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1. Introduction and statement of the theorem.

Throughout this article, ^2 will be an open subset of R^ (we
shall assume that N is ^ 2). We are going to study a pseudodifferential
operator of order m in ^2, of the kind

+00

P = P ( x , D ) - ^ P^.Qc.D), (1.1)
/ =0

where, for each / = 0, 1, . . . , P^_/x , ^) G C°°(n x (RN\{O})) and
is positive-homogeneous of degree m — j with respect to ^. The equi-
valence in (1.1) is the standard one in the theory of ^ do's.

We shall argue under the hypothesis that the principal symbol
P^(x , ^) of P can be factorized as follows :

P^(^) == Q(^){LOc,^)} 2 (1.2)

in a conic neighborhood ^ of a point (XQ , ^°) of T*(^2), the com-
plement of the zero section in the cotangent bundle T*(K) over ft.
That "U is conic means that it is invariant under the dilation
(x , $) -> (x , p^) whatever p > 0. The factors Q, L are C°° functions
in ^U, positive-homogeneous of degree m — 2 and 1 respectively
with respect to ^, and have the following properties :

L(^o , S°) = 0 , (1.3)
^ L ( ^ o , S ° ) ^ 0 , (1.4)

Q(^o ^°)^0. (1.5)

We use the notation A = Re L, B = Im L and denote by H^ the
Hamiltonian field of A :

^ ^ 8 A _ a _ _ 3 A _ _ a _
A ~ ,̂ i as, w w a^ '

By virtue of (1.4) at least one of the differentials d^A or rf.B does
not vanish at (XQ , $°). We shall assume that it is rf^A. Possibly after
some shrinking of ^U, we may assume that

d^A does not vanish at any point o/^, (1»6)
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and also that

Q does not vanish at any point of ^U. (1.7)

A consequence of (1.6) is that the bichar act eristic strip of A through
(^o ' ^°)? ^at ls ^° ^y' ^e ^tegral curve of H^ through that point
is a true curve (i.e., is not reduced to a point) and tfiat its projection
in the x-space (i.e., in ^2) is also a true curve through XQ.

NOTATION 1.1. — We shall denote by FQ the bicharact eristic strip
of A through (Xo , ^°).

Throughout the article we shall make the following "finiteness"
assumption :

The restriction of B to FQ has a zero' of finite order ko at
(XQ, ^°). (1.8)

Let us regard momentarily L(x , ^), suitably extended to the comple-
ment of ^U, as the symbol of a first-order pseudodifferential operator,
L(x , D). We recall the following result (see [6]) :

Suppose that (1.8) holds with an odd integer ko and that (1.9)

the change of sign of B along Fp, at the point (XQ , ^°), is
from positive to negative. (1.10)

Then the transpose ^L (x , D) of L(^,D) is not locally solvable at XQ.

For the notion of local solvability of pseudodifferential operators,
see, e.g., [6].

In the present paper we prove the following result :

THEOREM 1.1. - // (1.8) and (1.10) hold, the transpose t? of
P is not locally solvable at XQ.
The noteworthy feature in Th. 1.1 is that the lower-order terms of P
do not influence the conclusion.

Note that Condition (1.8) can be restated as follows :

H^(B) (XQ , S°) = 0 if j < ko, H^°W (XQ , S°) ^ 0,(L11)

whereas (1.10) says that

H^°(B) (XQ , ^°) < 0. (1.12)
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In [6] it has been proved that conditions such as (1.8) or (1.10)
(i.e., (1.11) or (1.12)) are invariant under multiplication of L by
a complex valued C00 function of (x , {) in a neighborhood of(Xo , ^°)
which does not vanish there. This fact frees the above statements of
the ambiguity as to the meaning of A = Re L and B = Im L.

When P is a differential operator, P^Qc, S) is homogeneous, and
not merely positive-homogeneous, with respect to ^, and we may
take Q and L also to be homogeneous in $. In such case, if k^ is
odd and if H^°(B) is > 0 at (XQ , S°) it must necessarily be < 0
at (XQ , — S°). This implies at once the following :

COROLLARY 1.1. - Suppose that P is a differential operator in
t2 and that (1.8) holds with an odd integer k^. Then, neither P nor t?
is locally solvable at XQ.

When ko = 1, Th. 1.1 can be more easily proved and we leave
it to the reader. Also the case ko = 1 follows from recent results
of J. Sjostrand [7]. We shall therefore concentrate our attention to
prove Th. 1.1 for ko > 1.

Although dealing with a rather special situation, the article is
largely devoted to establishing the base for an investigation of the
solvability problem in the general case of multiple real characteristics.
A starting point for such an investigation is an asymptotic expansion
in powers of p, about p ^ + oo^ of

P(^"^),

where w is a complex C°° function in ft, whose gradient at XQ is
equal to $°, and where (/?GC^(?2). Special, and generally cruder,
versions of such an expansion are of customary use in pseudodiffe-
rential operators theory (see [3], [4], [6]). The techniques we use
to establish the asymptotic formula which we need here are fairly
standard. However, dealing with multiple characteristics demands a
greater precision in the estimate of the remainder, in the asymptotic
expansion, than what was needed in the study of V/do's of principal
type (i.e., with simple real characteristics), and this entails a few,
not completely self-evident, modifications.

The proof of Th. 1.1 subdivides into two parts, according to
whether the lower order terms have or do not have a "strong influence".
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The precise measurement of this influence is achieved by means
of the subprincipal part, used in [5] in the study of the Cauchy
problem for equations with double characteristics (more precisely,
it is the imaginary part of the squareroot of the invariant in question,
defined in the characteristic variety, which is relevant).

Under Hypothesis (1.10) the subprincipal part plays a role in
the proof but not in the statement of the theorem. We hope to show,
in a forthcoming article, that this is not so when (1.10) does not
hold (while (1.8) still does) : then the subprincipal part actually
determines whether the operator is locally solvable or not.

2. The basic asymptotic formula : the ingredients.

Consider two C°° functions <p, w in the open set ^ C R^. We
assume that <p has compact support. We shall use an asymptotic
expansion of the kind :

+°°
P^'^) - ^pw S p '̂ ̂ , p ~ + oo, (2.1)

/=0

where, for each / = 0, 1, . .. , ̂ J is a differential operator of order
^/ in ^2, whose coefficients (which are C00 functions in ^2) depend
on the derivatives of w (of order ^ 1 but not exceeding/ +1) . The
asymptotic formula (2.1) is of standard use in pseudodifferential
operators theory.

When w is real-valued, (2.1) is given a precise meaning, and is
proved, in [4]. We shall be interested in the case when w is complex,
i.e., nonreal. The expansion (2.1) has been established in [3] when w
satisfies an inequality

CQ \x — XQ |2 ^ Im w (x)

in an open neighborhood U C ^2 ofx^ (CQ is a constant > 0). However,
the estimates of the remainder and of its derivatives in [3] are not
precise enough for our present needs. In the present paper, we plan
to use the same asymptotic expansion, where the inequality (2.2)
is replaced by a weaker one. In many of these more general cases
the expansion (2.1) has been established (in [6]), but again the
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estimates of the remainder are not precise enough. For these reasons
we shall give here the exact statement and its complete proof.

Let us say right away that, formally, the differential operators
9^ are exactly those which occur in the standard interpretation of
Formula (2.1). The first two are fairly easy to compute :

%^=P^ ,aw)^ , (2.3)

where we have used the notation Bw = grad w,

^= S P^(x,3w) D ^ + P ^ _ ^ ( J C , 8 w , ^ 2 w ) ^ , (2.4)
M=i

where

p^Oc.aw.a^^p^oc.a^+v^T ^ 1 p^Oc.ai^w.
|aj=2 a - (2.5)

We shall also need to know that %^ is equal to

S ^-P^O^a^D^ +
|a|=2 a!

+ I (P^Oc,aw)+^-T ^ -^+ft\x^w)D^w)Da^
|a|=l 1^1=2

+ zero order term. (2.6)

Of course, all such formulas as (2.3), (2.4), (2.5), (2.6), etc. , are
objectionable, since w will be complex-valued and the P^_y (x , S)
might not be defined for complex $' s. Momentarily we may accept
the validity of the above formulas either when w is real valued or
when the P^ (x , ^) can be holomorphically extended to complex
values of ^. We shall avoid this type of difficulty by replacing each
homogeneous symbol P^ (x , ^) by a suitable approximation of it
which will be analytic with respect to ^. For later reference, we shall
introduce now the subprincipal part of P. Suppose that w has been
chosen so as to satisfy

P^(x, Bw) = 0 in n, (2.5)^

for every (n + l)-tuple a of length 1. Notice that this implies that
w satisfies the characteristic equation
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P^OC , 3w) = 0 in n.

It then follows that the differential operator 92^ reduces to its zero-
order term, which can be written :

^i(x , 3w) = P^Qc , 3w) - ̂ - S D^Oc , 3w), (2.5)^
2 l ^ l = i

and which is a well-defined function of (x , 3w) on the subset (2.5)^
of the cotangent bundle. Under the form (2.5)^ it has been used
in the study of the Cauchy problem [5]. The subprincipal part of
P is by definition :

01Z(x , ^) = P^, (x , ^) - - ^ D^P^(x , ^). (2.5)^
2 M-i

Our only assumptions on the phase function w will be the
following :

w(x) = <^° , x -Xo> + w^x) (2.7)

with
|w2(x)| ^ const. \x — Xo\2. (2.8)

In order to simplify our notation we shall take XQ to be the origin
in R1^ and ^° to be a unit vector. We shall write :

u = e-ip<^°^> e1^^ = e1^2^

We note that, for each 7 = 0, 1, . . . , %^ depends linearly on P
and, as a matter of fact, depends only on the homogeneous parts
P^ ,', 0 <^]1 ̂ j. This suggests that we handle separately each term
P^_- and add up the corresponding results. Such a procedure raises
the problem of estimating the remainder, if we stop adding the
results when j becomes sufficiently large. This problem can easily
be settled, as we now show.

Let S(x , ^) be a symbol of degree s, i.e., S GC°°(^2 x R^) and
for any pair of N-typles a, j8,

|3pfS(x,^| ^ C^(x)(l 4- mr^ .xEn , ^ E R ^ , (2.9)

where C^ Q is a continuous function in ^2, everywhere > 0. We have :
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SQc, D) (e^) = M-^ff e1^-^ S(x , ̂ p<to^> u(y)dyd^ .
(2.10)

Let us set ^ = T? + p^° :

S (x ,D) (^pw^) =

= (27^)-N/;^<T?+^0^>-<<T?^> S0c,7?+p$0)^)^^. (2.11)

Let us denote by ^ the smallest positive integer such that

2v > N. (2.12)

Then, by integration by parts with respect to y , we see that

S(x , D) (^F^) =

= (2^ ;;,'<^°^>-<.^> S(x , r? + pS;°)v(y)dy ^ ̂  ̂  ,

(2.13)
where :

v == (1 — ^f u, A = Laplace operator. (2.14)

Using the expression (2.13) we may prove the following :

LEMMA 2.1. — Under the preceding hypotheses, to every integer
J ^ 0 there are positive integers 3\ M' such that, if the order s of
S(x , D) is <^ — J', the following is true :

To every compact subset K of Sl there is a constant C(K) > 0
such that, for every p> 1, ^ G Cj°(K) and w G C°°(n) satisfying (2.7),

sup\S(x,D)(eipw^\^C(K)p-s sup S p-'̂ ID^^)!.
K t^i^ (2.15)

One may take J' = J 4- v and M' = 2(J 4- 2^), where v is the
smallest integer > N/2.

Proof.— In the right-hand side ot (2.13) we subdivide the domain
of integration into two regions : a region (RQ, where IT? 4- p^°| ̂  p/2 ;
a region <3^, where IT? + p^° | > p/2. We have :
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K270"" fL, e^^-1^^ S(x , r? + p^).0^(l + h|2)-^!

^ CNCo,oM sup (1 + |r? + p$°|)5 f\v(y)\dy
^i

^ CN'CO,()OO (1 + p/2)5 / \v(y)\ dy (if 5 ̂  0)

^ €(N,5,10)?-^ sup |(1 -A)^| i f 5 ^ - J - ^ and x G K.

The function C^g is the one introduced in (2.9).
Let fc be an integer ^ J + v. Observing that, in <%o, \T]\ ̂  p/2,

we have :

1(270^ /^ ^<.̂ ° ,.>-.<.,,> s(x, r?+pS°)^)^(l + Ir?!2)-^^! =

1(2^)^ [ [ ei<r]+^ofx>~i<rl-y> S(x^+p^°)v,(y)dy(\ + N2)-1^!J J ÎQ

^ CN^o(x) (1 + p2/4)-k f \v,(y)\ dy

^ C(N , k , K)?-1-^ / I^MI^,

where ^ = (1 - A)" v = (1 - A)^ u.

Combining the two inequalities we have obtained shows that
(2.15) is valid with J' = J + v and M' = l(v + k), as stated.

We shall be interested in the following consequence of Lemma 2.1:

COROLLARY 2.1. — Same hypotheses as in Lemma Z7. To every
pair of integers J, M ^ 0 there are positive integers J', M' such that,
if the order s of S(x , D) is <^ — J ' , the following is true :

To every compact subset K of Sl there is a constant C(K) > 0
such that, for every p> 1, <p G CJ°(K) and w E C°°W satisfying (2.7),

sup S ID^SQc.D) (eipw^}\ ̂
K |a|^ M

CTOp^ sup E p-^IDV^2^)! .
|aj< M'
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One may take J' = J + M + v and M' = 2(J + 2^), where v is
the smallest integer > N/2.

Proof. — It suffices to apply Lemma 2.1 to every pseudodiffer-
ential operator D^SQc.D), |a| ̂  M, and add up the corresponding
inequalities.

Lemma 2.1 and its corollary enables us to replace P(x , D) by
a finite sum

s'
I P^.(x,D) x(D) (2.17)

7=0

where x0) = Xo(l?l), with Xo ^ C°°(R1), Xo = 0 for t < 1/3 and Xo = 1
for t > 2/3 (r denotes the variable in R1). Let us denote momentarily
by P(J') (x , D) the finite sum (2.17). We apply Cor. 2.1 with

S(^ ,D) = P(x, D)-P^(;c,D).

Estimate (2.16) reads
j'

sup S I D^ P(x , D) - S P^-/ (^ , D) x(D)} (^PM^) \ ̂
K l a | ^M /=o

^C^p-'sup S p-^172 ID^^Y)!. (2.18)
l a j ^ M '

It is valid provided that J', M' (and C(K)) be large enough.
For the remainder of the argument and until its conclusion, we

shall assume that P(x , D) is indeed equal to the finite sum (2.17) ;
in other words, we -shall omit the subscript (J') in P(J')(X , D). From
the type of estimates which we shall ultimately establish, it will be
obvious, thanks to the inequality (2.18), that such a substitution is
permitted.

We shall make an additional assumption about P(x , D), which
will be removed at the end. We are going to assume that P(x , ^)
can be extended as a holomorphic function of ^ in an open subset
of CN of the following type :

^ CN ; for some p > 1, |$ - p^\ < 2€p (2.19)
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where £ is a number such that 0 < £< 1/6 (the 1/6 is due to the
presence of the cut-off function \ in (2.17) ; the 2e, instead ofe ,
in (2.19) is there for technical convenience ; we recall that |$°| = 1).

In view of (2.7) and (2.8) we may find an open neighborhood U
of XQ = 0 in ^2 such that

x G U = > | a w ( x ) - ^ ° | < £ / 2 . (2.20)

This means that, for p > 1, p3w(x) remains in the set (2.19) as
long as x remains in U. Because of this we may form the functions

r
P^Oc , pQw) = ^ p^-^P^. (x , 3w). (2.207)

/=o

There are no factors \(.^w) since Qw (and pbw) remains in the
region where x(S) = 1 (we have of course extended x to the set
(2.19) as the function equal to one).

Under the preceding analyticity assumption about P(x , $) we
are now going to define the differential operators 9^ entering in
the asymptotic formula (2.1). Let us set

H(x , y ) = w(x) - w(y) - (x - y) • 9w(x). (2.21)

We observe that

\ H ( x , y ) \ ^ const. \x - y\2. (2.22)

Then, if u^C^V), where U is the open neighborhood of XQ in
(2.20),

// / ^ J' , %^ </? is equal to the coefficient of p^7 in the
expression (2.23)

S -^ P^x , p3w) D^OQe-^^}!^, (2.24)
M^ JQ a *

where J^ is any integer ^ 2J\
The following remarks are in order : because of (2.22),

D^We-^^}!^

is a polynomial with respect to p of degree ^ |a|/2. If we multiply
it by P^^x ,p3w), we obtain (in view of (2.20')) a finite linear
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combination of powers of p which are ^ m — |a|/2. This linear
combination does not involve p^-7 i f / ^ J' and |a| > 2J\ It follows
from this that the coefficient of p^"7' in (2.24) remains unchanged
if we increase J^ beyond 2J7 ( i f / ^ J').

It is also obvious that, if we had included in our expression of
P(x , D) (which presently is given in (2.17)) homogeneous parts
P^(x , D) with / ^ J ' -h 1, this would not have affected the ̂
i ^ r.

It is clear, in our definition (2.23), that the cut-off function \
does not enter in the expressions of the %^. This is, of course, due
to the fact that (2.20) holds and that 3w remains in the region where
X(S) = 1.

3. The basic asymptotic formula (cont'd) : The case of
symbols which are analytic in the ^ variables.

Throughout this section, we assume that PQc, D) can be continued
analytically into the complex region (2.19). The function w verifies
(2.7) and (2.8), the open neighborhood U of XQ = 0 is chosen so as
to have (2.20). The amplitude function <p will have compact support
contained in U. We set :

j'
R^Gc , D)^ = e-1^ P(x , D) (e1^) - S P^"7®^. (3.1)

/=0

LEMMA 3.1. - Suppose that each homogeneous symbol P^.OC , ̂ )
can be holomorphically continued to the complex region (2.19). Let
w^C^n) satisfy (2.7) and (2.8). Let U be an open neighborhood
of XQ = 0 in S7 such that (2.20) holds. Then, to every pair of integers
J, M ^ 0 there are integers J', M' ̂  0 such that the following is true :

To every compact subset K of ^2 there is a constant C(K) > 0
such that, for every p > 1 and every ^ G C^°(U), we have :
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sup H | D^ e1^ Ry (x , D) ̂ } | <
K j a l ^M J

^CdOp-Sup S p-'^ID^1^)! + I^D^I}. (3.2)
|a|SM'

Proof. — We shall begin by requiring

J' ^ J + M + v (y : smallest integer > N/2). (3.3)

This enables us to apply Cor. 2.1 and assume that P(x , D) is equal
to the finite sum (2.17).

We select an open neighborhood of U whose closure V is a
compact subset of ^2, such that

|3w(x) — {°| < e for every x €E V.

Such a neighborhood V exists in view of (2.20). Let g, /!EC^°(V)
with g = 1 in U, h = 1 in a neighborhood of the support of g.
We have :

P(x , D) (^w^) = h(x) PQc , D) 0^) + S(x , D) (6^)

where, in view of the fact that supp ̂  C U,

S(x , D) (6^) = (1 - h(x)) P(x , D)^^}.

Since the supports of g and 1 — h are disjoint, the order of S(x , D)
is — °°, and we may apply (2.16). This shows that we may replace
P(x , D) by h (x) P(x , D) or, rather, assume that the support of
PQc , ^) lies in the cylinder {(x , ^) ; x G V}.

We have :

^-^P^.D)^^^)

= (270-^ ;;^-^-P^)>-,PH(^) p^ ^)^(y)dyd^.

We set

R(x , ^) = P(x , S) - S -1- P^ (^ , pBw^))^, (3.4)
KJO^

where
T? = $ —p3w(^) .
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The "remainder" R depends on p and on the integer J^ ; the latter
will be chosen eventually. Let us also underline the fact that the
definition of R(x , ^) makes sense since R = 0 when x ^ V and,
when xEV, the generally complex factor pbw(x) belongs to the
region (2.19).

We observe that

(270^ ;/ ^-^-pawO:)>-,pH(^) ̂ a^ ̂ ^ ^

= (270^ /; e^-v^ ^{e-W^Y) ̂ (y)}dydr^ =

D^-^^)^)}]^,

as one sees by applying the Cauchy Integral theorem to the integral
with respect to 77 (possibly after introducing a convergence factor
of the kind exp (- 6(7^ + • • • + T^)) with § -> + 0). Thus we obtain :

R(x , D) (^PM^) == PQc, D) (e1^ ̂  -

-e1^ S 1 P^^^pQw^D^We-^^iO.S)
lal^Jo a! y

We introduce two cut-off functions g, h G C°°(RN) (these have no
relation with the functions so denoted in the first paragraph of the
present proof ; we shall not use the latter again). We suppose that
g + h = 1, that the support of g lies in the region {$ ; I? — pS°l < £?},
whereas that of h lies in the region {$ ; IS — p€\ > ^P/2}.

We note that, when x E V and { E supp g, r] == $ — p9w(x)
belongs to the complex region (2.19). We may then use the remainder
formula for the Taylor expansion :

R(^,£) = (Jo!)"1/1 (1 -^(^-V0'1 P(x,p3wM+^)^o 'ot '

= (Jo + 1) S r?l /1 (1 - t)10 P^Oc , p3w(x) + t^dt.a ! "o|a|=Jo+i

Let us write :

l,(x) = W-" ffe^-y'^-'^^ R(x , ̂ g(^(y)dyd^,

and define I/,(x) similarly, by substituting h for g. We see that I (x)
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can be written as an integral with respect to the measure (1 — t^dt
over the unit interval (0 , 1) of a linear combination of terms of the
form

T^x , t) = ; ; ^-y^>-ipH(.,y) p(a)^ ^ ̂ ^ ^ t^g(^(y)dyd^

=ff e^-v^ P^ (x , p3w(x) + ̂ (S)D^) e-1^^} dyd^

=ff e^-y^-w^ p^)^ , pbww + rr?)g(S)

S ^c^^x^y ,p)D^(y)\ dy d^
{ (3<a ^ '

where ^ < a means .̂ ̂  Oy , j ^ 1, . . . , N, and

^(^,^,P) = ^^^^D^-^^-1^^^}.

One of the crucial observations in the proof is the following one :
by virtue of (2.22),

c ^ ( x , y , p ) = Z c^^.^(x , y ) p d { p ( x - y ) P .
l7l+2^|a-^|

Consequently, T^(x , ^) is a linear combination of terms of the form
Q\7\+d y0 . ^
^ la,^,7;J ^A ? (^

setting

T°^,^(x, ^) = ;;^^-3-^>-pH(.^ DJ{P(.)(^ ^ ̂ 9^) + ̂ ^^
D^M^rf^

Such a term can be decomposed, in turn, into a sum

1 a,<3,7;rf (-•x ? ^ ' ^-a,^^;^^ ? ^)'

where

T ;̂̂  , ̂ ) = ff e^-v^-1^^ P^^x , p3w(x) 4- t^g^)

D^(y)dyd^

whereas T^^ (x , t) is a linear combination of terms of the form

T^,y,y';^ , t ) = ;/ ^^^-^^-^n^^)

P^^Cx , p3w(x) + t^g^^) D^(y)dyd^
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with y + y ' = = ^ l 7 ' l > 0 .

We are going to set
T — pipw\ y°° = ipwr^oo ^0,1 _ ipwrpO,!
- h — ^ ^ ' "a^-yid e la^,7;d5 "a,^//,-/'^ -^ ^Q;,^,^,^;^ •

1. Estimate of 1^.

Writing u = e1^2^, we have :

(270^ =;;^^>-^-P^> R(x,$)^($)^)^^

^^<^>-^-p,0,,> ^_^0|2. l^-p^l-^R^^)^^)^)^^

= ;; ̂ <^>-^-P^> l^-pS0!-27- R(x , $) h^) (-A^ ̂ )^^.

We observe that, in the support of h,

p ̂  2^-1 |$ - p$°| , |S| ̂  (2 +e)c-1 1 $ - pS 0 1.

Note that, by (2.4), |R(;c , {)[ ^ const. (1 + Ifl/0 (assuming that
Jo ^ w). Let us therefore require

^ ^ J + J Q + N + I . (3.6)

We obtain at once :

iTj ^ Cp^-^ sup lAV^)]. (3.7)

We could^have estimated, in similar fashion, the derivatives of order
^ M of 1^. We would have required :

A ^ J + M + J o + N + l , (3.8)
and obtained :

S ID-TJ ^ Cp^-SuplAV^)!. (3.9)
l a j ^M

^ Estimate of^0^.
We have :

i%,^i ^ c ^p (i + \p9ww + ̂ ir-^^' a^a)^)/!^^^!^,
where the supremum with respect to x, $ is taken for x ranging over V
and { ranging over the support of g. We have then
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|p3w(x) - pS°| < £p , IS - PS°1 < £p,
hence

h| = |p3w(x)-SI < 2cp <p/3.

From this follows at once that, if 0 ̂  t <: 1,

|p3w(x) + tr]\ >p/3.

Since fg^)d^ ^ CN?^ we obtain

P171^ 1%^1 ̂  Cp^^-101^^2 p-^/2 sup I^D^I.

We recall that ^^- 1̂  - j3|, and that |a| = J^ 4- 1. Therefore, if

J + m + N ^ , Jo, (3.10)

we conclude that

P^ 1%..;J ^ C'-1-'^/2 sup l^"'2 D^|. (3.11)

Similarly, if we require

J + M + m + N ^ ^ J o , (3.12)

we can achieve that

P^ ^ !^%,,J <, C'p-3-^2 sup I.^D^I. (3.13)
jSliM

3. ^zm^^ o/ T^y^^.

This is very similar to the estimate of 1̂  derived in Part I. We
have :

%,y.y^ - ;.f e•<^>-l<^^> p(a+^ (x , pa«,(x) + ID)
g(y')^^(y) ^ ^ ^ d y d ^ .

Since |7"| > 0, the domain of integration with respect to $ is contained
in the region |̂  — p^°| >ep/2. We multiply and divide the integrand
by 1$ — p$°| -2i;. By arguing exactly as in Part I, but observing here that

IP^^ (x , p9w(x) + fn)\ ̂  const.
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since |a| = J^ + 1 > m, we obtain easily :

P'^l^iy^l ̂  C'p^^^'-^suplA^^^D^)!

^C^p^^^'^'-^sup S |D^ f^2^)!.
\(^\^\13\+2k

We note that |j3 + 7] 4- d ̂  \a\ = J^ + 1 and that |j8| ^ J^, hence,
if we require

k > ] + N + 3Jo/2, (3.14)

we obtain

P171^:^,^ I ^ C" p^ sup I: p-'0'/2 ID0^2 ̂ )| (3.15)
| 0 |^JO+2A;

Similarly, if we require

k >J + M + N + 3^/2, (3.16)

we obtain

P^ ^ ID^̂ I:.
l^j^ M

C-'p^sup I p-'^'^ID0^^)! (3.17)
\e\^3o+2k

We recall, that R(x , D) (^pw^) =T^ + T^, where ^ = ^ fpw^.
If we go back to the definitions of T^;^ and T^yy^ and if
we combine the estimates (3.9), (3.13) and (3.17), we see that if
we require

.TO ^2(J + M + m + N), (3.18)

M' ̂  2(J + M + N + 1 + 2Jo), (3.19)

we shall have :

S ID^ROc.D)^1^)}!^
|a|<M

const. p-' sup I p-m'2{\DIS(eipw^)\+ \eipwl^^}. (3.20)
Iffl^M'
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Finally, we must consider

^ = S -]- P^^x^pbw^xW^We-1^^}^,
M^JO a!

^(J^- '̂̂ l̂

- t P"-7 ,̂
/=o

where J^ satisfies (3.18) and also, J^ ^ 21'. By definition of the^
(see (2.23)) and by virtue of (2.22),

^= S c,,^Wpw-/-lal+dD^,L/,0(,j3,dv

7,a,<3,^

where the summation is performed over the integers / such that
/' ̂  J^ + JQ (see (2.17)), over the N-tuples a, j8 and the integers d such
that

ft^a,, i= l , . . . , N ; 2 r f ^ | a - j 3 | ; (3.21)

J'< 7 + |a| -d , |a|^ JQ.

We have therefore

|$| ^ Cp"-7-10^2 Z p-1^2 |D |̂. (3.22)
l^liJo

Observing that / + |a|/2 > J'/2, and requiring

J' ^ 2(J + m), (3.23)

we derive from (3.22) :

k^l^Cp-' S p-'^l^'^D^I. (3.24)
m^Jo

Similarly, by requiring

J' ^ 2(J + M + m), (3.25)

we obtain

i ID "̂̂ )! ̂  Cp-1 S p-1^2 Î D Î. (3.26)
|a|^M I^I^JQ
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In order to complete the proof of Lemma 3.1, it suffices to
combine the estimates (3.20) and (3.26), with the identity (3.5) and
with the definition of $. The reader will observe that the integer
J' is determined by (3.3) and (3.25) ; we must then have (3.18) and
also JQ ^ 2J'. This determines JQ, which then enables us to choose
M' according to (3.19).

4. The basic asymptotic formula (end) : Approximation by
symbols analytic in the ^ variables.

In this section we shall drop the precondition that the symbol
P(x , f) should be analytic with respect to S; (in a complex region
such as (2.19)). In fact, we shall assume that P is given by (1.1),
Introduction. As before, we are given two integers M, J ^ 0 and
select two other integers J', M' fulfilling the requirements of Cor. 2.1
and Lemma 3.1. In virtue of Cor. 2.1, we may focus upon the finite
sum (2.17), which we denote by P(J')(^ , D), as in (2.18). It is clear
that, given any integer N7 ^ 0, we may find a symbol P(J',N') (x ' S)»
which can be extended as a holomorphic function of $ in the set
(2.19) (for a suitable choice of e > 0 ; as we shall see, this choice
can be made independently of J' and N'), such that the "remainder"

R(J',N') (^ .S) = P(J') (x , S) - P(J-,N-) (^ . S) (4.1)

satisfies the following inequality :

IR(r,N')(^. S)l ^ Cj^(^) — - S° N' (l + W (4.2)

for all x E ft, { G R^ ; Cj» ̂  is a continuous positive function in ft.
One way of achieving this is by using finite Taylor expansions :

P , ( x ^ - l^r"7 V -1- P030 (x ^ {-^-—^Ypw-^ ( X 5 S ) - I s 1 ^ a! ^-^^ ) 11$| ? ;

= ^ -i- p^^jm^a-isis0)',
lallN' a!
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and by setting

P(JW(^S)= S P^-;,N'^^)xa).
/=0

There might be other ways. In the application, in the next sections,
we shall use a modification of the finite Taylor expansion method.

Let us consider a symbol S(x , S) G C°°(n x R^) satisfying an
inequality of the kind (4.2) :

|S(x,S)| ^ C(x) —- $° ^ ( i + mr ,xen, S^RN. (4.3)

with C(x) a positive continuous function in ^l.

LEMMA 4.1. — To every pair of integers J, M ^ 0 there are
integers M', N' ̂  0 such that, if (4.3) holds, the following is true :

To every compact subset K of ^2 there is a constant C(K) > 0
such that, for every p > 1, ^EC^(K) and w G C°°(n) satisfying
(2.7) ^d (2.8),

sup S ID^QC.D) (^"^l ^
K lailM

^CdOp^sup S p-'^2 ID"^^2^)! (4.4)
|a|$M'

A-oo/ - We have :

SQc.D) (^pw^) = (27r)-N J;^<^>-^-P^>(I + l^-p^l 2^

(1 + IS-pW^SOc.S)^)^^

= (2^)^ ;; ̂ <^^>-<t-P^> (i + IS-pS0!2)-"

S(x,S) (l-A)^0.)^dS,

where u = ^lpw2^. We further have, according to (4.3),

(i + i^-p^i 'r^soc,^!^
^ C ( K ) ( I + mr^-p^o + i ^ - p ^ h - ' ^ ^ K . ^ R N .
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This inequality is obvious when |^| S 1 ; it follows at once from
(4.3) for 1^1 > 1 and j^"^ substituted for (1 + Ifj)"^. Next we
observe that

IS-1^°1 ^ 1 ? - P ? ° 1 + llp$°l-mi ^ 2|S-/^°|.

Also p ^ (1 + |^|) (1 + |t; —p^°|). We reach at once the conclusion
that we can choose N' and k so as to have, for x in K,

(1 + 1^ -P^I'r^lS^,^ const. (1 + m)^-1?-^.

From this and ^ from the above expression of S(x , D) (^pw^) we
derive at once

sup |S(x , D) O7^)! < const. p-^ sup|(l - A)^|.
K ~

The derivatives of order ^ M of S(x , D) (^lpw^) can be estimated
in a similar fashion.

Q.E.D.

To establish the asymptotic expansion for a pseudodifferential
operator P of the kind (1.1), Introduction, it now suffices to combine
Inequality (2.18) and Lemma 4.1, where S = R/j^ ^)? ^th Lemma 3.1
applied to the analytic approximation P/j» j^) • We may summarize :

THEOREM 4.1. - Let w E C°°(n) ^to/> (2.7) ̂ ? (2.8) ̂  U be
an open neighborhood of XQ in K such that (2.20) holds. To every
pair of integers J, M ^ 0 there are integers J', M7, N' ̂  0 such that
the following is true '.

Let

P(J\N') (̂  ̂ ) = S ^JW^-/^ . ̂ ) X(S) (4.5)
/=0

6^ ^ symbol satisfying the hypotheses in Lemma 3.1, such, furthermore,
that (4.1) and (4.2) Aofc?. Z^ us denote by %(^,N^ 7 = 0,1, . . . ,^/z^
differential operators associated to P(J\N') (x » D) m ^^ manner des-
cribed in (2.23).

Then to every compact subset K of Sl there is a constant
C(K) > 0 such that, for every p > 1 and every ^ £ Cj°(U), we have :
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sup S Da \ P(x , D) (e1^) - e1^ S p"-7 %^)j ̂  ^
K |a|^M ( / = 0

^ CCK)?-1 sup I; p-'̂ IDV^)! 4- Î D Î}. (4.6)
|a|<M'

5. Beginning of the proof of theorem 1.1.

We start with some simplifying remarks about the problem.
Possibly after renaming the coordinates, we may assume, by (1.4), that

0/3^)L(Xo ,^)^0. (5.1)

We shall write t instead of y^, r instead of T^. Setting n == N — 1,
we shall reserve the notation y for C/,. . . , y^, 17 for (7^,. . . , T^).
We may apply the implicit function theorem : possibly after a rede-
finition of the "elliptic factor" Q, shrinking of the conic neighborhood
^ around its axis and a canonical change of variables (x , $) -^ (y, t, ??, r)
in the cotangent bundle T*(^2) to straighten up the bicharacteristics
of A, we may assume that

L = T - ib(y, t, T?) in Zl, (5.2)

where ^U is now a conic neighborhood of the point (XQ , ^°) in the
new coordinates, b EC^^') is a real positive-homogeneous function
of degree one with respect to 77 and ^U' is the r-projection of U
We may also assume that

|QO^,r?,r)| ̂  c|(7?,T)r-2 in ^ (5.3)

and that in the new coordinates, (XQ , S°) has become (0, 0, 7?°, 0)
(note that (1.3) implies that T°, the r-coordinate of (XQ , ^°), must
be equal to zero). We have denoted by L(y, t, r], r) and Q(y, t, T?, T)
the transforms of L(x , $) and Q(x , $) respectively. We have also
the right to assume that ^U is contained in a cone :

M < const. |T?|. (5.4)

Because of the invariance [6] of the hypotheses of Th. 1.1, not
only under multiplication of L by an elliptic symbol, but also
under canonical change of coordinates in T*(^2), they continue to
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hold when L has the form (5.2). We also remark that the property
under study, namely, local solvability, is invariant under such trans-
formations, which means to say that P is locally solvable at XQ if
and only if U^PU is locally solvable at (0, 0), where U is an elliptic
Fourier integral operator associated with the canonical transformation.

It is classical that Poisson brackets such as {A , B} = H^B are
invariant under changes of coordinates in the base space and asso-
ciated changes of coordinates in the fibres, in T*(K), and more gene-
rally, under canonical changes of coordinates in T*(^2). By virtue
of (5.2), the bicharacteristic strips of Re L (including the one through
(0, 0,17°, 0) which we have denoted by F^) are straight lines parallel
to the ^-axis and the Hamiltonian of Re L is 9 / Q t . In view of this,
(1.11) and (1.12) can be restated as

= 0 if 7 < k^
(3/ar)7 &(0 , t , T?°) at t = 0. (5.5)

> 0 if 7 = ko

For convenience, we shall choose ^U' = © x { t G R1 , \t\ < t^} where
6 is an open conic neighborhood of (0 , 77°) and t^ > 0. We shall
apply the Weierstrass-Malgrange preparation theorem. By shrinking
of ^U', if necessary, we may assume that there exist two C°° real-
valued functions E(y, t, 77) and f(y, t, 77), positive homogeneous
with respect to 77, of degrees 1 and 0, respectively, such that

b == Ef in ^ (5.6)

E ( ^ , r , 77) > 0 in ^ (5.7)

/== ^° + a^y , 77)^0-1 + . . . + a^y , 77), (5.8)

where the a^y , 77) are real-valued and C°° in 0 and vanish at (0 ,77°).
We shall need the following :

LEMMA 5.1. — Let f be a real polynomial satisfying (5.8). Then,
given any open conic subset ©' of 0, containing (0 , r]°) and any
£ > 0, there is an open subset 0" of 0' and a real C°° function (p(y , 77)
defined in ©", such that, \^p(y , 77)! <£ in ©", and f changes sign,
from minus to plus, in the t-direction, across

^ = { ( y , t , 77) ; (y , T?) e e" ; t = ^(y , 77)}.
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Proof. — For every (y , 17) G (S), there is a set (possibly empty)
of real numbers

Te(^ ,77) = {^(^ , T?), . . . , t^y , T?)}

such that t ̂  f(y , t , r ] ) changes sign at t.(y , 77), from minus to plus,
and \t-(y ,17)] < £ for all 7 = 1,. . . , r. Since k^ is ocfcf, T^y , 77) =^= 0
as soon as ( j^ , 77) is close enough to (0 ,17°). Let kA< k^) be the
order of the root tAy , 77) of f(y , ^ , 17) and A: = inf k., when (^ , 77)
varies over 0' and ^-(^ , 17) over T^(^ , 17). Because k is odd, we have
0 < k < fco. Choose (/ , 17') £©' such that /(/ , t , T/) has a root
( ' == ^(j/ ^ ^') of order ^, |^'| < £, and changes sign there from minus
to plus. Since (S/SO*"1/^ , t , 77') has a simple root at /L/, we know
by the implicit function theorem, that the set 2 defined by

O/a^-1/^,^^) = o
can be represented, in a neighborhood ©'f of (;/, 17') in ©', by
^ = ^P(y 3 r?)? where <^ is a real C°° function. On the other hand,
we know that every line parallel to the t axis, through a point
(y , 0 , T?) near ( y ' , 0 , T/), contains a point (y , ̂  , 17) , T?), with
^•(^ , 17) near t ' , where / changes sign from minus to plus and all
derivatives (8/3^ f,S.<k— 1, vanish. This shows that (y , t(y , 77), T?)
G 2. Furthermore, by shrinking 6", we may assume that

f(y , t , T?)^ ^ Q in a neighborhood of ( y ' , ^ , 77'). (5.9)
[t-^y^W

Q.E.D.

We shall apply the lemma with c = ^ < ^ and then perform another
canonical change of variables to flatten the surface 2, around some
point (^i , 771) G ©", perpendicular to the bicharacteristic ^-lines. The
upshot of all this is that (continuing to denote the new variables by
(y , t , r ] , r)) we may assume, by further shrinking of ©fl and t^,
that

b ( y , t , r ] ) = ^O.,r ,r?) in ̂  = 011 x { r E R 1 ; \t\ < ̂ (1)

where j3 > 0 in U" and k < k^ odd. '

(1) In the application of the lemma, we assumed that Q" is a conic subset, by
extending ^ to be a positive-homogeneous function of degree zero, with
respect to 17.
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Next we consider the subprincipal part of P (see (2.5)^^) :

^(y , t , r?) == WL(y , t , r? , ̂ (j. , t , 7?)), (5.11)

in the conic subset ^ of ^U whose r-projection coincides with "U".
We shall restrict $ to 2 and choose a point (^ , r]2) E©" such that
^ -> ^(y , ^ , 77) vanishes of minimum order there. Let q be this mini-
mum order ; it may very well be zero. Also, we do not exclude the
case q = + oo which simply means that $ has a zero of infinite order
on 2. We may then write (decreasing t^ if necessary) :

<P(y , t , T?) = ^ V/(^ , t , T?) m ̂  ^2 , 0 ,7?2) ^ 0. (5.12)

It is also evident that

grad $(^ , t , T?) = 0(| ̂ ) m ^U". (5.13)
^, r]

We shall make the following remark :

(5.14) Since local solvability is an open property, tP will not be
locally solvable at the origin if it is not locally solvable at
arbitrarily close points. Therefore, since <£)' in Lemma 5.1 is
arbitrary, it is enough for the conclusion of Th. 1.1, to prove
that t? is not locally solvable at the point (y^ , 0). We may
then take advantage of the decomposition (5.10) and of the
considerations that follow it. From now on, we assume that
by a translation of the coordinates, (j^ , 0) becomes (0 , 0).

The starting point in the proof of Th. 1.1 is the same as always
in this kind of question : the remark of Hormander as to the functional-
analytic consequence of local solvability, here of the pseudodiffe-
rential operator t?, at the origin (see [6], pp. 1, 2) : if t? were locally
solvable at the origin, there would be two open neighborhoods V C U
of (0 , 0) in S2, a compact subset K of U, an integer M ̂  0, a constant
00 such that

\ffv dydt\^dsup ^ Wijsup ^ ID^PiQI, (5.15)
( |aj$M ) K | a | ^M

for every / ,fEC^(V). The proof of Th. 1.1 will consist in proving
that, in the present situation, (5.15) cannot hold- -whatever the choice
of U, V, K, M, C. In order to show this one takes
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V = e1^^ , p - + °o, (5.16)

with w CE C°°(^2), (p e: C^°(V) chosen in such a way that i; is an appro-
ximate solution, in a sense that we are now going to make precise,
of the homogeneous equation Pi; = 0.

First of all we wish to apply Th. 4.1. For this we need a good
analytic approximation of P^(y , t , 77 , r), the symbol of P in the
new coordinate system {y , t), of the kind (4.5). We shall describe
it below, in all details. If we choose J ' , M' , N7 according to the
requirements of Th. 4.1 and if we combine (5.15) with (4.6), we
obtain :

\ffvdydt\/sup S ID^/I^
|a |^M

^ C sup S D" | e1^ S p^-7® ̂  N') ^) +

M^ M ( / = 0 ' )

+ CCdOp^ sup S p-'^IDV^)! + I^D^I^.l?)
|a|iM'

The choice of J will be made later ; of course, it helps to determine J',
M', N'as stated in Th. 4.1.

We now proceed with the construction of the analytic appro-
ximation to P^ , t , 17, T). As we have already said, N' is chosen in
accordance with the requirements of Th. 4.1. Let us then set

P^Y ,t , T?) = S -L ^\y , ̂  IT?! r?2) (r? - |r?| T^, (5.18)
|a|lN' a •

b ^ ( y , t , r ] ) = ^N<^,r , r?) , (5.19)

EN»(^ , ^ , T? , r) = T - »N.(^ , r , T?). (5.20)

Also :

W y , t , r ] , T ) = S -]- Q^^^,^2,^ ((r],T)-r(r]\0)r,ZN'^^ ? ( 5 ' I 9 U ~ ^ ,

|a|<N' a •
(5.21)
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where we have used the notation :

r = (|7?12 + r2)1/2 .

We have :

10- LN.) ( y , t , r ) , T ) \ ^ const. |i7l

(5.22)

rf_
|7?|

N'+l

(5.23)

But l ip - lT?)^ 2 ! ^2 IT? - n?2! and li?!"1"'^ const./--N' by (5.4) (recall-
ing that the whole argument takes places in tlo). Thus :

|T?I
|T?|

-T,2
N'+ l

= \ri\~^' l^-MTrT''" ̂  const.

/•-N' IT?-/-^1,

and we see that (5.23) implies :

|(L -^.)(y,t, r ) , r)!^ const. r - (t?, r) - (r)2,^^'^.
(5.24)

We have immediately :

KQ-QN-)^ ,^^^) !^ const. r"1-2 -(^^-(T^O)^1.
/' (5.25)

^>^

Let us denote by P^(^, t , r] , r) the principal symbol of P in
the new coordinates y , t, which is the same as the transform of
PW^ » ^) under the change of coordinates (x , $) -> (y , t , 77 , r). Let
g ( y , ^) be a (ET function with compact support in the projection of
^Uo in ^2, equal to 1 in a neighborhood of the origin, h(r\, r) a <000

function in R^+^\{0}, positive-homogeneous of degree zero with respect
to (17, r), equal to 1 in a neighborhood of (r?2, 0), such that the
support of g^y , /) h(r] , r) is contained in 'U^. We set
p^ N'(^ ^ , r ] , T ) = g ( y , t ) h ( r ] , r) (Q^ L 2 ) (^ , t , r? , r) 4- (5.26)N'-N^w.N'

+ (1 - g (V .t)) h(rj , T) S — P^) (^ , ̂  rr?2 , 0) ((T? , T) -
|a|<N' a!

/-(r?2 , 0))^ (̂  ̂ ) E n, (r? , r) E R^\{0}.
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We observe that P^ ^ (y , r , 77 , r) can be extended as a holomorphic
function of (77, r) in a region of the kind

(?7, r) E C^i ; 3p > 1 ^c/z ^to |(7? , r) - p(7?2 , 0)| < ep
(5.27)

that is to say, of the kind (2.19). We derive from (5.24) and (5.25) :

P^^,T)-P^(^,r?,T) ^

C(y , t) ̂  - (T? , T) - (7?1, 0) + , (5.28)

where C(y , r) is a positive continuous function in ^2.

At this point we introduce the homogeneous parts P^_. (y , t , r ] , r)
of degree m - 7, / > 0, of the symbol of P in the new coordinates system
(y , t). The reader should be careful not to think that P^_. (y , t , 77 , r)
is the transform of P^_,(x,^) under the transformation (x , ^) ->•
(y . t , ^ ,r) ; lower-order terms have no invariant meaning and their
expressions in new coordinates depend on the terms which have a
higher order than theirs. By (5.11) we may write :

^(y, t . T ? , T ) = ^ ( y , t ^ T? , r) 4- (r - it^ P ( y , r ,7?))<^(^ ^ , 7 7 , 7 )
(5.29)

where <^ is positive-homogeneous of degree m - 2 with respect to
(?7, r). Next we set :

M^^)= S -, ^(a) (^/^J7?|7?2) (Tp-l^lT?2)^
l^N' a- (5JO)

^ N ' ( ^ » ^ ^ ) = ^N'O^^), (5.31)

^I,N'(^ , ̂  T? , r) = S — ^ ( y . t . r r ] 2 , 0) ((T? , r) - r(r?2 , 0))°',
^^^ af (5.32)

^N'^^ ^ ^ , T ) = $N' (> '»^ 7 ?) +

+ g ( y , ^) h(r\, r) (r - i^^(^ ̂  .^)) ̂ N^ , ^ , T? , r) 4-

+ (1-^(^^))A(7?, r ) S — ^^(^^/-T^O) ((7?,r) -/•(7?2 0))^
l a l ^N ' a!

(^^)Gn,(7?,r)ER^,\{0}.
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Using (2.5)^^ we then write :

P î ̂ ( y . t ^ , T ) = ^ ( y . t ^ , r ) + - ^ ^P^N' (^ t. ̂  r).L l a i = i (5.35)

We derive at once :
1 N'+I

[(P^-i-P^-i^)^^^) ^C^,^-1 -^.T)-^2,^

(5.35)

where C^, t) is a positive continuous function in ^2. It is easily
verified that P ^ , ^ (y , t , 17, r) can be extended holomorphically
to the region (5.27). We set for / > 1 :

P^ ,N.(^^^,T)= S -1-P^J^,^^2^) ((r?^)-^2^))",
|od<N' a-

(5.36)

whence, for / = 2 , 3 , . .. ,

( P ^ . - P ^ - N ' ) (y.t^^^C^y^)^ L ̂ .r)-^\Q) N+l.^m-j "m-/,N^ ^ » ' ' ' ' 9 I J = / - 7 - ,.

(5.37)

The P^_.^ (^ , ^ , ' » ? , r) can also be extended holomorphically to
the region (5.27). We now set :

r
P^N')^ '^^^) = S P . ^ ( y , t , r ] , T ) x ^ , r ) , ( 5 . 3 8 )

7=0

where x(7?» T) == Xo^) = 0 ^or '' ̂  1/3, = 1 for r > 2/3 (r given by
(5.22)). It is seen at once that P/j, ^.. (y , t , ?? , r) is an approximation
of P^^, t , 17 , r), the symbol of P in the coordinates (y , /^), which
fulfills all the requirements of Th. 4.1.

It is obvious that we have :

(9W&N. ^ O/^y'6 at (0 , 0 ,7?2) for all j , 0 ̂  / ^ N' - 1.
(5.39)

It follows at once from this that if we take N' > k , the basic hypo-
theses in Th. 1.1, fulfilled by b, must also be fulfilled by b^' :

1 S D^N'C^^)-
l a i = i (5.35)
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= 0 if j < k
OW6^(0,r ,7?2) at t= 0. (5.40)

> 0 if j = k

We have reached the following conclusion :

(5.41) // we take Inequality ( 5 . 1 7 ) as the starting point, we have
the right to replace throughout the argument the symbol of
P in the coordinates (y , t) by P/j, ̂  ( y , t , r ] , r) defined
in (5.38).

In view of this and in order to simplify the notation, we shall reason
by contradiction, assuming that (5.17) holds and that the symbol
of P in the coordinates y , t, is exactly equal to P.j. ̂  \y , t , 17 , r).
We shall therefore omit all superscript tildes ^ and sharps ^ and
all subscripts (J ' , N'). In particular, we shall write ^w instead of
Cpw

(J ' ,N') , / '

6. The principal part of the phase-function

The function w entering in (4.6) will play the role of a "phase-
function" or rather, of the principal part of the phase function '.
in certain instances we shall add to it a "perturbation term" of the
form p~l/2w^ (see Sections 8, 9). In all cases we take w to be a (S°
function in ^2, satisfying

L(^, t , Wy,Wf) - 0, (6.1)

^li=o =< r ? 2 ^> + i\y\2!^' (6.2)

We have used (and we shall use, further on) the notation ^ 0 to mean
vanishing of infinite order with respect to y , at y = 0. Note that (6.1)
can be rewritten :

^-i^j3(^r,^)-0. (6.3)

We recall that b is equal to b^, given by (5.19). Let us set

w^ = w — < ?72 , y >.
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We have :

W2, -i^j8 (y , t , r?2 4- w^) - 0, (6.4)

^=0 ̂ l^l2^. (6.5)

Let us differentiate (6.4) with respect to y and put y = 0 in the
result. This yields :

<r-1^/0 ̂  r?2 + w^) - ̂ /^(O , ̂  T?2 + w^) = 0
(6.6)

where the upper indices zero indicate that one should take y = 0.
Equation (6.6) may be viewed as a system of n nonlinear ordinary
differential equations in the unknown functions w° (t is the variable).
From (6.5) we derive :

^U.o=°- (6.7)

The Picard iteration theorem yields easily the estimate :

I w^ (0,t)\^ const. | r^t^^S B(0,t' ,^)\dt'\. (6.8)
" o

We return to (6.4) and (6.5). We derive from it :

w ^ ( 0 , / ) = i / ^ ( 0 , / , T ? 2 ^w^(0,t))

= i^(0 , t , 7?2) + i^(0 , t , 7?2) H^(O , /) + (6.9)

+0(tk\w^(0,t)\2),

hence :

\w^(0,t) - i [ < t ^ ^ (0 , / ' , T?2) d t ' | ̂  const. (6.10)

(yVl^^O,/'^2)!^')2.

Since, for \t\ < t^ sufficiently small, we have j3(0 , t , r^) > 0, the
function

B(r )= f ' ^^O,^ ,^ 2 )^ (6.11)
^0

is > 0. It follows at once from (6.10) that

|w(0 , t) - iB(t)\ < const. B(t)2, (6.12)
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and by the same token, from (6.8), that

\Wy(0, t) - T?2! < const. B(/). (6.13)

We have

w(y, t) = w(0,t) + <Wy(0,t), y> + - i\y\2 + Q(\y\\\y\-^ \t\)),

(6.14)
and therefore, by virtue of (6.12) and (6.13),

w ( y , t ) - < r ] 2 , y > - - . i \ y \ 2 - i B ( t ) <

const. {B(/)2 + \y\ B(t) + \y\\\y\ + 1/1)) (6.15)

An obvious consequence of (6.15) (and of the definition of w) is that

\w(y,t)-<r)2 ,y>[<C{\y\2 + B(/)}<C' Im w(y , t) (6.16)

for all (y , t) in a sufficiently small neighborhood U of the origin
in R"^.

Incidentally note that, from the definition of B, we have
fc+i

B(/) = by ——— (1 + 0(/)) , bo > 0. (6.17)
K i 1

Note that the estimate (6.16) reads :

\ w ^ ( y , t ) \ < C{\y\2 + B(m< C' Im w^y , t ) , (6.18)

whereas (6.13) is equivalent with

\ w ^ y ( y , t ) \ <C"{|^| + BO)}. (6.19)

We also obtain, directly from (6.9),

\w^(y,t)\ < C " [ ^ , (6.20)

and thus, combining (6.18), (6.20), we get :

I 3^0., t)\ ̂  C"{Im^(^,^)}1 /2 . (6.21)

Equation (6.1) implies :

P^^H^^^O. (6.22)
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Next we must compute %^. If a is an (n + l)-tuple of length 1,
we have (in "U^)

p^ ( y . t ^ ^ T ) = ( Q ^ L 2 + 2QLL<^) O^,T?,T),

hence, in view of (6.1-),

P^O^^H^n^-O. (6.23)

The zero-order term in 9^ will be :

P^_l (V , t ̂ y^f^yy ^ y t ' H^) == ~ 00" » r » ^y > w^ ̂  » t ) '
(6.24)

It should be recalled that we are interested in the differential
operators S^ merely in some open neighborhood U of the origin
in ^2 C R^1 where the support of the "amplitude" function ^ will
lie. The neighborhood U is chosen small enough so that, if ( y , t)
remains in U, (Wy, H^) remains in the region (5.27). We may and
shall assume that

Q(.V, t , ̂  , T) does not vanish at any point of (5.27) (6.25)

This has the consequence that Q(y , t , Wy , Wf)~1 is a <000 function
in U.

As we have said in Section'2, we shall also need to know the
leading part of%^. It is given in (2.6). We shall describe it explicitly
in the coordinates y , t. Let us set :

e = D, - ̂  S ^(y , ̂  Wy) D ^ (6.26)
/•=i 7 y

It is checked at once that

^ — Q(y , t , vv H^) K1 is a first-order differential operator
(6.27)

(which we shall denote by Q(y , t , w w^) OTI).

We have reached the following conclusion :

Q(y , t , w^, w,)-1 (P2^^ + P%^ + %^) - (^2^ + ̂  -

- p a ( y . t ) ^ ) = p ^ c^^D^+p2^,^,
ia|=l

(6.28)
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where

Co(y . t ) - 0, c^y , t ) - 0 for \a\ = 1. (6.29)

Let us set

a, = - Q(y , ̂  H^, w,)-1^. (6.30)

We may rewrite the inequality (5.17) in the following manner :

\fffvdydt\/sup ^ ID^/I^
l a l ^ M

Cp^sup I D^f^O?2 + ̂ -pa-^fp-^J +
la l^M ( y=l // )

+ CCXK)?-1 sup S P-'^^dD^^2^)! + |^pw2Da^|}+
la l^M'

+ C" sup (|^| + \t\)3" S p^-1^1 ^^(^'^0^)1,
M^M

l ^ l ^ i (6.31)

where J" is a large positive integer, to be chosen later. The last
term in (6.31) originates with the right-hand side in (6.28). The a's
and P ' s in (6.31) stand for (n 4- 1)-tuples.

We are going to perform the last analytic approximation of the
proof. Here, however, the analyticity will be in the variables y, t :
we shall replace each coefficient in R, 3TI and in the a/, as well as
a, by its finite Taylor expansion of order J" + M about (0 , 0). In
order to make the notation lighter we shall continue to write J?, OTI,
a,, o respectively. The last term in the right-hand side of (6.31)
must be modified : the summation over j3 must range over all multi-
indices of length ^ J'. At last we get :

\fffvdydt\/sup 2 ID"/!^ (gj2)
l a l^M

Cp^-2 sup S Da j e1^ (^2 + WL - pa - J^2 p-7^.)^ +
l a l^M ( ,=1 //
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+ Cp-^sup 2 p-^W^2^ 4- I^D^I} 4-
l a t ^M'

4- C sup (|^| 4- \t\)rl Z p^-'^' ID^^D^)!.
l a l^M
l<8l5r

The inequality (6.32) will be our starting point for the argument
which follows. But first, we need to relate a and ^TI. The expression
(6.24) can be rewritten as :

o(y . t) = - Q-1 (y , t , Wy, w,) y\Z(y , t , W y , w,). (6.33)

Because of the analytic approximation in the (y , t) variables, (6.3)
reads now :

w^ - ̂ ^y , t , Wy) = 0 in U. (6.34)

If we use (5.11) and the fact that Wy = r]2 + 0 (\y\ 4- \t\k), we obtain :

^i{y.t,^y^,) = ^ ( y ^ t , W y ) = $ (^ , r ,7? 2 4 - 0 ( 1 ^ 1 + 1 ^ 1 ^ ) =

= $(0 , t , r]2) + y . ($/0 , t , ri1) + <^(0 , t , 7?2)) + (6.35)

4- 0(|^|2 + I t ^ i n V .

By (5.12) and (5.13) we get :

^t(y.t^w^w,) = ̂ (o^t) +^ -^0) )4 - 0(M2 + \t\k)
y (6.36)

where %(0) ̂  0.

Since Q(^, t , w , w^) is a nonvanishing analytic function in U
(6.25), we also have :

o(^r)=^(a^)+^.^0))+0(M2 + |r|^) (6.37)

where a^(0) ̂  0.
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7. Assessing the influence of the lower-order terms.

From here on the proof of Th. 1.1 will subdivide into two parts,
according to whether the lower-order terms in our equation have
or do not have an influence. What is to be understood by this will
be defined below. The implications of either one of the two hypotheses
will surface as we go along. In both cases we may take the inequality
(6.32) as starting point. We recall that the phase-function must be
chosen as described in Section 6. The main purpose here is to find
a suitable approximate solution of the equation

r--2
O?2 + Olt-pa)^= ^ P-7^. (7.1)

7=1

We recall that the last step in Section 6 was to replace all the
coefficients entering in our problem by their finite Taylor expansions
of sufficiently high order with respect to (y , t). Thus the function
ft(.y , t . ^?)? which prior to this substitution was analytic with respect
to 17, is now analytic with respect to all its arguments. Similarly (and
that is what is relevant to our present concern) the "zero-order"
coefficient a(y , t) is analytic and in fact a polynomial with respect
to y, t. Incidentally, we note that the basic hypotheses on w(y , t)
only bear on the finite Taylor expansion of order k + 1 of w ( y , t)
at the origin.

We shall say that the lower-order terms in the pseudodifferential
operator (1.1) have little influence at the origin if the following is
true :

(7.2) There is an open neighborhood (which we take to be U) of
the origin in R^1 and a constant C > 0 sucht that, for all
points (y , t) in U,

I rt k^
1^ |Im v^,r') \dt' ^ C ( M + |r| 2 ). (7.3)

When (7.2) does not hold, we shall say that the lower-order
terms in (1.1) have a strong influence at the origin. We shall establish
some of the implications of this latter hypothesis in the next section.

We begin now the analysis of Hypothesis (7.2).
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LEMMA 7.1. - Suppose that o ( y , t) satisfies (7.2). Then this is
also true of o ( y , t) - a^(y , t), where a^(y , t) is any continuous
function in a neighborhood V D U of the origin, such that, for some
constant C > 0 and all (y , t) in U,

\a^y,t)\^ C(\y\2-^\t\k-l ^-\y\ \t\~2''). (7.4)

Proof. — For each y , let J ( y ) denote the set of t ' s such that
( ^ , r ) G U ; we subdivide J ( y ) into two parts : J ^ y ) , in which
\o(y , t)\ > 2\a^y, t)\ ; ^z(y), its complement. We write ]^y , t)
for the intersection of Jy(^) with the interval joining 0 to t (/ = 1,2).
We have, for t ' ^ J ^ y , t ) ,

|Im {a(y , t ' ) - a^y , ^)}1/2 \ = |Im ^a(y,t1) (1 -(a^/2o) (y , t ' )

+ . . .)| ^ Co |Im ^a(y , r')| + C, \a^y, t')\ / \a(y, ̂ )|1/2 ^

Co lImv^O^I+C^M^r')!1/2 ,

hence, by (7.3) and (7.4),
fc+i

/ l lm^a-^ )^ ,^ ) \dt' ^ C^\y\-^- \t\ 2 ) +
I J i(^0

k+l l_ k+l k+l
+ € 4 ( 1 ^ 1 \t\ + | r | ' 2 4-|^|2 \t\4 )^C5( |^ |+ | r | 2 ) .

On the other hand, if (y , t ' ) ^ J ^ ( y , t),

\\m{o(y,tl)-a^y,tf)Yll\^C^\y\+ \ r|^"+ \y\2 \t\^).

The integral of the left-hand side over J ^ ( y , t) is therefore also bounded
by Cgd^l -t- \t\(k+l)/2), if CgX) is large enough, and this proves
Lemma 7.1.

We apply Lemma 7.1 with

o^y , t) = a(y , t) - fta^t) - t^o,(t) • y. (7.5)

Thus we see that (7.2) is equivalent with the validity, for all (^, t)
in the neighborhood U of the origin, of an estimate :

| riIm^(ao(^)+^).>Q \dt1 < const. (M+|^r1),
1 0 (7.6)
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where we have used the notation :

k == 2p + 1 (7.7)

The following lemma is then almost evident :

LEMMA 7.2. - For (7.2) to hold, it is necessary and sufficient,
either that

^ ^ 2p (7.8)

or else that the following condition be satisfied :

^oW=^+c^+..., (7.9)

where q == 2r is an even integer < 2p, c is > 0 and all the
cj(.cl <- f < P -h '*) are real.

Proof. - We suppose that (7.8) does not hold. Then, for t - 0,
tq0o(.t) - c^. We apply (7.6) with y = 0 and conclude at once
that we must have q even and c > 0. Then note that

V^oW = c^ ^2 (14-^- f(t) 4- . . .), (7.10)

where f(t) = c~^(c^^t + . . . ) . We must have

|Im y^OoO)! ̂  const. \t\P, (7.11)

hence c^7'"'' (q <f) must either be real (for t real) or else we must
have / - r ^ p. This proves that (7.2) implies (7.9).

The proof of the sufficiency of our condition is essentially a
reversal of the preceding reasoning and is left to the reader.

COROLLARY 7.1. — The lower-order terms in (1.1) have a strong
influence at the origin if and only if one of the mutually exclusive
following condition holds :

^oW = c^ + . . . , q < 2p, c^ 0, (7.12)

and c^tq is not everywhere positive in
any neighborhood of the origin ;
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^oW = ̂  + • • • , q = 2r < 2p, c^ > 0, (7.13)

awrf c^ (q < j < p + r) not all real.

8. Situations in which the lower-order terms have a strong
influence : perturbation of the phase-function.

Our purpose is to find a suitable approximate solution of the
equation (7.1) (cf. first term in the right-hand side of (6.32)). In
this section and in the next we shall be working under the assumption
that the lower-order terms in (1.1) have a strong influence (at the
origin), which means that one of the conditions in Cor. 7.1 holds.
In this case we are going to choose

^^V/, (8.1)

where we have written r = p172, a notation systematically used from
now on. We shall require that w^ satisfy in a suitable open subset
of R"-'1 (to be determined later).

(A^)2==-a. (8.2)

Recalling that the order of S>^ is ^7 4- 2, Equation (7.1) translates
into

O?2 4-OTl)V/ + T {20?Wi)J?+ J?2^ + OHiw}V/ = (8.3)

r-2 /+2
S S rW(H^

7=1 7 = 0

where 3TC^ denotes the principal part of the first-order operator OT6
and <%, , denotes a differential operator of order S /, whose coeffi-
cients are polynomials in y , r and in the derivatives of order ^/' of
grad H^.

It is convenient to rewrite (8.3), ordering the terms according
to the powers of r :

2J-3

{2(^)J5+7}^/ = ^ T-^V/. (8.4)
/=!
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^^ ^where 7 and the differential operators %, (of order S / -+- 1 respec-
tively) depend on the derivatives ofvi/i (or order ̂  1 but not exceeding
2 and / + 2 respectively). We shall choose

^ =g S ̂ '^ (8-5)
i/=o

where J'" is a large positive integer, and the g and V/y suitable C°°
functions to be chosen. The \py will be independent ofr, but not sog :
the latter will have compact support, contained in a certain neigh-
borhood U .̂ of a point (0 , t^) which will converge to the origin as
T -> -+- oo ; moreover, g will be equal to one in a subneighborhood
V .̂ of (0 , t^.). All this is going to be described precisely below. For
the moment let us say that the support of g will be contained in an
open set where the problem (8.2) has a smooth solution (there might
not be, of course, any such set which contains the origin). If we
continue to reason formally, we may say that the ^y are solutions
of the following equations :

{2(J?^)J?+7}^ = S ^.-p'^- (8.6),
V' <V

with the agreement that \^y = 0 if v < 0. If this is satisfied, we
shall be able to write

/ J-2 \
(J?2 + OTI - pa - ^ p-7^,) (̂  = (8.7)

7=1

= e1^ \g S Y T——' ̂  ̂  + ̂  ( S r- ^)1
|_ »/=0 i/'=l v=0 J

i/+i/'>r"

where
2J'-3

^=- S S c^r-^D^D^ 2(ffw,)eg, (8.8)
/=! l a+^ |=fc^

l a l^ l

^ ^ / 4- 1 being the order of%/.



266 F. CARDOSO AND F. TREVES

We return now to (8.2) and show how to solve it. Application
of the Cauchy-Kowalevskaya theorem will not be good enough for
our purposes. Instead, we proceed as follows : because a and the
coefficients of R are analytic, and since we are looking for analytic
solutions, we may consider ( y , t) as complex variables, in some neigh-
borhood U0 of the origin in C"''1, L^nR"-^ = U, and perform a
holomorphic change of coordinates ( y , t) into ( z , s ) , s = t, such
that, in the new variables, the differential operator K becomes D^.
Observe that U becomes a piece of smooth (n + l)-dimensional real
manifold, which we call U . Let

U-^Un^X)} and U- = U 0 {t < 0}. (8.9)

By shrinking the (connected) neighborhood U, we may assume that
in V U IT :

0<\a(y^)-t(f(J^t)\^ 1/2 |^0)| (8.10)

and

\o,(t)-y\^ 1/2 |ao0)|. (8.11)

Note that (8.10) assures that a ( y , t) nowhere vanishes in U+ U LT.
By the preceding holomorphism, U* are transformed into "simply
connected" open subsets of U^, which we call U^. In U^ we can
trivially solve

w^ = ± ^ a ( y ( z , s ) , s ) (8.12)

which is the transform of (8.2). According to Cor. 7.1, we have
two cases to consider :

I) Assume that (7.12) holds. This together with (8.10) implies
that c tq is everywhere negative in at least one of the two regions U1.
Without loss in generality we may suppose that

c ^ < 0 in U"". (8.13)

Then (8.11) yields :

Im ^ o ( y , t) = c^l2 (1 + 0(D), CQ ^ 0, in V. (8.14)

II) Assume that (7.13) holds. Let Im t^a^t) = c, /^(l + 0(^)),
c^ ^ 0, q < fo < p + r. From (8.11) we get :
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Im ^ / o ( y , t) = Cot'0" (1 + 0(0), Cy + 0, in V. (8.15)

From now on we set

{ q if (7.12) holds
/= (8.16)

( 2(/o-r) if (7.13) tofck

It is then true (see also (7.7)) that

Im ^ / a ( y , t) = c^t1!2 (1 + 0(/)) in V, Cg ^ 0, / + 1 < fc
(8.17)

Next, we define in U1", the function

W = w + ( l / r ) w i . (8.18)

Note that (8.2) implies :
n

^u = + v^TTTO + ̂ S ^/^- ̂  ̂ ^^i^/'

Set 3 = I m W i . It then follows that

3,= ±Imv^(7775+^ S ^.(0,r,^(0,^))w^ ,+0(^1).
/== 1 / 3/

Because of (8.17), we have

^ =- kol^2 (1 +00) )+0( | ^ |) m U^ (8.19J

where we choose the sign in the right-hand side so as to have ̂  ^ 0
for y = 0 and t > 0. We may require w^ |^o = 0, whence

fl+l/2

^ = - k o l Y ^ - . ^ ( l + 00)) + r M0(l) .

Let us set h(p , t) = p Im Wj ^. It follows at once from (6.15)
and (6.17) that

fk+l l_ /1+//2

h(p , t ) = Pb, -^-^ (1 + 0(r)) - p2 |co| ^———^ (1 + 0(D) ,

(8.20)
and also that
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P Im W - j -^ p \y\1 + h (p , t) j ] <

const. (p {B(/)2 + \y\ B(t) + \y\2 (\y\ + \t\)} + ^~p\y\ \t\ . (8.21)

From this and from (6.17) we derive that, if \t\<t^ sufficiently
small, there is a constant Kg > 0, independent of p, such that

pImW- j -^P\y\2 + h(p,t)) <-pM2 +Ko(pB(/)2 +t2).

(8.22)
Let us set

. k - I - 1 1
^-^k-T ' e =2T^7• (w

By (8.17) we have 0 < 5 < l , 0 < e < l . I t i s convenient to change
variables and introduce s = f^t. We may then write

/2 (p ,0=p 6 h ^ ( p , s ) ,

where

^fc+l 51"1''/2

^i(P^) = *o ̂ -[ (1 + 0(5?-^)) - |col j——^ (1 + 0(s p-6)).

(8.24)

The function A j has a minimum for 5 equal to

UP)^! + o(l), (8.25)

where ^ = ko/frj26 > 0 and o(l), tends to zero with 1/p. The value
of h^ at the minimum is equal to

- VP) = - c; + o(l), (8.26)

where c^> 0 is independent of p. Suppose now that s remains in
a small interval

C i - » ? < 5 < C i + 7 ? (0 <T] < Ci/2). (8.27)
Then y^2?-^! and ^^Ci?-'. Since B(?)2 is of the order
of r ( + ), we derive from (8.22) that, if (8.27) holds, we have

pImW - j -^ p\y\2 +h(p, t)\ <-p\y\2 + K t 2 . (8.28)
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We sketch now, for use below, the graph of the function of s ^ 0,

Fig. 8.01

We begin now the determination of the amplitude function ^
and, first of all, of the cut-off function g. We take

g ( y . t) = g^p'^g^y) ;
gi is a C°° function defined in R", with compact support contained
in a sufficiently small neighborhood of the origin and equal to one
in a subneighborhood of the origin. As for g^s), it is also a C°°
function on the real line ; but its support is contained in the interval
(8.27). Moreover, g^(s) must be equal to one in the interval

(04 — — » Ci + — ) (see Fig. 8.01). Clearly, for p sufficiently large,

5^(p) will be an interior point of this latter interval.

Next we shall study the terms V/y in the expansion of i//, by
looking at the equations (8.6)y (v = 0, 1,. . .) which they satisfy.
Once again, it is convenient to change variables (see page 266),
( y , /) into (z, s), s = t, so that K becomes D^. We shall reason in LT^.
All this, enables us to rewrite Eq. (8.6)y as follows :

2^ ̂  + 7^^= y ̂  .^Is ' v s ' 'v ^ v—v " y (8.29L
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where 7^ and the coefficients of the differential operator ^_ , (of
order ^ v — v + 1) are polynomials in z , s and in the derivatives of
grad w^ of order ^ 1 and $ ̂  - v ' + 1 respectively, hence holo-
morphic functions of (z , s) in LT^. From (8.29)y, we obtain :

^ + X(z , ,) ̂  = ———— ̂  %^ ̂  (8.30)
~zwls v'<v

'y(=i
where X(z, s) = — .—^ is a holomorphic function of (z , 5) in U"^.

i^
An easy computations shows that

X ( z , ^ ) =^/4^ 4- \o{z,s) (8.31)

where \o(z, s) =0(1).

We have used the fact that (see (8.3) and (8.12))

T^-H^ +0(^/2) (8.32)

and

^ = 0(^/2). (8.33)

Set

Ai(z ,5 ) = r \ ( z ^ s ' ) d s 1 (8.34)
^o

and

^ =^/4^(z,.)^ (8.35)

We derive from (8.30)y :

X^-—— S ^/4^<z'5)^,^(^<^/4^<z•5)^). (8.36),
2W^ v<v

We solve (8.36)^ by taking

Xo = 1 (8.37)

and then recursively as v increases, we obtain all Xy as holomorphic
functions of (z, s) in LT^ (recalling that s = 0 does not intersect LT^).
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We shall need the following :

LEMMA 8.1. - For all pairs pp, p^ (p^ an integer ^ 0, p^ an n-tuple)
and for all z, s in \^ (after shrinking U, if necessary) we obtain ;

lO/a^O/az^^Cz^^l^c^j^-^^i. (8.38),

Proof. - First we observe that (8.38)o is true for all po, pp
We then fix p^ and p^ and prove the lemma by induction on v. The
fact that the order of%^, is ̂  v - v ' + 1 and a combination of (8.31),
(8.33), (8.34), (8.36), and (8.38),, with v ' < v, yield :

0/a^X^ = OQr1-^^0). (8.39)

This in turn implies (8.38),. Q.E.D.

If we revert to the functions \p and use the fact (see (8.16))
that q ^ /, we obtain at once

10'° Q"^'2.^^.,,^0-"""""4'-'8^
Finally, it is easy to revert to the coordinates y, t (from now on
and throughout Section 9, y and t will be real). We obtain at last :

IQ'0^^^-'̂ ^..'"0""""""4-^,,
We are going to need a similar estimate for the derivatives of w^. Notice
that (8.12) implies (taking into account that q ^ /) :

(^pt(^""•.(^'>sc^.''-""•"t• <8-42'
9. End of the proof of theorem 1.1 when the lower-order terms

have a strong influence.

We are now in a position to show that if one of the conditions
in Cor. 7.1 holds, an inequality such as (6.32) cannot be valid.
As we have said, we choose
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v ^ge^VQ (9.1)

where

g ( y . t ) =8^1) g^y), W = w 4- (I/T)H^ , ^0 = Z ^~'^.
i/==o

We apply (8.7) and try to determine an upper bound for the first
term in the right-hand side of (6.32). We recall that, on the support
of g(y , t), we have

1 . . 3
-^Ctp-^t^-^ c,?-^ (9.2)

Let PQ, p^ be any pair such that p^ 4- |pj ̂  M. It is not difficult
to see, by applying (8.41) and (8.42), that, on supp g,

'^"(^"(^ | ^r--'S^.)^(,
V + V ' > J 1 "

^ C^pM~]"f^+(:r"(-l+l^+2€(3~^+el/4e~lm(pw)

We also have, by (8.28) :

- Im(pW)^Kt 2 +p6^(p),

so that (9.3) has the following consequence :

(^.rar^ s "i'r-'-''s^) ^ (,.4)
•' v=0 v = l '

v+v'>r"

^ CM?1^^^"'6/^0^.

We have used the following consequences of (8.23) :

e ( 2 + / / 4 ) ^ \--e(\ + 1) = 5.

On the other hand, again by (8.41) and (8.42) (see also (8.8)) :
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K Q ^0 / 3 xP i . J'"

a;) (a~) ^W ^M^1'1 S p-^.-1111^).
(9.5)

Since Kg vanishes identically in any open set where g=\, this is
to be considered only on the support of the gradient of g, where
we have, by virtue of (8.22)

p ImW ^ cp \y |2 + /z(p, t) + p'h^p) - p'Vp) - Kt2

^p6 -p'Vp)-^2 .

If we combine this with (9.5) we obtain :

[(^/A)'1 (̂  ) ^c^e-^^"^ . (9.6)
l^ar7 ^Qy^

Clearly, for p sufficiently large, we will have exp(—C3p 6 ) ^p"1"'6.
We reach the conclusion that the first term, in the right-hand side
of (6.32), does not exceed a constant times

pW+M+J'-^-J"^?6^?) ^ ̂

We seek now an upper bound for the second term in the right-hand
side of (6.32). Here the argument is somewhat subtler, due to the
fact that we have no control on the order of differentiation M\

JL ^ _1
Recalling that 0 = \p expOp2^) by (8.1) and setting W = ̂  + p 2 v^
(cf. (8.18)), we see that the second term in question does not exceed
a constant times

p^ sup (1+p2 ' |^W|)M^-PImw. (9.8)
suppg

(To check this it suffices to estimate

S p-101/2 {I^D^I + IDV^2 0)|} <
jaKM'

l_

const. ^ p-W2{|^2 D^2^)! + ID^^)!} .)
|a|<M' /

In order to estimate (9.8) we observe that
-L ^ 1

(1 + p2 |3(ReW)|) < const. (1 4- p2 ^(Revi^))), (9.9)
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-L ^ -L 1
(1 + p 2 |3 (ImW)|)< const. (1 + p 2 { [B^Im v^)l + hl}+p2!^,?)!),

(9.10)

where a(t, p) = Im Wj ^ + p6-1 /z^p). It is a consequence of (6.19)-
(6.20) that lawj < const. (\y\ + |̂ ). On the other hand, by (9.2)
we have, on supp g,

\t\1' < const. p~^ < const. p~112 (cf. (8.23)).

Applying (8.28) we conclude that
}_

p^^Reu^)! + 13/Im w^)\ + \y\) < const. {1 + p Im W 4- p6/^?)}172-
(9.11)

j_
In estimating p2 |^(r , p)|, it is convenient to make the change of
variables s = p^. Set a^s , p) = p1-6 a(t, p) (e and § are defined
in (8.23)) ; note also that a^ (,s , p) = ^(^ , 0) + 0(p-6). Since
a^ (s , p) remains > 0 in a fixed neighborhood of the point s = ^(p),
such as (8.27), there is a constant C > 0, independent of p, such
that, in this neighborhood,

\a% , p)| < C a^s , p)172.

Reverting to the variable t, this implies (when t remains in a set
such as (9.2))

e-A-6
|a,0,p)| < C p 2 a(r,p)1/2.

But e < (1 - 6)/2 (for fc > 1) and thus |̂ | < C^/o: In the notation
of (8.28), a = p~\h(p , t) + p6^?)). ^d therefore

j_
p2!^,?)! < const. { 1 + p I m W + p^h^p)}^2. (9.12)

Finally, if we combine (9.11) and (9.12), we see that

the second term in the right-hand side of (6.32) does not
exceed a constant times p~3 exp(p6/^o(p)). (9.13)

We seek now an upper bound for the third term in the right-hand
side of (6.32). We observe that (in supp g)
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S ID^'^H)! ̂  const. pM H p-l^l I^^D0'^. (9.14)
|a|^M |a|<M

We apply (9.14) to H = D^. We see thus that the third term in
question does not exceed a constant times

p^^ sup (|^| 4- 1 1 ^ " e-^^ ^ p-1^1 ID^I
^PP.^ |a|:<M+r (9.15)

If we combine this with (8.1), (8.5), (8.41) and (8.42), we see that
(9.15) is bounded by a constant times

pm+M+i ^p ^^| ^ i^r '^ -p imw} (91^
supp^

From (8.28) we derive that, on supp g,

- I m p W ^ - c p \y\2 + p6^?) 4- Kt2- (9.17)

On the other hand, on supp g (since e ^ 1/2) :

(M + \t\y" e-^y^ ^ const. p-^'d 4-p€|^|)J^-CP'^2

(9.18)
^ const. p"^".

If we take (9.17) and (9.18) into account, it follows that (9.16) is
bounded by a constant times

pW-t-M+l-e.r^p6^?) (9.19)

Therefore, requiring that

r'6 ^ m + M 4- J' + J - 3 and e J " ^ m 4- M + J

we derive from (9.7), (9.13) and (9.19) that the right-hand side of
(6.32) is bounded by a constant times

P-(J-I)^O(P) (9 ̂

Next we consider the left-hand side in (6.32). We have

/; vfdydt = ;/ ̂ w v^fgdydt.

We shall choose

f(y, t) = F(p^p^-p l-c^), FEC^R"^)
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(for the meaning of s^ see Fig. 8-01 and (8.25)). There is a constant
R > 0 such that f(y , t) = 0 unless

M^R/P, k-p-^J^R/p.

Therefore, if p is sufficiently large, the support of / will lie in as
small a neighborhood of the origin as we wish to choose. We make
then the change of variables

y = p-1 ?, t = p~6^ + p-^.

We see that

Sfvfdydt = p^ffe^^FG. s) g^ + p6-^) ^(p-^) (ffds

where

w(y,^p) =w(p- ly,p-e^ +p-1^?),

^ o = S ^(P-1?,?-^^-?-1^?-^2.
»/=o

We have

|Im(pW) 4- p^^p)! < c- iyi2 + K; p-26

/'

+{/^(p,p-e^ +p-ls) +p6/^o(p)} ,

(cf. (8.28)). We may write with the notation of Section 8,

h ( p , P - e s ^ + p - l s ) + p s h o ( p ) = p 6 { h ^ ( p , s ^ + p e - l s ) - p^oCF)}.

Since the right-hand side has a minimum at s = 0, its value does not
exceed a constant times p6"20"*'^ p"2^ Thus we obtain :

|Im(pW) + p^oCp)! < const. p-26. (9.21)

Next we look at

Re(pW) =pRew + ReTW^

= <T^2,y>+0(|ylB(p-e^+T(%(p- ly,p-£^^-p- ls),

where (R. denotes the real part of w,.
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We have

|<%(p-1 3?, p-6^ 4- p-^) - C%(0 , p-^JI ^ const. 1/p,

therefore :

|Re(pW)-<7? 2 ,y>-T<%(0,p- e ^) | ̂  const. p-6.
(9.22)

At last we study 7o- We return to the expression (8.35) of the ^
in terms of the \y (keeping in mind, however, that the variable denoted
by s on pages 269, 271, is what we denote here by t '. it is different
from what we are denoting presently by s). We may write

^^y.f)= f-^e^^'^x^y.t),
where ^(y , t) = - jLi(z(y , t), t) (cf. (8.34)). Thus :

} ' "
v^y^D^t-^e^^'^ S X^O^)?-^2.

y==o

Now

^ = (P'^m + P"^)^ = P~e(7^(l + 0(p-e)).

On the other hand, V/Q = 1, and if v > 0, we derive from (8.38)^
when Po = Pi = 0,

IxJ ^ const. p^O^/2),

whence

\\^p~vl'l\ ̂  const. p-^6. (9.24)

Since by (8.34) it is clear that

^(p-1?,?-^ + p-15)->0

as p ̂  + oo, we derive from (9.23) and (9.24) that, when p -> + oo,

p-^/4^-^^^}-174^.

Finally, if we combine this fact with (9.21) and (9.22) we reach
the conclusion that, when p -> + °°,

p2-cq/4^-p6^(p)-/T^(0,p-e^) ^^fdydt
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converges to

jffe^^Fff, s)c^ds = F(-r?2, 0)7.
A

Here F is the Fourier transform of F and we may choose F so as
to have, say,

FC-^.O)^/^

Consequently, for p sufficiently large, we will have

\ffvfdydt\ > p-2^6^?). (9.25)

Observing that

sup S | D^/l ^ const. pM, (9.26)
R^1 l a l ^ M

we combine (9.20), (9.25) and (9.26). If we choose J > M + 3 and
let p go to + oo^ we reach a conclusion which contradicts (6.32).

10. Situations in which the lower-order terms have little
influence : determination of the amplitude function.

In this and in the next two sections, we shall reason under
Hypothesis (7.2). As before, we take (6.32) as our starting point
and try to find a suitable approximate solution of the equation (7.1).
We are going to take

^ = = ^, (10.1)

with ? G C°°(V) (V is the open neighborhood of the origin entering
in (5.15)) equal to one in a subneighborhood of the origin, and
where h is an analytic function of (y , t) near (0, 0). The choice
of h will constitute the essential step in the rest of the proof of Th. 1.1.
If we make the substitution (10.1) in (6.42), and if we apply Leibniz
formula to the product ?/z, we see that each time the cut-off function
? is differentiated, we get a function which vanishes identically in
some neighborhood of the origin. We reach the following conclusion :
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\fffvdydt\/sup S \Daf\^ (10.2)
|a|<M

Cp^-2 sup S I Da{ei^ 0?2 + OTI - pa - V2 p-7^}! +-
r-2

£
7 = 1•? |a |<M

+ Cp^ sup S P"'^2 {IDV^/OI + Î D Î }+
v? l a l ^ M '

+ c^supja^i + M)^ S p'"-1^1 ID^^^D^)^
( l a l ^ M )

I ^ I ^ J '

In (10.2) V^ denotes the support of ^. We have the right to take
it as small as we wish but not however, to shrink it infinitely many
times. In particular, its diameter should not go to zero as p / + oo

We show now how the analytic function h is chosen. We take

h = S P~7^ (10.3)
7=0

where J'" is a large positive integer to be eventually chosen and
where hj = h^y , t , p) are solutions of the following equations

7-1
^.4-jn^-pa/z, = ^ a^/z,. (10.4)

7"=0

with the agreement that the right-hand side in (10.4) is identically
zero when / = 0 and that Sy^ == 0 if; - /' > J' - 2. We shall further
require

ho = 1, hf = Oforj> Oat y = 0, t = 0. (10.5)

It is easily checked that

j'-2 j'" Y-1
e2 4- WC - pa - ^ p-%, h = - ̂  ^ P-7-7"^. h^ (10.6)

7= 1 7=0 /<=!
74/>;T"

We shall repeat an argument already used in Section 8.
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Since all the coefficients in Eq. (10.4) are analytic functions
of y, t and since we are seeking analytic solutions h., we have the
right to (and shall) consider t and the y1 as complex variables, varying
in an open neighborhood U^ of the origin in C^1. We can then make
a holomorphic change of variables ( y , t) into (z, t) such that, in
the new coordinates, the differential operator R, defined in (6.26),
becomes D^. The equations (10.4) become :

D^/z, + a(z , t)D^ - pa(z , t)h, + $(z , t , D,)^. = S ,_^
r=Q (10.7)

where $(z , t , D^) is a first-order differential operator in the z-variables
whose coefficients, like all coefficients in (10.7), are holomorphic
functions of (z , t) in \JC. In order to fulfill the requirement (10.5)
we shall require :

ho = 1, hf = 0 for 7 > 0 when t == 0. (10.8)

We shall also impose the additional "initial" condition :

D,/z, = 0 for all 7 = 0, 1, . . . . J-, when t = 0. (10.9)

For each 7 we have a noncharacteristic Cauchy problem, depending
on the solutions of the same problem for / < 7. By the theorem of
Cauchy-Kovalevska we know that there is a unique solution h., holo-
morphic with respect to (z, t) in a neighborhood of the origin (which
we may assume to be U0 possibly after shrinking the latter). We
recall that h. depends on p. We are interested in getting an estimate
for the h. and their derivatives when p approaches + oo. In view of
thistwe have the right to simplify somehow Eq. (10.7). Indeed, if
we replace h. by

/Lexp j -^- f a ( z ^ ' ) d t 1 } , (10.10)
\ 2 </o )

the functions (10.10) satisfy the same equations (10.7), (10.8), (10.9).
except that the coefficient a(z , t) must be replaced by zero and that
inessential modifications must be made in $ ( z , ^ , D ^ ) and in the
S>... For the sake of simplicity, we shall heretofore assume that
a(z, r )=0 .

Now, however, (in contrast to what happened in Section 8)
we shall need an estimate of \y — z|. Consider the equations :
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dy
^=-^G^,v^O^)), y\^= z. (10.11)

They have a unique solution y = y ( z , t), holomorphic with respect
to z, t in a neighborhood of the origin in C"4'1. For \t\ small, the
Jacobian matrix of the y ' s with respect to the z ' s is close to the
identity and therefore z -> y defines a holomorphic diffeomorphism.
Let z = z(y , ^) denote the inverse diffeomorphism. Then ( y , t) -> (z , ^)
can be chosen as the change of variables transforming R into D^.

/»?
Since y — z = — i j ^(y , 5, H^O , s)) s1' ds, we obtain at once

••r

^o

|.y — z| < const. ^+1. (10.12)

In (10.7) we have written a(z , t) where we should have written
o ( y ( z , t), /). We know, by (6.37), that

\o(y, t) - r^ao(r) - t q a ^ t ) ' y \ < const. (\y\2 4- ^2P).

We recall that k = 2p + 1. Consequently, if we set

a^(z , r) = a(^(z, r), r) - ̂ JoW - t q o ^ ( t ) • z , (10.13)

and take (10.12) into account, we reach the conclusion that

1^2(7, t)\ ̂  const. (|z|2 + 1^1^). (10.14)

From here on, unless otherwise specified, we return to the notation
a(z, t) (incidentally, note that the notation (10.13) is at odds with
the notation (7.5)— we shall not use the latter in the remainder
of the article. We rewrite Eq. (10.7) as follows :

3 .̂ +p^(aoM + a i 0 ) . z ) ^ = $(z , r ,D, ) /z , - (10.15)
/-i

- pa^z,t)h^ - ^ S^-f^.
/=o

As we said, we shall work in the present and in the following section
under Hypothesis (7.2). We shall therefore be in a position to apply
Lemma 7.2. We shall subdivide the study into two parts, according
to whether (7.8) or (7.9) holds.
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11. Situations in which the lower-order terms have little
influence : estimate of the amplitude function.

This section is devoted to obtaining an estimate for the h. and
their derivatives when p approaches 4- oo. We shall reason under
Condition (7.9). If instead, Condition (7.8) holds, it is not difficult
to see that the method described below also applies, leading to the
same results (in particular, when a = 0 or q = 4- oo, the argument
is even simpler). We recall that (7.9) implies that

a(z^)=0( |z | 2 + \t\2r). (11.1)

We start analyzing some of the ingredients in Eq. (10.15). Let us
write

$(z ̂  , D,) = A(z , t) • D, + Ao(z , t) (11.2)

where the C" valued function A and the C valued function A() are
holomorphic in both variables in U0. We recall that A(z, t) is simply
the "coefficient" of D^ in the differential operator Wt (defined in
(6.27)) in the new coordinates (z , t). Consequently, up to the non-
vanishing factor Q, it is equal to the coefficient of D^ in the expression
of the third invariant SS^. A comparison between (2.5) and (2.6) shows
that the latter is equal to

^(Z,^H^ , w ^ ) . D ^

where JR.^ is the subprincipal part of P (see (2.5)^^), ? G C^
is the z-covariable and w (z , t) = w(^(z, t), t). Notice that (6.1),
(6.2) and (10.11) imply at once that

V^(Z, t) = <7?2 , Z > + / |Z |2 /2 , (11.3)

is independent of t.
If we apply (5.11) and (5.12) (and take into account the fact

that q = 2r < 2p = k - 1, we see that

W L < . y . t ^ , 0 ) = t 2 r ^ ( y . t ^ ) (in^") (11.4)

(When Hypothesis (7.8) replaces (7.9), we may replace 2r by 2p.)
It is very easy to derive from (11.4) that
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01^(0, ̂ .O^d^n (11.5)

which implies at once that

01^(z,^vi^ , w , ) = 0(|z| + \tH. (11.6)

From (11.6) we then obtain :

A ( z ^ ) = 0 ( | z | + m. (11.7)

(Again, when (7.8) replaces (7.9), we may take p instead of r). We
begin by estimating ho. Write

^ = ^ 0 . (11.8)

The equations (10.15), (10.8) and (10.9) give :

^+p^(0o0) + ( J iO) . z ) ^ -A(z^) . ̂  - A o ( z , 0 ^ + (11.9)

+ po-2(z, ^) V/ = 0

V/ = 1, 1̂  = 0 ̂  ^ = 0. (11.10)

Consider the solution g(t) of the following Cauchy problem :

^ - (ReAo(z. ̂  = 0, g(Q) = 1, ^(0) = 0. (11.11)

Of course, g is analytic and real-valued in some interval 1 1 \ < T.
We may evan choose T small enough so that g > 1/2 in ] — T , T [ .
Let us thus then set ^ = gf. We have :

^ - (Re Ao(z , r)) ^ = gf,, + 2g,f,.

Let us make the change of variables

d t 'ftt dt" L ̂ '•M<T-/o g(t')2

which implies

^ - (ReAo(z , r ) ) ^=^- 3 / ^

Since all our conditions are invariant under real analytic changes
of variables, it means that we may assume that

A^(z, t) is purely imaginary (possibly zero) for z , t real. (I I A2)
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We shall adapt the proof of the Ovcyannikov theorem (see [8],
Section 1) and apply it to the successive Cauchy problems :

^ ^{ptqa^t) - Ao(z^)}^' + p | z | 2 ^ = (11.13)

= A(z , t) . V/;-l - pt^o, (t) . z^-1 4- X, ̂ '-1 + \ ̂  ;

V/7 = 1, i^= O f l r ^ = 0, (11.14)

where by (10.14), we write po^(z , t) == p |z|2 - X, - X^,

Xi =0(p |z | 2 )^^ -C^plr l^) . (11.14^

(When working under Hypothesis (7.8) we may simply replace p^a^)
in the left-hand side of (11.13) by pr^). We shall tacitly agree that
^j == 0 when j < 0. Let us set C(z, t , p) = ptqao(t) - A^(z, t).

We shall consider Cauchy problems of the following kind :

^ + { C ( z , ^ p ) + p | z | 2 } ^ = / ( z , ^ p ) +X^ (11.15)

u ^ UQ, u^ = 0 at t = 0 (UQ is either 0 or 1). (11.16)

In view of (7.9) and (11.12) we have

C(z,^p) =^pt2r(\ + ta(t)) + ̂ (z , 0,

where ^o and a are analytic functions in U0 (which for convenience
is taken as { ( z , t) G C"4-1, |z| < Ro, kl <T}) and { ^ G C, I^KT}
respectively ; OQ is r^a/ but ^ is not necessarily so. Let us write

C ( z , r , p ) = C o ( r , p ) + ; C i ( z , ^ p ) .
Note that, in virtue of (7.9),

Co(^ ,p) =pc^r (1 +OW),

C ^ ( z , r , p ) ^pc^^d + 00)) +^(z , r ) .

Let us momentarily set

g = g ( t , P ) = ( \ +Co)-1/2

We recall that c^ > 0. We multiply (11.15) by g^u, and take 2 Re
of both members. We obtain :
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^2Re u,,u,+ 2Re uu,^ p \z\2 ̂ 2Re uu, = (11.17)

= 2 Re (1 - iC^)g2 uu, + 2Re ^fu, + 2Re \^uu,.

We integrate both members of (11.17) from 0 to t. We obtain :

\gu,\2 + \u\2 + p\zgu\2 -f \u,\2 (g2)' d t ' -

-p|z |2 F ^ u } 2 ^ 2 ) ' d t ' < u 2 ^ 2 r \(\-iC,)g2\\uu,\dtf ^J Q u JQ

+ 2 ( " \gf\ \gu,\dt' -h const. [ t (1 + p I^T^g2 1^1 ̂ .
^0 ^O

First of all, we note that g2 is a decreasing function of 1 1 \ in a fixed
(i.e., independent of p) interval 11\ < T. On the other hand, if T > 0
is sufficiently small, we have \t\rg<^ 2/r where r = p172. Whence

|̂ |2 + \u\2 + p\zgu\2 ^ ^ + 2 r | ( l -^Ci) |^ 2 \uu,\dt' 4-
0 (11.19)

+ 2 r |̂ | |^J ^' + const. F (1 +T|^ |p)2g2 \uu,\ d t ' .
^0 ^0

We have

g ^ const. (1 + T \t\r)~v ^ const. g,

1 + |CJ ^ const. (1 + r i r n (1 + T im,

whence, by (11.19), since r <^ p (r <p if (7.9) is hypothetized),

\gu,\2 4- l ^ + p |z^|2 ^ (11.20)

^ + M o r |^| |^J (1 4-r |^)^' + Mi r |g/| \ gu , \d t ' .
^0 ^0

1. Estimates for V/0

If M = ^/° we may take /= 0 and UQ = 1 in the above consi-
derations. We derive at once from (11.20)

\g^\2 + |V/°|2 + p\zg^°\2 ^ (11.21)

^ 1 + M ^ r (|g^|2 + |V/°|2 +p |zgV/° | 2 ) ( 1 + r \t'\^dt\
^o

which in turn implies
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\g^+ |^|2 +p 1^0,2 ^exp(M, r ( I + T \t'ndt')
"0

^ l^expOV^rl/IP4-1).

2. Estimates for ^l, j > 0.

In this case we take u = u! = ̂  - \f/i-1 in (11.15) - (11.16)
and UQ = 0,

f ( z , t , p ) = ^(z,t).ul,-l-ptc'a^(t).zui-l + \u'-1.
(11.23)

We derive from (11.20) :

w]^ M, ^ {\u'\ (1 + T \t'\P) + \gf\}w,dt', (11.24)

where

w,(z , / , ? )= sup {(|^|2 + | u'\2 + p | zgu'^YI1 (z , t ' , p)}.
O^t'-^t

Thus (11.24) implies
w / ^ Ms /'r { | M / | ( I + T | / ' | P ) + \gf\}dt',

"o
and finally, by (11.7), (11.14)^ (11.23) and the fact that \u'\^ w;

w, ̂  ^6 rw,(l + T \ t ' \ P ) d t ' +
"o

(11.25)
^{\a\f^g\\u'^\dt'+^ ^1^-1 |^+r|z|/^,_^'}.

Let us set

" (^P)=M, r(l 4 - r j ^ l ^ ) ^ . (11.26)
^o

Then (11.25) can be rewritten, in short,

w/^ r^^dt^ (" Fdt'.
^o ^o

Let then w be the solution of w = F w S I ' d t ' + ^ ^dt\ We must
. o Jo

have .̂ S w (recall that .̂ ̂  0). But we know the exact expression
of w :
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wo) = r ̂ ""^Fow,^o
whence :

^(z^)^]^ rdzk-"^!^-1! + (11.27)
^o

+ T-1^-^!^-1! + r lz l^ - 1 }^

\\here we have set

^'(z, t) =6?-"<^.(z, t). (11.28)

We apply Cauchy's inequality :

l^-^z, t)\ ̂ - sup l^'-^z', r)|. (11.29)
''/ |z-z'|<^.

As a matter of fact, let us set (for R < R()) :

V^R,^) = sup v1 (z , t). (11.30)
I z K R

We derive from (11.27) :

V^R , t) < M, (-1 —^- + -1- + rR) r^-^R + ^,, ^) ̂
- YTr ,R+. , rr, / Jo (113^

which in turn implies :

^\R,t)<M^ ( - ^ - - ^ T R } f 'V -^R+r , , ^ )^ . (11.32)
- \rr, /J ,

Let us set

V^R ,^ ) =W /(R)M^ /7/! .

We derive from (11.32)

W^R) < ( -1- + rR^ W7-1 (R + r\ (11.33)
~ \rr. / '

Let us underline the fact that the i//7 (defined by (11.13) - (11.14))
are analytic functions of z, for |z| < R^. In view of (11.22) we
may take W°(R) = M, a constant independent of R. We are then
going to choose, for / > 0,

r, -(r/)-1.
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From all this and from (11.33) we derive :

W^R) ^ M(/ + rR) (/ - 1 + rR + 1) ( j - 2 4- rR + 1 + -^
v 7 / < 7 7 - I7

(11.34)

Let us set S = sup — (l + — + . . . + — \ Then :
7 ^ 2 ; /

W^R) ^ M/^ (i + s + ^y ^ M ( I + sy/^1^)"1^.
7 (11.35)

Since y7 ^ const. 37/! , we find

V\R,t) ̂  M^M{, \tV exp(M^rR)

If we go back to the definition of V^R, t) and to that of v^z, t)
we obtain

I u\z , t)\ ̂  w,(z ^ t ) ^ M^M,,\t\y exp(M^rR + ^20)), (11.36)

|z| < R < RQ, M <T.

It is important to observe that the constants U^, M^, M^ can be
taken independently of R, and that R < RQ can be arbitrary. We
shall take R = | z |. On the other hand, we have, for the solution
^ = ^o of (11.9) - (11.10),

+00

ho = lim \p/ = ^ u1.
/-^+- /=o

We derive from (11.36) :

\h^z^t)\^ M^(l -M^ \t\)-1 exp(M^r |z | + a(t)). (11.37)

If we choose T small enough we obtain :

\ho(z , r)| ̂  const. exp(M^r |z | + ^2(r)). (11.38)

It is not difficult to show that, for every / = 0 , 1 , . . .

\^°H^t)\ ̂  C,^^p ( /+a<> ) /2exp(M^T|z|+ n(t)) (11.39)

\z\ < R ^ , |r|<T.
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Let us indicate how to prove (11.39) when / = 0. For c^ = 0 or 1,
the combination of the method described above with the Cauchy's
inequalities in the z-variables gives the result. For o^ > 1 it suffices
to use the differential equation (10.15), differentiated as many times
as we wish with respect to both z and t.

From there on we use induction on / = 0, 1 , . . . (note that the
differential operator a , , entering in Eq. (10.15) is of order/ — / 4- 2).
We essentially repeat the argument of the previous pages, in parti-
cular, we avail ourselves of Estimate (11.20), but with a different
choice of the datum /-- as dictated by Eq. (10.15). Finally, if we
revert to the ( y , t) coordinates, it is very easy to show that (see
(10.11) and (11.26)) :

\D^°h^y,t)\ ^C;^^p ( / + a o ) / 2exp(M^T|^|4-nO)), (11.40)

M<Ro,m<To.

12. End of the proof of theorem 1.1 when the lower-order
terms have little influence.

We return to inequality (10.2) and show that it leads to a contra-
diction.

First of all, we choose the support V^. of ^ contained in the
intersection of R"^ with the set {(y , t) G C"-'1 ; \y \ < RQ, 11\ < V
This insures that the inequalities (11.40) are valid for all 7 = 0 ,
1 , . . . , J'" and all p > 1, when ( y , t) E V^.. Next we determine an
upper bound for the first term in the right-hand side of (10.2).
We apply (9.14) (in V? with H equal to the left-hand side in (10.6).
Let us keep in mind that the order of &. is/' + 2. By virtue of (11.40)
we have

^-\a\ ^P^D^jS P ' 1 ' 1 1 3 ' ! 1 ^ ^
( J , J '

^ P-10'1 e^D0'
l a l ^M { jj

^ const. pi-a^)^1111^^'^^) (i2.1)
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The summation in the left-hand side of (12.1) ranges over the same
indices f, ] ' as the one in the right-hand side of (10.6). We reach
easily the conclusion that the first term, in the right-hand side of
(10.2), does not exceed a constant times

^M-1-J-/2 ^p ^-Plm^M^rM+n(0^ ^ ̂

We seek now an upper bound for the second term in the right-hand
side of (10.2). Here as in Section 9, the argument is somewhat subtler,
due to the fact that we have no control over the order of differentiation
M'. We see easily (cf. estimate of (9.8)) that the second term in
question does not exceed a constant times

P--1 sup(\+T\Qw^)Mle-plmw2 ^ p-'^ID^I. (12.3)
I jS l^M'

If we recall that h is given by (10.3) and take (11.40) into account,
we reach the conclusion that (12.3) is bounded by a constant times

p^sup^l + ria^l)^-^2^1271^^0}. (12.4)
v?

We seek now an upper bound for the third term in the right-hand
side of (10.2). We begin by applying (9.14) (in V^.) with H equal
to D^/z. We see thus that the third term in question does not exceed
a constant times

p^ supj(M + \ t \ ) ] l " S p-^ ID^I . (12.5)
v^ |a |^M+J'

If we combine this with (10.3) and (11.40) we see that (12.5) is
bounded by a constant times

p-^ sup {(M 4- \t\r .-^^M^l^n^ ^^
v?

Finally, we seek a common upper bound for (12.2), (12.4) and
(12.6). The basic fact is that the phase function w, or the function
w^ if one prefers, satisfies the inequality (6.18), which means that :

(12.7) if V*. is sufficiently small, there is a constant c > 0 such that,
f o r a l l ( y , t ) C \ ^

2c (\y |2 + ^+1) ̂  Im w^y , t). (12.8)

On the other hand, it is clear that for a suitable choice of CQ > 0
we have (see (11.26) and recall that k = 2p 4- 1) :
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M^r \y\ + W ^ cp (\y\2 + ^+1) + Co (12.9)

whence, by combining (12.8) and (12.9),

cp(\y\2 + ^+1) - C o ^ p l m w ^ -M^r\y\-n(t). (12.10)

This implies at once that (12.2) is ̂  p^M-i-j"'^ ^ ̂ ^ concerns
(12.4) we observe that (see (6.21) and (12.8))

l a ^ l ^ const. (|^| + \t\(k+l)/2), (12.11)

and consequently,

(1 + T\9w^)Mle-c^y{2+tk+^ ^ const. (12.12)

whence it follows that (12.4) is ^ const. p~3. By the same token
we have

(M + m)^ ^-^(1^2+^+1) ̂  const. p-^^n.lS)

which implies at once that (12.6) is ^const. p^+M-J"/(fc+l) Therefore,
requiring that both J" and J"' be ^ (k 4- 1)(J 4- M + m) insures
that the right-hand side of (10.2) will be S const. p~3. Recalling that

v = ^ h e i p w ,

we have deduced from (10.2) that

\fffvdydt\ ̂  const. p^ sup ID^/I. (12.14)
l a l^M

We may now conclude the argument exactly as in the proof of
Th. 6.1.1, [2], by choosing

f ( y . t ) ̂ ^(p^pr),

where F E C^R"''1) satisfies :

ffei<rl2fy>P(y^)dydt= 1. (12.15)

(Observe that, for p large enough, the support of/will lie in V.).
Then, as p -> + oo, the left-hand side of (12.14) converges to 1
(by virtue of (6.18)), whereas its right-hand side converges to zero,
as soon as

J > M + n + 1. (12.16)
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