Annales de l'institut Fourier

VIVIANE NORDON

Description canonique de champs de vecteurs sur une surface

Annales de l'institut Fourier, tome 32, n° 4 (1982), p. 151-166 http://www.numdam.org/item?id=AIF 1982 32 4 151 0>

© Annales de l'institut Fourier, 1982, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DESCRIPTION CANONIQUE DE CHAMPS DE VECTEURS SUR UNE SURFACE

par Viviane NORDON

Le but de cette note est de donner une description canonique des champs de vecteurs de classe \mathscr{C}^1 sur une surface compacte éventuellement à bord dont les singularités sont des selles sans liaison entre elles, transverses au bord et sans feuille compacte intérieure. Le cas des surfaces orientables ayant été étudié par G. Levitt [1], c'est surtout celui des surfaces non orientables qui est étudié ici. On obtient aussi la description des champs de vecteurs de classe \mathscr{C}^1 dont les singularités sont génériques sans liaison entre selles, transverses au bord et sans feuille compacte intérieure. En effet, dans ce dernier cas les singularités sont des selles, des puits ou des sources et en retirant de la surface des « disques » centrés aux puits et aux sources (les contenant pour seule singularité) on peut se ramener au cas précédent.

Je tiens à remercier ici M. H. Rosenberg grâce auquel j'ai pu faire ce travail ainsi que R. Langevin et G. Levitt pour leur aide précieuse et le referee pour ses bons conseils.

1. Quelques cas particuliers.

Considérons une surface, éventuellement à bord, S, et un champ de vecteurs \mathscr{C}^1 sur S dont les singularités sont des selles, sans liaison entre selles et transverse au bord.

Si le champ n'a pas de singularité et si S a un bord, S est un anneau ou une bande de Moebius. Si, de plus, S n'a pas de feuille compacte intérieure, S est un anneau, un champ de classe \mathscr{C}^1 sur une bande de Moebius admettant au moins une feuille compacte intérieure.

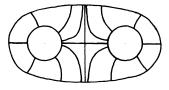
Si S est une surface sans bord et si le champ n'admet pas de

singularité, S est un tore ou une bouteille de Klein, sa caractéristique d'Euler-Poincaré étant nulle. Si, de plus S n'a pas de feuille compacte intérieure, un théorème de H. Kneser montre que S est un tore [2].

2. Lemme.

Lemme. — Soit S une surface compacte, éventuellement à bord. Soit un champ \mathscr{C}^1 sur S dont les singularités sont des selles, admettant au moins une selle, sans liaison entre selles, transverse au bord, et tel qu'il n'y ait pas d'orbite compacte intérieure.

Il existe une famille finie de courbes fermées transverses au champ qui décomposent S en pantalons et en bandes de Moebius trouées contenant chacun exactement une selle et sur lequel le champ est conjugué à l'un des champs représentés figure 1.



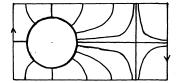


Fig. 1.

Demonstration. — Soit s une selle. Montrons qu'il existe un pantalon ou une bande de Moebius trouée plongée dans S dont les bords sont transverses au champ et qui contient s pour seule selle.

Soient ℓ_1 et ℓ_2 deux séparatrices opposées de s. Montrons qu'il existe deux courbes fermées C_1 et C_2 bilatères, transverses au champ, et telles que ℓ_1 rencontre C_1 et ℓ_2 C_2 .

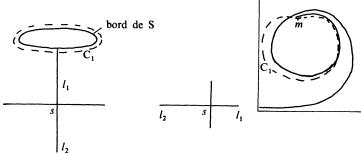


Fig. 2.

 ℓ_1 atteint un bord ou admet un point d'accumulation m qui n'est pas une selle puisque S est compacte. Dans les deux cas, on peut construire une courbe C_1 transverse au champ et qui coupe ℓ_1 [3]

C₁ est bilatère puisque le champ arrive d'un côté, repart de l'autre.

Si l'intersection de ℓ_2 et de C_1 n'est pas vide, on prend $C_2 = C_1$.

Si l'intersection de ℓ_2 et de C_1 est vide, on construit C_2 par rapport à ℓ_2 comme C_1 par rapport à ℓ_1 , de telle sorte que $C_1 \cap C_2$ soit vide (en se plaçant par exemple dans la surface S découpée suivant C_1).

Si C₁ et C₂ sont distinctes (d'intersection vide) il existe un pantalon plongé dans S dont la seule singularité est s et dont les bords sont transverses au champ. On peut en effet construire une courbe C₃ transverse au champ, qui coupe les deux séparatrices de s différentes de ℓ_1 et de ℓ_2 et qui «longe» C_1 et C_2 .

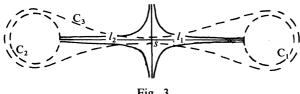


Fig. 3.

C₁, C₂, C₃ sont les bords d'une surface P sur laquelle le champ admet une selle pour seule singularité. Une telle surface est un pantalon car la caractéristique d'Euler-Poincaré de la surface sans trou P* correspondante est $\chi(P^*) = -1 + 3 = 2$, ce qui montre que P^* est une sphère.

Si $C_1 = C_2$ on peut obtenir soit un pantalon, soit une bande de Moebius trouée.

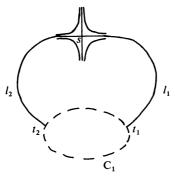


Fig. 4.

Appelons t_1 la première intersection de ℓ_1 et de C_1 , t_2 la première intersection de ℓ_2 et de C_1 .

Considérons la courbe Γ constituée de la partie de ℓ_1 comprise entre s et t_1 , d'un arc de C_1 reliant t_1 et t_2 et de la partie de ℓ_2 comprise entre t_2 et s.

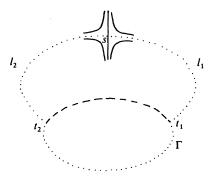


Fig. 5.

Si Γ est bilatère on peut encore construire un pantalon dont les bords sont transverses au champ et dont la seule singularité est s: on peut trouver deux courbes transverses coupant chacune une des séparatrices restantes et « longeant » C_1 chacune d'un côté de Γ . Les deux courbes sont du même côté de C_1 .

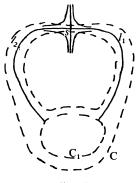
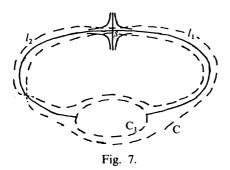


Fig. 6.

On obtient comme précédemment un pantalon.

Si Γ est unilatère on peut trouver une courbe fermée C transverse au champ, qui coupe les deux séparatrices de s différentes de ℓ_1 et ℓ_2 et

délimite une bande de Moebius contenant s et C_1 . C est le bord d'un ruban de Moebius contenant Γ et C_1 et transverse au champ le long d'arcs de ℓ_1 et de ℓ_2 .



 C_1 et C sont les bords d'une surface M à deux trous contenant s pour seule singularité. M est une bande de Moebius trouée puisque la surface M^* sans trou correspondante admet pour caractéristique d'Euler-Poincaré $\chi(M^*) = -1 + 2 = 1$ et est donc un plan projectif.

Chaque composante de la surface S' obtenue en privant S du pantalon ou de la bande de Moebius trouée que l'on vient de construire satisfait aux hypothèses du lemme avec une selle de moins que S à moins d'être un anneau.

Montrons maintenant que le lemme est vrai par récurrence sur le nombre de selles de S.

S'il n'y a qu'une selle, S s'obtient en recollant éventuellement aux bords d'un pantalon ou d'une bande de Moebius trouée un anneau sur lequel le champ est transverse au bord.

Or, en recollant un tel anneau par une seule composante de son bord à une bande de Moebius trouée ou à un pantalon, on obtient encore une bande de Moebius trouée ou un pantalon dont le champ est celui de la figure 1 puisque sur un tel anneau le champ est conjugué à celui de la figure suivante (fig. 8).

Le lemme est donc vrai si S admet une seule selle.

Supposons qu'il le soit si S admet N selles. Soit S une surface à N+1 selles satisfaisant aux conditions de l'énoncé. On a vu que l'on peut décomposer S en un pantalon ou une bande de Moebius trouée (muni du champ représenté figure 1) et des surfaces à N selles au plus (ce qui reste).

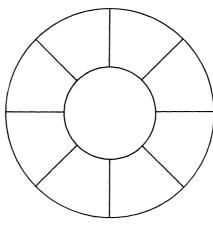
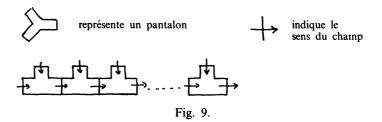


Fig. 8.

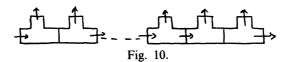
3. Décompositions canoniques.

Définissons les quatre types de surfaces munies d'un champ de vecteurs qui apparaissent plus loin.

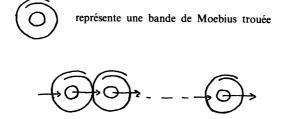
• Une surface de type \mathcal{R} est une surface de genre 0, à bord, munie d'un champ de vecteurs tel que les composantes du bord soient rentrantes à l'exception d'une seule. Elle se décompose de plus en pantalons munis du champ représenté figure 1 comme l'indique la figure 9.



ullet Une surface de type $\mathscr S$ est une surface de genre 0, à bord, munie d'un champ de vecteurs tel que les composantes du bord soient sortantes à l'exception d'une seule. Elle se décompose de plus en pantalons munis du champ représenté figure 1 comme l'indique la figure 10.

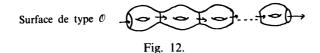


• Une surface de type \mathcal{N} est obtenue en recollant suivant leurs bords des bandes de Moebius trouées munies du champ représenté figure 1 comme l'indique la figure 11. Elle a un bord à deux composantes, l'une rentrante, l'autre sortante.



ullet Une surface de type $\mathcal O$ est obtenue en recollant suivant leurs bords des tores avec deux trous eux-mêmes obtenus en recollant suivant les bords auxquels arrive une seule séparatrice de la selle deux pantalons munis du champ représenté figure 1. Elle est orientable, a un bord à deux composantes l'une rentrante l'autre sortante.

Fig. 11.



Champ sur le tore avec deux trous.

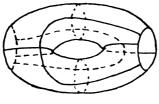


Fig. 13.

On appelle par ailleurs demi-feuilles définies par un champ de vecteurs sur une surface toutes les trajectoires de la forme $\{\phi_t(x)|t \le t_0\}$ et $\{\phi_t(x)|t \ge t_0\}$, ϕ_t désignant le groupe à un paramètre associé au champ, x un point de la surface, t_0 un réel.

Montrons successivement les deux théorèmes suivants :

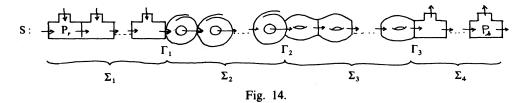
Théorème I. — Soit S une surface compacte à bord. Soit un champ de classe \mathscr{C}^1 sur S dont les singularités sont des selles, sans liaison entre selles, transverse au bord et sans feuille compacte intérieure.

Supposons que toute demi-feuille définie par le champ de vecteurs atteigne une composante du bord.

Il existe alors sur S trois courbes Γ_1 , Γ_2 , Γ_3 qui décomposent S en quatre surfaces :

- Σ_1 de type \mathcal{R} dont la composante sortante du bord est Γ_1 ,
- ullet Σ_2 de type $\mathcal N$ dont la composante rentrante du bord est Γ_1 et la composante sortante Γ_2 ,
- Σ_3 de type \mathcal{O} dont la composante rentrante du bord est Γ_2 et la composante sortante Γ_3 ,
 - Σ_4 de type $\mathcal S$ dont la composante rentrante du bord est Γ_3 .

Éventuellement certaines des Γ_i sont confondues entre elles ou avec une composante du bord de S et certains morceaux de la décomposition n'apparaissent pas.



On appellera primaires:

— les deux composantes rentrantes du bord de Σ_1 qui sont composantes du bord du même pantalon de la décomposition (P_r sur le dessin).

 Γ_1 s'il n'y a pas de Σ_1 , Γ_2 s'il n'y a ni Σ_1 ni Σ_2 , Γ_3 si S se réduit à Σ_4

ainsi que

— les deux composantes sortantes du bord de Σ_4 qui sont composantes du bord du même pantalon de la décomposition (P_s sur le dessin)

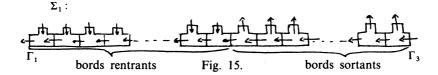
 Γ_3 s'il n'y a pas de Σ_4 , Γ_2 s'il n'y a ni Σ_3 ni Σ_4 , Γ_1 si S se réduit à Σ_1 .

Théorème II. — Soit S une surface compacte éventuellement à bord. Soit un champ de vecteurs de classe \mathscr{C}^1 sur S dont les singularités sont des selles, sans liaison entre selles, transverse au bord et sans feuille compacte intérieure.

Supposons que l'une au moins des demi-feuilles n'atteigne aucune composante du bord.

Il existe alors trois courbes Γ_1 , Γ_2 , Γ_3 (Γ_1 , Γ_3 confondues si et seulement si S n'a pas de bord), transverses au champ, partageant S en trois surfaces:

• Σ_1 obtenue en recollant la composante sortante du bord d'une surface de type \mathscr{R} à la composante rentrante du bord d'une surface de type \mathscr{S} ; le bord de Σ_1 est constitué du bord de S, de Γ_1 (sortant) et de Γ_3 (rentrant)



- Σ_2 de type \mathcal{N} de bord Γ_1 (rentrant), Γ_2 (sortant),
- Σ_3 de type \mathcal{O} de bord Γ_2 (rentrant), Γ_3 (sortant).

Éventuellement certaines des Γ_i sont confondues entre elles ou avec une composante du bord de S et certaines surfaces de la décomposition n'apparaissent pas.

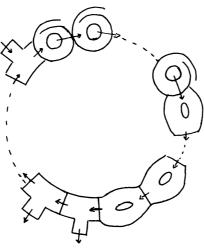


Fig. 16.

S, si S n'a pas de bord

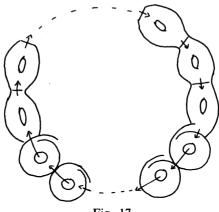


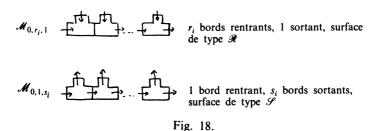
Fig. 17.

Démonstration du Théorème I. — Le lemme IV-I donné par G. Levitt (cf. ci-dessous) s'applique ici puisque deux séparatrices qui atteignent deux composantes du bord différentes peuvent se mettre, d'après le lemme du § 2 dans un pantalon.

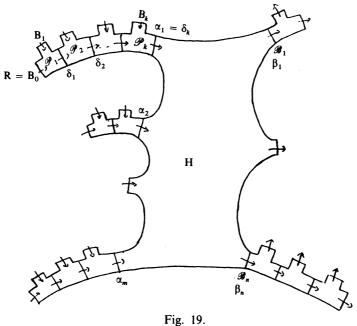
LEMME IV-I. — Soit \mathscr{F} un feuillage orienté d'une surface M. Il existe (cf. fig. 19) des courbes disjointes $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ transverses à \mathscr{F} et des parties disjointes $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ de M telles que :

- 1) pour $1 \le i \le m$, α_i sépare M et X_i est l'adhérence d'une composante de $M \alpha_i$.
- 2) pour $1 \le j \le n$, β_j sépare M et Y_j est l'adhérence d'une composante de $M \beta_j$.
- 3) pour $1 \le i \le m$ (resp. $1 \le j \le n$), il existe une décomposition de X_i (resp. Y_j) transverse à $\mathcal{F}_{|X_i|}$ (resp. $\mathcal{F}_{|Y_j|}$) et définissant un modèle équivalent à $\mathcal{M}_{0,r_i,1}$ (resp. $\mathcal{M}_{0,1,s_i}$); r_i (resp. s_j) est un entier au moins égal à 2; en particulier toute composante de δX_i (resp. δY_j) différente de α_i (resp. β_j) est un bord rentrant (resp. sortant) de M.
- 4) Si H désigne l'adhérence du complémentaire dans M de l'union des X_i et des Y_j , deux séparatrices opposées de $\mathscr{F}|_H$ qui rencontrent δH ne rencontrent jamais deux composantes différentes de δH .
- 5) Si de plus on se donne un bord rentrant R et un bord sortant S de M, (correspondant à un pantalon), on peut choisir les courbes α_i et β_j et

les décompositions de X₁ et Y₁ de façon que R (resp. S) ou bien appartienne à H ou bien appartienne à X_1 (resp. Y_1) et soit identifié à un bord primaire de $\mathcal{M}_{0,r_1,1}$ (resp. $\mathcal{M}_{0,1,s_1}$).



Remarque. - La surface H définie dans la condition 4 est connexe.



Soit H la surface obtenue ici.

Étudions H en distinguant deux cas.

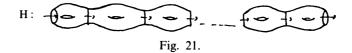
Appelons séparatrice négative d'une selle une séparatrice orientée vers la selle et rappelons que toute séparatrice de H atteint le bord de H.

Fig. 20.

1er cas.

Supposons que la courbe Γ associée (page 158 dans le haut) à tout couple de séparatrices opposées négatives soit bilatère.

Montrons qu'alors H est orientable, admet un bord à deux composantes, et se décompose en tores avec deux trous munis du champ représenté figure 13 à moins d'être un anneau



Raisonnons par récurrence sur le nombre de selles de H.

Si H n'a pas de selle, H est un anneau puisque sa caractéristique d'Euler est nulle et qu'il admet un bord à deux composantes (une rentrante, une sortante) au moins.

Sinon H a au moins 2 selles car si H n'en avait qu'une la construction du § 2 faite avec les séparatrices négatives montre que H serait un pantalon et que donc 2 séparatrices opposées atteindraient des composantes différentes du bord.

Supposons que H soit de la forme annoncée s'il contient au plus N selles et supposons que H contienne N + 1 selles.

Soit s une selle de H. Les deux séparatrices négatives opposées atteignent une même composante du bord. La construction donnée au § 2 permet de trouver un pantalon P dont une composante du bord est cette composante et admettant s pour seule selle d'après l'hypothèse faite dans ce premier cas.

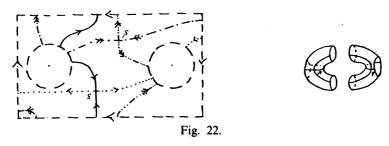
Appelons B_1 et B_2 les deux autres composantes du bord de P (transverses au champ), ℓ_1 la séparatrice de s qui atteint B_1 , ℓ_2 la séparatrice de s qui atteint B_2 :

 $H\backslash P$ est connexe puisque ℓ_1 et ℓ_2 atteignent les mêmes composantes du bord de H.

H\P a une selle de moins que H, une composante de plus dans son bord.

Il existe donc une selle, soit s', dont une séparatrice atteint B_1 , l'opposée B_2 (toute composante du bord est atteinte par une séparatrice). On construit comme au § 2 un pantalon P' dont la seule selle est s' et deux composantes du bord B_1 et B_2 .

 $P \cup P'$ a deux selles, un bord à deux composantes donc est *a priori* un tore ou une bouteille de Klein avec deux trous. Montrons par l'absurde que $P \cup P'$ n'est pas une bouteille de Klein avec deux trous. Si c'en est une, le champ est donné par la figure 22



et la courbe Γ correspondant aux deux séparatrices négatives de s' est unilatère.

 $P \cup P^\prime$ est donc un tore avec deux trous muni du champ représenté figure 13.

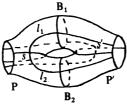


Fig. 23.

 $H\setminus (P\cup P')$ satisfait aux mêmes hypothèses que H avec deux selles de moins.

H est donc de la forme annoncée.

2e cas.

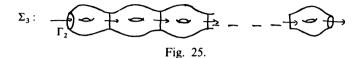
Supposons que la courbe Γ associée (comme page 158 en haut) à l'une au moins des paires de séparatrices négatives opposées soit unilatère.

Montrons qu'il existe sur H une courbe Γ_2 , transverse au champ qui décompose H en deux surfaces Σ_2 et Σ_3 telles que:

 \bullet Σ_2 admette pour bord un bord rentrant et un bord sortant (Γ_2) et se décompose en bandes de Moebius trouées munies du champ représenté figure 1 recollées suivant leurs bords

$$\Sigma_2$$
: Fig. 24.

• Σ_3 admette pour composantes de son bord Γ_2 rentrant, et une composante sortante, et soit obtenue en recollant suivant leurs bords des tores avec deux trous munis du champ représenté figure 13.



Considérons une paire de séparatrices négatives opposées telles que leur courbe Γ associée soit unilatère. On a vu au § 2 que l'on peut construire une bande de Moebius trouée qui les contienne ainsi que la composante du bord (rentrante) à laquelle elles aboutissent. On obtient une nouvelle surface connexe en retirant cette bande de Moebius trouée de H. La surface ainsi obtenue satisfait aux conditions du premier cas ou admet une paire de séparatrices négatives opposées dont la courbe Γ associée est unilatère. Dans cette dernière éventualité retirons la bande de Moebius trouée construite comme au § 2 qui contient ces deux séparatrices.

Réitérons les retraits jusqu'à ce qu'il n'y ait plus de séparatrices négatives opposées dont la courbe Γ associée soit unilatère dans la surface restante. Cette dernière : H' satisfait aux hypothèses du premier cas.

H' n'admet qu'une composante rentrante dans son bord.

Une seule bande de Moebius trouée peut donc se recoller à H' parmi celles que l'on a obtenues

Fig. 26.

De même, une seule bande de Moebius trouée parmi celles que l'on a obtenues peut se recoller à la surface obtenue en recollant à H' une bande de Moebius trouée.

Finalement H est de la forme annoncée.

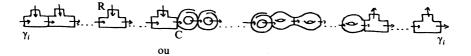
Le théorème I est donc vrai.

Démonstration du théorème II. — D'après le § 2 on peut trouver une famille finie de courbes fermées qui décomposent S en pantalons et bandes de Moebius trouées sur lesquels le champ est celui de la figure 1. Toute demi-feuille qui n'atteint pas le bord coupe l'une de ces courbes. Il existe donc une famille finie de courbes fermées transverses au champ qui coupe toutes les demi-feuilles qui n'atteignent pas le bord.

Choisissons une telle famille minimale $\gamma_1, \gamma_2, \ldots, \gamma_n$ et considérons S_1 surface obtenue en découpant S suivant ces courbes. S_1 est connexe, car, si γ_i déconnectait $S\setminus(\gamma_1\cup\gamma_2,\ldots,\cup\gamma_{i-1})$, toute demi-feuille qui entre dans l'une des composantes devrait être recoupée et γ_i ne servirait pas.

Toutes les demi-feuilles définies par le champ sur S_1 atteignent une composante du bord. S_1 satisfait aux conditions du théorème I et admet un bord rentrant et un bord sortant qui proviennent de la même courbe γ_i .

Si la décomposition donnée au § 2 fait de γ_i le bord d'un pantalon, le lemme de G. Levitt déjà cité montre qu'il y a une décomposition canonique de S_1 qui rend ces bords primaires. Si la décomposition donnée au § 2 fait de γ_i le bord d'une bande de Moebius trouée, dans la décomposition canonique γ_i est automatiquement primaire. On peut donc dans tous les cas considérer une décomposition canonique dans laquelle γ_i est primaire.



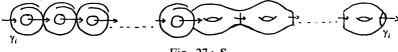


Fig. 27: S₁.

Montrons que γ_i est le seul bord rentrant de S_1 provenant de l'une des courbes $\gamma_1, \gamma_2, \ldots, \gamma_n$. C'est évident dans le cas où γ_i est bord d'une

bande de Moebius trouée. Sinon, supposons que R soit un bord rentrant provenant d'une courbe $\gamma_j(\gamma_j \neq \gamma_i)$. Appelons C le bord sortant du « dernier » pantalon de la décomposition de S_1 admettant deux bords rentrants. γ_i et γ_j ne coupent que des demi-feuilles coupées par C et peuvent être remplacées par C. Comme la famille $\gamma_1, \gamma_2, \ldots, \gamma_n$ est minimale, ceci est absurde.

De même, il n'y a pas d'autres bords sortants provenant du découpage.

S et son champ sont donc conjugués au champ obtenu en identifiant un bord rentrant et un bord sortant primaires de la décomposition canonique de S_1 .

Le théorème II en découle.

BIBLIOGRAPHIE

- [1] G. Levitt, Pantalons et feuilletages des surfaces, Topology, nº 21-1 (1982).
- [2] Godbillon, Systèmes dynamiques sur les surfaces, publié par l'I.R.M.A. de Strasbourg, p. 137.
- [3] H. Rosenberg, Labyrinths in the disc and surfaces, à paraître dans *Annals of Maths*.

Manuscrit reçu le 15 octobre 1981 révisé le 12 mars 1982.

Viviane Nordon, 55, rue Maladrerie 76000 Rouen.