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IMPROVEMENT OF GRAUERT-RIEMENSCHNEIDER’S
THEOREM
FOR A NORMAL SURFACE

by Jean GIRAUD

1. Vanishing theorem.

1.1. A surface is a noetherian, excellent, normal scheme of dimension 2.
A desingularization of X is a proper and birational map f: X - X such
that X is regular. The set

(1) Sing (f) = {xeX, dim (f'(x)) > 0}
is made up of finitely many closed points and f is an isomorphism above
(@) X; =X — Sing (f) © X, = {x€X, 0y, is regular}.
We usually denote by E,; the irreducible components of
3) E(f) = f7' (Sing (f))
and for A =N, Z or Q, we let
“4) NS(f,A) = @ AE,.

We do not assume that X, = X, hence X itself may be regular. For
any V = XV,.E, e NS(f,Q), we write

(5) V>0 when all V; are >0
(6) V20 when all — V.E,; are > 0.

Note that the minus sign is justified by
©) V20=V2x>0.

To prove (7) we let V=V, —-V_;, since V20, we have
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0<-V.V=-V,.V_4+V2 V2, hence V_ =0, since the
intersection matrix is negative definitive. We introduce the dual basis of

NS(£.Q)
®) E} defined by Ef.E; = — §;
and we observe that

) Ef 20, dE¥eNS(£N)

where d is the absolute value of the determinant of the intersection matrix.

LeMMa 1.2. — For any VeNS(f,Q) there exists a unique
[VIe NS(f,Z) such that
() V<I[V],

(i) if WeNS(f,Z) and if VLW then [V]<W.

We will prove that [V] is the infimum for the usual order relation of
E(V) = {WeNS(f,Z), VEW}. Let NeZ be such that
dN < inf(V.E)); we have — dNXE} € E(V), hence E(V) is non empty.
For i=12, let W,=2XW,;E;eE(V) and let Z =ZXZE; with
Z; =inf(W,;,W, ;). By Artin’s trick we prove that ZeE(V) as
follows. For any j, we have Z; = W, ; or Z; = W, ;. By symmetry we
can assume that Z; = W, ; and we get

Z.E,=W,E}+ ) ZE, E,<W,.E

J
k#i

< V.E;

J

hence Z > V. To conclude, we note that the coordinates of any
W = EW.,E; € E(V) are bounded from below since
W, = — W.Ef > — V.E¥ since Ef is > 0. Observe the obvious

(1) [V+W]<[V]+ [W]; [V+E] =[V] + E if EeNS(f,Z).
We also let

) [Vl = — [—V] in such a way that [V] £V L [V].

1.3. Let L be an invertible sheaf on X. We define

(1) e(L) € NS(£,Q) by ey (L).E;, = deg(LIE) for any i.
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We also write L 2 0 instead of e (L) 2 0 and this means L.E; <0
for all i. We will often drop the subscript f. Sending V to 0z(V) we
identify NS(f,Z) to a subgroup of Pic(X) and since V = e (0z(V)),
0¢(V) 20 is equivalent to V > 0. Hence, when we write Pic(X)
additively, we can safely write V in place of 0zx(V) and L + V in place
of L(V) = L ® 02(V). We will sometimes write [L] insteated of [e (L)].

1.4. We can also give an algorithmic description of [V] as follows.
Start with Z € NS(f,Z) such that Z < [V]. For instance, if V = XV,E,
let Z = ZVIE; where V; is the smallest integer > V;. If Z # [V] there
must exist a i such that Z.E; > V.E,; and we still have Z + E; < [V]. In
fact, since V £[V], we have ([V]-Z). E; < (V-2Z).E; <0, hence
([V1-Z) > E, since [V] — Z is effective with integral coefficients. We
now replace Z by Z + E; and reach [V] in a finite number of steps.

VANISHING THEOREM 1.5. — Let f: X — X be a desingularization of a
normal surface X, let E = f~! (Singl (f)) and let L be an invertible
sheaf onX. ‘

() If [L120 then HLX,L) = 0.

(i) If [L] =0 then f (L) is reflexive.

(iii) Let K be the dualizing sheaf of X. If [K—L]>0 then
RY, (L) = 0.

1.5.1. To prove (i) we let M =[L] and L' = L(—M) in such a way
that [L'] = 0 and M > 0, M e NS(f,N). Forany Ve NS(f,N), V # 0,
there exists an E; such that (L'+V). E; < 0. Otherwise we would have
L"+VX0 hence L' —V, hence 0 =[L]< —V <0 which is
impossible. We observe that E; must be contained in the support of V,
otherwise we would have V.E; > 0, hence

(L'+V).E; > (L']+V).E;=V.E; > 0.
Furthermore, since M 2 0, we have
(L+V).E, = (L'+M+V).E, <(L'+V).E; <0.
As a consequence we get
1) V- EeNS(fN) and (L+V).E; <0.
As a consequence we get H(E;, L(V)|E) = 0 hence the map
() H°(V-E;; L(V-E)|(V-E,;) » H*(V;L(V)[V)
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is surjective. By induction on V, we conclude that, if [L] 2> 0, we have
(3) H(V,L(V)[V) = 0 for any Ve NS(f,N)

hence Hé(x; L) = lim H°(V;L(V)|V) = 0. This proves (i) and we get (iii)
by duality.

1.5.2. To prove (ii), we can assume that [L] = 0 since f, (L) reflexive
implies that, for any Ve NS(f,N), the map f, (L) - f,(L(V)) is an
isomorphism. Let u:f,(L) - f (L) be the map from f, (L) to it’s
bidual. Since L is invertible, we know that u is an isomorphism over the
open subset X, of X. Since X is normal, we know that coker(«) is finite
and since f is proper, this implies the existence of some V € NS(f;N) such
that  f (L) = f,(L(V)). Since [L]=0, we know that
HO(V,L(V)[V) = 0 hence f,(L) - f,(L(V)) is an isomorphism and this
concludes the proof.

1.5.3. We do not really need duality for surfaces to state and prove (iii).
In fact, we can define

() K,eNS(f,Q) by (K +E).E = —2x(0g) for all i,

and write the hypothesis [K,—e (L)] 2 0. As for the proof it runs
parallel to the proof of (i) and uses the fact that H!(E;,M) = 0 if M is an
invertible sheaf on the reduced and irreducible Gorenstein curve E; with
deg(M) > — 2x(0g,), details are left to the reader. We define C(f) and

C, in NS(fN) by
@ K =C, - CN-

Observe that if we denote by Ky and Ky the dualizing sheaves of X and
X we have

) K;=¢/(Kg) and Ky =/f,(Ke(C().

The first formula comes from (1). For the second observe that
[Kg(C()] = Kgl + C(f) = C, > 0 hence its direct image is reflexive
by (1.5(ii)) and coincide with Kg over X,, hence it must be K.

COROLLARY 1.6. — Under the hypothesis of (1.5), let L be an invertible
sheaf on X such that [L] =0. Then Sf«(L) is reflexive and the map
u:Rf, (L) > HY(C(f),LIC(f)) is an isomorphism.
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We know that u is surjective. Let us introduce V € NS(f,Z) such that
[K;+C(f)—e,(L)-V] =0. We claim that V>0. In fact
0 =[K;+C(f)—es(L)-V] 2K, + C(f) —e,(L) — V  hence
e;,(Ly + V2K, + C(f) hence V = [e,(L) + V] >
[K;+C(f)] =C, >20. We have a diagram

RIS, (L) —— R, (LIC(S)

v
RY,(L(V)) —— RY,(LV)IC().

By (1.5.1(3)), the morphism v is injective hence it is enough to show that
w is injective. This follows from R!f,(L(V—C(f))) = 0 which comes
from (1.5 (iii)) since [K,—e (L)—V+C(f)] =0.

CoroLLArRY 1.7. — We have R, (0g) 5 H'(C(f);0c,) and
RYf,(0g) = 0 is equivalent to C(f) = 0.

We get the isomorphism by (1.6) applied to L = 0g¢. Hence C(f) =0
implies R'f,(0g) = 0. Conversely, if R'f,(0g) =0 and C(f) # 0, we
have x(0¢y,) > 0 which means

0 > (Kg+C(f).C(f) = K,+C(f).C(N)
2 (KJ+C().C(HH=C,.C(/) =20
a contradiction.

ProposiTioN 1.8. — Let f:X — X be a desingularization of a normal
surface X and let M be a reflexive sheaf of rank one on X . There exists a
pair (L,u) where L is an invertible sheaf on X such that [e,(L)] =0 and
u: f,(DIX,; 5 M|X, is an isomorphism. The pair (L,u) is unique up to a
unique isomorphism. Furthermore M = f_(L).

1.8.1. It is clear that there exists a pair (L',u'), where L' is invertible
on X and ' :f, (L)X ;3 M[X, is an isomorphism. If (L",u”) is another
solution, we canonically have L” = L'(V), Ve NS(f,Z), hence we get
existence and uniqueness since [e (L'(V))] = [e,(L)] + V. By (1.5(ii)),
fy(L) is reflexive since [e (L)] = 0, hence f,(L) > M since both are
reflexive and coincide over X,.
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1.8.2. We denote by f°(M) the invertible sheaf on X characterized by
[f*M)] =0 and f,(f°(M)) = M. We observe that we have

0] e;(f*(M)) e NS(£,Q), e,(/*(M)) €0,

but this element is not necessarily zero. However, if M is invertible, we
obviously have f*(M) = f*(M) since e,(f*(M)) = 0. More generally, it
is useful to compare f°(M) with another lifting M defined as follows

¥)) M’ = f*(M)/torsion M = M'™ = bidual of M’.

CoroLLARY 1.8.3. — Let M be a reflexive sheaf of rank one on X.
Then M <0 and [M] <0. We have f'(M) = M(—[M]).

Since M’ is torsion free of rank one it is invertible except at finitely
many closed points; hence M is invertible. To prove that M < 0, assume
that there exists E; such that M.E, < 0. Then
f*(M(~E,.)) = f*(M) = M. In a neighborhood U of the generic point
of E;, we have M’ = M, hence M is generated on a possibly smaller
neighborhood U’ by sections of M, hence we cannot have
fo(M(=E)) = f,(M). By definition of [M], we get [M] <0 out of
M € 0. We deduce f°(M) = M(—[M]) from [M(—[M])] =0.

COROLLARY 1.8.4.” Assume that X dominates some desingularization X'
of X. We have f = gh with K—Lsx —£sX. For any reflective sheaf

of rank one M on X we have f*(M) = h*(g"(M)).

Since X and X' are regular and h proper and birational, we have
hh*(g"(M)) = g°(M) hence f,h*(g"(M))) = M, hence we only have to
prove that [e (h*(g"(M))] = 0. We use the map

M h*: N5(2,Q) - NS(£,Q

which preserves integrality, positivity and the intersection numbers. We still
have to prove that we have, for any V e NS(g,Q)

() h*([V]) = [A*(V)].

For any E € NS ( f,N), we have h* (V) .
E = V.h,(E) > [V].h,(E) = h*([V]).E, hence h*(V) £ h*([V]), hence
[A*(V)] < A*([V]), in other words A*([V]) = [A*(V)] + A, A e NS(f)N).
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From h*(V) £ [p*(V)], we deduce V X h ([(h*(V)])=hh*(V])—h,(A)
=[V]—h,(A). By definition of [V], we deduce that [V]<[V]—h,(A),
hence h,(A)=0, hence AeNS(hN). We get 0=h*(V). A=[h*(V)].
A=h*([V]). A—A%?= — A% hence A =0.

ProrosiTION 1.9. — Let f: X > X and assume that R f+(Ox) =0.

(i) Let M be a reflexive sheaf of rank one on X. We have
f°(M) = f*(M)/torsion and R'f,(f*(L)) = 0.

(ii) Let L be an invertible sheaf on X such that L < 0. The map
f*fo(L) > L s surjective and R'f, (L) = 0.

We first prove (ii). We let M =f (L), L, = Im(f*(M) > L),
L, = bidual of L, and we get LycL, <L and
M c f,(Ly) = f, (L) = f,(L) =M. Since R!f (L) =0, we get
f«(Li/Ly) =0 and this implies L;/L, =0 since L,/L, has finite
support. Let us define VeNS(fN) by L =Ly,(V). We have
f« (LIV) =0, hence x (Ky) = x(L|V) — L.V
=—h(@LV)—-L.VE —-L.V. Since L0, we gt —L.V<O0
hence %(Oy) <0, hence V =0 since h'(Oy) = 0. This means that
L, = L, from which R'f,(L) =0 follows.

To prove (i) we let L = (M) and apply (ii) to L (see (1.8.3)); recall
that M.= f_f°(L) by (1.8).

As an exercise, we now deduce some well known facts about rational
singularities.

ProposiTioN 1.10. Let f: X — X be a desingularization and assume that
RY/,(Og) = 0. Let 1 be an ideal of Ox. The following conditions are
equivalent

(i) I is integrally closed and 10y is invertible,

(i) T = £,(109)").

(iii) There exists an effective divisor D on X, with Og(—D) > 0 such
that 1 = f,(0Ox(—D)).

Furthermore, if we have (iii), we necessarily have 10g = Mg(—D).

If 104 is invertible, then X dominates the normalized blowing up of
I, hence f,(I0g) is the integral closure of I. Hence (i) = (ii), since in
that case I0g = I0g". Since (I0g)” £ 0, we have 10¢” = Og(—D),
with D effective (not necessarily vertical) and D 2 0; hence (ii) = (iii). If
we assume (iii), then I is integrally closed and (1.9 (ii)) implies that
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10z = Ox(—D), hence (iii) = (i) and we have also proven the last
assertion.

It follows that we have a 1-1-correspondance between ideals I of Oy
which satisfy the above conditions and effective divisors D on X with
D 2 0. We have that I is primary if and only if D is vertical
(dim f(D) = 0) and 1 is reflexive (i.e. the ideal of a Weil divisor) if and
only if [D] = 0. Observe that (1.9(i)) tells us that a reflexive 1 satisfy (i).
Observe that if I is the maximal ideal of some closed point x, then we
must have (i), hence the corresponding D must be the connected
component of the fundamental cycle corresponding to x. To complete the
picture, recall Lipman’s result saying that the set of ideals satisfying (i) is
stable by multiplication, which means that f,(Ogx(—D—E))
= f,(Og(—D))f,(Ox(—E)) if D and E are effective and D20, E 2 0.

Example 1.11. — We now assume that f:X — X is the minimal
desingularization and that X is the spectrum of a local ring R with
algebraically closed residue field, in such a way that Kg < 0; this implies
[K;] = — C(f). Assume that Ky is invertible which means that R is a
Gorenstein ring. Since [*(Ky) = Kg(V) for some vertical V and
e;(f*(Kx)) = 0, we conclude that V = K,, hence K, has integral
coefficients, hence K, = — C(f) and Kz(C(f)) = f*(Kx) ~ Ox.

If we have rational singularity, we know that C(f) =0, hence
K, = 0, hence we get the well known result that E? = —2 for all i. If
C(f) #0, we still have that the dualizing sheaf
K¢y = Kz(C(f)) ® Oy, is isomorphic to Oc,. The converse is also
true, see for instance [2].

2. Genus formula.

2.1. Let k be a field and X be a proper k-scheme of dimension 2
which is normal. We want to study Weil divisors of X, or equivalently
reflexive sheaves of rank one on X. Such a sheaf M is determined by the
invertible sheaf *(M) since M — i i*(M) is an isomorphism where
i: X, = X istheinclusion of the open set X,., made up of regular points
of X. In other words, we study Pic(X.). Let f:X —>X be a
desingularization of X, we have an exact sequence

(1) 0 - NS(f,Z) —— Pic(X) ——= Pic(X,,p) —» 0
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where a(D) is the class of Og(D) and b is induced by the inclusion
J: X = X. The canonical lifting f°(M) of a reflexive sheaf of rank one
M on X defined in (1.8.2) gives us a non-linear section of b. By
composition with the usual map

(2 e, Pic(X) -» NS(f,Z)* c éNS(f,Z) < NS(£,Q), (1.3)

we get a class
o) e, (F(M)) €, NS(/,2)

which can only take a finite number of values since [e (f*(M))] = 0. Of
course, this is still non linear. To recover the classical linear theory of [6],
we recall that, for A = Z or Q, the quadratic module NS(f, A) lies
inside the Néron-Severi group NS(X,A) and we define

(4)  NS(X,A) = orthogonal of NS(f,A) inside NS(X,A)
which gives an orthogonal decomposition
) c(f*M)) = cl(M) + e,(/*(M))

inside NS(X,Q) = NS(X,Q) @ NS(£,Q). We also have another linear
invariant

(6)  d;(M) = class of e,(f*(M)) in NS(f,Z)*/NS(f,Z).

It is clear that the two linear invariants cI(M) and d,(M) can be
computed with any lifting L of M, namely cl(M) is the orthogonal
projection on NS(X,Q) of cl(L) and d,(M) is the image of e, (L);
proof: L = f*(M)(D) for some D e NS(f,Z). For instance, if Kx and
Ky are the dualizing sheaves of X and X we have an orthogonal
decomposition

@) c(Kg) = cl(Kx) + K, (1.5.3)
and
(3) e, (Ky) = K, — [K/].

If we introduce the effective divisor C(f) = [K,]- as in (1.5.3) we know
that the multi-degree of f*(M)|C(f) can only take a finite number of

2
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values, hence the same holds for the length of
9) R £, (f*M)) = HI(C(f); f*MIC(S), (1.6).

THEOREM 2.2. — Let M be a reflexive sheaf of rank one on X . We have
1 1
(1) xM) = = (€M), (M) —cl(Kx)) + x(0x) + 5 e(M) d(M)

where the scalar product is computed in NS(X,Q) and for any
desingularization f:X - X of X we have

) e(M) = (e, (f*M)), e, (f*M))—K)

(3)  dM) = IgR'£,(f*(M)) — IgR£,(Og)
= ' (C(f); f*(M)C(S)) — h'(C(f); Oc(y) (1.5.3).

Proof. — Apply the usual Riemann-Roch formula to f*(M) = L.
Since M = f_ (f*(M)), we get

x1(M) = x(L) + IgR* £, (L) = (L,LL-Ky)/2 + x(Og) + IgR' £, (L)
= x(LL—Kg)/2 + x(Ox) + IgR!f,(L) — IgR'£,(Og)

and split the scalar product (L,L—Kg) according to the orthogonal
decomposition NS(X,Q) = NS(X,Q) + NS(£.Q).

According to (1.8.4), the terms ¢(M) and d(M) do not depend on the
choice of the desingularization. Furthermore we have

4) eM)= 3% eMyx), dM)= Y dMyx)

x € Sing (X) x € Sing (X)

where e(M,x) and d(M,x) are defined by replacing X by Spec (Oy,),
or even by Spec(Oy,) as is easily seen. Furthermore
eM,x) =d(M,x) =0 if M is invertible in a neighborhood of x.
Furthermore d(M,x) = 0 if Oy, is a rational singularity (1.7). We also
know that e¢(M) and d(M) can only take a finite number of values.

For neZ, we let M" = i (i*(M)") = bidual of M®" and we have

2

(5) X(M?) =5 (M), el(M) — 5 (€M), cl(Kx)
+ x(Ox) + e(M")/2 + d(M").
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Observe that e(M") = 0 if the determinant of the intersection matrix
divides n. In fact, in that case, we have d,(M") =0 hence
e, (f'M)) = [e,(f°*(M))] = 0. For instance, if X is the Satake
compactification of some Hilbert-Blimenthal surface and M = Ky, we

can get an a priori proof of the formula for the rank of the vector spaces
H®(X,K%) of automorphic forms [3].
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