] is equal to the semi-
direct product <h':l eens h;*? >.[N,N]. Let T' denote the sublattice

of T generated by -‘-3-1—(49l mod k*),...,-:}-(eg mod k*) and let
1 g
2' denote the maximal abelian extension of k contained in .

The function field of (T')x ¥ is MUKQ) B L'[X],..., x;8] with
d;e; = n;. The automorphism group of Q(T)x & over Q(T')x ¢
turns out to bed[H,H]. Hence Q(T)x 2/[H,H] = Q(T)x 2. Let
us write y, =xii. The automorphism group of QU(T)x £'|Q is
commutative, In particular, any
g €Gal(®'| k) = Aut(Q(T) x 2| T"))

must commute with any # € Aut(Q(T') x 2’| 2 x R'). Take A given
by the formula A(Y;) =7,Y; (i=1,...,¢) where 7; is a primitive
e;-th root of unity. Then ok (Y;) = o(7)Y; and ho(Y;) = 1;Y;.
So 7,€k and each e; divides n = the number of roots of unity
of k. This finally showsthat n T' C ®/k*.

LeMMA 3.2. — Let H denote the automorphism group of
Q(T)x, Q. Let H, be a subgroup of H, containing [H, H]
and such that the image of H, in Gal(R|k) is contained in
[Gal(®| k), Gal(®| k)]. Then Q(T)x 2/H, = QUT")x ' with

a) ®' is the maximal abelian extension of k, contained in %.

b) T" isa sublattice of T such that nT" C Q/k*.

Proof — One divides first by [H,H]. The result Q(T')x '
is further divided by the group H,/[H, H] which lies by assumption

in Aut(Q(T)x2'|2xR"). The result is Q(T")x 2 where T"
is a sublattice of T'.
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(3.3) We apply (3.2) to the group H, = [G,G]NH. Let p:T" — G
be a left-inverse of the canonical surjection G — I'. One can
define the -action of ¢(y) on the function field of Q(T)x 2 by:
e(y) (f) =foy for any fEMQ); ¢(y) A=\ for any AEQ
and p(M X, = b,(v)X;.

Then H, = HN [G, G] is generated by [H, H] and the commu-
tators p(Y)h p(y)"*h~! with y€T and h€H. This expression
is 1 for any hEM. For h = o€ Gal(R|k) = Aut(Q2(T)x 2| 2(T))
one easily sees that the commutator lies in M. This means that H,
satisfies the condition of (3.2). Let (T")x 2' denote the quotient
of Q(T)x® by H,. This quotient is invariant under any o¢(y).
In other words, the action of I" on £ can be extended to action
of ' on QT")x%'.

Let us describe the function field of Q(T")x &' by
F=M(Q)®, L[Y,,...,Y,] with Y} =0,.
Then each n; divides n.

The automorphism % on F which lifts the automorphism
v on () must satisfy Y(Y;) =b,(y)Y; for certain elements
b(y) EL'. Moreover Y must commute with the action of Gal(®'|k)
on F. This implies that b,(y) €Ek. We draw the conclusion that

T" is a sublattice of -:;(@/k*) such that the canonical homo-
morphism ¢ : ©/k* —> Hom(I', k*) which is given by
c(6 mod k*) (y) = 0(yw) O(w)™ !,

extends to a grouphomomorphism T —> Hom(T, k*). This
proves the main result.

THEOREM 3.3. — Every finite abelian, unramified extension
of X has uniquely the form (T)x /N where

(i) R is a finite abelian extension of k

(ii) T is a sublattice of % (©/k*) such that the canonical
homomorphism c¢: ©/k* — Hom(T", k*) extends to T.

(ili) N is a normal subgroup of G with NNH = {1}. The
image "N of N in I' is a normal subgroup with abelian
factor group.
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COROLLARY 3.4. (G. Frey). — The profinite Galois group D of
the maximal abelian uramified extension of the function field N(X)
of X is isomorphic to the direct product

Gal(k*®/k) @ ZE © Z/n, & ... ®Z/n, .

The numbers Nyseens Ny satisfy nyIn,|... Ing|n where n = the
number of roots of unity in k and they are determined by the
curve X.

Proof of (3.4). — One easily sees that there exists a largest lattice
T, with @/k* CTC % ©/k* such that the map
c: O/k* — Hom(T, k*)

extends to T. The finite group in (3.4) is the cokernel of the injec-
tion ©/k*C T.

Remark 3.5. — The corollary (3.4) has been proved by G. Frey
[2]. His proof is quite different from the one presented here. It is
based upon a detailed study of the action of the Galois group
Gal(k°?|k) on the points of finite order (or the Tate-modules) of
the Jacobian variety (or a generalized Jacobian variety) of the
Mumford curve X = Q/T".

BIBLIOGRAPHY

[1] J. FRESNEL, M. van der Pur, Géométrie analytique rigide et appli-
cations, Progress in Math., Birkhduser Verlag, 1981.

[2] G. Frey, Maximal abelsche Erweiterung von Funktionenk&rper
iiber lokalen Ko6pern, Archiv der Mathematik, Vol. 28 (1977),
157-168.

[3] L. GERRITZEN, M. van der Purt, Schottky groups and Mumford
curves, Lect. Notes in Math., 817 (1980).

[4] M. van der Pur, Stable reductions of algebraic curves, University
of Groningen preprint, ZW-8019 (1982).

[5] M. van der Pur, Les fonctions theta d’une courbe de Mumford,
Sém. d’Analyse Ultramétrique, déc. 1981, L. H.P.



52 M. van der PUT

[6] G. van STEEN, Hyperelliptic Curves defined by Schottky groups
over a non-archimedean valued field, Thesis Antwerpen U.LA.,
1981,

Manuscrit recu le 18 mars 1982.

Marius van der Pur,
Ryks Universiteit Groningen
Mathematisch Instituut
Postbus 800
9700AYV Groningen (Pays Bas).



