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CONSTRUCTION OF HYPERBOLIC HORIKAWA
SURFACES

by Yuchen LIU (*)

Abstract. — We construct a Brody hyperbolic Horikawa surface that is a
double cover of P2 branched along a smooth curve of degree 10. We also construct
Brody hyperbolic double covers of Hirzebruch surfaces with branch loci of the
lowest possible bidegree.
Résumé. — Nous construisons une surface de Horikawa Brody-hyperbolique

qui est un revêtement double de P2 ramifié le long d’une courbe lisse de degré 10.
Nous construisons également des surfaces Brody-hyperboliques qui sont des revê-
tements doubles de surfaces de Hirzebruch, dont l’ensemble de ramification est de
bidegré minimal.

1. Introduction

A complex algebraic variety X is said to be Brody hyperbolic if there
are no non-constant holomorphic maps from C to X. Thanks to Brody
Lemma [2], we know that a proper Brody hyperbolic variety is Kobayashi
hyperbolic, i.e. its Kobayashi pseudometric is non-degenerate. In [14], Lang
conjectured that a complex projective varietyX is Brody hyperbolic if every
subvariety of X is of general type. More generally, Green, Griffiths [7] and
Lang [14] proposed the following conjecture:

Conjecture 1.1 (Green–Griffiths–Lang). — If a complex projective
variety X is of general type, then there exists a proper Zariski closed subset
Z ( X such that any non-constant holomorphic map f : C→ X will satisfy
f(C) ⊂ Z.

Keywords: Brody hyperbolicity, Horikawa surfaces, cyclic covers.
2010 Mathematics Subject Classification: 32Q45, 14J29.
(*) The author was partially supported by NSF Grant DMS-1362960.
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It is easy to see that Lang’s conjecture follows from the Green–Griffiths–
Lang conjecture by a Noetherian induction argument. Even in the case of
surfaces, these conjectures are still open. Based on works of Bogomolov [1]
and Lu–Yau [16], McQuillan [17] showed that Conjecture 1.1 is true for
minimal surfaces of general type with c2

1 > c2. Demailly and El Goul [3]
proved Conjecture 1.1 for some surfaces with 13c2

1 > 9c2. In principle,
minimal surfaces of general type with minimal s2 = c2

1 − c2 should be the
most difficult case for these conjectures. For example, a very general quintic
surface in P3 (c2

1 = 5, c2 = 55) does not contain any rational or elliptic
curve by a result of Xu [20], but we do not have a single example of quintic
surface that is Brody hyperbolic.
Recall that the Chern numbers of minimal surfaces of general type satisfy

the Noether inequality c2 6 5c2
1 + 36. In the extreme case, a surface that

reaches the equality c2 = 5c2
1 + 36 if c2

1 is even and c2 = 5c2
1 + 30 otherwise

is called a Horikawa surface. A Horikawa surface with even c2
1 is classified

to be either a double cover of P2 or of a Hirzebruch surface (see [8]). For
instance, a double cover of P2 branched along a smooth curve of degree 10
is Horikawa. Using orbifold techniques, Roulleau and Rousseau [18] showed
that a very general member of this class of Horikawa surfaces is algebraic
hyperbolic (in particular it has no rational or elliptic curve). Hence a very
general member of this class of surfaces is expected to be Brody hyperbolic
according to Conjecture 1.1.
Our first main result shows that there exists a Horikawa surface in this

class that is Brody hyperbolic. This gives an analytic generalization of
Roulleau–Rousseau’s result (in particular implies [18, Theorem 3.2]) and
also provides evidence supporting Conjecture 1.1.

Theorem 1.2. — Let d be an even integer. Then there exists a smooth
plane curve D of degree d such that the double cover of P2 branched along
D is Brody hyperbolic if and only if d > 10.

We remark that here that some Brody hyperbolic double covers of P2

have been constructed in [15, Theorem 5] with branch loci of minimal
degree 30.
For an integer N > 0, let FN be the N -th Hirzebruch surface. The

surface FN has a natural fibration FN → P1. Denote by F a fiber, and by
T a section of the fibration such that (T 2) = N . Any divisor D on FN is
linearly equivalent to aF + bT for integers a and b, and we say that D is
of bidegree (a, b).
In [18], Roulleau and Rousseau also showed that a very general Horikawa

surface that is a double cover of FN branched along a curve of bidegree (6, 6)
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CONSTRUCTION OF HYPERBOLIC HORIKAWA SURFACES 543

does not contain a rational curve. In general it will contain an elliptic curve,
so it cannot be Brody hyperbolic. In the next theorem, we construct smooth
curves of the lowest possible bidegrees in FN along which the double covers
of FN are Brody hyperbolic.

Theorem 1.3. — Let a, b be even integers. Then there exists a smooth
curve D ⊂ FN in the linear system |aF + bT | such that the double cover of
FN branched along D is Brody hyperbolic if and only if one of the following
is true:

• N = 0 and a, b > 8;
• N > 1, a > 6 and b > 8.

The “only if” parts of Theorems 1.2 and 1.3 are somewhat easy which
follow by showing the existence of a rational or elliptic curve on the double
cover when the branch locus has a smaller (bi)degree.

Our strategy to prove the “if” parts of Theorems 1.2 and 1.3 is by using
a degeneration process consisting of three steps. Denote by X the base
surface P2 or FN . In step 1, we degenerate the branch locus D to a non-
reduced double curve 2C where C is smooth. As a result, the double cover
degenerates to a union of two copies of X glued along C. Using stability
of intersections of entire curves, it suffices to show that both X \ (C \
D) and C are Brody hyperbolic. In step 2, we degenerate C into a line
arrangement ∪iCi. By a variant of Zaidenberg’s method [21], it suffices to
show that X \ ((∪iCi) \ D) is Brody hyperbolic. By classical results, we
know that for X = P2 or FN , X \ (∪iCi) is Brody hyperbolic. In step 3,
we apply Zaidenberg–Duval’s method [5, 6, 19, 21] of degenerating D into
line arrangements in order to deduce hyperbolicity of X \ ((∪iCi)\D) from
hyperbolicity of X \ (∪iCi) which is known by classical results.

Historical remark. — Note that Duval [5] constructed a Brody hyper-
bolic sextic surface in P3 by nicely adopting Zaidenberg’s method [21],
together with the hyperbolic non-percolation introduced in [19]. In this
paper, we follow precisely Duval’s approach [5] which was further devel-
oped in [9]. Thus we will use the term Zaidenberg–Duval’s method for this
approach in our presentation.

The paper is organized as follows. In Section 2, we recall Zaidenberg–
Duval’s method [5, 6, 19, 21] in constructing a smooth curve D satisfying
the hyperbolicity of X \ ((∪iCi) \D). We recall results in [9, Section 4] in
the surface case in Lemma 2.2, and we apply this lemma to P2 and FN in
Corollaries 2.3 and 2.4. In order to deform ∪iCi into a smooth curve C pre-
serving the hyperbolicity of X \(C \D), we apply Zaidenberg’s method [21]

TOME 68 (2018), FASCICULE 2
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in Section 4 (see Lemma 4.2). Starting with a log smooth projective surface
pair (X,D) and a set of rational curves {Ci} with X \ ((∪iCi) \D) being
Brody hyperbolic, we introduce the concept of admissible deformation (see
Definition 4.1) in order to preserve the hyperbolicity of X \ (C \ D) un-
der deformation. Using the technique of smoothing of rational trees in the
deformation process (e.g. [13, II.7]), we are able to translate an admissible
deformation of rational curves into an admissible contraction of their dual
graphs (see Lemma 4.4). In Section 3, we study dual graphs that can be
admissibly contracted into singletons. Using these results, we construct a
smoothing C of ∪iCi preserving the hyperbolicity of X \ (C \ ∆) under
certain assumptions on the dual graph of ∪iCi (see Lemma 4.8). Applying
this lemma to X = P2 or FN gives smooth curves C and D with certain
(bi)degrees such that X\(C\D) is Brody hyperbolic. In Section 5, we prove
Theorems 1.2 and 1.3. As an application of Theorem 1.2, we give new ex-
amples of Brody hyperbolic surfaces in P3 of minimal degree 10 that are
cyclic covers of P2 under linear projections (see Theorem 5.2). This also
improves [15, Theorem 25]. We mention that a Brody hyperbolic Horikawa
surface of even c2

1 has to be a double cover of P2 branched along a degree 10
curve (see Remark 5.3).

Notation

Throughout this paper, we work over the complex numbers C. For a
subset U of a projective variety X, we say that U is Brody hyperbolic
if any non-constant holomorphic map φ : C → X satisfies φ(C) 6⊂ U . A
divisor D on a smooth surface X is normal crossing if D is reduced and has
only nodal singularities. Moreover, a normal crossing divisor D is said to be
simple normal crossing if all irreducible components of D are smooth. We
say that a surface pair (X,D) is log smooth if X is a smooth surface and
D is a simple normal crossing divisor on X. A reduced projective curve is
stable (in the sense of Deligne–Mumford) if it has only nodal singularities
and its dualizing sheaf is ample.

Acknowledgement. I would like to thank Xavier Roulleau and Erwan
Rousseau for the fruitful discussions. I wish to thank Dinh Tuan Huynh,
János Kollár and Ziquan Zhuang for their helpful comments and sugges-
tions, and Christian Liedtke for his interest. I also wish to thank the anony-
mous referees for their careful work.
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2. Zaidenberg–Duval’s method

We first recall the following known facts from complex analysis whose
proof is a simple application of the classical Hurwitz Theorem. (See also [12,
3.6.11], [6, Stability of intersections] or [9, Section 3.1].)

Lemma 2.1 (Stability of intersections). — Let X be a normal proper
complex analytic space. Let S be an effective Weil divisor in X, i.e. S
is a sum of closed analytic subvarieties of codimension 1. Suppose that
a sequence of entire curves (φn) in X converges to an entire curve φ. If
φ(C) 6⊂ Supp(S), then

φ(C) ∩ S◦ ⊂ lim
n→∞

φn(C) ∩ Supp(S),

where S◦ := {x ∈ Supp(S) | S is Q-Cartier in a neighborhood of x}.

The following lemma was proved in [9, Section 4] (see also [6, Lemma]).

Lemma 2.2. — Let X be a smooth projective surface. Let {Ci}m
i=1 be

a set of irreducible curves on X such that (X,
∑m

i=1 Ci) is log smooth. Let
L be a globally generated line bundle on X. Assume the following holds:

(1) X \ (∪m
i=1Ci) is Brody hyperbolic;

(2) For any i, ∪j 6=iCj is a stable curve;
(3) For any i, there exists an effective Cartier divisor Hi ∈ |L| such

that Supp(Hi) = ∪j 6=iCj .
Then there exists a smooth curve S ∈ |L| such that (X,S+

∑m
i=1 Ci) is log

smooth and X \
(
(∪m

i=1Ci) \ S
)
is Brody hyperbolic.

Proof. — See [9, Section 4]. �

The following corollary was proved in [9, Section 4] using Lemma 2.2.

Corollary 2.3 ([9, Section 4]). — Let {Ci}m
i=1 be a set of lines in

general position in P2 with m > 5. Let d > 4 be an integer. Then there
exists a smooth plane curve S of degree d such that (P2, S +

∑m
i=1 Ci) is

log smooth and P2 \
(
(∪m

i=1Ci) \ S
)
is Brody hyperbolic.

Corollary 2.4. — Let {Ci}a+b
i=1 be a set of curves in FN . Assume that

Ci is a general curve in |F | for any i 6 a; Cj is a general curve in |T | for
any j > a. Then there exists a smooth curve S ∈ |cF + dT | in FN such
that (FN , S +

∑a+b
i=1 Ci) is log smooth and FN \

(
(∪a+b

i=1Ci) \ S
)
is Brody

hyperbolic if one of the following is true:
• N = 0 and a, b, c, d > 4;
• N > 1, a, c > 3 and b, d > 4.

TOME 68 (2018), FASCICULE 2
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Proof. — Firstly, let us consider special cases where a, b achieve their
minima, i.e. N = 0, a = b = 4 or N > 1, a = 3, b = 4. Since both linear
systems |F | and |T | are base point free, for a general choice of {Ci}a+b

i=1 the
pair (FN ,

∑a+b
i=1 Ci) is log smooth. Let L := OFN

(cF +dT ) be a line bundle
on FN . Then we only need to show that the assumptions (1), (2) and (3)
of Lemma 2.2 are fulfilled for (FN ,

∑a+b
i=1 Ci) and L.

If N = 0 and a = b = 4, then F0 = P1 × P1 and {Ci}8
i=1 consists of

4 vertical lines and 4 horizontal lines in general position. It is clear that
F0 \ ∪8

i=1Ci
∼= (P1 \ {4 points}) × (P1 \ {4 points}) is Brody hyperbolic,

so (1) is satisfied. For (2), each Cj intersects four Ck’s with k 6= j. So for
any i 6= j, Cj intersects with at least three Ck’s with k 6∈ {i, j}. Since
Ci ∩ Cj ∩ Ck = ∅, ∪j 6=iCj is stable, hence (2) is satisfied. Since c, d > 4,
Ci ∼ F for 1 6 i 6 4 and Cj ∼ T for 5 6 j 6 8, it is easy to see that (3) is
also satisfied.
If N > 1, a = 3 and b = 4, then the natural fibration π : FN → P1

maps C1, C2, C3 to three distinct points in P1. It is clear that (F · Ci) =
(F · T ) = 1 for i = 4, . . . , 7. Hence for a general choice of {Ci}7

i=4, the
set F ∩ (∪7

i=4Ci) has at least three points for any fiber F of π. Since
P1 \ {3 points} is Brody hyperbolic, the fiber and the base of π : FN \
∪7

i=1Ci → P1 \ {π(C1), π(C2), π(C3)} are Brody hyperbolic. Hence (1) is
satisfied. For (2), each Ci with 1 6 i 6 3 intersects each Ck with 4 6 k 6 7.
Since (T 2) = N > 1, each Ci with 4 6 i 6 7 intersects each Ck with k 6= i.
As a result, each Ci intersects with at least four Ck’s with k 6= i. So (2) is
satisfied by the same reason as in the last paragraph. Since c > 3, d > 4,
Ci ∼ F for 1 6 i 6 3, and Ci ∼ T for 4 6 i 6 7, it is easy to see that (3)
is also satisfied.
Up to now we have shown the corollary for cases where a, b achieve their

minima. More precisely, under the assumptions of N, a, b, c, d, for general
choices of {Ci}amin

i=1 and {Cj}a+bmin
j=a+1 there exists a smooth curve S ∈ |cF +

dT | in FN , such that (FN , S +
∑amin

i=1 Ci +
∑a+bmin

j=a+1 Cj) is log smooth and
FN \

(
((∪amin

i=1 Ci) ∪ (∪a+bmin
j=a+1Cj)) \ S

)
is Brody hyperbolic. If one of a, b is

strictly bigger than its minimum, then

FN \
(
(∪a+b

i=1Ci) \ S
)
⊂ FN \

(
((∪amin

i=1 Ci) ∪ (∪a+bmin
j=a+1Cj)) \ S

)
where the latter set is Brody hyperbolic. Hence FN \

(
(∪a+b

i=1Ci)\S
)
is Brody

hyperbolic. Besides, since (FN , S +
∑amin

i=1 Ci +
∑a+bmin

j=a+1 Cj) is log smooth,
for general choices of {Ci}a

i=amin+1 and {Cj}a+b
j=a+bmin+1 we also have that

(X,S +
∑a+b

i=1 Ci) is log smooth. This finishes the proof. �
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3. Admissible contractions of multigraphs

Definition 3.1.
(1) A vertex-w eighted multigraphG is an ordered quadruple (V,E,r,wt)

such that
• V is a finite set of vertices;
• E is a finite set of edges;
• r : E → {{v, w} : v, w ∈ V, v 6= w} assigns each edge an
unordered pair of endpoint vertices;

• wt : V → Z assigns to each vertex an integer as its weight.
(2) For a vertex v ∈ V , we define the degree (respectively reduced

degree) of v to be its number of incident edges (respectively adjacent
vertices). More precisely,

deg(v) := #{e ∈ E : v ∈ e}, rdeg(v) := #{w ∈ V : {v, w} ∈ r(E)}.

(3) Let G1, G2 be two vertex-weighted multigraphs. We say that G1 is
a submultigraph of G2 if there exists injective maps φ : V1 → V2
and ψ : E1 → E2, such that r2 ◦ ψ = φ ◦ r1 and wt1 6 wt2 ◦φ.
If, moreover, φ is bijective, then we say that G1 is a spanning sub-
multigraph of G2.

(4) A vertex-weighted multigraph is completely multipartite if there
does not exist a triple of vertices {v1, v2, v3} such that both {v1, v2}
and {v1, v3} are non-adjacent, but {v2, v3} is adjacent.

Definition 3.2.
(1) Let G,G′ be two vertex-weighted multigraphs. We say that G′ is a

contraction of G with respect to a pair of adjacent vertices {v, w}
in G if there exist maps φ : V → V ′ and ψ : E \ r−1({v, w})→ E′

such that
• φ(v) = φ(w), and φ induces a bijection between V \{v, w} and
V ′ \ {φ(v)};
• ψ is bijective, and r′ ◦ψ = φ ◦ r as maps from E \ r−1({v, w});
• wt′(φ(v)) = wt(v) + wt(w), and wt′ ◦φ = wt as maps from
V \ {v, w} to Z.

(2) A contraction G′ of G with respect to {v, w} is said to be admissible
if there exists a non-negative integer l < #r−1(v, w) such that the
following conditions hold:
• For each vertex x other than v and w, deg(x) > 3;
• wt(v) > l + 1 and wt(w) > l + 2;
• deg(v)−#r−1({v, w})+l > 3 and deg(w)−#r−1({v, w})+l > 3.

TOME 68 (2018), FASCICULE 2
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(3) A vertex-weighted multigraphG is said to be admissibly contractible
if there exists a sequence of vertex-weighted multigraphs (Gi)k

i=0
such that G0 = G, Gk is a singleton, and Gi is an admissible con-
traction of Gi−1 for each 1 6 i 6 k.

Example 3.3. — We give an illustration of an admissible contraction of
vertex-weighted multigraphs.

G :=

3v1

3
v2

3
v3

l=1−−→
3
w2

6
w1

∗
=: G′

Here VG = {v1, v2, v3}, VG′ = {w1, w2}, wtG(vi) = 3 for any 1 6 i 6 3,
wtG′(w1) = 6 and wtG′(w2) = 3. Each vertex is represented as a circle
in the picture. The name of each vertex is marked outside the circle, and
its weight is marked inside the circle. Each edge connecting two vertices is
represented as an arc connecting two circles.
In the illustration above, we see that H is a contraction of G with respect

to {v1, v2}, where φ is given by φ(v1) = φ(v2) = w1 and φ(v3) = w2.
Each contraction is represented as an arrow. The two merging vertices of
G are represented as yellow filled circles, and we mark ∗ outside circles
representing their images under φ. If a contraction is admissible, we mark
the corresponding value of l above the arrow. It is easy to verify that in the
picture above, G′ is an admissible contraction of G with respect to {v1, v2}.

The following lemma follows easily from the definitions.

Lemma 3.4. — Let G be a vertex-weighted multigraph. Let H be a
spanning submultigraph of G. If H is admissibly contractible, then so is G.

Proposition 3.5. — The following vertex-weighted multigraphs K1,
K2, K3 and K4 are all admissibly contractible:

K1 =

2v1 2 v2

2
v3

2
v4

2
v5

K2 =

2v1 2 v2

2
v3

2
v4

2
v5

2
v6

ANNALES DE L’INSTITUT FOURIER
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K3 =

2
v1

2v7

2v6

2 v2

2 v3

2
v5

2
v4

K4 =

2
v1

2
v2

2v8

2v7

2 v3

2 v4

2
v6

2
v5

Proof. — For simplicity, we will omit the name of vertices in all pictures.
A successive admissible contraction of K1 is illustrated as below:

2 2

2 2

2

l=0−−→

4 ∗

2 2

2

l=0−−→

4

4
∗

2

l=1−−→ 4 6 ∗
l=3−−→ 10 ∗

A successive admissible contraction of K2 is illustrated as below:

2 2

2

22

2
l=0−−→

4 ∗

2

22

2
l=0−−→

4

4 ∗
2

2

l=0−−→

4

44
∗

l=0−−→ 4 8 ∗
l=3−−→ 12 ∗

A successive admissible contraction of K3 is illustrated as below:

2
2

2

2

2
2 2

l=0−−→

2
2

2
4 ∗

2 2

l=0−−→

2
2

2
4

4 ∗

=: K ′3

It is clear thatK1 is a spanning submultigraph ofK ′3. SinceK1 is admissibly
contractible, so is K ′3. Hence K3 is also admissibly contractible.

TOME 68 (2018), FASCICULE 2
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An admissible contraction of K4 is illustrated as below:

2 2
2

2

2

2
2 2

l=0−−→

4 ∗

2

2

2

2
2 2

=: K ′4

It is clear thatK3 is a spanning submultigraph ofK ′4. SinceK3 is admissibly
contractible, so is K ′4. Hence K4 is also admissibly contractible. �

Lemma 3.6. — Let G be a vertex-weighted multigraph. Let H be a
submultigraph of G. Assume the following conditions:

(1) G is completely multipartite;
(2) wtG > 2;
(3) If {v1, . . . , vs} ⊂ VH is a set of mutually non-adjacent vertices of

H, then s 6 #VH − 4.
Then there exists a successive admissible contraction G′ of G such that H
is a spanning submultigraph of G′.

Proof. — We do induction on q := #(VG \VH). If q = 0, then the lemma
is proved by taking G′ := G. Assume that the lemma is proved for q − 1.
Let w ∈ VG be an arbitrary vertex of G. Let {v1, . . . , vs(w)} be the set of
all vertices in VH that are not adjacent to w in G. Since G is completely
multipartite, {v1, . . . , vs(w)} is a set of mutually non-adjacent vertices of G
(hence of H). By assumption, we have s(w) 6 #VH − 4. This implies that
rdegG(w) > 4 for any vertex w of G. Let us pick a vertex w ∈ VG \ VH ,
then w is adjacent to a vertex v ∈ VH . Let G1 be the contraction of G with
respect to {v, w}. Since wtG > 2 and each vertex of G have reduced degree
> 4, G1 is an admissble contraction of G when l = 0. It is clear that H is
a also submultigraph of G1 with q − 1 = #(VG1 \ VH), wtG1 > 2, and G1
is also a completely multipartite. By the inductive hypothesis, there exists
a successive admissible contraction G′1 of G1 such that H is a spanning
submultigraph of G′1. The proof is finished by taking G′ := G′1. �

Remark 3.7. — It is easy to verify that H = Ki satisfies assumption (3)
of Lemma 3.6 for each 1 6 i 6 4.

Lemma 3.8. — Let G be a completely multipartite vertex-weighted
multigraph. Assume that for any vertex v of G we have rdeg(v) > 4 and
wt(v) > 2. Then G is admissibly contractible.
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Proof. — Since G is completely multipartite, there exists a partition of
vertices V = ∪k

i=1Vk such that two vertices are non-adjacent if and only
if they belong to the same Vi. Denote ai := #Vi. For simplicity we may
assume that a1 6 a2 6 · · · 6 ak. Then rdeg(v) > 4 implies

∑k−1
i=1 ai > 4.

In particular, k > 2.
We divide the proof into five cases based on values of k and a1. We will

use Lemma 3.6 in all cases. Since G satisfies assumptions (1) and (2) of
Lemma 3.6, we only need to verify assumption (3).

Case 1. k > 5. — Let us pick vi ∈ Vi for 1 6 i 6 5. Let H be the sub-
multigraph of G generated by {v1, . . . , v5}. Since {v1, . . . , v5} are mutually
adjacent in G, K1 is a spanning submultigraph of H. Hence H satisfies
condition (3). By Lemma 3.6, there exists a successive admissible contrac-
tion G′ of G such that H (hence K1) is a spanning submultgraph of G′.
By Proposition 3.5, K1 is admissibly contractible, hence G is admissibly
contractible.

Case 2. k = 4. — Since
∑3

i=1 ai > 4, we have that a1, a2 > 1 and
a3, a4 > 2. Let us pick v1 ∈ V1, v4 ∈ V2, v2, v5 ∈ V3 and v3, v6 ∈ V4. Let H
be the submultigraph of G generated by {v1, . . . , v6}. It is easy to see that
K2 is a spanning submultigraph of H, hence H satisfies condition (3). By
Lemma 3.6, there exists a successive admissible contraction G′ of G such
that H (hence K2) is a spanning submultgraph of G′. By Proposition 3.5,
K2 is admissibly contractible, hence G is admissibly contractible.

Case 3. k = 3 and a1 > 2. — We know that a2, a3 > a1 > 2. Let us
pick v1, v4 ∈ V1, v2, v5 ∈ V2 and v3, v6 ∈ V3. Let H be the submultigraph
of G generated by {v1, . . . , v6}. It is easy to see that K2 is a spanning
submultigraph of H, hence H satisfies condition (3). By Lemma 3.6, there
exists a successive admissible contraction G′ of G such that H (hence K2)
is a spanning submultgraph of G′. By Proposition 3.5, K2 is admissibly
contractible, hence G is admissibly contractible.

Case 4. k = 3 and a1 = 1. — Since a1 + a2 > 4, we have a2, a3 > 3.
Let us pick v1 ∈ V1, v2, v4, v6 ∈ V2 and v3, v5, v7 ∈ V3. Let H be the
submultigraph of G generated by {v1, . . . , v7}. It is easy to see that K3
is a spanning submultigraph of H, hence H satisfies condition (3). By
Lemma 3.6, there exists a successive admissible contraction G′ of G such
that H (hence K3) is a spanning submultgraph of G′. By Proposition 3.5,
K3 is admissibly contractible, hence G is admissibly contractible.

Case 5. k = 2. — Since a1 > 4, we have a1, a2 > 4. Let us pick
v1, v3, v5, v7 ∈ V1 and v2, v4, v6, v8 ∈ V2. Let H be the submultigraph of
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G generated by {v1, . . . , v8}. It is easy to see that K4 is a spanning sub-
multigraph of H, hence H satisfies condition (3). By Lemma 3.6, there
exists a successive admissible contraction G′ of G such that H (hence K4)
is a spanning submultgraph of G′. By Proposition 3.5, K4 is admissibly
contractible, hence G is admissibly contractible. �

4. Zaidenberg’s method

Definition 4.1. — Let (X,∆) be a log smooth projective surface pair.
Let C be a reduced curve in X. Let {Γt}t∈D be a holomorphic flat family of
reduced divisors on X. Denote by Γ ⊂ X ×D the development of {Γt}t∈D.
We say that {Γt}t∈D is an admissible deformation of C if Γ0 = C and
the set Γ∗0 := {x ∈ Γ0 | Γ is locally analytically irreducible at (x, 0)} is
Brody hyperbolic. If, moreover, ∆ + C is normal crossing, an admissible
deformation {Γt}t∈D of C is nodal if ∆+Γt is normal crossing for any t ∈ D.
Besides, we say that {Γ(j)

t }t∈D,16j6k is a successive admissible deformation
of C if for each 1 6 j 6 k there exists tj ∈ D \ {0}, such that {Γ(j)

t }t∈D is
an admissible deformation of Γ(j−1)

tj−1
where Γ(0)

t0
:= C.

The following lemma is a generalization of Zaidenberg’s result [21, Lemma-
Definition 3.2] to surface pairs.

Lemma 4.2. — Let (X,∆) be a log smooth projective surface pair. Let
C be a reduced curve in X such that ∆+C is normal crossing. Let {Γt}t∈D
be an admissible deformation of C. If X \ (C \ ∆) is Brody hyperbolic,
then X \ (Γt \∆) is also Brody hyperbolic for any 0 < |t| � 1. (Note that
X \(C \∆) being Brody hyperbolic is the same as saying that X \C has the
property of hyperbolic non-percolation through C ∩∆ according to [19].)

Proof. — The proof is similar to [21, Proof of Lemma-Definition 3.2]. �

Lemma 4.3. — Let X be a smooth projective rational surface. Let C1,
C2 be two intersecting rational nodal curves such that C1 + C2 is normal
crossing. Assume that (−KX · C1) > l + 1 and (−KX · C2) > l + 2 for
some non-negative integer l < (C1 ·C2). Then for any subset {x1, . . . , xl} ⊂
C1 ∩ C2, there exists a holomorphic flat family of divisors {Γt} in X such
that Γ0 = C1 +C2 and Γt is an irreducible rational nodal curve singular at
xi for any t 6= 0 and any 1 6 i 6 l.
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Proof. — Denote by σ : X̃ = Blx1,...,xl
X → X the blow up of X at

x1, . . . , xl. Let E be the reduced exceptional divisor of σ. Let C̃1 and C̃2 be
strict transforms of C1 and C2 under σ. It is easy to see that (−KX̃ ·C̃1) > 1,
(−KX̃ · C̃2) > 2 and (C̃1 · C̃2) > 0. It is clear that both C̃1 and C̃2 are
irreducible rational nodal curves intersecting each other transversally. De-
note by fi : P1 → X̃ the normalization of C̃i. Since fi is an immersion,
we have an exact sequence 0 → TP1 → f∗i TX̃ → NC̃i/X̃ → 0, where
degNC̃i/X̃ = (−KX̃ · C̃i) − 2 > i − 2. Hence f∗1TX̃ ⊗ O(1) is nef and
f∗2TX̃ ⊗O(1) is ample. Denote by f : P1 ∨P1 → X̃ the gluing morphism of
f1 and f2 at an intersection point of C̃1 and C̃2. ThenH1(P1∨P1, f∗TX̃) = 0
by [13, II.7.5], so the deformation of f is unobstructed. By [13, I.2.17] there
exists a holomorphic flat family of divisors {Γ̃t}t∈D such that Γ̃0 = C̃1 + C̃2
and Γ̃t is an irreducible rational nodal curve whenever t 6= 0. After a
reparametrization of t if necessary we may also assume that Γ̃t +E is nor-
mal crossing for each t. The lemma is proved by taking Γt := σ∗(Γ̃t). �

Lemma 4.4. — Let (X,∆) be a log smooth projective surface pair with
X rational. Let C =

∑m
i=1 Ci (m > 2) be a reduced divisor on X such that

each Ci is an irreducible nodal rational curve and ∆+C is normal crossing.
Assume

• (C1 · C2) > 0;
• (Ci · (C − Ci)) > 3 for any 3 6 i 6 m;
• There exists a non-negative integer l < (C1 ·C2), such that (−KX ·
Ci) > l + i and (Ci · (C − C1 − C2)) > 3− l for any i ∈ {1, 2}.

Then there exists a nodal admissible deformation {Γt}t∈D of C such that
Γt = At+

∑m
i=3 Ci where At is an irreducible rational nodal curve whenever

t 6= 0.

Proof. — Let us pick l distinct points x1, . . . , xl in C1∩C2. By Lemma 4.3,
there exists a holomorphic flat family {At}t∈D of reduced divisors onX such
that A0 = C1 +C2 and At is an irreducible rational nodal curve singular at
x1, . . . , xl for any t ∈ D \ {0}. By Bertini’s theorem, after a reparametriza-
tion of t we may assume that ∆ +At +

∑m
i=3 Ci is normal crossing for any

t ∈ D. Let Γt := At +
∑m

i=3 Ci, then it suffices to show that Γ∗0 is hyper-
bolic. As a divisor in X×D, Γ = A+

∑m
i=3 Ci, where A is the development

of {At}t∈D and Ci := Ci × D. Thus Γ is (analytically) reducible at (x, 0) if
x ∈ Ci ∩ Cj for some {i, j} 6= {1, 2}. By Lemma 4.3, we know that A is
analytically reducible at (x1, 0), . . . , (xl, 0). Thus we have

Γ0 \ Γ∗0 ⊃ {x1, . . . , xl} ∪
(
∪{i,j}6={1,2} (Ci ∩ Cj)

)
=: V.
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Since Γ0 =
∑m

i=1 Ci, we only need to show that Ci \ V is hyperbolic for
any 1 6 i 6 k. For each i ∈ {1, 2}, #Ci ∩ V = #

(
{x1, . . . , xl} ∪ (∪j>3(Ci ∩

Cj))
)

= l + (Ci · (C − C1 − C2)) > 3. For each i > 3, #Ci ∩ V =
(
Ci ·

(C − Ci)
)
> 3. Hence Ci \ V is hyperbolic for each 1 6 i 6 k. The lemma

is proved. �

Definition 4.5. — Let X be a smooth projective surface. Let C =∑m
i=1 Ci be a reduced normal crossing divisor on X. The dual graph

D(C) := (V,E, r,wt) of C is a vertex-weighted multigraph defined as fol-
lows:

• V := {v1, . . . , vm};
• E := ∪16i<j6m(Ci ∩ Cj);
• For each p ∈ E, r(p) := {vi, vj} where {i, j} is the unique unordered
pair with p ∈ Ci ∩ Cj ;

• For each vi ∈ V , wt(vi) := (−KX · Ci).

Lemma 4.6. — Let (X,∆) be a log smooth projective surface pair with
X rational. Let C =

∑m
i=1 Ci be a reduced divisor such that C + ∆ is nor-

mal crossing, and each Ci is an irreducible rational curve. If the dual graph
D(C) is admissibly contractible, then there exists a successive nodal ad-
missible deformation {Γ(j)

t }t∈D,16j6m−1 such that Γ(m−1)
tm−1

is an irreducible
rational nodal curve. If, moreover, X \ (C \∆) is Brody hyperbolic, then
{Γ(j)

t }t∈D,16j6m−1 can be chosen so that X \ (Γ(j)
t \∆) is Brody hyperbolic

for any t ∈ D and any 1 6 j 6 m− 1.

Proof. — The successive nodal admissible deformation {Γ(j)
t }t∈D,16j6m−1

can be constructed inductively by a successive admissible contraction of the
dual graph D(C) using Lemma 4.4. The hyperbolicity part follows from
Lemma 4.2 and taking reparametrizations of t if necessary. �

Lemma 4.7. — Let (X,∆) be a log smooth projective surface pair with
X rational. Let C be an irreducible rational nodal curve in X such that
∆ + C is normal crossing. If (−KX · C) > 8 and # Sing(C) > 4, then
there exists a successive nodal admissible deformation {Γ(j)

t }t∈D,16j62 of
C such that Γ(2)

t2
is an irreducible smooth hyperbolic curve. If, moreover,

X \ (C \ ∆) is Brody hyperbolic, then {Γ(j)
t }t∈D,16j62 can be chosen so

that X \ (Γ(j)
t \∆) is Brody hyperbolic for any t ∈ D and any 1 6 j 6 2.

Proof. — Let us pick two nodes p1, p2 ofC. Denote by σ : X̃ = Blp1,p2 X→
X the blow up of X at p1, p2. Let E = E1 +E2 be the reduced exceptional
divisor of σ. Let C̃ ⊂ X̃ be the strict transform of C under σ. We claim
that C̃ is base point free in X̃.
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Since X̃ is rational, we haveH1(X̃,OX̃) = 0. Thus the claim is equivalent
to saying that OC̃(C̃) is globally generated. Since (−KX ·C) > 8, we have

(−KX̃ · C̃) = (σ∗(−KX) · C̃)− (E · C̃) = (−KX · C)− 4 > 4.

By adjunction we have (−KX̃ · C̃) = (C̃2) − 2# Sing(C̃) + 2, so we have
deg ν∗OC̃(C̃) = (C̃2) > 2# Sing(C̃)+2, where ν : P1 → C̃ is the normaliza-
tion of C̃. Hence the global sections of ν∗OC̃(C̃) separate any 2# Sing(C̃)+1
points on P1. In particular, this implies that OC̃(C̃) is globally generated.

Now we have shown that C̃ is base point free on X̃. By Bertini’s theorem,
there exists a holomorphic flat family of irreducible divisors {Γ̃(1)

t }t∈D on X̃
such that Γ̃(1)

0 = C̃ and (X̃, Γ̃(1)
t +E+σ∗∆) is log smooth for any t ∈ D\{0}.

Let Γ(1)
t := σ∗Γ̃(1)

t . Since Γ̃(1)
0 = C̃ intersects Ei transversally at two points

for any i ∈ {1, 2}, it is clear that Γ̃ has two analytic branches intersecting
Ei × {0} in different points. Thus Γ(1) has two analytic branches at (pi, 0)
for each i ∈ {1, 2} which implies that Γ(1),∗

0 ⊂ C \ {p1, p2} is hyperbolic.
Besides, (X̃, Γ̃(1)

t + E + σ∗∆) being log smooth implies that Γ(1)
t is nodal

at p1, p2, smooth elsewhere and intersects transversally with ∆ for any
t ∈ D \ {0}. Hence {Γ(1)

t }t∈D is a nodal admissible deformation of C with
∆ + Γ(1)

t being normal crossing for each t ∈ D.
Now let us fix an arbitrary t1 ∈ D \ {0}. Since pa(C̃) = # Sing(C̃) =

# Sing(C)−2 > 2, we know that Γ(1)
t is hyperbolic for any t ∈ D\{0}. As we

argued before in showing the base-point-freeness of C̃, (−KX · C) > 8 > 4
also implies that C is base point free on X. Hence by Bertini’s theorem
there exists a holomorphic flat family of irreducible divisors {Γ(2)

t }t∈D on
X such that Γ(2)

0 = Γ(1)
t1

and (X,Γ(2)
t +∆) is log smooth for any t ∈ D\{0}.

Besides, Γ(2),∗
0 ⊂ Γ(2)

0 = Γ(1)
t1

is hyperbolic. Hence {Γ(2)
t }t∈D is a nodal

admissible deformation of Γ(1)
t1

such that ∆ + Γ(2)
t is normal crossing for

any t ∈ D. Besides, g(Γ(2)
t ) = pa(Γ(2)

0 ) > pg(Γ(2)
0 ) > 2 for any t ∈ D \ {0},

hence Γ(2)
t is hyperbolic for any t ∈ D\{0}. The lemma is proved by taking

arbitrary t2 6= 0. �

Lemma 4.8. — Let (X,∆) be a log smooth projective surface pair with
X rational. Let C =

∑m
i=1 Ci be a reduced divisor on X such that C + ∆

is normal crossing. Assume that each Ci is a base-point-free irreducible
rational curve with (−KX · Ci) > 2, and it intersects with at least four
other Cj ’s. If X \

(
(∪m

i=1Ci) \∆
)
is Brody hyperbolic, then there exists an

irreducible smooth curve C ′ linearly equivalent to
∑m

i=1 Ci such that both
C ′ and X \ (C ′ \∆) are Brody hyperbolic.
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Proof. — Let G := D(C) be the dual graph of C. Since each Ci is base-
point-free, G is completely multipartite. By assumptions, for each vertex v
of G we have rdeg(v) > 4 and wt(v) > 2. Hence Lemma 3.8 implies that
D(C) is admissibly contractible. By Lemma 4.6, there exists a successive
nodal admissible deformation {Γ(j)

t }t∈D,16j6m−1 of C such that Γ(m−1)
tm−1

is
an irreducible rational curve and X \ (Γ(m−1)

tm−1
\ ∆) is Brody hyperbolic.

Since each Ci intersects with at least four other C ′js, we have m > 5, hence
(−KX · Γ(m−1)

tm−1
) =

∑m
i=1(−KX · Ci) > 10. Since 2

∑
16i<j6m(Ci · Cj) =∑m

i=1
∑

j 6=i(Ci · Cj) > 4m, we have

# Sing(Γ(m−1)
tm−1

) = pa(Γ(m−1)
tm−1

) = pa(C) = # Sing(C)− (m− 1)

>
∑

16i<j6m

(Ci · Cj)− (m− 1) > m+ 1 > 6.

By applying Lemma 4.7 to C := Γ(m−1)
tm−1

, we know that there exists a
successive nodal admissible deformation {Γ(j)

t }t∈D,m6j6m+1 of Γ(m−1)
tm−1

such
that Γ(m+1)

tm+1
is an irreducible smooth hyperbolic curve and X \(Γ(m+1)

tm+1
\∆)

is Brody hyperbolic. It is clear that Γ(m+1)
tm+1

is numerically equivalent to C,
hence they are linearly equivalent since X is rational. The lemma is proved
by taking C ′ := Γ(m+1)

tm+1
. �

The following corollary is a generalization of [21, Theorem 3.1] which
says that there exists a smooth plane curve of degree m whose complement
is Brody hyperbolic for m > 5.

Corollary 4.9. — Let m > 5 and d > 4 be integers. Then there exists
smooth plane curves C and S of degree m and d respectively, such that
(P2, S + C) is log smooth and P2 \

(
C \ S

)
is Brody hyperbolic.

Proof. — Let {Ci}m
i=1 be a set of lines in general position in P2. By

Corollary 2.3, there exists a smooth plane curve S of degree d such that
(P2,

∑m
i=1 Ci +S) is log smooth and P2\

(
(∪m

i=1Ci)\S
)
is Brody hyperbolic.

We know that (C2
i ) = 1 and each Ci intersects all Cj ’s whenever j 6= i. Since

m− 1 > 4, the corollary is proved by applying Lemma 4.8 to (X,∆, Ci) :=
(P2, S, Ci). �

The following corollary is related to [10, 1.2] where they studied hyper-
bolic imbeddedness of F0 \ C.
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Corollary 4.10. — Let a, b, c, d be integers. Then there exists smooth
curves C and S in FN of bidegree (a, b) and (c, d) respectively, such that
(FN , S + C) is log smooth and FN \

(
C \ S

)
is Brody hyperbolic if one of

the following is true:
• N = 0 and a, b, c, d > 4;
• N > 1, a, c > 3 and b, d > 4.

Proof. — Let {Ci}a+b
i=1 be a set of curves in FN , such that Ci is a general

curve in |F | for any i 6 a, and Cj is a general curve in |T | for any j > a.
By Corollary 2.4, there exists a smooth curve S of bidegree (c, d) such
that (FN ,

∑a+b
i=1 Ci + S) is log smooth and FN \

(
(∪a+b

i=1Ci) \ S
)
is Brody

hyperbolic. We know that (C2
i ) = 0 for each i 6 a and (C2

j ) = N > 0 for
each j > a. From the proof of Corollary 2.4 we know that Ci intersects
with at least four Cj ’s for each 1 6 i 6 a+ b. Hence the corollary is proved
by applying Lemma 4.8 to (X,∆, Ci) := (FN , S, Ci). �

5. Proofs

Lemma 5.1. — Let X be a smooth projective surface. Let L be a line
bundle on X. Let n > 2 be an integer. Assume that there exists irreducible
divisors C ∈ |L| and S ∈ |L⊗n| satisfying that (X,S + C) is log smooth,
and both C and X \ (C \ S) are Brody hyperbolic. Then there exists a
smooth curve D ∈ |L⊗n| such that the degree n cyclic cover of X branched
along D is Brody hyperbolic.

Proof. — Let {St}t∈P1 be the linear pencil of divisors on X spanned by
S0 := nC and S∞ := S. Then the development of {St} is an effective
Cartier divisor S of X × P1. Since S and C intersect transversally, it is
not hard to check in local charts that S is smooth away from the finite set
(C ∩ S)× {0}. Let π : Y → X × P1 be the degree n cyclic cover of X × P1

branched along S. Then Y is smooth away from π−1((C ∩S)×{0}). From
the construction it is clear that each fiber Yt of pr2 ◦π : Y → P1 is a degree
n cyclic cover of X branched along St. Since S0 = nC, Y0 is the union of n
irreducible components {Y0,i}n

i=1 such that Y0,i ∩ Y0,j = π−1(C × {0}) for
any i 6= j, and π : (Y0,i, π

−1(C × {0})) → (X,C)× {0} is an isomorphism
for any i.
Assume to the contrary that Ytn

is not Brody hyperbolic for a sequence
of non-zero complex numbers (tn) converging to 0. Let φn : C → Ytn

be the sequence of entire curves. We may assume that ||φ′n(0)|| tends to
infinity after coordinate changes. By Brody Lemma (e.g. [6]), after choosing
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a subsequence if necessary, there exists a sequence of reparametrizations
rn : DRn

→ D where limn→∞Rn = +∞ such that (φn ◦ rn) converges to
an entire curve φ∞ : C → Y0 as n → ∞. Notice that Y0,i is Cartier away
from π−1((C ∩ S) × {0}), so Lemma 2.1 implies that φ∞(C) is contained
in at least one of the (n+ 1) subsets {Y (i)

0 }n
i=0 of Y0, where

Y
(0)

0 := π−1(C × {0}),

Y
(i)

0 := Y0,i \ π−1((C \ S)× {0}) for any 1 6 i 6 n.

In particular, at least one of the subsets {Y (i)
0 }n

i=0 is not Brody hyperbolic.
Under the projection π, it is not hard to see that Y (0)

0
∼= C and (Y0,i, Y

(i)
0 ) ∼=

(X,X \ (C \ S)) for any 1 6 i 6 n. Thus Y (i)
0 is Brody hyperbolic for any

0 6 i 6 n, we get a contradiction.
As a result, Yt is Brody hyperbolic for any t 6= 0 sufficiently small. Since

St is smooth for general t, the lemma is proved by choosing D := St for
t 6= 0 sufficiently small. �

Proof of Theorem 1.2. — Let π : Y → P2 be the double cover of P2

branched along D.
For the “only if” part, if d 6 4 then Y is a rational surface; if d = 6 then

Y is a K3 surface. In both cases Y is not Brody hyperbolic. If d = 8, since
Brody hyperbolicity is preserved under small deformation, we may deform
D a bit to ensure that there exists a bitangent line ` of D that meets D
transversally in four further points. Hence by Riemann–Hurwitz formula,
π−1(`) is an elliptic curve. Thus Y is never Brody hyperbolic when d 6 8.
For the “if” part, Corollary 4.9 implies that there exist plane curves C

and S of degree d/2 and d respectively, such that (P2, C+S) is log smooth
and P2 \ (C \ S) is Brody hyperbolic. Since d/2 > 5, C is a smooth curve
of genus at least 6, so it is Brody hyperbolic. Thus applying Lemma 5.1 to
(X,L, n,C, S) := (P2,O(d/2), 2, C, S) finishes the proof. �

The following theorem is an application of Corollary 4.9 and Lemma 5.1.
It also improves [15, Theorem 25].

Theorem 5.2. — Let d > 10 be a composite number. Then there exists
a smooth Brody hyperbolic surface of degree d in P3 that is a cyclic cover
of P2 under some linear projection.

Proof. — By assumption, d = d1d2 for some integers d1 > 2, d2 > 5.
Corollary 4.9 implies that there exist plane curves C and S of degree d2
and d respectively, such that (P2, C + S) is log smooth and P2 \ (C \ S)
is Brody hyperbolic. Since d2 > 5, C is a smooth curve of genus at least
6, so it is Brody hyperbolic. Applying Lemma 5.1 to (X,L, n,C, S) :=
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(P2,O(d2), d1, C, S) yields that there exists a smooth plane curve D of
degree d such that the degree d1 cyclic cover Y of P2 branched along D is
Brody hyperbolic. Let W be the degree d cyclic cover of P2 branched along
D, then there is a natural finite surjective morphism W → Y . Since Y is
Brody hyperbolic, W is also Brody hyperbolic. �

Proof of Theorem 1.3. — Let π : Y → FN be the double cover of FN

branched along D.
For the “only if” part, assume to the contrary that b 6 6, then (D ·F ) =

b 6 6. Since dim |F | = 1, there exists a curve F0 ∈ |F | such that F0 is
tangent to D at some point. As a result, π−1(F0) is a double cover of P1

branched along a non-reduced divisor of degree 6 6. This implies that each
irreducible component of π−1(F0) is either a rational curve or an elliptic
curve, so Y is not Brody hyperbolic. We get a contradiction. Hence we
must have b > 8. If N = 0, then a > 8 by the symmetry between F and T .
If N > 1, assume to the contrary that a 6 4, then (D · (T −NF )) = a 6 4.
Let T ′ ⊂ FN be the unique curve with negative self-intersection number,
then T ′ ∼ T −NF . Hence (D · T ′) 6 4. This implies that each irreducible
component of π−1(T ′) is either a rational curve or an elliptic curve, so Y is
not Brody hyperbolic. We get a contradiction. Therefore, the proof of the
“only if” part is completed.
For the “if” part, Corollary 4.10 implies that there exist plane curves C

and S of bidegree (a/2, b/2) and (a, b) respectively, such that (FN , C + S)
is log smooth and FN \ (C \ S) is Brody hyperbolic. If N = 0, then
a, b > 8 implies that C is a smooth curve of genus at least 9; if N > 1,
then a > 6 and b > 8 implies that C is a smooth curve of genus at
least 6N + 6. So C is Brody hyperbolic for every N > 0. Thus applying
Lemma 5.1 to (X,L, n,C, S) := (FN ,OFN

((a/2)F + (b/2)T ), 2, C, S) fin-
ishes the proof. �

Remarks 5.3.
(1) According to [8], the canonical model of a Horikawa surface with

even c2
1 is either a double cover of P2 branched along a degree 8 or

10 curve, or a minimal resolution of a double cover of FN branched
along a bidegree (a, 6) curve where a has finite choices depending on
N . Hence the “only if” parts of Theorems 1.2 and 1.3 imply that a
Brody hyperbolic Horikawa surface with even c2

1 has to be a double
cover of P2 branched along a degree 10 curve (in fact one only needs
to check algebraic hyperbolicity). However, our deformation method
cannot be applied to exhibit other Brody quasi-hyperbolic Horikawa
surfaces (i.e. satisfying the Green–Griffiths–Lang conjecture).
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(2) Smooth quintic surfaces in P3 are natural examples of Horikawa
surfaces with odd c2

1. It was shown by Xu [20] that a very general
quintic surface does not contain any rational or elliptic curve. How-
ever, no examples of Brody hyperbolic (even algebraic hyperbolic)
quintic surfaces are known so far. Notice that the case of a (very)
general quintic surface in P3 corresponds to the case d = 2n− 1 in
the Kobayashi Conjecture (cf. [11, 12]).

(3) Since Brody hyperbolicity is open in the Euclidean topology (see
e.g. [12, 3.11.1]), Theorems 1.2 and 1.3 imply that there exist non-
empty open subsets of certain moduli spaces of double covers of P2

or FN that parametrize Brody hyperbolic ones. Besides, we know
that Brody hyperbolicity implies algebraic hyperbolicity, and al-
gebraic hyperbolicity is a very generic property in families. Hence
Theorem 1.2 gives an alternative proof of [18, Theorem 3.2].
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