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GROUP ORDERINGS, DYNAMICS, AND RIGIDITY

by Kathryn MANN & Cristóbal RIVAS

Abstract. — Let G be a countable group. We show there is a topological
relationship between the space CO(G) of circular orders on G and the moduli
space of actions of G on the circle; and an analogous relationship for spaces of left
orders and actions on the line. In particular, we give a complete characterization of
isolated left and circular orders in terms of strong rigidity of their induced actions
of G on S1 and R.

As an application of our techniques, we give an explicit construction of infinitely
many nonconjugate isolated points in the spaces CO(F2n) of circular orders on
free groups, disproving a conjecture from Baik–Samperton, and infinitely many
nonconjugate isolated points in the space of left orders on the pure braid group P3,
answering a question of Navas. We also give a detailed analysis of circular orders
on free groups, characterizing isolated orders.
Résumé. — Soit G un groupe dénombrable. Nous montrons qu’il y a une

relation topologique entre l’espace CO(G) des ordres cycliques sur G et l’espace
des actions de G sur le cercle par homéomorphismes; et, de manière analogue, qu’il
y a une relation entre l’espace des ordres linéaires et l’espace des actions sur la
droite. En particulier, nous donnons une caractérisation complète des ordres isolés
par rapport à la rigidité forte de leurs actions associées.

Nous appliquons nos techniques pour construire, de manière explicite, un en-
semble infini d’ordres non-conjugués et isolés dans l’espace CO(F2n) des ordres
cycliques sur les groupes libres. Ceci donne un contre-exemple à une conjecture
de Baik–Samperton. Nous donnons aussi un ensemble infini d’ordres linéaires non-
conjugués et isolés sur le groupe de tresses pures P3, pour répondre à une question
de Navas. Finalement, nous faisons une analyse détaillée des ordres cycliques sur
les groupes libres qui caractérise les ordres isolés.

1. Introduction

Let G be a group. A left order on G is a total order invariant under
left multiplication, i.e. such that a < b implies ga < gb for all a, b, g ∈ G.
It is well known that a countable group is left-orderable if and only if it
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embeds into the group of orientation-preserving homeomorphisms of R, and
each left order on a group defines a canonical embedding up to conjugacy,
called the dynamical realization. Similarly, a circular order on a group
G is defined by a cyclic orientation cocycle c : G3 → {±1, 0} satisfying
certain conditions (see §2), and for countable groups this is equivalent to
the group embedding into Homeo+(S1). Analogous to the left order case,
each circular order gives a canonical, up to conjugacy, dynamical realization
G → Homeo+(S1). This correspondence is the starting point for a rich
relationship between the algebraic constraints on G imposed by orders, and
the dynamical constraints of G–actions on S1 or R. The correspondence
has already proved fruitful in many contexts; one good example is the
relationship between orderability of fundamental groups of 3-manifolds,
and the existence of certain codimension one foliations or laminations as
shown in [3].
For fixed G, we let LO(G) denote the set of all left orders on G, and

CO(G) the set of circular orders. These spaces have a natural topology;
that on CO(G) comes from its identification with a subset of the infinite
product {±1, 0}G×G×G, and LO(G) can be viewed as a further subset of
this (see §2 for details). While CO(G) and LO(G) have previously been
studied with the aim of understanding the structures of orders on groups,
our aim here is to relate the spaces LO(G) and CO(G) to the moduli spaces
Hom(G,Homeo+(R)) and Hom(G,Homeo+(S1)) of actions of G on the line
or circle.
In many cases these moduli spaces are very poorly understood. An im-

portant case is when G is the fundamental group of a surface of genus at
least 2. Here Hom(G,Homeo+(S1)) has a topological interpretation (as the
space of flat circle bundles over the surface), yet it remains an open question
whether Hom(G,Homeo+(S1)) has finitely or infinitely many connected
components. Our work here shows that, for any group G, the combinato-
rial object CO(G) is a viable tool for understanding the space of actions of
G on S1.
In other cases, actions of G on the circle or line are easier to describe than

circular or left orders, and thus the dynamics of actions can serve as a means
for understanding the topology of LO(G) and CO(G). A good example to
keep in mind is G = F2, since Hom(F2,Homeo+(S1)) ∼= Homeo+(S1) ×
Homeo+(S1), but the topology of LO(F2) and CO(F2) are not so obvious.
For any group G, the space LO(G) is compact, totally disconnected

and, when G is countable, also metrizable [20]. The same result holds by
the same argument for CO(G). Consequently the most basic question is
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whether LO(G) or CO(G) has any isolated points (if not, it is homeomor-
phic to a Cantor set). That LO(F2) has no isolated points was proved by
McCleary [14] (see also [15]) and generalized recently to LO(G) where G
is a free product of groups in [18]. That CO(F2) has no isolated points
either was conjectured in [1]. Our techniques give a (perhaps surprising)
easy disproof of this conjecture using the dynamics of actions of F2 on S1.

Statement of results.

Given that CO(G) is totally disconnected and Hom(G,Homeo+(S1))
typically has large connected components, one might expect little corre-
lation between the two spaces. Our aim is to demonstrate that there is a
strong, though somewhat subtle, relationship. A first step, and key tool is
continuity:

Proposition 1.1 (Continuity of dynamical realization). — Let c be a
circular order on a countable group G, and ρ a dynamical realization of c.
For any neighborhood of U of ρ in Hom(G,Homeo+(S1)), there exists a
neighborhood V of c in CO(G) such that each order in V has a dynamical
realization in U .

An analogous result holds for left orders and actions on R. With this
Proposition and several other tools, we give a complete characterization of
isolated left and circular orders in terms of the dynamics (namely, rigidity)
of their dynamical realization.

Theorem 1.2. — Let G be a countable group. A circular order on
G is isolated if and only if its dynamical realization ρ is rigid in the
following strong sense: for every action ρ′ sufficiently close to ρ in
Hom(G,Homeo+(S1)) there exists a continuous, degree 1 monotone map
h : S1 → S1 fixing the basepoint x0 of the realization, and such that
ρ(g) ◦ h = h ◦ ρ′(g) for all g ∈ G.

The corresponding result for left orders is Theorem 3.11.
In the course of the proof of Theorem 1.2, we establish several other facts

concerning the relationship between Hom(G,Homeo+(S1)) and CO(G).
When combined with standard facts about dynamics of groups acting on
the circle, this gives new information about spaces of circular orders. For
example, we prove the following corollary, a special case of which immedi-
ately gives a new proof of the main construction (Theorem 4.6) from [1].

TOME 68 (2018), FASCICULE 4
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Corollary 1.3. — Suppose G ⊂ Homeo+(S1) is a countable group
acting minimally, and such that some point x0 has trivial stabilizer. Then
the order on G induced by the orbit of x0 is not isolated in CO(G).

In particular this shows that, if the dynamical realization of a circular
order c on G is minimal, then c is not isolated. (See Theorem 3.18 and
following remarks.)

Isolated orders on free groups and braid groups. In Section 4 we
undertake a detailed study of the space of circular orders on free groups.
As an application of Theorem 1.2, we show:

Theorem 1.4. — The space of circular orders on the free group on 2n
generators has infinitely many isolated points. In fact, there are infinitely
many distinct classes of isolated points under the natural conjugation action
of F2n on CO(F2n).

This disproves the conjecture about CO(F2) of [1]. An alternative, coun-
terexample to the F2 conjecture is given in Section 4.3, where we also give
an explicit singleton neighborhood of the isolated circular order constructed
therein.
We also describe explicitly the dynamics of isolated orders on free groups.

To state this, let {a1, a2, . . . , an} be a set of free generators for Fn.

Theorem 1.5. — Suppose ρ is the dynamical realization of c ∈ CO(Fn).
The order c is isolated if and only if there exist disjoint domains D(s) ⊂
S1 for every s ∈ {a±1

1 , . . . , a±1
n }, each consisting a finite union of closed

intervals, such that ρ(s)(S1 \ D(s−1)) ⊂ D(s) holds for all s, and the
basepoint of ρ is in the complement of the domains D(s).

Note that the conclusion of this theorem is exactly the condition in the
classical ping-pong lemma.

These dynamical realizations have a particularly nice description under
the additional assumption that the domains D(s) are connected sets:

Theorem 1.6. — Let c ∈ CO(Fn) have dynamical realization ρ that
satisfies the hypotheses of Theorem 1.5. If, additionally, the domains D(s)
are connected, then n is even, and the dynamical realization of c is topo-
logically conjugate to a representation Fn → PSL(2,R) ⊂ Homeo+(S1)
corresponding to a hyperbolic structure on a genus n/2 surface with one
boundary component. Moreover, each such representation Fn → PSL(2,R)
arises as the dynamical realization of an isolated circular order.

ANNALES DE L’INSTITUT FOURIER



GROUP ORDERINGS, DYNAMICS, AND RIGIDITY 1403

We note that no analog of Theorem 1.4 was previously known for any
group, even for left orders. In [15], Navas asked:

What can be said in general about the set of isolated (left) orders
on a group, up to conjugacy? For instance, is it always finite?

A corollary of Theorem 1.4 answers this in the negative:

Corollary 1.7. — The pure braid group P3 ∼= F2 × Z has infinitely
many distinct conjugacy classes of isolated left orders.

This is proved in § 5. We expect that the existence of isolated points is
not unique to free groups and braid groups and there should be many more
examples. Further questions are raised in Section 6.

Acknowledgements. The authors thank Adam Clay and Andres Navas
for their feedback and interest in this work, and Shigenori Matsumoto for
helpful comments, including pointing out an error in a previous version.
K. Mann was partially supported by NSF grant DMS-1606254. C. Rivas

acknowledges the support of CONICYT via FONDECYT 1150691 and via
PIA 79130017.

2. Background material

In this section, we recall some standard facts about left and circular
orders. A reader familiar with orders may wish to skip this section, while
the less comfortable reader may wish to consult [2], [21], or in the case of
left orders, [6] for further details.

Definition 2.1 (Cocycle definition of circular orders). — Let S be a
set . We say that c : S3 → {±1, 0} is a circular order on S if

(1) c−1(0) = 4(S), where 4(S) := {(a1, a2, a3) ∈ S3 : ai = aj , for
some i 6= j},

(2) c is a cocycle, that is c(a2, a3, a4) − c(a1, a3, a4) + c(a1, a2, a4) −
c(a1, a2, a3) = 0 for all a1, a2, a3, a4 ∈ S.

A group G is circularly orderable if it admits a circular order c which is
left-invariant in the sense that c(u, v, w) = 1 implies c(gu, gv, gw) = 1 for
all g, u, v, w ∈ G.

In other words, a circular order on G is a homogeneous 2-cocycle in the
standard complex for computing the integral Eilenberg–MacLane cohomol-
ogy of G, which takes the values 0 on degenerate triples, and ±1 otherwise.

TOME 68 (2018), FASCICULE 4
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This cocycle condition is motivated by the standard order cocycle or
orientation cocycle for points on the circle. Say an ordered triple (x, y, z)
of distinct points in S1 is positively oriented if one can read points x, y, z in
order around the circle counterclockwise, and negatively oriented otherwise.
Define the order cocycle ord : S1 × S1 × S1 by

ord(x, y, z) =


1 if (x, y, z) is positively oriented
−1 if (x, y, z) is negatively oriented

0 if any two of x, y and z agree.

It is easy to check that this satisfies the cocycle condition of Definition 2.1,
and is invariant under left-multiplication in S1. In fact, it is invariant under
Homeo+(S1) in the sense that ord(x, y, z) = ord(h(x), h(y), h(z)) for any
orientation preserving homeomorphism h.

As mentioned in the introduction, the topology on the space CO(G)
is that inherited from the product topology on {±1, 0}G×G×G. A neigh-
borhood basis of a circular order c consists of the sets of the form {c′ ∈
CO(G) : c′(u, v, w) = c(u, v, w) for all u, v, w ∈ S} where S ranges over all
finite subsets of G.

Left orders as “degenerate” circular orders. Recall that a left order
on a group G is a total order < invariant under left multiplication. Given
(G,<), we can produce a circular order on G by defining c<(g1, g2, g3) to
be the sign of the (unique) permutation σ of {g1, g2, g3} such that σ(g1) <
σ(g2) < σ(g3).

Observe that the left order c< above is a coboundary. Indeed, if c′(x, y)
equals 1 (respectively −1 or 0) when x < y (respectively y < x or x = y),
then

c<(g1, g2, g3) = c′(g2, g3)− c′(g1, g3) + c′(g1, g2).

Conversely, if a circular order c on a group G is the coboundary of a left-
invariant function c′ : G2 → {±1, 0}, i.e. we have c(u, v, w) = c′(v, w) −
c′(u, v)+c′(u, v) for all u, v, w ∈ G, then one can check that c′ defines a left
order on G by x 6 y if and only if c′(x, y) > 0. Yet another characterization
of the circular order c< obtained from a left order can be found in [1,
Proposition 2.17].
In this sense, we can view LO(G) as a subset of CO(G), and give it the

subset topology. It is not hard to see that this agrees with the original
topology given in [20], full details of this are written in [1]. Because of this,
throughout this paper we frequently take circular orders as a starting point,
and treat left orders as a special case.

ANNALES DE L’INSTITUT FOURIER
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Dynamical realization. We now describe a procedure for realizing a
circular order on a group G as an order induced from an action of G on
S1. This starts with the following construction.

Definition 2.2 (Order embedding). — Let G be a countable group
with circular order c, and let {gi} be an enumeration of elements of G. De-
fine an embedding ι : G→ S1 inductively as follows. Let ι(g1) and ι(g2) be
arbitrary distinct points. Then, having embedded g1, . . . , gn−1, send gn to
the midpoint of the unique connected component of S1 \{ι(g1), . . . ι(gn−1)}
such that

c(gi, gj , gk) = ord(ι(gi), ι(gj), ι(gk))

holds for all i, j, k 6 n.

Given an embedding ι : G → S1, as above, the left-action of G on itself
now gives a continuous, order preserving action by homeomorphism on
ι(G) ⊂ S1, which extends to a homeomorphism of the closure of ι(G) in S1.
This can be extended to an action by homeomorphisms of S1, for instance
by permuting the complimentary interval to the closure of the image by
linear maps. See [2, 6, 7] for more details. We denote the homomorphic
embedding just constructed by φι : G→ Homeo+(S1).

Remark 2.3. — One can check that taking a different enumeration of
the elements of G, or a different choice of ι(g1) and ι(g2) gives embeddings
that are conjugate by an orientation-preserving homeomorphism of S1. The
same is true for the corresponding homomorphic embedding φι. Thus it is
natural to make the following definition.

Definition 2.4 (Dynamical realization). — Let G be a countable group
with circular order c. A dynamical realization of c is an embedding φ :
G → Homeo+(S1) defined as φ = h ◦ φι ◦ h−1, where φι is an embedding
constructed as above and h is any homeomorphism of S1.

The basepoint of the dynamical realization φ is the point h(ι(id)), where
id denotes the identity element of G. Observe that φ(g)(h(ι(id))) = h(ι(g)).

By definition, dynamical realizations are all conjugate. Thus when dis-
cussing properties invariant under topological conjugacy, we often speak of
the dynamical realization.

Note that a dynamical realization of a circular order always produces an
action of G such that any point in ι(G) has trivial stabilizer. Conversely, if
G ⊂ Homeo+(S1) is such that some point x0 has trivial stabilizer, then

c(g1, g2, g3) := ord(g1(x0), g2(x0), g3(x0))

TOME 68 (2018), FASCICULE 4
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defines a circular order on G. This is simply the pullback of the order
cocycle on S1 under the embedding of G via the orbit of x0. We say that
this is the order induced by the orbit of x0. In general, if G does not admit
a free orbit, then the circular order on G/StabG(x0) can be extended to a
circular order on G, for instance, by means of Lemma 3.13 below.
For a countable left-ordered group (G,<), there is an analogous construc-

tion of a dynamical realization G→ Homeo+(R). One first enumerates G,
then defines an embedding ι : G→ R inductively by

ι(gn) =


max{ι(gk) : k < n}+ 1 if gn > gk for all k < n

min{ι(gk) : k < n} − 1 if gn < gk for all k < n

the midpoint of [gi, gj ] if gi < gn < gj are successive
among i, j < n.

Alternatively, one can check that the construction given above for circular
orders produces an action on S1 with a global fixed point whenever c = c<
is a left order (i.e. degenerate) cocycle. Identifying S1 \ {∗} with R gives
the dynamical realization of (G,<).

Conjugation. We conclude this section by defining the conjugation ac-
tion of G on its space of orders. This is important in the study of LO(G)
and CO(G); indeed, a standard technique to show that an order is not
isolated is to approximate it by its conjugates [15, 19].

Definition 2.5 (conjugate orders). — Let c be a circular order on an
arbitrary group G, and let g ∈ G. The g-conjugate order is the order cg
defined by cg(x, y, z) = c(xg, yg, zg). An order is called conjugate to c if it
is of the form cg for some g ∈ G.

Since orders are assumed to be left-invariant, we may equivalently define
cg(x, y, z) = c(g−1xg, g−1yg, g−1zg). This gives an action of G on CO(G)
by conjugation, and it is easy to check that this is an action by homeomor-
phisms of CO(G). Note that a conjugate of a left order is also a left order,
so conjugation also gives an action of G on LO(G) by homeomorphisms.
It follows directly from the definition that, given a dynamical realization
of c with basepoint x0, a dynamical realization of cg is given by the same
action of G on S1, but with basepoint g(x0).

3. A dynamical portrait of left and circular orders

We turn now to our main goal of studying the relationship between spaces
of actions and spaces of orders.

ANNALES DE L’INSTITUT FOURIER
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Let Hom(G,Homeo+(S1)) denote the set of actions of a group G on
S1 by orientation-preserving homeomorphisms, i.e. the set of group ho-
momorphisms G → Homeo+(S1). This space has a natural topology; a
neighborhood basis of an action ρ0 is given by the sets

O(F,ε)(ρ0) :=
{
ρ ∈ Hom(G,Homeo+(S1)) :

d(ρ(g)(x), ρ0(g)(x)) < ε

∀ x ∈ S1, g ∈ F

}
where F ranges over all finite subsets ofG, and d is the standard length met-
ric on S1. If G is finitely generated, fixing a generating set S gives an iden-
tification of Hom(G,Homeo+(S1)) with a subset of Homeo+(S1)|S| via the
images of the generators, and the subset topology on Hom(G,Homeo+(S1))
agrees with the topology defined above.
Fixing some point p ∈ S1, the space Hom(G,Homeo+(R)) of actions of

G on R can be identified with the closed subset

{ρ ∈ Hom(G,Homeo+(S1) : ρ(g)(p) = p for all g}

and its usual (compact–open) topology is just the subset topology. Given
this, our primary focus will be on the larger space Hom(G,Homeo+(S1))
and its relationship with CO(G); as the Hom(G,Homeo+(R)) ↔ LO(G)
relationship essentially follows by restricting to subsets.
As mentioned in the introduction, due to the relationship between cir-

cular orders on G and actions of G on S1 given by dynamical realization,
it is natural to ask about the relationship between the two spaces CO(G)
and Hom(G,Homeo+(S1)), hoping that the study of one may inform the
other. For instance, one might (naively) propose the following.

Conjecture 3.1 (Naive conjecture). — Let G be a countable group.
The space CO(G) has no isolated points if (or perhaps if and only if)
Hom(G,Homeo+(S1)) is connected.

A supportive example is the case G = Z2. It is not difficult to show both
that Hom(Z2,Homeo+(S1)) is connected and that CO(Z2) has no isolated
points. This kind of reasoning may have motivated the conjecture that
CO(F2) has no isolated points, since Hom(F2,Homeo+(S1)) is connected.
However, our disproof of this conjecture for F2 (Theorem 1.4) shows that
the naive reasoning is false.
Since dynamical realizations are faithful, one might try to improve Con-

jecture 3.1 by restricting to the subspace of faithful actions of a group on S1.
However, the subset of faithful representations in Hom(F2,Homeo+(S1))
is also connected! To see this, one can first show that the subset of
faithful actions in Hom(F2,Diff+(S1)) is connected, open, and dense in

TOME 68 (2018), FASCICULE 4
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Hom(F2,Diff+(S1)) using a transversality argument, as remarked in [16].
Since Hom(F2,Diff+(S1)) is dense in Hom(F2,Homeo+(S1)), this implies
that any faithful action by homeomorphisms can be approximated by
one by diffeomorphisms, and hence the space of faithful actions in
Hom(F2,Homeo+(S1)) is also connected.
As these examples show, the relationship between Hom(G,Homeo+(S1))

and CO(G) is actually rather subtle. Our next goal is to clarify this rela-
tionship.

Convention 3.2. — For the remainder of this paper G will always denote
a countable group.

3.1. The relationship between Hom(G,Homeo+(S1)) and CO(G)

This section provides the groundwork for our dynamical characteriza-
tion of isolated circular orders, starting with some basic observations. Let
Hom(G,Homeo+(S1))/ ∼ denote the quotient of Hom(G,Homeo+(S1)) by
the equivalence relation of conjugacy, and equipped with the quotient topol-
ogy. Recall that the dynamical realization of a circular order on a countable
group is well-defined up to conjugacy in Homeo+(S1). This defines a nat-
ural “realization” map R : CO(G) → Hom(G,Homeo+(S1))/ ∼. Our first
proposition is a weaker form of Proposition 1.1 from the introduction.

Proposition 3.3 (Dynamical realization is continuous). — The real-
ization map R : CO(G)→ Hom(G,Homeo+(S1))/ ∼ is continuous.

Proof. — Let c ∈ CO(G), and let ρ be a dynamical realization of c.
Given a neighborhood O(F,ε) of ρ in Hom(G,Homeo+(S1)), we need to
produce a neighborhood U of c in CO(G) such that every circular order
c′ ∈ U has a conjugacy representative of its dynamical realization in the
O(F,ε)–neighborhood of a conjugate of ρ.
Let S ⊂ G be a finite symmetric set with F ⊂ S and |S| > 1/ε. After

conjugacy of ρ, we may assume that ρ(S)(x0) partitions S1 into intervals
of equal length, each of length less than ε. We now show that every circular
order c′ that agrees with c on the finite set S · S has a conjugate of a
dynamical realization in the O(S,ε) ⊂ O(F,ε)– neighborhood of ρ.

Given such a circular order c′, let ρ′ be a dynamical realization of c′ such
that ρ(g)(x0) = ρ′(g)(x0) for all g ∈ S · S. Let s ∈ S. By construction ρ(s)
and ρ′(s) agree on every point of ρ(S)(x0). We now compare ρ(s) and ρ′(s)
at other points. Let I be any connected component of S1 \ S(x0). Note

ANNALES DE L’INSTITUT FOURIER
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that ρ(s)(I) = ρ′(s)(I). Let y ∈ I. If ρ(s)(I) has length at most ε, then as
ρ′(s)(y) and ρ(s)(y) both lie in ρ(s)(I), they differ by a distance of at most
ε. If ρ(s)(I) has length greater than ε, consider instead the partition of
ρ(s)(I) by ρ(S)(x0)∩ρ(s)(I), this is a partition into intervals of length less
than ε. As s−1 ∈ S and ρ(s−1) and ρ′(s−1) agree on ρ(S)(x0), considering
preimages shows that ρ(s)(y) and ρ′(s)(y) must lie in the same subinterval
of the partition, and hence differ by distance at most ε. �

Remark 3.4. — Note that the same argument shows that dynamical
realization is continuous as a map from LO(G) to the quotient of
Hom(G,Homeo+(R)) by conjugacy in Homeo+(R).

The next propositions discuss the partial “inverse” to the dynamical
realization map obtained by fixing a basepoint.

Notation 3.5. — Let G be a countable group, and x0 ∈ S1. Let
H(x0) ⊂ Hom(G,Homeo+(S1)) denote the subset of homomorphisms
G→ Homeo+(S1) such that x0 has trivial stabilizer.

Each ρ ∈ H(x0) induces a circular order on G using the orbit of x0. This
gives a well-defined “orbit map” o : H(x0)→ CO(G).

Proposition 3.6. — The orbit map o : H(x0)→ CO(G) is continuous
and surjective.

Proof. — To show continuity, given a finite set S ⊂ G and ρ ∈ H(x0), we
need to find a neighborhood U of ρ in H(x0) such that the cyclic order of
ρ′(S)(x0) agrees with that of ρ(S)(x0) for all ρ′ ∈ U . But the existence of
such a neighborhood follows immediately from the definition of the topol-
ogy on Hom(G,Homeo+(S1)). Surjectivity of the orbit map follows from
the existence of a dynamical realization with basepoint x0, as given in
Definition 2.4 and following remarks). �

To describe the fibers of the orbit map, we will generalize the following
statement about left orders from [15, Lemma 2.8].

Lemma 3.7 (Navas, [15]). — Let < be a left order on G, and ρ1 its
dynamical realization with basepoint 0 ∈ R. Let ρ2 ∈ Hom(G,Homeo+(R))
be an action with no global fixed point, and such that 0 has trivial stabilizer.
The order induced by the ρ2–orbit of 0 agrees with < if and only if there
is a non-decreasing, surjective map f : R → R, with f(0) = 0, such that
ρ1(g)f = fρ2(g) for all g ∈ G.

The assumption that f(0) = 0 is omitted from the statement in [15], but
it is necessary and used in the proof.
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For circular orders, we replace the non-decreasing, surjective map f above
with a continuous degree 1 monotone map of S1. This is defined as follows:
A continuous map f : S1 → S1 is degree 1 monotone if it is surjective
and weakly order-preserving, meaning that for all triples x, y, z, we have
ord(f(x), f(y), f(z)) = ord(x, y, z) whenever f(x), f(y) and f(z) are dis-
tinct points. One can check that this condition is equivalent to the exis-
tence of a non-decreasing, surjective map f̃ : R → R that commutes with
the translation x 7→ x + 1, and descends to the map f on the quotient
R/Z = S1 → S1.

Proposition 3.8. — Let c1 be a circular order on G, and ρ1 its dynam-
ical realization with basepoint x0. Let ρ2 ∈ Hom(G,Homeo+(S1)) be such
that x0 has trivial stabilizer. The circular order induced by the ρ2 orbit of
x0 agrees with c1 if and only if there is a continuous, degree 1 monotone
map f : S1 → S1 such that f(x0) = x0 and ρ1(g) ◦ f = f ◦ ρ2(g) for all
g ∈ G.

The degree 1 monotone map f is an example of a semi-conjugacy of S1.
Proposition 3.8 says that the elements of H(x0) corresponding to the same
circular order all differ by such a semi-conjugacy. However, it is important
to note that the relationship between ρ1 and ρ2 given in the proposition
is not symmetric. Loosely speaking, ρ1 (the dynamical realization) can
be obtained from ρ2 by collapsing some intervals to points, but not vice-
versa. This gives a characterization of dynamical realizations as the “most
minimal” (i.e. those with “densest orbits”) actions among all actions with
a given cyclic structure on an orbit.
Proof of Proposition 3.8. — Let ρ1 be a dynamical realization of c with

basepoint x0, and let ρ2 be an action of G on S1. Suppose first that f is a
degree 1 monotone map fixing x0, and such that ρ1(g) ◦ f = f ◦ ρ2(g) for
all g ∈ G. Then the cyclic order of the orbits of x0 under ρ1(G) and ρ2(G)
agree. (Here we do not even need f to be continuous.)

For the converse, suppose that ρ2 defines the same circular order as
ρ1. Define a map f : ρ2(G)(x0) → ρ1(G)(x0) by ρ2(g)(x0) 7→ ρ1(g)(x0).
Following the strategy of [15, Lemma 2.8], we show that f first extends
continuously to the closure of the orbit ρ2(G)(x0), and can then be further
extended to a continuous degree 1 monotone map. Suppose that x is in
the closure of the orbit of x0 under ρ2(G). Then there exist gi in G such
that ρ2(gi)(x0) → x; moreover we can choose these such that, for each i,
the triples ρ2(g1)(x0), ρ2(gi)(x0), ρ2(gi+1)(x0) all have the same (positive
or negative) orientation. Assume for concreteness that these triples are
positively oriented.
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Since the orbit of x0 under ρ1 has the same cyclic order as that of ρ2, the
triples ρ1(g1)(x0), ρ1(gi)(x0), ρ1(gi+1)(x0) are also all positively oriented,
so the sequence ρ1(gi)(x0) is monotone (increasing) in the closed interval
obtained by cutting S1 at ρ1(g1)(x0). Thus the sequence ρ1(gi)(x0) con-
verges to some point, say y. Define f(x) = y. This is well defined, since if
ρ2(hi)(x0) is another sequence converging to x from the same side, we can
find subsequences gk and hk such that the triples ρ1(g1)(x0), ρ1(hk)(x0),
ρ1(gk+1)(x0) are positively oriented, so the monotone sequences ρ1(gk)(x0)
and ρ1(gk)(x0) converge to the same point. If instead ρ2(hi)(x0) approaches
from the opposite side, i.e. the triples ρ2(h1)(x0), ρ2(hi)(x0), ρ2(hi+1)(x0)
are negatively oriented, then the midpoint construction from the defini-
tion of dynamical realization implies that the distance between ρ1(gi)(x0)
and ρ1(hi)(x0) approaches zero, so they converge to the same point. With
this definition, the function f is now weakly order preserving on triples,
whenever it is defined.
If ρ2(G)(x0) is dense in S1, this completes the definition of f . If not, for

each interval I that is a connected component of the complement of the
closure of ρ2(G)(x0), extend f over I by defining it to be the unique affine
map from I = (a, b) to the interval (f(a), f(b)) in the complement of the
closure of ρ1(G)(x0). This gives a well defined continuous extension that
preserves the relation ρ1(g) ◦ f = f ◦ ρ2(g) and preserves the weak order
preserving property of f on ρ2(G)(x0). �

We conclude these preliminaries by showing the necessity of fixing the
basepoint in Propositions 3.6 and 3.8. Note that, if c is an order induced
from an action of G on S1 with basepoint x0, then the order induced from
the basepoint g(x0) (which also has trivial stabilizer) is precisely the conju-
gate order cg from Definition 2.5. However, one may also change basepoint
to a point outside the orbit of x0. The following proposition gives a general
description of orders under change of basepoint, it will be used in the next
section. We use the notation stab(x) to denote the stabilizer of a point x.

Proposition 3.9 (Change of basepoint). — Let G ⊂ Homeo+(S1) be
a countable group. Let x ∈ S1, and let {xi} be a sequence of points ap-
proaching x such that stab(xi) = {id} for all i.

(1) If x has trivial stabilizer, then the circular orders from basepoints
xi approach the order from basepoint x. In particular, if xi are in
the orbit of x under G, then the order induced from the orbit of x
can be approximated by its conjugates.

(2) If an interval I ⊂ S1 satisfies stab(x) = {id} for all x ∈ I, then all
choices of basepoint in I give the same circular order.
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Proof. — (1). Assume x has trivial stabilizer. Let S ⊂ G be any finite
set. If xj is sufficiently close to x, then the finite set {g(xj) : g ∈ S} will
have the same circular order as that of {g(x) : g ∈ S}.
(2). Assume now that stab(x) = {id} for all x in a connected interval I.

By part (1), under this assumption the map I → CO(G) given by sending
a point x to the circular order induced from x is continuous. Since I is
connected and CO(G) totally disconnected, this map is constant. �

Remark 3.10. — Note that if x has nontrivial stabilizer, then the set
of accumulation points of circular orders induced from such a sequence of
basepoints need not be a singleton. For an easy example, consider an action
of Z on the circle such that some point x is a repelling fixed point of the
generator f of Z. Then for any points y and z close to x and separated by
x, we will have a positive cyclic order on one and only one of the triples
(y, f(y), f2(y)) and (z, f(z), f2(z)).
Although such an action will not arise as the dynamical realization of

any order on Z, this behavior does occur for Z-subgroups of the dynamical
realization of orders on many groups, including F2.

3.2. Proof of Theorem 1.2

We now prove the characterization theorem that was stated in the intro-
duction:

Theorem 1.2. — Let G be a countable group. A circular order on
G is isolated if and only if its dynamical realization ρ is rigid in the
following strong sense: for every action ρ′ sufficiently close to ρ in
Hom(G,Homeo+(S1)) there exists a continuous, degree 1 monotone map
h : S1 → S1 fixing the basepoint x0 and such that ρ(g) ◦ h = h ◦ ρ′(g) for
all g ∈ G.

In particular, this implies that the dynamical realization of an isolated
circular order is rigid in the more standard sense that it has a neighborhood
in Hom(G,Homeo+(S1)) consisting of a single semi-conjugacy class (see
e.g. [9, Definition 3.5]). We remark, however, that this weaker form of
rigidity does not entail that the ordering is isolated. For instance, this
weak rigidity holds for some non-isolated circular orders on fundamental
groups of hyperbolic closed surfaces and also on (some) solvable groups,
see Example 3.25 and Example 3.27 below.
By minor modifications of the proof, we obtain the same result for left

orders.
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Theorem 3.11. — Let G be a countable group. A left order on G is iso-
lated if and only if its dynamical realization ρ is rigid in the following strong
sense: for every action ρ′ sufficiently close to ρ in Hom(G,Homeo+(R))
there exists a continuous, surjective monotone map h : R → R fixing the
basepoint x0 and such that ρ(g) ◦ h = h ◦ ρ′(g) for all g ∈ G.

We prove Theorem 1.2 first, then give the modifications for the left order
case. The first step in the proof is a stronger version of the continuity of
dynamical realization given in Proposition 3.3.

Lemma 3.12 (Continuity of dynamical realization, II). — Let c∈CO(G)
and let ρ : G → Homeo+(S1) be a dynamical realization of c based at x0.
Let U be any neighborhood of ρ in Hom(G,Homeo+(S1)). Then, there
exists a neighborhood V of c in CO(G) such that each order in V has a
dynamical realization based at x0 contained in U .

Proof. — We run a modification of the original argument in Proposi-
tion 3.3, which proved a weaker result about the conjugacy class of ρ. Fix an
enumeration ν : N→ G such that ν(0) = id, and let ρ : G→ Homeo+(S1)
be the dynamical realization of c build with it. Let U be a neighborhood of
ρ in Hom(G,Homeo+(S1)). We may assume that U = O(F,ε)(ρ) for some
ε. Suppose first, that ρ(G)(x0) is dense in S1. Take S ⊂ G a finite set such
that

(3.1) ρ(g)ρ(S)(x0) is ε/2-dense in S1 for any g ∈ F ,

and let n be such that T = ν({0, . . . , n}) contains F · S. In this way, if c′
is a circular order of G coinciding with c over T , we can build a dynamical
realization ρ′ of c′ using enumeration ν that has the same base point as
ρ, and moreover, has ρ′(g) = ρ(g) on the set ρ(S)(x0). Further, by (3.1)
above, ρ′ belongs to the O(F,ε)-neighborhood of ρ.

In the case where ρ(G)(x0) is not dense, we claim that x0 (and hence all
points in the orbit of x0) are isolated points. To see this, suppose that x0
were not isolated. Then every point of ρ(G)(x0) would be an accumulation
point of the orbit ρ(G)(x0), and hence the closure of the orbit is a Cantor
set. In this case the “minimality” of dynamical realizations given by Propo-
sition 3.8 implies that ρ(G)(x0) is in fact dense. More concretely, if there is
some interval I in the complement of the closure of ρ(G)x0, then collapsing
each interval ρ(g)(I) to a point produces a new action of G on S1 that is
not semi-conjugate to ρ by any degree one continuous map f , contradicting
Proposition 3.8. (A more detailed version of this kind of argument is given
in Lemma 3.21 and Corollary 3.24.)
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Given that x0 is isolated, let t ∈ G be such that the oriented interval
I := (x0, ρ(t)(x0)) contains no other points from ρ(G)(x0). Note that, for
each pair of distinct elements g, h ∈ G, we have ρ(g)(I)∩ρ(h)(I) = ∅. This
is because

ρ(g)(I) ∩ ρ(h)(I) 6= ∅ ⇔ I ∩ ρ(g−1h)(I) 6= ∅

and since by definition I contains no points in the orbit of x0, we must
have ρ(g−1h)(I) ⊃ I, hence ρ(g−1h)−1(I) ⊂ I, contradicting the definition
of I.

We use this observation to modify the construction from the proof of
Proposition 3.6 as follows. Given ε and a finite set F ⊂ G, let S ⊂ G be a
finite, symmetric set containing F ∪ {id} and such that each interval J in
the complement of the set ⋃

g∈S·S
g(I)

has length less than ε. Let c′ be a circular order that agrees with c on S ·S.
Then, as in the case where ρ(G)(x0) is dense, we may build ρ′ a dynamical
realization of c′ that agrees with c on S · S(x0). In particular, this means
that ρ(g)(I) = ρ′(g)(I) for all g ∈ S ·S and that these intervals are pairwise
disjoint.
For each g ∈ S · S, let hg be the restriction of ρ′(g)ρ(g)−1 to ρ(g)(I).

Note that this is a homeomorphism of ρ(g)(I) fixing each endpoint. Let
h : S1 → S1 be the homeomorphism defined by

h(x) =
{
hg(x) if x ∈ ρ(g)(I) for some g ∈ S · S
x otherwise

Then hρ′h−1 is also a dynamical realization of c′ (since it is the conjugate
of a dynamical realization by a homeomorphismn of S1). We now show
that hρ′h−1 is in O(S,ε)(ρ).

Let s ∈ S. By construction, ρ(s) and hρ′(s)h−1 agree on S(x0). Moreover,
if x lies in some interval ρ(t)(I) where t ∈ S, we have

hρ′(s)h−1(x) = ρ(st)ρ′(st)−1ρ′(s)ρ′(t)ρ(t)−1(x) = ρ(s)(x)

so again ρ(s) and hρ′(s)h−1 agree here. Finally, if x is not in any such
interval, then ρ(s)(x), (and hence hρ′(s)h−1(x) also) lies in the complement
of the set

⋃
g∈S·S

g(I). Since both images ρ(s)(x) and hρ′(s)h−1(x) lie in the

same complementary interval, which by construction has length less than
ε, they differ by a distance less than ε. �

We are now in position to finish the proof of the Theorem.
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End of proof of Theorem 1.2. — Let c ∈ CO(G) be isolated, and let ρ
be its dynamical realization with basepoint x0. Since c is isolated, there
exists a finite set F ⊂ G such that any order that agrees with c on F is
equal to c. Because the orbit of x0 under ρ(F )(x0) is a finite set, there
exists a neighborhood U of ρ in Hom(G,Homeo+(S1)) such that, for any
ρ′ ∈ U , the cyclic order of the set ρ′(F )(x0) agrees with that of ρ(F )(x0).
Let ρ′ ∈ U . If x0 has trivial stabilizer under ρ′, then the cyclic order on G
induced by the orbit of x0 under ρ′(G) agrees with c on F , so is equal to c.
By Proposition 3.8, this gives the existence of a map h as in the theorem.
If x0 instead has non-trivial stabilizer, say K ⊂ G, then the orbit of x0

under ρ′(G) gives a circular order on the set of cosets of K. Lemma 3.13
below implies that this can be “extended” or completed to an order on G in
at least two different ways, both of which agree with c on F . In particular,
one of the order completions is not equal to c. This shows that c is not
an isolated point, contradicting our initial assumption. This completes the
forward direction of the proof.
For the converse, assume that c is a circular order whose dynamical

realization ρ satisfies the rigidity condition in the theorem. Let U be a
neighborhood of ρ so that each ρ′ in U is semi-conjugate to ρ by a con-
tinuous degree one monotone map h as in the statement of the theorem.
Lemma 3.12 provides a neighborhood V of c such that any c′ ∈ V has a
dynamical realization in U . Proposition 3.8 now implies that the neighbor-
hood V consists of a single circular order, so c is an isolated point. �

Lemma 3.13 (Order completions, see Theorem 2.2.14 in [2]). — Let
G ⊂ Homeo(S1) and let x be a point with stabilizer K ⊂ G. Any left order
on K can be extended to circular order on G that agrees with the circular
order on cosets of K induced by the orbit of x.

We include a proof sketch for completeness.

Sketch of the proof. — Suppose that <K is a left order on K. Define
c(g1, g2, g3) = 1 whenever ord(g1(x), g2(x), g3(x)) = 1. When (g1, g2, g3)
is a non-degenerate triple but g1(x) = g2(x) 6= g3(x), then one can de-
clare c(g1, g2, g3) = 1 whenever g−1

2 g1 <K . This determines also the other
cases where exactly two of the points gi(x) coincide. The remaining case
is when g1(x) = g2(x) = g3(x), in which case we declare c(g1, g2, g3) to
be the sign of the permutation σ of {id, g−1

1 g2, g
−1
1 g3} such that σ(id) <

σ(g−1
1 g2) < σ(g−1

1 g3). Checking that this gives a well-defined left-invariant
circular order is easy and left to the reader. �
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We end this section with the modifications necessary for the left order
version of this theorem.

Proof of Theorem 3.11. — Since any linear order is in particular a cir-
cular order, the argument from Lemma 3.12 can also be used to show the
following

LetG be a countable group, and < a left order onG, with dynamical
realization ρ. Let U be a neighborhood of ρ in Hom(G,Homeo+(R)).
Then there exists a neighborhood V of < in LO(G) such that each
order in V has a dynamical realization in U .

Combining this with Lemma 3.7 (in place of Proposition 3.8, which was
used in the circular order case) now shows that any order < on G with
dynamical realization ρ satisfying the rigidity assumption is an isolated
left order.
For the other direction of the proof, assuming < is an isolated left order,

one runs the beginning of the proof of Theorem 1.2: since < is isolated,
there exists a finite set F ⊂ G such that any order that agrees with < on F
is equal to <. Because the orbit of x0 under ρ(F )(x0) is a finite set, there
exists a neighborhood U of ρ in Hom(G,Homeo+(R)) such that, for any
ρ′ ∈ U , the linear order of the set ρ′(F )(x0) agrees with that of ρ(F )(x0).
Let ρ′ ∈ U . Order completion applied here again allows us to assume that
x0 has trivial stabilizer under ρ′ (applying order completion in this case will
give a left rather than circular order), and so the cyclic order on G induced
by the orbit of x0 under ρ′(G) agrees with < on F , so is equal to <. By
Lemma 3.7, this gives the existence of a map h as in the theorem. �

3.3. Convex subgroups and dynamics

Using our work above, we give some additional properties of isolated
circular orders. For this, we need to describe certain subgroups associated
to a circular order. Recall that a subgroup H of a left-ordered group is
called convex if, whenever one has h1 < g < h2 with h1, h2 in H and
g ∈ G, then g ∈ H. We extend this to circularly ordered groups as follows.
(A similar definition appears in [8].)

Definition 3.14. — A subgroup H of a circularly ordered group is
convex if the restriction of c to H is a left order, and if whenever one has
c(h1, g, h2) = +1 and c(h1, id, h2) = +1 with h1, h2 in H and g ∈ G, then
g ∈ H.

In particular {id} is (trivially) a convex subgroup.
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Lemma 3.15 (The linear part of an action). — Let c be a circular order
on G. Then there is a unique maximal convex subgroup H ⊂ G. We call H
the linear part of c.

Proof. — Let ρ be a dynamical realization of a circular order c on G,
with basepoint x0. Note that the definition of convex is easily seen to be
equivalent to the following condition:

(∗)
ρ(H) acts on S1 with a fixed point, and if g(x0) lies in the connected
component of S1 \ fix(ρ(H)) containing x0, then g ∈ H.

In other words, if IH denotes the connected components of S1 \ fix(ρ(H))
containing x0, then H = {g ∈ G : g(x0) ∈ IH}. Identifying IH with the
line, the induced linear order on H agrees with the order on the orbit of
x0 under ρ(H).
Now, assume that H and K are two proper convex subgroups. Then,

since H ∪K 6= G, and g(x0) /∈ IH ∪ IK for g ∈ G \ (H ∪K), we have that
IH ∪ IK 6= S1. Therefore, the cyclic order in G induces a linear order on
H ∪K that we denote <. Assume h ∈ H \K, then (up to replacing h with
its inverse) we have h(x0) > k(x0) for all k ∈ K, and h−1(x0) < k(x0) for
all k ∈ K. Thus, H ⊃ K. It follows that the union of convex subgroups is
convex, and so the union of all convex subgroups is the (unique) maximal
element. �

To give a more complete dynamical description of the linear part of a
circular order, we use the following general fact about groups acting on the
circle.

Lemma 3.16. — Let G be any group, and ρ : G → Homeo+(S1) any
action on the circle. Then there are three mutually exclusive possibilities.

(1) There is a finite orbit. In this case, all finite orbits have the same
cardinality.

(2) The action is minimal, i.e. all orbits are dense.
(3) There is a (unique) compact G–invariant subset K ⊂ S1, homeo-

morphic to a Cantor set, and contained in the closure of any orbit.
This set is called the exceptional minimal set.

A proof can be found in [7, Section 5].

Proposition 3.17 (Dynamical description of the linear part). — Let
ρ be the dynamical realization of a circular order c. According to the tri-
chotomy above, the linear part of c has the following description.

(1) (finite orbit case) the linear part is the finite index subgroup of G
that fixes any finite orbit pointwise.
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(2) (minimal case) the linear part is trivial.
(3) (exceptional case) the linear part is the stabilizer of the connected

component of S1 \K that contains x0.

Proof. — We use the alternative characterization (∗) of the linear part
of an order given in the proof of Lemma 3.15. Suppose first that ρ(G) has a
finite orbit, say O, and let H be the finite index subgroup fixing this orbit
pointwise. Then H is a left-ordered subgroup since it acts on S1 with a
fixed point, and H is convex with IH equal to the connected component
of S1 \ O containing x0. Moreover, for any g /∈ H, the action of ρ(g) has
no fixed point (it cyclically permutes the connected components of S1 \O
and so g is not in any convex subgroup. This shows that H is the maximal
convex subgroup of G.
More generally, if H is a convex subgroup of any circular order on a

group G, and g /∈ H, then ρ(g)(IH) ∩ IH is always empty. To see this,
note that the endpoints of IH are accumulation points of ρ(H)(x0), so if
ρ(g)(IH)∩ IH 6= ∅, then there exists some element of the form ρ(gh)(x0) ∈
IH . Since H is convex, this means that g ∈ H.
This argument shows that IH is always a wandering interval for the

action of ρ(G), and in particular, that the action of G cannot be mini-
mal. Moreover, when the maximal convex subgroup His non-trivial, IH
is the maximal (with respect to inclusion) wandering interval containing
x0, namely a connected component of the complement of the exceptional
minimal set. This completes the proof. �

We now state and prove the main result in this section.

Theorem 3.18. — If c is an isolated circular order on an infinite group
G, then c has nontrivial linear part, and the induced left order on the linear
part is an isolated left order.

In particular, using Proposition 3.17, this implies that the dynamical
realization of any isolated circular order on any group G cannot be minimal.
This was Corollary 1.3 stated in the Introduction, and it immediately gives
a new proof of the main construction (Theorem 4.6) of [1]. The fact that
the linear part of an isolated circular order has an isolated linear order
implies also that it has a nontrivial Conradian soul, as defined in [15], and
that the soul admits only finitely many left orders.
For the proof, we will use a consequence of the following theorem of

Margulis.
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Proposition 3.19 (Margulis, [11]). — LetG be any group, and ρ : G→
Homeo+(S1) any action on the circle. Either ρ(G) preserves a probability
measure on S1, or ρ(G) contains a nonabelian free subgroup.

The construction of the nonabelian subgroup comes from the existence of
contracting intervals, meaning intervals I such that there exists a sequence
gn in G such that the diameter of gn(I) approaches 0. An exposition of the
proof can be found in [7]. In the case where the action of G is minimal, one
can find contracting intervals containing any point. Put more precisely, we
have the following corollary of the proof given in [7].

Proposition 3.20 (Ghys [7]). — Let ρ : G→ Homeo+(S1) be a mini-
mal action on the circle. Either ρ(G) is conjugate to a group of rotations,
or the following condition holds: For any point x ∈ S1, there is a neigh-
borhood I of x such that for any y ∈ S1, there is a sequence of elements
gy,n ∈ G such that gy,n(I) converges to y as n tends to ∞.

We say that the neighborhood I in the above proposition is a contractible
neighborhood of x.
In order to prove Theorem 3.18, we also need to describe dynamical real-

izations with exceptional minimal set. We state this as a separate lemma;
it will be used again in the next section.

Lemma 3.21 (Condition for dynamical realizations). — Suppose that
ρ : G → Homeo+(S1) is such that x0 has trivial stabilizer, and ρ has an
exceptional minimal setK. If ρ is a dynamical realization of a circular order
with basepoint x0, then each connected component I of S1 \K contains a
point of the orbit ρ(G)(x0) and has nontrivial stabilizer in G.

Proof. — Let ρ : G → Homeo+(S1) be a dynamical realization with
basepoint x0 and exceptional minimal set K. Since ρ(G) permutes the
connected components of S1 \K, it suffices to show that each interval of
S1 \K contains at least two points in the orbit ρ(G)(x0).
Suppose for contradiction that some connected component I of S1 \K

contains one or no points in the orbit ρ(G)(x0). Then, for each g ∈ G, the
connected component ρ(g)(I) of S1 \K also contains at most one point in
the orbit of x0. Collapsing each interval ρ(g)(I) to a point gives a new circle,
on which G acts by homeomorphisms. Let ρ2 denote this new action, and
note that ρ2(G)(x0) has the same cyclic order as ρ(G)(x0). More precisely,
let h : S1 → S1 be a map such that, for each g ∈ G, the image h(ρ(g)(I))
is a singleton, h is injective on the complement of

⋃
g ρ(g)(I) and h fixes

x0. Define ρ2 by h ◦ ρ(g) = ρ2(g) ◦ h.
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Since ρ is a dynamical realization, Proposition 3.8 gives a continuous
degree one monotone f : S1 → S1 fixing x0 and such that f ◦ ρ2(g) =
ρ(g) ◦ f . In other words, f is an inverse for h on the orbit of x0. However,
since the endpoints of I lie in the exceptional minimal set K, they are also
in the closure of the orbit ρ(G)(x0). But h(I) is a point, so f cannot be
continuous at this point. This gives the desired contradiction. �

Proof of Theorem 3.18. — Suppose that c is an isolated circular order on
G. We use Proposition 3.16 to describe its dynamical realization ρ. Let x0 be
the basepoint of ρ. First, we will show that ρ cannot be minimal. Assume
for contradiction that ρ is minimal. Then Proposition 3.20 implies that
either G is abelian and ρ conjugate to an infinite group of rotations, or we
have an interval I containing x0 and, for each y ∈ S1 a sequence contracting
I to {y}. The rotations case gives an order which is not isolated, this is
shown in Lemma 3.22 below. (While it is relatively easy to see that such
an order on an abelian group is not isolated if, say, G has rank at least one,
it is more difficult for groups like the group of rotations by nπ/2k, n, k ∈ Z
and deserves a separate lemma.)
Thus, we now have only to deal with the second case of a contractible

interval. By the proof of Proposition 3.9, there is an interval I0 = [a, b]
containing x0 in its interior, such that the circular order induced from any
point y ∈ I with trivial stabilizer coincides with c. By taking a smaller
neighborhood of x0 if necessary, we may assume that I is a contractible
neighborhood of x0. Let y1, y2 and z in I be such that y1, z, y2, x0 are in
counterclockwise order. By minimality, we may assume that all these points
have trivial stabilizer. Let (gi,n)n (i = 1, 2) be a sequence of elements in G
such that gi,n(I) converges to yi. Let n > 0 be such that

g1,n(I), {z}, g2,n(I), {x0}

are in counterclockwise order. Then, c(id, g1,n, g2,n) = 1, but if cz is the
circular order induce from z, then cz(id, g1,n, g2,n) = −1, contradicting our
assumption on I that any order induce form a point in it must coincide
with c. Thus the dynamical realization of an isolated circular order cannot
be minimal.
Now we describe the case when ρ is not minimal. By Lemma 3.16, it

has either a finite orbit or invariant Cantor set. In the first case, since G
is infinite, x0 is not an element of a finite orbit, and so c has a nontrivial
linear part. In the second case, Proposition 3.21 implies that x0 lies in the
complement of the exceptional minimal set K, and that the stabilizer of
the connected component of S1 \ K containing x0 is nontrivial. Hence, c
has nontrivial linear part.
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Now let H ⊂ G denote the linear part of c. If the left order on H were not
isolated in LO(H), then order completion from Lemma 3.13 allows us to
approximate c in CO(G) using left orders on H approaching the restriction
of c to H. Thus, the left order on H must be isolated. �

It remains only to prove the lemma on abelian groups.

Lemma 3.22 (Infinite groups of rotations are not isolated). — Let G
be an infinite group, and suppose ρ(G) ⊂ SO(2) ∼= R/Z is the dynamical
realization of a circular order c. Then c is not isolated.

Proof. — Identify G with its image in the additive group R/Z. Note that
the order on G ⊂ R/Z ∼= S1 agrees with the usual cyclic order on points of
S1.
Case i. G is not a torsion group. — Let Ĝ ⊂ R be the set of lifts of

elements to R, so we have a short exact sequence 0→ Z→ Ĝ→ G→ 0, and
consider the vector space V over Q generated by Ĝ ⊂ R. By assumption, G
is not torsion, so V 6⊂ Q. Let λ ∈ V \Q. Choose λ′ ∈ R linearly independent
over Q from V , and define φ : V → R by λq 7→ λ′q for q ∈ Q, and α 7→ α

for any α in the complement of the span of λ. Then φ(Ĝ) ∼= Ĝ as additive
groups, and φ descends to an embedding of G in R/Z with a different cyclic
order. This order can be made arbitrarily close to the original one by taking
λ′ as close as we like to λ.
Case ii. G ⊂ Q/Z. — In this case G is an infinite abelian torsion group

and we can decompose it into a direct sum of groups G = ⊕Gp, where Gp
is the group of all elements who have order a power of p, for each prime
p. These are simply the elements a/pk ∈ R/Z. We use the following basic
fact.

Fact 3.23. — Let Ap = {a/pk : k ∈ N} ⊂ R/Z. Then, for any k, the
function x 7→ x+ pkx is an automorphism of Ap.

To see this, one checks easily that any map x 7→
∑∞
i=0 aip

ix gives a well
defined endomorphism. (For fixed x ∈ Ap, all but finitely many terms in
the formal power series

∑
aip

ix vanish mod Z). Since 1 + pk is invertible
in the p-adic integers, x 7→ x+ pkx has an inverse, so is an automorphism.
Given any finite subset S of G, we can find some Gp ⊂ G and N > 0 such

that Gp ∩ {a/pk : k > N} is nonempty and does not contain any element
of S. Let k be the smallest integer greater than N such that Gp contains
an element of the form a/pk. Using the fact above, define a homomorphism
G→ R/Z to be the identity on Gq for q 6= p, and to be x 7→ x+ pk−1x on
Gp. Note that this is well defined, injective, restricts to the identity on S,
and changes the cyclic order of elements of Gp. �
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We conclude this section with a converse to Lemma 3.21 and corollary
to the proof of Proposition 3.8. It will also be useful in the next section.

Corollary 3.24. — Suppose that ρ : G → Homeo+(S1) is an action
with exceptional minimal set K, that ρ(G) acts transitively on the set of
connected components of S1 \ K, and that, for some component I, the
stabilizer of I is nontrivial and acts on I as the dynamical realization of a
linear order with basepoint x0 ∈ I. Then ρ is the dynamical realization of
a circular order with basepoint x0.

Proof. — Let ρ be as in the proposition and let x0 ∈ I. Then x0 has
trivial stabilizer. Suppose for contradiction that ρ is not a dynamical re-
alization, and let ρ2 be the dynamical realization of the circular order on
G given by the orbit of x0 under ρ(G). Proposition 3.8 then gives the ex-
istence of a continuous degree one monotone map f : S1 → S1 such that
f(x0) = x0 and ρ2(g) ◦ f = f ◦ ρ(g). If f is a homeomorphism, then ρ is a
dynamical realization. Thus, f must not be injective.
Given that f is not injective, the construction of f in the proof of Propo-

sition 3.8 implies that there is a connected component J of the complement
of the closure of ρ2(G)(x0) such that f(J) is a singleton, say y. Since the ex-
ceptional minimal set K is contained in the closure of ρ2(G)(x0), it follows
that J lies inside a connected component of S1 \ K. After conjugacy, we
may find such an interval J such that J ⊂ I. But then, since by assumption
ρ restricts to a dynamical realization of the stabilizer stabG(I), Lemma 3.7
provides a continuous surjective map f̂ : I → I such that ρ(g)◦f̂ = f̂ ◦ρ2(g)
for every g fixing I. But f̂ is local inverse of f , so it cannot be continuous.
This provides the desired contradiction. �

3.4. Illustrative non-examples

We give some examples to show that Theorem 1.2 does not hold when ρ
is assumed to have a related or slightly weaker form of rigidity.

Example 3.25. — Let G be the fundamental group of a closed surface Σg
of genus g > 2, and ρ : G→ PSL(2,R) ⊂ Homeo+(S1) the homomorphism
arising from a hyperbolic structure on Σg. This is an embedding of G into
PSL(2,R) as a cocompact lattice. Let x0 ∈ S1 be a point with trivial
stabilizer. Such a point exists, as there are only countably many points
with nontrivial stabilizer, each one an isolated fixed point of an infinite
cyclic subgroup of G. Then the orbit of x0 induces a circular order, say c0,
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on G, and since ρ is minimal Proposition 3.8 implies that ρ is a dynamical
realization of c0 with basepoint x0. By Corollary 1.3, this is not an isolated
circular order. However, the action does have a form of rigidity, which we
now describe.
The main theorem of Matsumoto [12], together with minimality of ρ

implies that there exists a neighborhood U of ρ in Hom(G,Homeo+(S1))
such that, for all ρ′ in U , there exists a continuous, degree one monotone
map h such that h◦ρ′ = ρ◦h. This is quite similar to our “strong rigidity”,
except that here h will not generally fix the basepoint x0

To see directly that c0 is not isolated, one can change the basepoint as
in Remark 3.10 to approximate c0 by its conjugates. This corresponds to
conjugating ρ by some small homeomorphism h that does not fix x0.

One can modify the group G in the example above to give a dynamical
realization ρ of a circular order c with nontrivial linear part (and isolated
left order on the linear part!) and so that ρ still has some form of rigidity
(but where c fails again to be an isolated circular order due to basepoint
considerations). Here is a brief sketch of one such construction.

Example 3.26. — Let G = π1(Σg) × Z. Define ρ : G → Homeo+(S1) by
starting with the action of π1(Σg) defined above, then “blowing up” each
point in the orbit of x0, replacing it with an interval (i.e. performing the
Denjoy trick), and inserting an action of Z by translations supported on
these intervals, that commutes with the action of π1(Σg). Corollary 3.24
shows that these are dynamical realizations of the circular order on G

obtained from the orbit of x0.
Moreover, much like in the case above, one can argue from Matsumoto’s

result that any nearby action ρ′ of G on S1 is semi-conjugate to ρ, in the
sense that both can be collapsed to a common minimal action where the
Z factor acts trivially. However, ρ is not an isolated circular order; one can
produce arbitrarily nearby orders by performing the same construction,
but blowing up the orbit of a nearby point instead of x0, and choosing the
basepoint there.

Our last example concerns circular orders on solvable groups.

Example 3.27. — Consider the Baumslag–Solitar groupsBS(1, 2) = 〈a, b :
aba−1 = b2〉 acting by ρ(a) : x 7→ 2x and ρ(b) : x 7→ x+1 for x ∈ R∪{∞} =
S1. As in Example 3.25, ρ is a dynamical realization of any circular order
induced from a point x0 having trivial stabilizer. For this, one can take x0
to be any point in R \Q.
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We claim that the representation ρ is rigid, in the sense that all nearby
actions of BS(1, 2) on the circle are semi-conjugate to it. Indeed, from
the invariance under conjugation of rotation number, b always has a fixed
point in S1. Furthermore, since the fixed points of ρ(a) are hyperbolic, and
therefore stable, for any representation ρ′ close to ρ, the element ρ′(a) has
a fixed point. By iterating a fixed point of ρ′(b) under ρ′(a−1), we obtain
a global fixed point of ρ′. This implies that, up to semi-conjugacy, we can
view ρ′ as an action of BS(1, 2) on R ∪ {∞} fixing ∞. Moreover, in this
model, ρ′(a) has a fixed point, say p, on R and we have ρ′(b)(p) > p. But
now, in [17] it is shown that BS(1, 2) has only four semi-conjugacy classes
of actions on the line. Two of them giving actions where a has no fixed
points, and the other two are affine actions: one in which b is a negative
translation and the other in which b is a positive translation. This implies
that ρ′ is semi-conjugate to ρ. However, the ordering on BS(1, 2) induced
from x0 is not isolated, it is approximated by its conjugates in the same
way as in Example 3.25.

Similar arguments can be applied to many orderings on (not necessarily
affine) solvable groups. See [19].

4. Circular orders on free groups

In this section, we use the results of Section 3 to show that there are
infinitely many nonconjugate circular orders on free groups of even rank,
and characterize the dynamical realizations of isolated circular orders on
free groups generally, proving Theorems 1.4 and 1.5.

We start with a definition related to the conditions in Theorem 1.5.

Definition 4.1. — Let a1, a2, . . . , an ∈ Homeo+(S1). We say these el-
ements have ping-pong dynamics if there exist pairwise disjoint closed sets
D(ai) and D(a−1

i ) such that, for each i, we have

ρ(ai)
(
S1 \D(a−1

i )
)
⊂ D(ai).

We call any such sets D(ai) and D(a−1
i ) satisfying ai

(
S1 \ D(a−1

i )
)
⊂

D(ai) attracting domains for ρ(ai) and ρ(a−1
i ) respectively, and use the

notation D(a±1
i ) to denote D(ai)∪D(a−1

i ). These attracting domains need
not be connected. In this case, we use the notation D1(s), D2(s), . . . for
the connected components of D(s). Note that the definition of ping-pong
dynamics implies that for each s ∈ {a±1

1 , . . . , a±1
n }, and for each domain

Dk(t) with t 6= s−1, there exists a unique j such that s(Dk(t)) lies in the
interior of Dj(s).
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The terminology is motivated by the following lemma, a version of the
classical ping-pong lemma.

Lemma 4.2 (Ping-pong). — Let a1, a2, . . . , an ∈ Homeo+(S1) have
ping-pong dynamics. Then a1, . . . , an generate a free group. More precisely,
for any x0 not in the interior of an attracting domain D(a±1

i ), the orbit of
x0 is free and its cyclic order is completely determined by:

(1) the cyclic order of the sets Dj(s) and {x0}, for s ∈ {a±1
1 , . . . , a±1

n },
(2) the collection of containment relations

s(Dk(t)) ⊂ Dj(s),
s(x0) ∈ Dj(s)

Proof of Lemma 4.2. — Let w1, w2 and w3 be distinct reduced words in
the letters ai and a−1

i . We need to show that the cyclic order of the triple
w1(x0), w2(x0), w3(x0) is well defined (i.e. x0 has trivial stabilizer) and
completely determined by the cyclic order of, and containment relations
among, x0 and the connected components of the attracting domains.

We proceed by induction on the maximum word length of wi. For the
base case, if each wi is either trivial or a generator, then either wi(x0) = x0
(trivial case), or wi(x0) ∈ Dj(wi), for some j determined by the contain-
ment relations. Since the wi are distinct, no two of the points w1(x0), w2(x0)
and w3(x0) lie in the same domain D(wi). Thus, all are distinct points, and
the cyclic order of the sets Dj(s) and {x0} determines the cyclic order of
the triple.
For the inductive step, assume that for all triples of reduced words wi

of length at most k, the cyclic order of the triple w1(x0), w2(x0), w3(x0) is
determined, and assume also that the points wi(x0) have wi(x0) ∈ Dj(wi)
for some j determined by wi. (For completeness and consistency, consider
{x0} to be the attracting domain for the empty word). Let w1, w2, w3 be
reduced words of length at most k + 1.
Write wi = sivi, where si ∈ {a±1

1 , . . . a±1
n }, so vi is a word of length at

most k. (If wi is empty, skip this step, and set vi to be the empty word.) We
have vi(x0) ∈ Dk(ti) for some k, and since wi is a reduced word, ti 6= si.
By inductive hypothesis, the sets Dk(ti) and cyclic order of the points
vi(x0) are known. Finally, we have wi(x0) = sivi(x0) ∈ si(Dk(ti)), and
si(Dk(ti)) ⊂ Dj(si) for some j given by the containment relations.

If these sets Dj(si) are distinct, then we are done since their cyclic order
is known. We may also ignore the case where all wi have the same initial first
letter s, since the cyclic order of the triple s−1w1(x0), s−1w2(x0), s−1w3(x0)
agrees with that of w1(x0), w2(x0), w3(x0). So we are left with the case

TOME 68 (2018), FASCICULE 4



1426 Kathryn MANN & Cristóbal RIVAS

where exactly two of the three domains Dj(si) containing wi(x0) agree.
For concreteness, assume w1 and w2 start with s and w3 does not, and
w1(x0) and w2(x0) lie in Dj(s).

Consider the shorter reduced words v1 = s−1w1, v2 = s−1w2 and s−1.
By hypothesis, the cyclic order of the points v1(x0), v2(x0), s−1(x0) is de-
termined. This order agrees with the order of the triple w1(x0), w2(x0), x0.
As x0 /∈ Dj(s) and w3(x0) /∈ Dj(s), this order is the same as that of
w1(x0), w2(x0), w3(x0). Thus, the cyclic order of the triple w1(x0), w2(x0),
w3(x0) is determined by this initial configuration. �

The most basic and familiar example of ping-pong dynamics is as follows.

Example 4.3. — Let D(a), D(a−1), D(b), and D(b−1) be disjoint closed
intervals in S1. Let a and b be orientation-preserving homeomorphisms of
the circle such that

a(S1 \D(a−1)) ⊂ D(a),

b(S1 \D(b−1)) ⊂ D(b).
(4.1)

By Lemma 4.2, any point x0 in the complement of the union of these at-
tracting domains induces a circular order on F2 by c(w1, w2, w3) =
ord(w1(x0), w2(x0), w3(x0)).

Remark 4.4. — Note that there are two dynamically distinct cases in
the construction above: either we can take D(b) and D(b−1) to lie in dif-
ferent connected components of S1 \

(
D(a)∪D(a−1)

)
, or to lie in the same

connected component of S1 \
(
D(a) ∪D(a−1)

)
.

Convention 4.5. — For the remainder of this section, whenever we speak
of actions with ping-pong dynamics, we assume that each attracting domain
D(s) has finitely many connected components.

The next Proposition shows that ping-pong dynamics come from isolated
circular orders, proving one direction of Theorem 1.5.

Proposition 4.6. — Let ρ : Fn → Homeo+(S1) be the dynamical real-
ization of a circular order c, with basepoint x0. If ρ has ping-pong dynamics
and x0 ∈ S1 \

⋃
iD(a±1

i ), then c is isolated in CO(Fn).

Proof. — Let ρ : Fn → Homeo+(S1) be the dynamical realization of
a circular order c, with basepoint x0, and assume that ρ has ping-pong
dynamics. Following the convention above, let D1(s), D2(s), . . . denote the
(finitely many) connected components ofD(s), so for each s∈{a±1

1 , . . . a±1
n },

each t 6= s−1 and each connected component Dk(t), there exists j and i
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such that we have containment relations of the form

(4.2) ρ(s)(Dk(t)) ⊂
◦
Dj(s) and ρ(s)(x0) ∈

◦
Di(s)

Here we use the notation
◦
Di(s) for the interior of Di(s), and in this proof

we will use the fact that the image lies in the interior.
We now show these dynamics are stable under small perturbations. To

make this precise, for each s ∈ {a±1
1 , . . . a±1

n } and each connected compo-
nent Dk(s), let D′k(s) be an ε–enlargement of Dk(s), with ε chosen small

enough so that Dk(s) ⊂
◦
D′k(s), but all the domains D′k(s) remain pairwise

disjoint. Now if ρ′(s) is sufficiently close to ρ(s), then we will have

ρ′(s)(S1 \D′(s−1)) ⊂ ρ′(s)(S1 \D(s−1)) ⊂ D′(s).

Moreover, as in (4.2), we will also have ρ′(s)(D′k(t))⊂
◦
D′j(s) and ρ′(s)(x0) ∈

◦
D′i(s) (with the same indices).
Thus, there exists a neighborhood U of ρ in Hom(Γ,Homeo+(S1)) such

that any ρ′ ∈ U is a ping-pong action for which the sets D′j(s) may be
taken as the connected components of attracting domains. Moreover, these
components are in the same cyclic order as the components Dj(s), the con-
tainments from equation (4.2) are still valid, and x0 is in the same connected
component of the complement of the domains. Fix such a neighborhood U
of ρ.

By Lemma 4.2, the cyclic order of the orbit of x0 depends only on the
cyclic order of the domains D′j(a±1

i ) and x0, so for each ρ′ ∈ U , the cyclic
order of ρ′(Fn)(x0) agrees with that of ρ(Fn)(x0). Now by Lemma 3.12,
there exists a neighborhood V of c in CO(Fn) such that any order c′ ∈ V
has a dynamical realization ρ′ with basepoint x0 such that ρ′ ∈ U . As
we observed above, the order of the orbit ρc(F2)(x0) agrees with that of
ρ(F2)(x0), and so the two circular orders agree. �

Although much less obvious, the converse to Proposition 4.6 is also true:

Proposition 4.7. — Suppose ρ is a dynamical realization of an iso-
lated circular order on Fn = 〈a1, a2, . . . , an〉. Then there exist disjoint
closed sets D(s) ⊂ S1 for every s ∈ {a±1

1 , . . . , a±1
n }, each consisting a

finite union of intervals, and each disjoint from the basepoint, such that
ρ(s)(S1 \D(s−1)) ⊂ D(s) holds for all s.

This proposition gives the other direction of Theorem 1.5.
Proof of Proposition 4.7. — Assume that ρ is the dynamical realization

of an isolated circular order on Fn, and let x0 be the basepoint for ρ. We
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start by proving the following claim. To simplify notation, here Fn(x0)
denotes the orbit of x0 under ρ(Fn), and Fn(x0) denotes its closure.

Claim. — For any y ∈ Fn(x0) \ {x0}, there exists a neighborhood U

of y in S1, and s ∈ {a±1
1 , . . . , a±1

n } such that, for each point ρ(g)(x0) ∈
U ∩ Fn(x0), the (reduced) word g in {a±1

1 , . . . , a±1
n } has the same initial

letter s.

We prove this claim by contradiction. If the claim is not true, then there
is some set of the form{

ρ(sw)(x0) : sw is a reduced word in a±1
1 , . . . , a±1

n

}
(where s ∈ {a±1

1 , . . . , a±1
n } is fixed), with points of the form ρ(tv)(x0) t 6= s,

arbitrarily close to its closure. In other words, given any ε > 0, we can
find two points ρ(sw)(x0) and ρ(tv)(x0), with s 6= t, that are distance
at most ε/2 apart. Write w = wkwk−1 . . . w1 as a reduced word in the
letters a±1

1 , . . . , a±1
n , and similarly write v = vlvl−1 . . . v1, and consider

all the images of x0 under initial strings of these words, i.e. the points
ρ(wk′ . . . w1)(x0) and ρ(vl′ . . . v1)(x0) for k′ 6 k and l′ 6 l. We may assume
that none of these points lie in the shorter than ε/2-length interval between
ρ(sw)(x0) and ρ(tv)(x0). Otherwise, we may replace sw and tv with two of
these initial strings, say u and u′, that still have different initial letters, so
that ρ(u)(x0) and ρ(u′)(x0) have distance less than ε/2 apart, and so that
the images of x0 under initial strings of u and u′ do not lie in the small
interval between ρ(u)(x0) and ρ(u′)(x0).
Now we modify ρ by replacing ρ(s) with hρ(s), where h is a homeomor-

phism supported on a small neighborhood of the interval between ρ(sw)(x0)
and ρ(tv)(x0). Choose h such that the triple hρ(s)ρ(w)(x0), ρ(tv)(x0), x0
has the opposite orientation from the triple ρ(sw)(x0), ρ(tv)(x0), x0. Addi-
tionally, we may take the interval where h is supported to be small enough
to not contain any point of the form ρ(wk′ . . . w1)(x0) or ρ(vl′ . . . v1)(x0).
We leave the images of the other generators unchanged. Call this new ac-
tion ρ′.

Even though ρ(s) 6= ρ′(s) and s may appear as a letter in v or w, we
claim that the triple ρ′(sw)(x0), ρ′(tv)(x0), x0 does indeed have the oppo-
site orientation from the triple ρ(sw)(x0), ρ(tv)(x0), x0. This is because the
support of h is disjoint from all points ρ(wk′ . . . w1)(x0) and ρ(vl′ . . . v1)(x0),
so one can see inductively that in fact ρ′(wk′ . . . w1)(x0) = ρ(wk′ . . . w1)(x0)
and ρ′(vl′ . . . v1)(x0) = ρ(vl′ . . . v1)(x0) for all k′ 6 k and l′ 6 l. It follows
that ρ′(sw)(x0) = hρ(sw)(x0), and ρ′(tv)(x0) = ρ(tv)(x0). (It is easy to
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check that this even works if t = s−1.) Thus, by definition of h, the triples
have opposite orientations.
We have just shown that, for any ε > 0, there exists an action of Fn on

S1 such that the image of any point under any generator of Fn is at most
distance ε from the original action ρ, and yet the cyclic order of the orbit
of x0 under the new action is different. Given any finite subset of Fn we
can choose ε small enough so that the new order on the orbit of x0 will
agree with the previous one on this finite set. Order completion now gives
an arbitrarily close circular order to the original, hence could not have been
isolated. This completes the proof of the claim.
Now we finish the proof of the proposition. Assume that ρ is the dynami-

cal realization of an isolated circular order with basepoint x0. We construct
the domains D(s) in three steps.

Step 1. — For each s, declare that D(s) contains every point of the form
ρ(sw)(x0), and every point in the closure of the set{

ρ(sw)(x0) : sw a reduced word in a±1
i

}
.

The claim we just proved implies that accumulation points of{
ρ(sw)(x0) : sw a reduced word in a±1

i

}
are disjoint from those of{

ρ(tw)(x0) : tw a reduced word in a±1
i

}
for s 6= t.
Step 2. — If I is a connected component of the complement of Fn(x0),

and the endpoints of I are both in the already constructed D(s), then
declare I ⊂ D(s). Note that the sets D(s) are pairwise disjoint, and so far
we have ρ(s)(D(t)) ⊂ D(s) for every t 6= s−1.

Step 3. — As defined so far, the sets D(s) cover all of S1 except for
some intervals complementary to Fn(x0), precisely, those intervals with
boundary consisting of one point in D(s) and the other point in D(t) for
some s 6= t. (There is also an exceptional case where one of the endpoints is
x0, i.e. allowing for the empty word.) Our first claim, i.e. that every point in
Fn(x0) has a neighborhood containing only points of {ρ(sw)(x0) : sw} for
some fixed s, implies, since S1 is compact, that there are only finitely many
such complementary intervals. Also, since ρ is a dynamical realization, it
is not possible to have a complementary interval I with both endpoints
in Fn(x0) \ Fn(x0) (see Definition 2.2). Further, form Theorem 3.18, it
follows that the isolated circular order associated to ρ has a non-trivial
linear part which is isomorphic to Z (since higher rank free groups has no
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isolated left orders, see [15]), thus there is an element hmin ∈ Fn, such that
the (small) interval Imin = (x0, hmin(x0)) has no point of Fn(x0) in its
interior. The same holds for g(Imin) for any g ∈ Fn. This implies that any
complementary interval of the sets D(s) must have each endpoint inside
Fn(x0).
Suppose that I is such a complementary interval, so I is of the form

(s1s2 . . . sk(x0), t1t2, . . . tl(x0)) where s1s2 . . . sk and t1t2 . . . tl are reduced
words in the generators a±1

1 , . . . , a±1
n and s1 6= t1. This implies that

s−1
1 (I) = (s2 . . . sk(x0), s−1

1 t1t2 . . . tl(x0)) is also a complementary inter-
val since s1 . . . sk is a reduced word i.e. s2 6= s−1

1 . Similarly, t−1
1 (I) =

(t−1
1 s1s2 . . . sk(x0), t2 . . . tl(x0)) is also a complementary interval. Note that,

for any u /∈ {s−1
1 , t−1

1 } the endpoints of u(I) are (reduced) words beginning
in u, so u(I) ⊂ D(u).
Iterating this argument, it follows that, for any proper initial string

s1 . . . sp with p < k, the interval (s1 . . . sp)−1(I) is complementary,
as are its images under s−1

p+1 and sp. The interval (s1 . . . sk)−1(I) =
(x0, (s1 . . . sk)−1t1 . . . tl(x0)) is also complementary, and also its image un-
der sk, but its images under every other generator are contained in some
already defined D(s). An analogous statement holds for images of I under
initial strings of t1 . . . tl. In particular, this reasoning shows that hmin =
(s1 . . . sk)−1t1 . . . tl, and that any complementary interval is equal to the
image of (x0, hmin(x0)) under the inverse of a prefix of hmin. For conve-
nience, we switch to some simpler notation, writing hmin = u1u2 . . . un, so
that the complementary intervals are

(x0, u1 . . . un(x0)), (u−1
1 (x0), u2 . . . un(x0)), . . . , (u−1

n . . . u−1
1 (x0), x0).

We now show how to enlarge the domains D(s) to contain parts of these
complementary intervals, in order to have them satisfy the “ping-pong con-
dition” ρ(s)(S1 \D(s−1)) ⊂ D(s), for each of the generators s. We remind
the reader that, for every other interval J in (an already defined portion
of) a set D(s), and for every t 6= s−1, we have t(J) ⊂ D(t). Thus, after ex-
tending domains we need only check what happens on the complementary
intervals.
First, choose p1 ∈ (x0, u1 . . . un(x0)) and add [p1, u1 . . . un(x0)] to D(u1)

and [u−1
1 (x0), u−1

1 (p1)] to D(u−1
1 ). Note that this is coherent with Step 1.

Note also that in this way we have that u−1
1 (Imin \D(u1)) ⊂ D(u−1

1 ) and
that u1(u−1

1 (Imin) \D(u−1
1 )) ⊂ D(u1) (so in particular s(Imin \D(u1)) ⊂

D(s) and s(u−1
1 (Imin \ D(u−1

1 )) ⊂ D(s) for every generator s). Then, we
choose p2 ∈ (u−1

1 (p1), u2 . . . un(x0)) and add [p2, u2 . . . un(x0)] to D(u2)
and [u−1

2 u−1 1(x0), u−1
2 (p2)] to D(u−1

2 ).
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We repeat this procedure iteratively; in the jth step we choose pj ∈
(u−1
j−1(pj−1), uj . . . un(x0)) and then add [pj , uj . . . un(x0)] to D(uj) and

[u−1
j . . . u−1

1 (x0), u−1
j (pj)] to D(u−1

j ). This procedure ends with the choice
of pn ∈ (u−1

n−1(pn−1), un(x0)) and the addition of [pn, un(x0)] to D(un) and
the addition of [u−1

n . . . u−1
1 (x0), u−1

n (pn)] toD(u−1
n ). It is easy to check that

the domains D(s)’s remain disjoint, and that now the ping pong condition
is satisfied globally. �

Fixing n, it is now relatively easy to produce infinitely many non-conju-
gate actions of Fn on S1 by varying the number of connected components
and cyclic orientation of domains D(s) for each generator s. Moreover,
these can be chosen such that taking the orbit of a point produces infinitely
many nonconjugate circular orders on Fn (the reader may try this as an
exercise, otherwise we will see some explicit examples shortly). However, the
existence of such actions is not enough to prove that CO(Fn) has infinitely
many nonconjugate isolated points. This is because not every ping-pong
action arises as the dynamical realization of a circular order; therefore
Proposition 4.6 does not automatically apply.
As a concrete example, only one of the two cases in Remark 4.4 is the

dynamical realization of a circular order. We will soon see that a circular
order on F2 produced by Construction 4.3 when D(b) and D(b−1) lie in
different connected components of S1 \

(
D(a) ∪ D(a−1)

)
is isolated, but

one produced when D(b) and D(b−1) lie in the same connected component
is not isolated.
To illustrate this point, and as a warm up to the proof of Theorem 1.4,

we now prove exactly which ping-pong actions come from dynamical real-
izations in the simple case where the domains D(s) are all connected.

4.1. Schottky groups and simple ping-pong dynamics

Definition 4.8. — Say that an action of Fn on S1 has simple ping-pong
dynamics if the generators satisfy the requirements of a ping-pong action,
and there exist connected attracting domains D(s) for all generators and
inverses.

This short section gives a complete characterization of dynamical real-
izations with simple ping-pong dynamics. To do this, we will use some el-
ementary hyperbolic geometry and results on classical Schottky subgroups
of PSL(2,R). Although our exposition aims to be self-contained, a reader
looking for more background can refer to [4, Chapters 1 and 2] for a good
introduction.
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On ping-pong in PSL(2,R). There is a natural action of PSL(2,R) on
S1 = R ∪ {∞} by Möbius transformations. A finitely generated subgroup
G ⊂ PSL(2,R) is called Schottky exactly when it has ping-pong dynam-
ics. The benefit of working in PSL(2,R) rather than Homeo+(S1) is that
Möbius transformations of the circle extend canonically to the interior of
the disc. Considering the interior of the disc as the Poincaré model of the
hyperbolic plane, Schottky groups act properly discontinuously by isome-
tries. Thus, it makes sense to describe the hyperbolic surface obtained by
quotient the disc by such a ping-pong action. We will prove the following.

Theorem 4.9. — Let c ∈ CO(Fn). If the dynamical realization ρc of c
has simple ping-pong dynamics, then n is even, and ρc is topologically con-
jugate to a representation ρ : Fn → PSL(2,R) ⊂ Homeo+(S1) correspond-
ing to a hyperbolic structure on a genus n/2 surface with one boundary
component.

Note that the conclusion of the theorem is (as it should be) independent
of any choice of generating set for Fn, even though the definition of ping-
pong dynamics is phrased in terms of a specific set of generators.
As a special case, Theorem 4.9 immediately gives many concrete exam-

ples of actions of free groups on S1 that do not arise as dynamical realiza-
tions of any circular order (cf. Lemma 4.11) and justifies the remarks at
the end of the previous subsection.
The main idea of the proof of Theorem 4.9 can be summarized as follows:

For PSL(2,R) actions, the condition that the quotient has a single bound-
ary component exactly captures the condition that Fn acts transitively on
the connected components of the complement of the exceptional minimal
set, i.e. the condition of Corollary 3.24. For general ping-pong actions in
Homeo+(S1), we use the “minimality” property of being a dynamical real-
ization (Proposition 3.8) to produce a conjugacy into PSL(2,R), then cite
the PSL(2,R) case.

As motivation and as a first step in the proof, we start with an example
and a non-example.

Lemma 4.10 (Example of dynamical realization). — Let a1, b1, a2, b2,

. . . , an, bn denote generators of F2n. Let ρ : F2n→PSL(2,R)⊂Homeo+(S1)
have simple ping-pong dynamics. Suppose that x0 and the attracting do-
mains are in the cyclic (counterclockwise) order

x0, D(a1), D(b1), D(a−1
1 ), D(b−1

1 ), D(a2), D(b2), . . . , D(a−1
n ), D(b−1

n ).

Then ρ is the dynamical realization of a circular order with basepoint x0.
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x0

D(a1)

D(b1)

D(a−1
1 )

D(b−1
1 )

γ̃

γ

a1

b1

Figure 4.1. The open disc as universal cover Σ̃. The shaded area is a
fundamental domain

Note that the n = 1 case is one of the cases from Remark 4.4.
Proof. — By the ping-pong lemma, x0 has trivial stabilizer under ρ(F2n),

so its orbit defines a circular order c on F2n. We claim that the dynamical
realization of this circular order is ρ. To see this, we first describe the action
of ρ more concretely using some elementary hyperbolic geometry. Having
done this, we will be able to apply Corollary 3.24 to the action.

The arrangement of the attracting domains specified in the lemma im-
plies that the quotient of H2 by ρ(F2n) is, topologically, the interior of a
surface Σ of genus n with one boundary component. Geometrically, it is a
surface of infinite volume with a singe end, as illustrated in Figure 4.1 for
the case n = 1. (This is elementary; see Proposition I.2.17 and discussion
on page 51 of [4] for more details.)
Let γ ⊂ Σ be a simple geodesic curve isotopic to the boundary. The

complement of γ in Σ has two connected components, a compact genus
n surface with boundary γ (call this surface Σ′), and an infinite volume
annulus, call this A. Fixing a basepoint on Σ and considering γ as a based
curve lets us think of it as an element of π1(Σ) = F2n, and its image
ρ(γ) ∈ PSL(2,R) is a hyperbolic element translating along an axis, γ̃ ⊂ H2,
which projects to the curve γ ⊂ Σ.
We now describe the exceptional minimal set for ρ in terms of the geom-

etry of this surface. It is a standard fact that the exceptional minimal set
is precisely the limit points of the universal cover of the compact part Σ̃′
(see [4, Section 3.1, Proposition 3.6]). This can also be described by looking
at images of γ̃ under the action of ρ(F2n). These images are disjoint curves,
each bounding on one side a fundamental domain for the compact surface
Σ′, and on the other a half-plane that contains a fundamental domain for
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the annulus A. The intersection of the half-planes that cover A with the
S1 boundary of H2 make up the complement of the exceptional minimal
set for ρ(F2n).
What is important to take from this discussion is that there is a single

orbit for the permutation action of ρ(F2n) on the complementary intervals
to its exceptional minimal set, and this corresponds to the fact that Σ has a
single boundary component, in our case bounded by γ. As the exceptional
minimal set is contained in the interior of the union of the attracting do-
mains D(a±1

i ) and D(b±1
i ), the basepoint x0 for the dynamical realization

lies in a complementary interval I. In our case, taking γ to be the based
curve represented by the commutator [a, b],(1) our specification of the cyclic
order of x0 and the attracting domains were chosen so that x0 lies in the
interval bounded by the lift γ̃ that is the axis of this commutator. The
configuration is summarized in Figure 4.1. Moreover, ρ(γ) preserves I, acts
on it by translations, and generates the stabilizer of I in ρ(F2n).

In summary, S1 is the union of an exceptional minimal set contained in
the closure of ρ(G)(x0) and the orbit of the open interval I. As the action of
〈γ〉 on I is the dynamical realization of a left order, Corollary 3.24 implies
that ρ is the dynamical realization of c. �

By contrast, geometric representations from surfaces with more boundary
components do not arise as dynamical realizations.

Lemma 4.11 (Non-example). — Let ρ : Fn→PSL(2,R)⊂Homeo+(S1))
be such that H2/ρ(Fn) is a surface with more than one infinite volume (i.e.
non-cusped) end. Then ρ is not the dynamical realization of a circular order
on Fn.

A particular case of the lemma is the ping-pong action of F2 = 〈a, b〉 with
attracting domains in cyclic order D(a), D(a−1), D(b), D(b−1). There the
quotient H2/ρ(F2) is homeomorphic to a sphere minus three closed discs.

Proof. — Let ρ be as in the Lemma, and let Σ = H2/ρ(Fn). Let γ1, γ2, . . .

be geodesic simple closed curves homotopic to the boundary components
of Σ. As in the proof of Lemma 4.10, ρ(Fn) has an exceptional minimal set,
and the connected components of the complement of this set are the bound-
aries of disjoint half-planes, bounded by lifts of the curves γi to geodesics
in H2. For fixed i, the union of these half-planes bounded by lifts of γi is a
ρ(Fn)-invariant set.
Since we are assuming that there is more than one boundary component,

for any candidate for a basepoint x0, there is some i such that x0 is not

(1)here we use the convention for the action that [a, b](x) = b−1a−1ba(x)
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contained in an interval bounded by a lift of γi. Equivalently, there is a
connected component of the complement of the exceptional minimal set
that does not contain a point in the orbit of x0. By Lemma 3.21, this
implies that ρ cannot be a dynamical realization of a circular order with
basepoint x0. �

Remark 4.12. — Given ρ as in Lemma 4.11, and a point x ∈ S1 with
trivial stabilizer, we get a circular order on Fn from the orbit of x. The
lemma simply says that ρ is not its dynamical realization. But it is not
hard to give a positive description of what the dynamical realization ac-
tually is: it is the action obtained from ρ by collapsing every interval in
the complement of the exceptional minimal set to a point, except those
that contain a point in the orbit of x. The resulting action is conjugate
to a representation ρ′ : Fn → PSL(2,R) such that H2/ρ′(Fn) is a surface
with either all (or all but one) infinite-volume end of the surface H2/ρ(Fn)
replaced by a finite-volume cusp Put otherwise, either for all i or all but
one i, we have that ρ′(γi) is parabolic rather than hyperbolic. Both cases
do in fact occur; for instance, the cusp-only case arises by taking the orbit
of a point with trivial stabilizer under ρ′, since such an action ρ′ is already
minimal Proposition 3.8 implies that it is the dynamical realization of this
order. We leave the details as an exercise for the reader.
One can also show that such an action ρ′ is not rigid, by finding an arbi-

trarily small deformation of ρ′ so that a parabolic element ρ′(γi) becomes
an infinite order elliptic. This new action is no longer semi-conjugate to
the original. In fact, even the circular order of the orbit of x under the
subgroup generated by γi will change.

Now we can prove Theorem 4.9; the goal in the proof is to reduce an
arbitrary action to the examples from the PSL(2,R) case considered in the
previous two lemmas.

Proof of Theorem 4.9. — Let ρ : Fn → Homeo+(S1) be the dynami-
cal realization of a circular order, with basepoint x0. Assume that ρ has
simple ping-pong dynamics. Let D(a±1

i ) be the attracting domains for the
generators ai and inverses a−1

i .
Define a representation ρ′ : Fn → PSL(2,R) ⊂ Homeo+(S1) by set-

ting ρ′(ai) to be the unique hyperbolic element such that ρ′(ai)(D(ai)) =
ρ(ai)(D(ai)). Then ρ′ is a simple ping-pong action, and we can take
D′(a±1

i ) = D(a±1
i ) to be the attracting domains for ρ′. We will now show

that
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(1) there exists f ∈ Homeo+(S1) such that f ◦ ρ′(g) ◦ f−1 = ρ(g) for
all g ∈ Fn, and

(2) the quotient of H2 by ρ′ is a genus n/2 surface with one boundary
component, in particular, n is even.

This will suffice to prove the theorem.
By Lemma 4.2, the cyclic order of ρ(Fn)(x0) and ρ′(Fn)(x0) agree, so the

map f : ρ(Fn)(x0)→ ρ′(Fn)(x0) given by f(ρ(g)(x0)) = ρ′(g)(x0) is cyclic
order preserving. We claim that, similarly to Proposition 3.8, f extends
continuously to the closure of ρ(Fn)(x0). To see this, we look at successive
images of attracting domains, following [4, Proposition 1.11].
If w = s1s2 . . . sk is a reduced word with si ∈ {a±1

1 , . . . a±1
n } define the set

D(s1, s2, . . . , sk) by D(s1, . . . , sk) := ρ(s1 . . . sk−1)D(sk). Make the analo-
gous definition for D′(s1, . . . , sk−1) := ρ′(s1, . . . , sk−1)D′(sk). Note that
D(s1, s2, . . . , sk) ⊂

◦
D(s1, s2, . . . sk−1).

Let gk ∈ Fn be a sequence of distinct elements such that lim
i→∞

ρ(gk)(x0) =
y. Write each gk as a reduced word in the generators and their inverses.
Since the set of generators and inverses is finite, after passing to a subse-
quence gki

, we may assume that there exist s1, s2, . . . with si+1 6= s−1
i and

such that gki = s1s2 . . . si. Thus,

ρ(gki)(x0) ∈ D(s1, s2, . . . , si) and

y ∈
∞⋂
i=1

D(s1, s2, . . . , si).

Returning to our original sequence, as D(s1, s2, ..., si)⊂
◦
D(s1, s2, ..., si−1),

and ρ(gk)(x0)→ y, for any fixed i, we will have ρ(gk)(x0) ∈ D(s1, s2, . . . , si)
for all sufficiently large k.
Since the containment relations among the domains ρ(sj)(D(si)) and

ρ′(sj)(D′(si)) agree, it follows that ρ′(gk)(x0) ∈ D′(s1, s2, . . . , si) whenever
ρ(gk)(x0) ∈ D(s1, s2, . . . , si). Since ρ′ is a ping-pong action with image
in PSL(2,R), it follows from hyperbolic geometry (see [4, Lemma 1.10])
that the intersection

⋂
iD
′(s1, s2, . . . , si) is a single point, say y′. Thus,

ρ′(gk)(x0) converges to y′, and we may define f(y) = y′, giving a continuous
extension of f .
Since ρ is a dynamical realization, as in the proof of Lemma 3.21, Propo-

sition 3.8 implies that f has a continuous inverse and so must be a homeo-
morphism onto its image. We may then extend f over each complementary
interval to the orbit of x0, to produce a homeomorphism of S1 such that
fρ′(g)f−1 = ρ(g) for all g ∈ Fn.
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Topologically, the quotient of H2 by ρ′(Fn) is the interior of an orientable
surface Σ with π1(Σ) = Fn, and therefore genus g and b = n−2g+1 bound-
ary components, for some g. Because ρ′ has simple ping-pong dynamics, it
has at least one boundary component. We showed in Lemma 4.11 that, if ρ′
is a dynamical realization, then there is at most one boundary component.
Since we are assuming that ρ, and hence its conjugate ρ′ is a dynamical
realization, there is exactly one boundary component, and so n = 2g is
even. This proves assertion (2). �

4.2. Infinitely many nonconjugate circular orders

Finally, we give the proof that CO(F2n) has infinitely many nonconjugate
isolated points. These will come from ping-pong actions with disconnected
domains that are “lifts” of the Schottky actions described in the previous
section.
Proof of Theorem 1.4. — Let G = F2n, and let ρ : G → PSL(2,R) be

a representation such that H2/ρ(G) is an infinite volume genus n surface
with one end. Fix a generating set a1, b1, . . . , an, bn for G.

Definition 4.13. — Fix k > 1. The standard k-lift ρ̂ of ρ is a repre-
sentation defined as follows: for each generator s let ρ̂(s) be the unique lift
of ρ(s) to the k-fold cyclic cover of S1 such that ρ̂(s) has fixed points. This
determines a homomorphism ρ̂ : G→ Homeo+(S1) whose image commutes
with the order k rigid rotation.

Let D(a±1
i ), D(b±1

i ) be the attracting domains for the generators and
their inverses with respect to the representation ρ. For each generator or
inverse s, let D̂(s) be the pre-image of an attracting D(s) under the (k-
fold) covering map π : S1 → S1. Then D̂(s) is a (disconnected) attracting
domain for ρ̂(s), and ρ̂ has ping-pong dynamics. Let x̂0 be a lift of x0. The
next lemma shows that, for infinitely many choices of k, this lift ρ̂ is the
dynamical realization of a circular order with basepoint x̂0. Having done
this, Proposition 4.6 implies that this circular order is isolated in CO(F2n).

Lemma 4.14. — If k and 2n− 1 are relatively prime, then the standard
k-lift ρ̂ constructed above is the dynamical realization of a circular order.

Proof. — Again, we begin by describing the dynamics of ρ̂. All of the
facts stated here follow easily from the construction of ρ̂ as a lift of ρ.
Further explanation and a more detailed description of such lifts can be
found in Section 2 of [10].
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Let K be the exceptional minimal set for ρ. Then K̂ := π−1(K) is the
exceptional minimal set for ρ̂, and x̂0 ∈ S1 \ K̂. Let I denote the connected
component of S1 \ K containing x0, and Î the connected component of
S1 \ K̂ containing x̂0. Using Corollary 3.24, it suffices to show that ρ̂(G)
acts transitively on the set of connected components of S1 \ K̂ and that
the stabilizer of Î acts on Î as a dynamical realization of a linear order.
Let Î = I0, and let I1, I2, . . . , Ik−1 denote the other connected compo-

nents of π−1(I), in cyclic (counterclockwise) order.
Let g ∈ F2n be the product of commutators g = [a1, b1] . . . [an, bn], so ρ(g)

is the stabilizer of I in ρ(G). For the lifted action, we have ρ̂(g)(Ii) = Ij ,
where j = i+ 2n− 1 mod k. (This follows from the fact that the rotation
number of ρ̂(g) is (2n − 1)/k, see [10].) Hence, the stabilizer of Î is the
infinite cyclic subgroup generated by gk. Moreover, ρ̂(gk) acts on Î without
fixed points, as it is a lift of ρ(gk) which acts on I without fixed points.
Thus, the action of the subgroup generated by gk acts on Î as the dynamical
realization of a left order on Z.

It remains only to show that ρ̂(G) acts transitively on the set of connected
components of S1\K̂ so that we can apply Corollary 3.24. This is where we
use the hypothesis that k and 2n − 1 are relatively prime. Assuming that
they are relatively prime, the fact that ρ̂(g)(Ii) = Ij , where j = i+ 2n− 1
mod k will now imply that ρ̂ acts transitively on the lifts of I. In detail, if Ĵ
is any other connected component of S1 \ K̂, with π(Ĵ) = J , then we may
find f ∈ F2n such that ρ(f)(I) = J . It follows that ρ̂(gmf)(Î) = Ĵ for some
m, so the action is transitive. This completes the proof of the lemma. �

To finish the proof of the theorem, we need to show that different choices
of k give infinitely many distinct conjugacy classes of circular orders. This
follows from the fact we mentioned above that the rotation number of
ρ̂(g) is (2n − 1)/k. Rotation number is a (semi)-conjugacy invariant of
homeomorphisms of S1. Hence, the dynamical realizations of conjugate
orders cannot assign different rotation numbers to the same element. �

4.3. Explicit singleton neighborhoods of isolated orders

Recall that a neighborhood basis of an order c ∈ CO(G) is given by sets
of the form OS(c) := {c′ ∈ CO(G) : c′(u, v, w) = c(u, v, w) for all u, v, w ∈
S}, where S ranges over all finite subsets of G. Given an isolated circular
order c, it is therefore very natural to ask: what is the minimum cardinality
of S such that OS(c) is a singleton?
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In this section, we take the isolated circular order on F2 = 〈a, b〉 whose
dynamical realization has simple ping-pong dynamics (from Lemma 4.10)
and give an upper bound on the cardinality of such a set S, by exhibiting
a specific set with 5 elements. (We expect the bound |S| 6 5 given here is
sharp, but have not pursued this point.) The proof of the Proposition below
also gives an independent and very short proof that CO(F2) has isolated
points; the only previous tool that we use here is the ping-pong lemma.
Fixing notation, let c be the isolated circular from Lemma 4.10 in the

case n = 1. We show the following:

Proposition 4.15. — If c′ is an order that agrees with c on the set
S3 = {id, a, ba, a−1ba, b−1a−1ba}3, then c′ = c.

Proof. — Let ρ : F2 → Homeo+(S1) be the dynamical realization of c
with basepoint x0. We need to show that for any action ρ′ of F2 on S1 such
that the cyclic order of ρ′(S)(x0) agrees with that of ρ(S)(x0), the cyclic
order of ρ′(G)(x0) then agrees with that of ρ(G)(x0). Consider an action
of F2 on S1 with the points

x0, ab
−1a−1b(x0), b(x0), a−1b(x0), b−1a−1b(x0)

in this cyclic (counterclockwise) order. Here, and in the remainder of the
proof, we drop the notation ρ′ for the action.
We begin by choosing some additional points in S1 in a careful way, so

as to arrive at the configuration illustrated in Figure 4.2 below. This will
let us define attracting domains for the action.
Let p1 ∈ S1 be a point such that the triple x0, p1, ab

−1a−1b(x0) is pos-
itively oriented. Choose x′0 very close to x0, and such that x′0, x0, p1 is
positively oriented. If x′0 is chosen sufficiently close to x0, then

x′0, p1, ab
−1a−1b(x′0), b(x′0), a−1b(x′0), b−1a−1b(x′0)

will also be in positive cyclic order. Let X denote this set of 6 points.
The ordering of X implies that a−1(p1) lies in the connected component

of S1 \ X bounded by a−1b(x′0) and b−1a−1b(x′0). Let p2 be a point in
this component such that the triple a−1(p1), p2, b

−1a−1b(x′0) is positively
oriented. Similarly, our assumption on order implies that b(p2) lies in the
component of S1 \X bounded by b(x′0) and a−1b(x′0), and we let p3 be a
point in this component such that b(p2), p3, a

−1b(x′0) is positively oriented.
This configuration is summarized in Figure 4.2.
Now let D(a), D(b), D(a−1) and D(b−1) be the disjoint intervals

[p1, a(p3)], [b(x′0), b(p2)], [p3, a
−1(p1)] and [p2, x

′
0] as shown in Figure 4.2.

Our choice of configuration of points implies that b(S1 \D(b−1)) ⊂ D(b).
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b−1a−1b(x0)p2
a−1(p1)

a−1b(x′0)

p3

b(p2)

b(x′0)
a(p3)

ab−1a−1b(x0)

p1

x′0

◦ x0

D(b)

D(b−1)

D(a−1)

D(a)

Figure 4.2. Configuration of points giving ping-pong domains on S1

Similarly, a(S1 \D(a−1)) ⊂ D(a). We also have that x0 is in the comple-
ment of the union of domains.
Since these are the same cyclic order and containment relations as c,

Lemma 4.2 implies that the cyclic order on G induced by the orbit of x0
coincides with c. �

Remark 4.16. — A similar strategy can be used to produce neighbor-
hoods of the lifts of these orders on F2, however, many more points are
needed. Compare also the framework of [13], especially Lemma 4.8.

5. Applications to linear orders

Suppose 0→ A→ B → C → 0 is a short exact sequence of groups. If A
is left-ordered, and C circularly ordered, then it is well known that there is
a natural circular order on B such that both maps A→ B and B → C are
monotone. (See [2, Lemma 2.2.12] for a proof.) Here, we discuss a different
method of constructing orders on certain central extensions.
Recall that a subgroup H ⊂ G is cofinal for a left order < on G if, for

all g ∈ G, there exist h1, h2 ∈ H such that h1 < g < h2. If H ⊂ G, we
let LOH(G) ⊂ LO(G) denote the subspace of LO(G) consisting of orders
where H is cofinal.
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Proposition 5.1 (see also [22]). — Let G be a group, and let Z →
Ĝ

π→ G be a central extension. Then, there is a continuous map π∗ = π∗
Ĝ

:
LOZ(Ĝ) → CO(G). Moreover, each circular order on G is in the image of
one such map π∗.

This theorem is essentially proved in [22], although there is no comment
on continuity there.

Proof. — Let Z → Ĝ
π→ G be a central extension. Given < in LOZ(Ĝ)

define π∗(<) as follows. Let z be the generator of Z such that z > id. Since Z
is cofinal, for each g ∈ G, there exists a unique ĝ ∈ Ĝ such that id 6 ĝ < z.
Given distinct elements g1, g2, g3 ∈ G, let σ be the permutation such that
id 6 ĝσ(1) < ĝσ(2) < ĝσ(3) < z. Define π∗(<)(g1, g2, g3) := sign(σ). One
checks that this is a well defined circular order on G.
To show continuity, given a finite set S ⊂ G, let Ŝ := {ĝ ∈ Ĝ : g ∈ S}. If

<1 and <2 are two left orders that agree on Ŝ ∪{id, z}, then the definition
of π∗ ensures that π∗(<1) and π∗(<2) agree as circular orders on S.
For the last remark, we give a proof for countable groups that highlights

the relationship between the dynamical realization of c and π∗(c). The gen-
eral case is given in [22], and uses essentially the same idea. Let HomeoZ(R)
denote the group of orientation-preserving homeomorphisms of R that com-
mute with integer translations. This group is the universal central extension
of Homeo+(S1). Given c ∈ CO(G), let ρ be a dynamical realization of c
with basepoint x, and let x̂ ∈ R be a lift of x. Let Ĝ be the pullback of
the central extension 0 → Z → HomeoZ(R) → Homeo+(S1) → 1 using ρ.
It is easily checked that x̂ has a free orbit under Ĝ ⊂ Homeo(R) so induces
a left order < on Ĝ, and in this left order Z is cofinal. By construction,
π∗(<) = c. �

We note that, as remarked to the authors by S. Matsumoto, π∗ is not
necessarily one-to-one, although the last step in the proof does give a partial
inverse.

Lemma 5.2. — Let G be a finitely generated group, and z ∈ G a central
element. The set of left invariant orders on G where 〈z〉 is cofinal is open
in LO(G).

Proof. — Suppose that < is a left order where 〈z〉 is cofinal. Then for
each generator gi in a finite generating set, there exists ki ∈ Z such that
zki 6 gi < zki+1. We claim that this finite collection of inequalities also
implies that 〈z〉 is cofinal. Indeed, that z is central implies that zki+kj 6
gigj < zki+kj+2 for all i, j, and inductively, that each word in the generators
is bounded above and below by powers of z. �
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Remark 5.3. — This can fail when G is not finitely generated. Indeed,
let G = Z[x] under addition, and let z = 1 ∈ Z[x]. We can order Z[x] by
letting 0 <π p(x) if and only if p(π) is a non-negative real number. On the
other hand any finite set S of G lies inside a subgroup H that admits a
complement, say H ⊕ H ′ = G. On H we can put again <π, and extend
this ordering lexicographically to G using any ordering on H ′ ' G, so that
H is a proper convex subgroup. The resulting ordering <′ on G agrees
with <π on S, so by choosing S large it can be made arbitrarily close to
<π. However, if on H ′ we put the lexicographic ordering coming from the
natural identification of Z[x] with a direct sum of infinitely many copies of
Z, then every element of G fixes a point in the dynamical realization of <′.

Using Lemma 5.2 and Proposition 5.1, we can produce isolated left orders
from isolated circular orders on finitely generated groups.

Proposition 5.4. — Assume that G is finitely generated and c is an
isolated circular order on G. If Z → Ĝ

π→ G is a central extension and
<∈ LOZ(G) a left order such that π∗(<) = c, then < is isolated in LO(Ĝ).

Proof. — By Proposition 5.1, π∗ : LO(Ĝ) → CO(G) is continuous. We
claim that, since G (and hence Ĝ) is finitely generated, π∗ is also locally
injective. To see this, suppose< and<′∈ LO(Ĝ) have the same image under
CO(G). Let ρ and ρ′ be the dynamical realizations of < and <′ respectively;
up to conjugacy, we can assume that ρ(z) = ρ′(z) = x 7→ x+ 1, where z is
the generator of the Z subgroup of Ĝ. We can also assume that the induced
actions of G on R/Z agree, since this action is the dynamical realization
of π∗(<) = π∗(<′). Fix a finite generating set S = {s1, . . . sn} for G, and
choose generators {ŝ1, . . . ŝn, z} for Ĝ where ŝi is the (unique) lift of si to
Ĝ such that id < ŝi < z. Since π∗(<) = π∗(<′), for each s ∈ S we have
ρ(ŝi) = ρ′(si)zni for some ni ∈ Z. In particular, if < and <′ are close
enough so that they agree on the elements ŝi and z, we will necessarily
have ρ(ŝi) = ρ′(ŝi), thus the dynamical realizations, and hence the orders
< and <′ agree.

Now let < be an order with π∗(<) isolated, as in the statement of
the proposition. Continuity and local injectivity of π∗ combined with the
fact that π∗(<) is isolated implies that < must have also been isolated in
LOZ(Ĝ). Lemma 5.2 says that LOZ(Ĝ) is an open neighborhood of < in
LO(Ĝ), so < is isolated in LO(Ĝ). �

Proposition 5.1, 5.4, and Theorem 1.4 together imply the following.

Corollary 5.5. — The space of left orders of F2 × Z has infinitely
many nonconjugate isolated points.
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Proof. — The existence of infinitely many isolated points is an immediate
consequence of 5.1, 5.4 and Theorem 1.4, together with the fact that all
central extensions of F2 by Z are trivial, i.e. direct products. The argument
that the examples obtained by pulling back the nonconjugate “standard k-
lift” orders on F2 to F2 × Z are nonconjugate can be done similarly to
the argument that the original orders on F2 were non-conjugate. Since
these dynamical realizations have image in HomeoZ(R), elements have a
well defined, conjugation-invariant, translation number, and the translation
number of the commutator [a, b] in the k-fold lift is 1/k (again, this is
standard and more background can be found in [10]). Thus, varying k gives
non-conjugate dynamical realizations, and hence nonconjugate orders. �
This example is interesting for three reasons. First, F2×Z is isomorphic

to P3, the pure braid group on three strands. It is known that the braid
group Bn admits isolated orderings. Could they always come from isolated
ordering on Pn? Related work in an extensive study of orderings on braid
groups can be found in [5]. Secondly, F2×Z is an example of a right-angled
Artin group. Perhaps it is possible to give a complete characterization of
which RAAGs have isolated left orders. Finally, this example also shows
that direct products behave quite differently than free products. In [18],
it is shown that the free product of any two left orderable groups has no
isolated left orders.

6. Further questions

Since we have found infinitely many isolated points in the compact space
CO(F2n), they must accumulate somewhere. It is not hard to show the
following, we leave the proof as an exercise.

Proposition 6.1 (Accumulation points of lifts in CO(F )). — Let A ⊂
CO(F2) denote the set of all finite lifts of the Fuchsian circular order.
Then the accumulation points of A are left orders on F2. These left orders
have dynamical realizations conjugate into the universal covering group of
PSL(2,R), which acts by homeomorphisms on the line commuting with
integer translations.

Since LO(F2) has no isolated points, the accumulation points of A be-
long to a Cantor set embedded in CO(G). Remarkably, we do not know
a single example of any group G such that CO(G) (or even LO(G)) has
accumulation points that do not belong to a Cantor set.
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Question 6.2. — Does there exist a countable group G such that the
derived set of CO(G) is neither empty nor a Cantor set?

Another question that remains open is the following:

Question 6.3. — Does there exist an isolated circular order on Fn, for
n odd?

Theorem 1.5 reduces this to an essentially combinatorial problem of
checking whether an arrangement of attracting domains gives an action
which permutes transitively the complementary intervals to the minimal
set. At this point we do not know a single example of an isolated circular
order, and suspect the answer to Quesiton 6.3 may well be negative.
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