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NON-COMMUTATIVE HODGE STRUCTURES

by Claude SABBAH (*)

ABSTRACT. — This article gives a survey of recent results on a generalization
of the notion of a Hodge structure. The main example is related to the Fourier-
Laplace transform of a variation of polarizable Hodge structure on the punctured
affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a
smooth quasi-projective variety. Variations of non-commutative Hodge structures
often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt*
geometry.

RESUME. — Nous donnons un panorama des résultats récents concernant une
généralisation de la notion de structure de Hodge. L’exemple principal est celui
produit par la transformation de Fourier-Laplace d’une variation de structure de
Hodge polarisable sur la droite affine épointée, comme les systémes de Gauss-Manin
de fonctions algébriques propres ou modérées sur une variété quasi-projective lisse
complexe. Le fibré tangent d’une variété de Frobenius peut souvent étre muni d’une
variation de structures de Hodge non-commutatives polarisables, d’ou 'on déduit
une géométrie spéciale du type tt*.

1. Introduction

1.1. Notation. — All along this article, the abbreviation “nc” means
“non-commutative”. We will consider the Riemann sphere P! equipped
with two affine charts Uy = SpecC|z], U, = SpecClz'], and Uy N Uy =
Spec C[z, 27 1]=Spec C[2’, 2/~1] where the identification is given by 2’ =271,
We will consider the involution ¢ : P — P! defined by «(z) = —z, and
the anti-holomorphic involution v : P! — P' defined by v(z) = 1/z.
The composed involution v o ¢ will be denoted by o. When restricted to
S:={z€ Uy ||z| =1}, ¢ and o coincide, since |5 = Ids.

Keywords: Non-commutative Hodge structure, Fourier-Laplace transformation,
Brieskorn lattice.
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2682 Claude SABBAH

1.2. — The terminology “non-commutative Hodge structure” (which
should not be confused with that of non-abelian Hodge theory developed
by C. Simpson [49, 51, 53]) has been introduced by Katzarkov-Kontsevich-
Pantev [26] to cover the kind of Hodge structure one should expect on the
periodic cyclic cohomology of smooth compact non-commutative spaces
(although we will keep the setting of standard commutative algebraic
geometry in this article and we will not provide any example in the setting
of non-commutative spaces envisioned in loc. cit., which we refer to for
details, as well as to [19] and the recent preprints [20, 47]).

Generalizations of the notion of a Hodge structure already occur for
usual algebraic geometric objects, like polynomial functions, where such a
structure is related to oscillating integrals. In this context, such a structure
has been brought to light by Cecotti, Vafa et al. in various articles [5, 4, 6],
and formalized by C. Hertling in [10] under the name of pure (and polarized)
TERP structure, so as to treat variations of such objects. When such a
structure occurs on the tangent bundle of a manifold, this produces a tt*
geometry on this manifold.

By mirror symmetry, such a structure is expected on the quantum coho-
mology of some algebraic varieties, in the sense that the associated Frobe-
nius manifold should underlie a variation of polarized non-commutative
Hodge structures on its tangent bundle. Hertling (cf. loc. cit.) has also for-
malized the compatibility relations between the Frobenius manifold rela-
tions and the tt* geometry under the name of a C(ecotti)D(ubrovin)V (afa)-
structure. Explicit formulas from the quantum cohomology point of view
have been obtained by H. Iritani [17, 18] (cf. also [26] for the projective
space). We will not go further in this direction.

The purpose of this article is to survey recent developments concerning
non-commutative Hodge structures by themselves. We will only mention
some results concerning their variations and the corresponding limit theo-
rems. One can already emphasize that these structures allow limiting be-
haviour with irregular singularities (wild behaviour), while usual variations
of Hodge structures only allow limiting behaviour with regular singularities
(tame behaviour). As a consequence, they fit with transformations which do
not preserve the tame behaviour, like the Fourier-Laplace transformation.

The first attempt to provide a good Hodge theory in such a context seems
to be the notes [8] by P. Deligne (the relation with nc. Hodge structures is
briefly discussed in §6 and with more details in [41, §6]), and the expec-
tation of a behaviour by Fourier transformation analogous to the case of
Fourier-Deligne transformation in f-adic theory is clearly stated in [25,
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Rem. 7.3.3.3]. In some sense, Theorem 5.6 answers this remark, at least in
dimension one. On the other hand, the frame of such a theory, restricted to
the regular singularity case, was in germ in the work of A.N. Varchenko [55]
in Singularity theory, as well as in various later works concerning Hodge
theory for isolated singularity of holomorphic functions.

1.3. — The underlying analytic theorems in this non-commutative
Hodge theory apply to a wider context, that of twistor structures. The
main guiding article in this direction is due to C.Simpson [52], which
unifies under the notion of twistor structure (and variation of such) various
objects considered in nonabelian Hodge theory. The theory of variations of
pure and polarized twistor structures has been completed by T. Mochizuki
[30] in the tame case, extending the previous work of Simpson in dimension
one [48], and this work culminates with [33], where T. Mochizuki extends
his previous results to the wild setting (see also [37, 40]).

Giving a pure and polarized twistor structure of weight w € Z is equiva-
lent to giving a complex vector space H and a positive definite Hermitian
form h on it, together with an integer w (although giving a variation of
such objects is more subtle, since it involves the notion of a harmonic met-
ric [50]). This can be encoded in a vector bundle of pure slope w on P!
(which is now called a pure twistor structure of weight w), together with
the right replacement of a Hermitian form, called a polarization of this
twistor structure.

1.4. — The next step consists in generalizing the notion of a polarized
complexr Hodge structure. The bigrading is replaced with a meromorphic
connection on the vector bundle on P! considered above, having a pole of
order at most two at 0 and oo, and no other pole. The reason for restricting
to poles of order two is explained in §2.a. A vector bundle on P! with such
a connection is called an integrable twistor structure (integrable because,
when considering variations, it consists to adding an integrability condi-
tion to variations of twistor structures). It can also be described by linear
algebra objects on H (cf. §3.a), that is, endomorphisms U, Q of H. How-
ever, variations of such objects produce non-trivial integrability conditions
on these endomorphisms (cf. [10], [37, Chap. 7]). The endomorphism Q is
self-adjoint with respect to the metric i and its eigenvalues play the role of
the Hodge exponent p (more precisely, p —w/2) in HP"*~P. However, these
eigenvalues may vary in variations of pure polarizable integrable twistor
structure (that we now call polarized pure complex nc. Hodge structures).

1.5. — The main object in this article is the notion of a polarized
nc. k-Hodge structure, when k is a subfield of R, e.g. kK = Q. When k = R,
it corresponds to the notion of a pure polarized TERP structure as defined
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in [10], if one moreover takes care of a R-structure on the Stokes data of the
connection, in case the singularity at 0 and oo is irregular. We will recall
the well-known analysis that we need of connections with a pole of order
at most two in §2. The k-structure is included at the level of generalized
monodromy data, i.e., monodromy and (in the wild case) Stokes data. This
way of treating the k-structure has been much generalized by T. Mochizuki
in [31] for arbitrary holonomic D-modules.

While one can define the notion of a pure nc. Hodge structure without
introducing a polarization (cf. §3.6), proving that a given set of data form a
pure nc. Hodge structure often uses the supplementary existence of a polar-
ization. A simple, but nontrivial, example is given in §4, confirming a con-
jecture of C. Hertling and Ch. Sevenheck in [13], that they proved in some
special cases. The main argument (cf. [12]) relies on a general way to pro-
duce polarized complex Hodge structures, which is given in [39]. Namely,
given a variation of polarized complex Hodge structure on the complex
punctured affine line (a finite number of points deleted), one can associate,
by Fourier-Laplace transformation, a polarized complex nc. Hodge struc-
ture. This is reviewed in §5, where we also give some complements for pure
polarized nc. k-Hodge structures. The same idea is used (cf. [39]) to prove
that the Brieskorn lattice of a regular function on an affine manifold with
isolated singularities and a tame behaviour of the fibres at infinity (e.g. a
convenient and non-degenerate (Laurent) polynomial) underlies a rational
nc. Hodge structure. Results of this kind are reviewed in §6. Meanwhile,
we compare in §3.12 the notion of nc. Hodge structure with that of an
exponential pure Hodge structure, introduced in [27].

1.6. — Lastly, we consider numerical invariants of nc. Hodge structures.
There are various ways to replace the exponent p in HP>? (Hodge structure
of weight w, so that ¢ = w — p). These are called the spectral numbers at
z = 0, the spectral numbers at z = 0o, and the supersymmetric index. The
latter may vary in a real analytic way in variations of nc. Hodge structures,
hence is difficult to compute in general, being of a very transcendental
nature. On the other hand, the definition of spectral numbers at z = 0 goes
back to Varchenko [55] and Steenbrink (cf. [54]) in Singularity theory, and
the spectral numbers at z = oo were introduced in [35] (cf. also [38]). Many
authors have considered these invariants for local or global singularities. For
TERP(w) structures, they should remain constant when defining classifying
spaces (cf. [14, 15, 16]), an important question when considering associated
period mappings.

1.7. — 1In order to keep reasonable length to this paper, we do not treat
with details variations of nc. Hodge structures and their limits. We would
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like to emphasize, however, that the many-variable nilpotent orbit theorem
of [3] and [21] has now a “wild twistor” counterpart [33], as well as a TERP
counterpart [14], [32]. On the other hand, the Q-structure can also been
considered, according to [31] (see also [42]).

Acknowledgements. — 1 thank Claus Hertling for reading a prelimi-
nary version of the manuscript and useful comments. The content of this
survey article owes much to discussions and collaboration with him. I also
thank Takuro Mochizuki, Christian Sevenheck and Jean-Baptiste Teyssier
for their questions and suggestions, and for the various discussions we had.

2. Connections with a pole of order two

2.a. Filtered vector spaces with automorphism. We will regard
connections with a pole of order (at most) two as a suitable generalization
of the notion of a filtered complex vector space equipped with an automor-
phism in the following sense. Let V' be a finite dimensional complex vector
space, and let T be an automorphism of V. We denote by Ty its semi-simple
part and by T, its unipotent part, we set N = ﬁ log T, and we choose
a logarithm Dy = 5= log Ts. By a filtration of (V,T) we will mean an ex-
haustive decreasing filtration F*V of V indexed by Z which is stable by Tg
and such that N(FPV) C FP~1V for each p € Z. In particular, (V, T, F*V)
decomposes according to the eigenvalue decomposition of (V, Ty).

We also call (V, T) the associated Betti structure of (V, T, F*V) and, if k
is a subfield of C (e.g. k = Q, R or C), we say that the Betti structure
is defined over k if (V,T) = C ®g (Vg, Tk). The objects (Vi, Tg, F*V)
obviously form a category, with a duality functor and a tensor product.

We associate to these data a connection with a pole of order two, that is,
the free C[z]-module RpV := P, FPV 2" equipped with the connection
V =d+ (Ds+N/z)dz/z. This connection has a pole of order two at z = 0,
but has regular singularity there, and the monodromy is given by (V,T)
(choose a semi-simple endomorphism H with half-integral eigenvalues which
commutes with Dy and such that [H,N] = N, and apply the base change 2™
after a possible ramification of order two).

In the following, we will restrict to the case where the eigenvalues of T
have absolute value equal to 1.

2.b. Connections with a pole of order two (regular singularity
case). By a connection with a pole of order two (H,V) we mean a free
C{z}-module H of finite rank equipped with a connection V having a pole
of order at most two.

TOME 61 (2011), FASCICULE 7
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We set G = C({z}) ®cq.} H (where C({z}) denotes the field C{z}[z7"]
of convergent Laurent series in the variable z), equipped with the induced
connection V. We assume in this subsection that (G, V) has a regular sin-
gularity. There exists then a canonical decreasing filtration V°G indexed
by R, but with a finite number of jumps modulo Z, such that each V*G
is a free C{z}-submodule of G of rank equal to dimc.y G, on which the
connection has a pole of order at most one whose residue has eigenvalues
with real part in [a,a + 1), and such that 2"V G = V***G for each k € Z
and each a € R. In the following, we will assume that the eigenvalues of
the residue are real. We will also denote by (H, V) the unique extension of
the germ (H,V) as a free Opy,-module (cf. Notation 1.1) equipped with a
meromorphic connection having a pole of order two at the origin and no
other pole. If needed, we will use the unique C|[z]-submodule of T'(Uy, H)
(Birkhoff extension) on which the connection has a regular singularity at
infinity (by algebraizing the Deligne meromorphic extension of (H,V) at
infinity). Recall that the functor C({z})®c[.,. 1] (resp. C{z}®¢[.]) induces
an equivalence between the category of free C[z, z7!]-modules (resp. free
C[z]-modules) with a connection V having poles at 0 and oo only, the
pole at co being a regular singularity, and C({z})-vector spaces (resp. free
C{z}-modules) with a connection. We will implicitly use this functor.

2.1. The Betti structure. — By using the Op,-module approach, we
consider the local system £ on C* defined as ker V¢, that we call the
Betti structure of the connection with a pole of order two. Our previous
assumption amounts to assuming that the eigenvalues of the monodromy
of £ have absolute value equal to 1. A k-structure of the connection with
a pole of order two (H,V) consists by definition of a k-structure of the
corresponding local system £. The objects (H,V, Lg) of connections with
a pole of order two with a k-Betti structure obviously form a category with
a duality functor and a tensor product.

2.2. V-gradation. — The gradation functor replaces (G,V) with
(gry G,gry V), where we have set gry, G = @,p(V*G/V>?G) and
where gry, V is the naturally induced connection: for a fixed a € R,
D cr(VAHrG/V>a+hG) is isomorphic to C[z, 271 ®¢ (VG/V>9G) and
the connection is defined as d + (Res, V)dz/z, with Res, V = ald +N,
with N, nilpotent.

That V has a regular singularity implies that (G,V) ~ (gry G,gry V).
The connection with a pole of order two induces a graded connection with a
pole of order two (gry, H, V) in a natural way, although it is not isomorphic
to (H, V) in general.

ANNALES DE L’INSTITUT FOURIER
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2.3. LEMMA. — The functor (H,V) — (V, T, F*V), where
V= @ ev0, T= & exp(—2miRes, V),
ae(—1,0] ace(—1,0]
PV @ (),
a€(—1,0]
induces an equivalence between the subcategory of graded connections with
a pole of order two and that of filtered vector spaces with an automorphism
as in §2.a. This functor extends naturally to objects with a k-structure.

Proof. — For the first part, cf. e.g. [36, Chap. III]. Let us make precise
that the gradation functor is the identity at the Betti level. This will im-
ply that the k-structure on (G, V) induces a k-structure on (gry G, gry, V).
Recall that the functor of taking global multi-valued sections induces an
equivalence between the category of local systems L to the category of vec-
tor spaces (L, T) with an automorphism. The composed functor (G, V) —
L — (L, T) is identified with

(G,V) — ker[Vo, : o @czp 9 — 1) ®cyzy gl,

where O denotes the space of germs at the origin of multi-valued holomor-
phic functions on C*, equipped with its natural monodromy operator. Let
N_a C O be the space of linear combinations with coefficients in C{z}) of
the multi-valued functions z~%(log 2)¢/¢!, with its natural connection, and
set N = Gaae(q,o] N_,. Then on the one hand, the natural inclusion of
ker[Va, :N@c({z})g — N®(C({z}) G] into ker[Vy_ : O®C({z})g — O®C({z}) g]
is an isomorphism compatible with monodromy, and on the other hand, the
first term is canonically identified to (V,T) as defined in the lemma. Since
the gradation functor is the identity at the (V, T) level, it remains the iden-
tity through the previous canonical functors at the (L, T) level, hence at
the Betti level. ]

2.c. Connections with a pole of order two (nr.exponential
case). We now relax the condition that (G, V) has a regular singularity.
Since V has a pole of order at most two on H, the connection has slopes
< 1 (cf. e.g. [28]) and we say, following [28, Chap. XII], that (G, V) has
exponential type. We will moreover assume that the slopes are either 0 or 1.
This is equivalent to the property that the Levelt-Turrittin decomposition
of (G,V) := C((2) ®c(zy (G, V) needs no ramification, that is, (G,V) is
isomorphic to a finite sum indexed by a finite subset C C C:

(2.4) G, V)~ ®(E G,

ceC

TOME 61 (2011), FASCICULE 7
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where (QAC, V.) is a connection with regular singularities and £~¢/* ® G. is
the C((2))-vector space G. equipped with the connection V. + cIddz/z2. Tt
is known (cf. e.g. [36, Rem. I1.5.8]) that, in such a case, (H, V) decomposes
accordingly, as
(2.5) (H. V) :=Clz] @cpoy (K, V) = @ (€77 @ Ho),

ceC
where (H., V) is a connection with a pole of order two with regular sin-
gularities as in §2.b. All over this article, nr. exponential type will be a
shortcut for exponential type with no ramification.

2.6. Example. — 1If the leading matrix of V in some C{z}-basis of H
is semi-simple, then (H,V) has nr.exponential type. On the other hand,
consider the connection with matrix

o Y _, dz
A(2)dz = P(2) (; + Id)P(z) =,
with
000 001
Y=[100]|, Pe)=1d+22, z=|000
010 000

Then the matrix 22A4(z) = P(Y + 21d)P~! has characteristic polynomial
equal to x(\) = (X — 2), but one can check that it is of exponential type
but needs ramification (compare with [26, Rem. 2.13]).

2.7. The Betti structure (Stokes filtration). — The local system L at-
tached to (G,V) comes equipped with a family of pairs of subsheaves
L. C Lg for each ¢ € C, which satisfies the properties below (cf. [7],
[28], [12], [42, Lect. 2]). For a fixed z € C*, define a partial order <, on C
compatible with addition by setting ¢ <, 0 iff ¢ = 0 or Re(¢/z) < 0 (and
¢ <,0iff ¢ # 0 and Re(c/z) < 0). This partial order on C only depends on
z/|z|. The required properties are as follows.

e For each z € C*, the germs L. . form an exhaustive increasing
filtration of L, compatible with the order <..
e For each z € C*, the germ L. . can be recovered as Zc,<zc Loz
e The graded sheaves L¢./L. are local systems on C*.
o The rank of @, .- L<c/L<. is equal to the rank of £, so that both
local systems are locally isomorphic, and there is only a finite set
C C C of jumping indices.
We will say that (£, L,) is a Stokes-filtered local system of nr. exponential
type , or simply a Stokes-filtered local system, as we will only consider those

ANNALES DE L’INSTITUT FOURIER



NON-COMMUTATIVE HODGE STRUCTURES 2689

of nr.exponential type in this article. A k-structure consists of a Stokes-
filtered local system (L, Lg..) such that (£, L,) = C®g (Li, Lk,.) (cf. [26,
Def. 2.14] and [42, Prop. 2.26] for an equivalent definition). In particular,
the monodromy of L is defined over k and, if kK C R, this implies that
ReTr(Res V) € %Z. On the other hand, recall that the Riemann-Hilbert
functor (G, V) — (L, L,) is an equivalence of categories (cf. [7] or [28, p. 58])
compatible with duality and tensor product.

The decomposition (2.4) or (2.5) is unique, and the formalization functor
(G, V) corresponds, via the Riemann-Hilbert functor (G,V) — (L, L,) to
the Stokes grading functor (£, L,) = @,cc L<c/L<e, so that the local sys-
tem associated to G, is gr, £ (cf. loc. cit.). As a consequence, a k-structure
on (H,V) induces a k-structure on each (H., V).

2.8. The Betti structure (Stokes data). — The previous description of
the Betti structure is independent of any choice. On the other hand, the
description with Stokes data below depends on some choices (cf. e.g. [12] for
details). Let C' be a non-empty finite subset of C. We say that 6, € R/27Z
is generic with respect to C' if the set C' is totally ordered with respect to
<. when z = €. Once 6, generic with respect to C' is chosen, there is a

unique numbering {cy, ..., ¢, } of the set C in strictly increasing order. We
will set 8/ = 6, + w. Note that the order is exactly reversed at 6/, so that
—C' is numbered as {—c1,...,—¢c,} by 6.

The category of Stokes data of type (C,6,) defined over k has objects
consisting of two families of k-vector spaces (L. 1, L¢2)cec and a diagram
of morphisms

s
n /\ n
(2.9) Li=@ Lea Ly =@ L, 2
i=1 i=1
~N~—_ 7
S/
such that

(1) 8= (8ij)ij=1,...n is block-upper triangular, i.e., Sj; : L¢; 1 — Le; 2
is zero unless ¢ < j, and S;; is invertible (so dim L., 1 = dim L, 2,

and S itself is invertible),
(2) ' = (Sl'-j)i,jzlv___m is block-lower triangular, i.e., Szfj i Le;n = Le 2
is zero unless ¢ > j, and S}, is invertible (so S’ itself is invertible).
A morphism of Stokes data of type (C,0,) consists of morphisms of
k-vector spaces Aq¢ @ Leyo — L;e, c € C, ¢ = 1,2, which are compatible
with the corresponding diagrams (2.9). This allows one to classify Stokes
data of type (C, 6,) up to isomorphism. The monodromy T4 on L, is defined
by T; = S~1S5’. Grading the Stokes data means replacing (S, S’) with their
block diagonal parts. There is a natural notion of tensor product in the
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category of Stokes data of type (C,0,), and a duality from Stokes data of
type (C,0,) to Stokes data of type (—C, 6,).

Fixing bases in the spaces L.y, ¢ € C, £ = 1,2, allows one to
present Stokes data by matrices (X,X') where ¥ = (%;;)ij=1,..n
(resp. ¥’ = (¥i;)ij=1,....n) is block-lower (resp.-upper) triangular and
each ;; (resp. ¥;) is invertible. The matrix ;'3 is the matrix of
monodromy of L, 1, while X713 is that of the monodromy of L;.

Given 6, generic with respect to C, there is an equivalence (depending on
0,) between the category of Stokes filtered local systems (Lg, Lk,,) defined
over k with jumping indices in C' and that of Stokes data of type (C,0,) de-
fined over k, which is compatible with grading, duality and tensor product

(cf. e.g. [12, §2]).

2.d. Connections with a pole of order two of nr.exponential
type obtained by Laplace transformation.

2.10. Inverse Laplace transformation. — The condition for a meromor-
phic connection (G, V) to have only slopes 0 and 1 is equivalent to the
property that (G,V) is obtained by a Laplace transformation procedure
from a meromorphic connection with regular singularity. Let us make this
precise. Recall that, by extending (G, V) as a free O¢(*0)-module with con-
nection having a pole at z = 0 only, then choosing the Deligne extension as
a Op1(%{0, 00})-module on which the connection has a regular singularity
at infinity, and then taking global sections, we find a free C[z, 2~ !]-module
with connection (G,V). Then G is a left C[z/](0,/)-module (2’ := z71).
If we identify the ring C[z](0,/) to C[t](0;) by the isomorphism 2z’ = 0,
0, = —t, then G is a C[t](d;)-module that we denote by ¥G. The con-
dition that (G, V) is of nr.exponential type is equivalent to the condition
that ¥G' has only regular singularities, at finite distance and at infinity, on
the complex t-line (cf. e.g. [41, Lemma 1.5]). We call FG the inverse Laplace
transform of (G, V). Equivalently, (G, V) is the Laplace transform of *G
with kernel e=**', and we use the notation G = F(FG). Note that the action

of 8, on FG is bijective.

2.11. Minimal extension and Brieskorn lattice. — We will have to
consider the minimal extension M of ¥G. By definition, this is the unique
C[t)(0;)-submodule of ¥G such that M has neither sub- nor quotient
C[t){d;)-module supported on a point. The Laplace transform ¥AM of M
satisfies in turn C[2/, 2/ 7] ®¢. M = G.

Any good filtration of M (in the sense of C[t](0;)-modules) gives rise to
a vector bundle (H, V) in (G, V) whose connection has a pole of order two.
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We will not recall its construction here, cf. [39, §1.d], [41, §1.c] for details.
It is called the Brieskorn lattice of the good filtration.

2.12. Betti structure. — We can pass from the Betti structure of M to
that of ¥M by the topological Laplace transformation, and the way back by
the inverse topological Laplace transformation (cf. [28]).

Let V be the local system of horizontal sections of M away from its
singularities C C A'. Assume that it is defined over k, that is, V = CQg V.
Let j : X = Al \ C — Al denote the inclusion. The analytic de Rham
complex DR*" M on A! has cohomology in degree zero only, equal to 5.V,
hence has a natural k-structure given by j,Vi.

The topological Laplace transform of the k-perverse sheaf F := j.V[1]
is defined in [28, Chap. VI, §2] (cf. also [42, §7.d], and [26] for a different ap-
proach), as a perverse sheaf on AL, with a Stokes structure at infinity, that
we denote by (YF,EF,). Forgetting the behaviour of this object near 2’ = 0
(this corresponds to tensoring *M with C[z’, 2'~1], that is, to considering
G) allows one to describe it as a Stokes-filtered local system (L, L, ). One
could also use classical integral formulas for the Stokes matrices (cf. [1]) to
describe the k-structure.

Notice that in [12, Prop. 4.7] one finds conversely the description of Vy,
in terms of (Lg, Lk, )-

Let now @ be a nondegenerate pairing Vi ® Vi, — kx. It extends as a
nondegenerate pairing j,Qp : j« Vi ® j. Vi — ka . By topological Laplace
transformation, we get a pairing ij\B : (Liy Lr,e) © 7Lk, Lia) — ks
Its germ on Ly ® ¢~ 1Ly (that is, forgetting the Stokes filtration) at z, € S
is described as follows. Let P! be oriented real blow-up space of P! at
t = oco. This is topologically a disc, obtained by adding a boundary S!
to Al, with coordinate (oco,e). For each 2, € S, let ®., denote the
family of closed sets of Al whose closure in P! does not cut the closed set
{(c0,e™) | Re(e?/ + 2,) = 0}. Then ij\BZO is the pairing induced by the
cup product followed by Qp:

Hy, (A" j.Ve)® Hy (A", 5.Vk) — HZ(A',Q) ~Q,

where we remark that the intersection family ®, N®_., is that of compact
sets in Al

2.13. PROPOSITION. — The Laplace transform ij\B induces a nonde-
generate pairing (Li, Lr.o) @ 11 (Li, L.0) — Ks.

Sketch of proof. — This follows from Poincaré duality if we forget the
Stokes filtration, and we have to check that the Stokes filtration behaves
correctly. Let us denote by D the Poincaré-Verdier duality functor. Then
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one shows for any ¢ € C, the existence of isomorphisms
(2.14) SDF)ce 0 'D(Fe.), N(DF)<.~1'D(F-.)

which are exchanged by duality up to bi-duality isomorphisms. In order to
do so, one uses an integral formula for the topological Laplace transforma-
tion (cf. [28, §VI.2], see also [42, Lect. 7]). These isomorphisms are obtained
by a local duality statement on the two-dimensional space of variables t, 2’
suitably blown-up, and then by using the commutation (up to a suitable
shift) of Poincaré-Verdier duality with smooth pull-back and proper push-
forward which enter in the definition of the topological Laplace transfor-
mation. g

2.e. Deligne-Malgrange lattices. We explain here another example
of pairs (H, V) of nr. exponential type. It can be obtained as the Brieskorn
lattice of a natural filtration of M, namely the filtration by Deligne lattices.

Let (G, V) be a meromorphic connection of nr. exponential type, that is,
satisfying (2.4). The functor which associates to any lattice H of G (i.e.,
a C{z}-free submodule such that C({z}) ®ci.y H = G) its formalization
Cl7] ®@cqz) H is an equivalence between the full subcategory of lattices of
G and that of lattices of G (cf. [29]). In particular, let us consider for each
c € C and a € R the Deligne lattices éca (resp. §C>a) of the regular con-
nection (éc, %c) considered in (2.4), characterized by the property that the
connection 60 on ég has a simple pole and the real parts of the eigenvalues
of its residue belong to [a,a + 1) (resp. to (a,a+1]). Clearly, G.ot! = 2G,°
and §C>a+1 _ Z§C>a.

According to the previous equivalence, there exist unique lattices of G,
denoted by DM*(G, V) (resp. DM~ %(G, V), which induce, by formalization,
the decomposed lattice @, E~/% ® G.* (resp. @, E~/* ®G.>*). They are
called the Deligne-Malgrange lattices of (G, V). We regard them as defining
a decreasing filtration of G.

2.15. LEMMA. — Any morphism (G, V) — (G', V') of meromorphic con-
nections of nr. exponential type is strictly compatible with the filtration by
Deligne-Malgrange lattices.

Sketch of proof. — The associated formal morphism is block-diagonal
with respect to the decomposition (2.4), and each diagonal block induces a
morphism between the corresponding regular parts, which is known to be
strict with respect to the filtration by the Deligne lattices. O

The behaviour by duality below is proved similarly by reducing to the
regular singularity case (cf. e.g. [36, §III.1.b] or [38, Lem. 3.2]).
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2.16. LEMMA. — Let (G,V) be as above and let (G, V)" be the dual

meromorphic connection. Then, there are canonical isomorphisms

[DM*(G, V)]" ~ DM~ ~*"((G,V)"],
[DM~“(G,V)]Y ~ DM~ “"1[(G, V)"]. O

We will use this lemma as follows (+*, Notation 1.1, will be needed later).

2.17. COROLLARY. — Let (G, V) be of nr. exponential type, with asso-
ciated Stokes structure (L, L,). Let Qp : (£,L£,) ®c t (L, L,) — C be a
nondegenerate bilinear pairing. Let Q : (G, V) ®cq.y " (G, V) = (C{z}),d)
be the nondegenerate pairing corresponding to Qp via the Riemann-Hilbert
correspondence. Then, for each a € R, Q extends in a unique way as a non-
degenerate pairing DM®(G, V) ®cy,y .* DM”*1(G,V) — (C{z},d). O

2.18. COROLLARY. — With the assumptions of Corollary 2.17, assume
moreover that a is an integer. Then,

(1) if none of the monodromies of the G. has 1 as an eigenvalue,
then DM*(G,V) = DM~%(G,V) for each integer a, and Q in-
duces a nondegenerate pairing DM*(G, V) ®cy.y ¢* DM*(G, V) —
(z2+1C{z}, d),

(2) if none of the monodromies of the G. has —1 as an eigenvalue,
then DM*Y2(G. V) = DM>*Y%(G,V) for each integer a,
and Q induces a nondegenerate pairing DM“71/2(Q,V) ®cyz}
FDMOY2(G, V) — (22¢C{z}, d). 0

3. Non-commutative Hodge structures

In this section, we fix a subfield k of R, e.g. kK = Q or R. The presentation
given below owes much to various sources: [10, 11], [13, 15], [26], [30, 32]
and [37].

3.a. Non-commutative Hodge structures via linear algebra.

3.1. A reminder on Hodge structures. — Let H be a finite dimensional
complex vector space. Recall that a complex Hodge structure of weight
w € 7Z consists in a decomposition H = @pez HPw~—P  Equivalently, it
consists of a semi-simple endomorphism Q of H with half-integral eigen-
values. The eigenspace of Q corresponding to the eigenvalue p—w/2, p € Z,
is HP'*~P_ The role of the weight only consists in fixing the bigrading.
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A real structure is a R-vector space Hr such that H = C ®r Hg, with
respect to which H*Y~PP = HPw=P, Then the matrix of Q in any basis
of Hpg is purely imaginary.

On the other hand, a polarization of a complex Hodge structure is a
nondegenerate (—1)*-Hermitian pairing ¥ on H such that the decompo-
sition is k-orthogonal and such that the Hermitian form h on H defined
by hygp.w-—» = ip’(w*p)kmp,ww =i~ (=1)Pk|gpw-» is positive definite, in
other words, defining the Weil operator C' by e™<, h = k(Cs,3). For a real
Hodge structure, the real polarization @ is then defined as the real part
of k, and it is (—1)“-symmetric.

3.2. Complex nc. Hodge structures. — By a complex nc. Hodge structure
of weight w € Z, we mean the data (H,U,UT, Q,w), where U,UT, Q are en-
domorphisms of H. When w is fixed, these data form a category, where
morphisms are linear morphisms H — H’ commuting with the endomor-
phisms U,UT, Q. For a complex Hodge structure, we have U = U = 0
and @ is as above. The category of complex nc. Hodge structures of weight
w € Z is abelian.

Example. — Assume U = U' = 0 and Q is semi-simple. One can de-
compose H = @, ¢. Hx, where H) is the M-eigenspace of e~2™2  Then
each (H),0,0,Q,w) is a Hodge structure of weight w and we can regard
(H,0,0,Q,w) as a Hodge structure of weight w equipped with a semi-simple
automorphism, with eigenvalue A on Hj.

In order to understand various operations on complex nc. Hodge struc-
tures, we associate to (H,U,UT, Q,w) the C[z]-module H = C[z] ®¢ H,
with the connection

d
(3.2%) V=d+ (z7U—(Q+ (w/2)1d) — 2U") =
z
This connection has a (possibly irregular) singularity at z = 0 and z = oo,
and no other singularity. Duality and tensor product are defined in a natural

way, according to the rules for connections. Hence
(H,Z/LZ/{T, Qaw)v = (Hva _tZ/[7 _tuT; _tQ7 —U)),

and (Hl,ul,Uf, Ql,wl) X (H27u27u;7927w2) has Welght w1 + wa and
the endomorphisms are defined by formulas like U; ® Ids + Id; ®Us. The
involution ¢ : z + —z induces a functor ¢*, with *(H,U, U, Q,w) =
(Ha 7“7 7Z/ﬁ7 Qa w)

3.3. Real nc. Hodge structures. — The complex conjugate of the com-
plex nc. Hodge structure is defined as

(H7u>uT7Q7w) = (H,UT,U,—Q7M),
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where H is the R-vector space H together with the conjugate complex
structure. A real structure x on (H,U,UT, Q,w) is an isomorphism from
it to its conjugate, such that & o k = Id. A real structure consists there-
fore in giving a real structure Hg on H, with respect to which Ut = U
and Q + Q = 0. We denote such a structure as (Hg,U, Q,w). Morphisms
are R-linear morphisms compatible with ¢/ and Q. Real nc. Hodge struc-
tures (Hg,U, Q, w) satisfy properties similar to that of complex nc. Hodge
structures and we have similar operations defined in a natural way.
3.4. Polarization of a complex nc. Hodge structure. — A polarization of

(H,U,U", Q,w) is a nondegenerate Hermitian form h on H such that

e } is positive definite,

o UT is the h-adjoint of U and Q is self-adjoint with respect to h.
It is useful here to introduce the complex Tate object T¢(¢) defined as
(C,0,0,0,—2¢) for ¢ € 7Z, corresponding to the Hodge structure C~4~¢,
The Tate twist by T¢(¢) is simply denoted by (¢). The last condition is
equivalent to asking that h defines an isomorphism

(H,U,UT, Q,w) = *(H,U,UT, Q,w)" (—w).
The tensor product
(Hy, Uy, Uf, Q1 by, wy) @ (Ha,Us, U, Qg ha,yws)

of polarized complex nc. Hodge structures is defined by the supplementary
relation h = h1 ® ho, and is also polarized.

3.5. Polarization of a real nc. Hodge structure and the Betti structure.
Although the notion of a real nc. Hodge structure seems to be defined
over R, the real vector space Hr does not contain all the possible “real”
information on the structure, in cases more general than that of a Hodge
structure. The Weil operator is not defined in this setting. The formula
C = e™< exhibits the Weil operator as a square root of the monodromy
of the connection d — Qdz/z. This suggests that the monodromy of the
connection (3.2 x) should be taken into account in order to properly define
the notion of a real nc. Hodge structure, and further, that of a nc. k-Hodge
structure. Even further, if V has an irregular singularity, the Betti real
structure is encoded in the Stokes data attached to the connection, not
only in the monodromy, as explained in §2.7, together with the notion of a
k-Betti structure, for any subfield k of R (e.g. k = Q).

Here is another drawback of the presentation of a complex nc. Hodge
structure as a vector space with endomorphisms: the notion of a variation
of such objects is not defined in a holomorphic way, exactly as H?"*'~P do
not vary holomorphically in classical Hodge theory. Good variations are
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characterized by the property of the Hermitian metric to be harmonic in
the sense of [50], and the endomorphisms U, Q satisfy relations encoded in
the notion of a CV structure [10].

The correct generalization of the Hodge filtration is that of a vector
bundle on the complex affine line together with a meromorphic connection.
This motivates the definition of a nc. Hodge structure in §3.b by taking
integrable twistor structures (i.e., vector bundles on Uy with a meromorphic
connection having a pole of order two at zero and no other pole, plus gluing
data with the “twistor conjugate” v*H or “twistor adjoint” o*H" object)
as the starting point.

3.b. Non-commutative Hodge structures via integrable twistor
structures.

3.6. Non-commutative k-Hodge structures. — Let (H, V) be a connec-
tion with a pole of order two of rank d, and let £ be the corresponding local
system on S. A real structure Lg on £ allows one to produce a holomorphic
vector bundle with connection (H,V) on P!, by gluing (H, V) (chart Up)
with v*(H, V) (chart Us, cf. Notation 1.1) through the flat gluing isomor-
phism g : (1, V)juynv.. — 7* (H,V)onmUoo uniquely defined as follows
(cf. [10)):

e g is uniquely defined from ¢V : H&JHU& = "y*lﬁlvUonUm,

e ¢V is uniquely defined from its restriction g‘g : L — L toS (recall

that g = Id),
) g‘g is defined to be the isomorphism induced by the real structure
on L.

We say that (H,V, Lgr) is pure of weight w if the bundle H is isomorphic
to Op1 (w)?. Notice that, for k € Z and for any A\ € C, (2*H,V,\Lg) is
then pure of weight w — 2k.

DEFINITION (cf. [10, Rem.2.13], [26]). — Let (H,V,(Lk,Lk,.)) be a
connection with a pole of order two and k-Betti structure. We say that it is
a pure nc. k-Hodge structure of weight w if the underlying triple (H,V, L),
with Lg := R®g Ly, is pure of weight w (if k = R and forgetting the Stokes
filtration Ly, we recover the notion of TER structure of [10, Rem. 2.13]).

Example. — Let Hj be a k-vector space and set H = C ®p Hg.
A Kk-Hodge structure of weight w consists of the data (Hy,F*H)
such that the filtration F*H and its conjugate are w-opposed. Set
(H,V) = (RrH,d) = (D, FPHz"",d) where d is the standard differential
on H ®c Clz, 27|, that we restrict to the C[z]-submodule @D,z FPH=T?
(we work here with the algebraic version of H). The local system Lp is
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the constant local system Hg and v*(H,V) = @, F92'~%. The condition
that (#H,V,Lg) is pure of weight w is equivalent to the w-opposedness
property. Indeed, let us show one direction for instance. If both filtrations
F* and F* are w-opposed, we have a bigrading H = @p HP"~P with
H®P = HP9 and F* defined as usual. Then we have decompositions into
finite sums

RpH = P(H?Y P ® 27PClz]),
2

VR = @1 & T = @7 7T,
q P
and the gluing morphism is the identity Cz, 2] ®¢[,) Rr H = H[z,27 '] =
H[Z, 271 = C[¢/, 2/~ &c[) v*RpH. For each p, the line bundle defined
by the gluing data (zPClz], 2P~ C[2'],Id) is nothing but Op: (w).

Example (The Tate object To(¢) with ¢ € 17). — For non-commutative
Hodge structures, we can take the opportunity of having monodromy # Id
to define the Tate nc. k-Hodge structure Ty (¢) for £ € 17Z. We set

(3.6 %) Tr(f) = (Oy,,d + £dz/z, (2mi/2) ks),

where (27i/z)’ks denotes the rank-one local system on S generated by
the (possibly) multivalued function (27i/z)’. It has monodromy equal to
(—1)%1d. By the residue theorem, T () has weight —2/.

If £ € Z, then we have an isomorphism

¥/
(3.6 %) Tw(l) = ('O, d, (27i) ks),

where we regard 2‘Op, as included in Oy, (1/z), with the induced differ-
ential d, and the latter object corresponds to the object constructed in the
previous example for the Tate Hodge structure k(¢), with Hy = (2mi)‘k
and H = H=%~*.

3.7. Polarized complex nc.Hodge structures. — Let now (H,V)
be a connection with a pole of order two equipped with a nonde-
generate -Hermitian pairing Y : £ ®c ¢7!'L — Cs. Recalling that
s = Id, we regard GSV as a nondegenerate o-Hermitian pairing
L®0 'L — Cg, and we extend it in a unique way as a nondegenerate pair-
ing GV : /H|VU0mUOC ® U_lﬁlvUomUm — Cy,nu,, - This pairing in turn defines
in a unique way a flat isomorphism € : o™ (H, V), v — (H, V) Vo -
By gluing with this isomorphism the dual bundle X (chart Uy) with the
o-conjugate bundle o*(H,V) (chart Us), we obtain a bundle 7 on P!,
which has degree zero by the residue formula. Since € is o-Hermitian, we
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obtain a natural morphism S : H — o*HY compatible with the connections
(it is induced by Id on each chart) and which is o-Hermitian. We say that
(H,V,C) is a pure complex nc. Hodge structure (of weight 0) if # is the
trivial bundle on P!.

If (H,V, Q) is pure of weight 0, the isomorphism S induces an isomor-
phism on global sections. Let us set H = I'(P*, ﬁ) Identifying in a natu-
ral way T'(P!,0*H) with T'(P!,H) = H, the isomorphism h := I'(P!,S) :
H — HV is a nondegenerate Hermitian pairing h : H @ H — C. We then
say that (H,V, Q) is a complex nc. Hodge structure, pure (of weight 0) and
polarized if h is positive definite.

Remark. — The following criterion can be used for the purity and polar-
izability: (H,V,C) is pure (of weight 0) and polarized if and only if there
exists a Oy,-basis € of H such that the matrix C(e,c*€) is the identity
(cf. [37, Rem. 2.2.3]). In this way, one checks that if (#,V,C) is pure (of
weight 0) and polarized, then so is (2*H, V, (=1)*C) for every k € Z.

Example. — Let H = P, H""™? be a grading of H, and let h
be a positive definite Hermitian pairing on H such that the decomposi-
tion is h-orthogonal. Let k be the (—1)“-Hermitian pairing on H such
that the decomposition is k-orthogonal and h(s,s) = k(C-,3), where C' is
the standard Weil operator i?~91d on HP'9. Define the Hodge filtration
F*H as usual, and (H,V) as in Example of §3.6. In the algebraic set-
ting, Hjyynv., = H ®c¢ Clz, 27 Y. Let € be defined from €Y := i~%k by
sesquilinearity, that is,

C(Y, vPz7P 0%y wiz1) =3 i Vk(vP, W) 2P (=1/2)71 € Clz, 271,

For v € HP"~P and w? € H%“~1, we have C(vPz~ P, oc*wiz~7) = 0 unless
p = ¢, in which case it is equal to h(v?, wP), showing that a h-orthonormal
basis of @ HP"*~P induces a basis of H which is C-orthonormal in the sense
of the previous remark, so (H, V, C) is pure (of weight 0) and polarized.

3.8. Polarized nc. k-Hodge structures. — For any integer w, we regard
27%QOy, as contained in Oy,[z71] and we consider on it the connection
induced by d, that we still denote by d. The corresponding local system
is the constant sheaf C on Uy N Uy, and we endow it with the usual Q-
structure (hence k-structure). The Stokes filtration is the trivial one.
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We now consider a connection with a pole of order two (H,V) with
k-Betti structure (L, Lk,.) together with a nondegenerate (—1)“-it-sym-
metric pairing

(3.8%) (2,98): (H, V), (L, Lx,)) @ (" (H, V), 07 (Lre, Li,0))
— (27" Oy, d), ks).

Here we mean that Qp induces, by the Riemann-Hilbert correspondence,
a nondegenerate (—1)"-i-symmetric pairing Q on (G,V) with values in
Oy, (x0), whose restriction to H takes values in 27Oy, and is non-
degenerate as such (and automatically (—1)“-i-symmetric). We will
write Qp instead of (Q,Qp) when this causes no confusion.

On the one hand, (H,V, Lr) defines a vector bundle H. On the other
hand, Qp induces a (—1)"“-s-symmetric pairing QY : Lr®ct ' Lg — R, and
thus iPSV = i*wQSV , made sesquilinear according to the isomorphism & :
L — L induced by the real structure, defines a (-Hermitian nondegenerate
pairing €Y : £L®c ¢~ 'L — C, with

(3.8x) CF (o,071%) i= P (o1 R(+) = i7QF (o7 R (+)).
Extending CSV as a flat o-Hermitian pairing € on Hy,nv. , we define as

above a vector bundle 7—7 on P
Remarks.

e The data (H,V, Lg,P) as above (forgetting the Stokes structure, if
any, and setting k = R) is called a TERP(—w)-structure in [10].

e Let us set § = (2/274)*”Q. Then we can regard 8 as a morphism of
nc. k-Hodge structures with values in Ty (—w).

LEMMA (cf. [10, Th. 2.19]). — The pairing Q induces an isomorphism
H 5 H @ Opa (w).
Proof. — We have an isomorphism between the bundle H defined by the

gluing data (Hy,, (V" H)v.. s : Hivenv. — ¥V Hivenv.,) and the bundle
defined by the gluing data

(" H, ® 27 Oy, (o *H)y, 1 @),

which is given by P on Uy and Id on U, (since v = o o). On the other
hand, ¢*# is defined by the gluing data (:*Hy, , (:*0*H)y.. ,1*€), hence the
assertion. O

DEFINITION. — A connection (H, V) with a pole of order two equipped
with a k-Betti structure (L, Lk,.) and a nondegenerate (—1)"-t-sym-
metric k-pairing Qp as in (3.8 %) is called a pure and polarized nc. k-Hodge
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structure of weight w if the associated triple (H,V,C) is a pure complex
ne. Hodge structure (of weight 0) which is polarized (cf. §3.7).

A consequence of the lemma above is that, if ((H,V), (L, Lk.),QB) is
a pure and polarized nc. k-Hodge structure of weight w, then it is a pure
nc. k-Hodge structure of weight w (as defined in §3.6). Notice also that
((2*H,V), (LK, Lk..), Q) is then pure and polarized of weight w — 2k.

Example. — Let (Hy, F*H) be a pure k-Hodge structure of weight w
and let Qg : Hx ® Hr — k be a polarization, in particular a (—1)%-
symmetric nondegenerate pairing. Recall also that Q(HP4, H?4) = 0
for p' # w —p, so QFPHz"P,F1Hz %) C 2z "C|z|. Let Hpgs be the
constant local system on S. We have a canonical identification Hpgs =
1" Hys. Then Qg induces a (—1)%-i-symmetric nondegenerate pairing Qp
on Hy s in a natural way. The associated pairing Q : RpH ®c.) t"RpH —
(27"C[z],d, k) is the pairing generated over C[z] ® (*C[z] by Q. Then
(H,V,Higs, Q) is a pure and polarized nc. k-Hodge structure of weight w.

Indeed, for each p, let €, be a basis of HP"~P which is orthonor-
mal for Q(C.,7), where C is the Weil operator. Recall that RpH =
@, H?'*"P2z7PC[z]. The family (ep2z7P), is a C[z]-basis of RpH. We have,
by definition and because 0z = —1/z,

Clepz P, 0%ez71) =i~ YQ(ep,&q)2 Po™z71
{0 if p# ¢,
Q(Cepagp) ifp=gq,

so the family (e,27?),, is an orthonormal basis for €, hence the polarization
property, according to the remark in §3.7.

Example (Polarization of Ty({) for £ € Z, cf. [32]). — We will use the
expression (3.6*x) and the previous example. We have a natural isomor-
phism ¢*Tg(¢) = Ty (€) and a natural nondegenerate symmetric pairing

induced by the natural product pairing ks ® ks — ks. With this in mind,

Qp : (2mi)’ks ® (2mi)’ks — kg is defined as (2mi)~2¢ times the product.
For ¢ € %Z, the polarization will be indicated in Remark 4.4 below.

3.9. Duality and tensor products. — Duality and tensor product are
well defined both for connections with a pole of order two and for k-Stokes-
filtered local systems, and are compatible via the Riemann-Hilbert corre-
spondence (cf. [28], cf. also [42]). These functors preserve the category of
nc. k-Hodge structures, since they correspond to the corresponding functors
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for the bundles (%, V), and thus transform weights as expected. Similarly,
polarization behaves in a natural way. For instance, for ¢ € Z, the Tate
twist

(H, V), (Lr; Lre,0) W) (€) := (7, V), (Lrs Lke); W) © Tro(£)

consists in replacing (H,V) with (2/H,V), the filtered local system
(Ek,ﬁk,,) with (27‘(2.)@(5]@7‘6]@’,) and Qp with (QWi)_QZQB.

3.10. Comparison with the linear algebra approach of §3.a. — We now
forget about the Stokes structure. Tensoring (H, V, L) with Ty (¢) (¢ € 1Z)
allows one to only treat nc. k-Hodge structures of weight 0. A similar re-
duction can be done for the case of complex nc. Hodge structures, as well as
for that of polarized nc. k-Hodge structures (by using Remark 4.4 below).
In the linear algebra approach of §3.a, the corresponding reduction simply
amounts to setting w = 0 in the objects. We will also assume that k = R,
since only this case can occur in §3.a.

LEMMA (cf. [10, Th.2.19]). — The functor which associates to
(H,V,Lg) pure of weight 0 (resp. to a pure complex nc. Hodge struc-
ture (H,V,C) of weight 0, resp. to a pure polarized TERP structure
(H,V, Lr,P) of weight 0) the object (D(P',H),V) (resp. (T(P*,H), V),
resp. ...) Is an equivalence with the corresponding linear algebra data
(H,V) with a connection (3.2 x). O

3.11. Rescaling. — C. Hertling [10, Th. 7.20] has considered the action of
C* on the category of connections (H, V) with a pole of order two obtained
by rescaling the variable z. For x € C*, consider the map pu, : Uy —
Up defined by p,(z) = xz. The rescaled connection is pk(#, V). Since
purt(S) ={z | |zz| = 1} # S if |x| # 1, we define the pull-back local system
p; 1L by working with local systems on Uy N Uy, (recall that the inclusion
S — Uy N Uy induces an equivalence of categories of local systems on
the corresponding spaces). This approach is taken up by C. Hertling and
Ch. Sevenheck in [13].

The rescaling acts on the category of objects (H,V, Lgr) (by the same
procedure as above), on the category of objects (H, V, €) since ¢ commutes
with p., and similarly on the category of objects (H,V, Lk, Qp) as in §3
(without paying attention to the nc. Hodge property at the moment). It also
acts on Stokes-filtered local systems (L, Lg,.) in a way compatible, by
the Riemann-Hilbert correspondence, to the action on the meromorphic
bundles (G, V): the subsheaf (u;'L)k <. is defined as pz ' (Li <c/z)-

If (H,V,Lg) is pure of weight w (resp. if (H,V, Q) is pure of weight 0
and polarized, resp. if (H,V, Lg,Qp) is pure of weight w and polarized)
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then, provided |z — 1| is small enough, the corresponding rescaled object
remains pure (resp. pure and polarized) of the same weight: this follows
from the rigidity of trivial bundles on P'. On the other hand, this may not
remain true for all values of the rescaling parameter z.

The subcategory of pure polarized nc. Hodge structures which remain so
by rescaling by any = € C* is a global analogue of a nilpotent orbit in the
theory of variation of polarized Hodge structures. It has been extensively
studied in [13, 15] and [32]. On the other hand, on this subcategory, the
no ramification condition for the connection is a consequence of an ex-
pected nice behaviour at the limiting values « = 0, 0o (this is discussed in
[41, App. B]). This would lead to the definition of the category of rescal-
able polarizable pure nc. Hodge structures, which would be particular cases
of variations of polarizable pure nc. Hodge structures on C* with a wild
(resp. tame) behaviour at x = 0 (resp. = 00).

3.12. Exponential Hodge structures. — In a similar spirit, Kontse-
vich and Soibelman [27] develop the notion of exponential mized Hodge
structure. Given a holonomic Clt](0;)-module M, the CJt](0d;)-module
C[t(, 07 ") ®cpyy(a,) M is still holonomic and its Laplace transform is
equal to the localization C[r, 77 }] ®cr] FM. If M is regular holonomic, the
corresponding operation on its de Rham complex, via the Riemann-Hilbert
correspondence, is the convolution with jiQu {0y, where j : A\ {0} — Al
denotes the inclusion, as defined in [24]. The convolution with 71Qur g0y
can be done within the frame of mixed Hodge modules defined in [46].
Then, given a pure Hodge module on A!, its convolution with 71Qur g0y
is mixed, but is declared to be “exponentially pure” of the same weight.
Theorem 5.6 below and the remark which follows imply that the Fourier-
Laplace transform of an exponential mixed Hodge structure (i.e., a mixed
Hodge D-module on A' whose de Rham hypercohomology spaces are
zero) is the localization at 7 = 0 of a rescalable polarized pure nc. Hodge
structure.

4. Non-commutative Hodge structures from
Deligne-Malgrange lattices

4.1. The basic construction. — Let C C C be a finite set, let 6, €
R/27Z be generic with respect to C' (cf. §2.8) defining thus a numbering
{c1,...,¢,} of the set C in strictly increasing order, and let ¥ be a block-
lower triangular invertible square matriz of size d with entries in k C R,
the blocks being indexed by C' ordered by 6,. Under some assumptions
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on Y, we will associate to these data and to each integer w a connection
with a pole of order two (#,V) with k-Betti structure (Lg,Lg,.) and a
nondegenerate (—1)"“-i-symmetric nondegenerate k-pairing Q as in §3.8,
giving rise in particular to a TERP(—w)-structure. We will denote these
data by ncH(C,0,, %, w).

The matrix ¥ determines Stokes data ((Le,1,Le2), S, S’) of type (C,6,)
(cf. (2.9)) by setting Ly = Ly = k%, and L. (c € C, j = 1,2) correspond
to the blocks of X, which defines a linear morphism S : L; — Ls, and
we define S’ as the linear morphism attached to ¥/ := (—1)% - ¥3. These
Stokes data in turn correspond to a Stokes filtered local system (L, Lk..).
The underlying local system Lj is completely determined by the k-vector
space L1 = k4 together with (the conjugacy class of) its monodromy, whose
matrix is (—1)*X "1 - 3. On the other hand, each diagonal block X, of ¥
gives rise to an invertible matrix (—1)“’2;1 - '3, which represents the
monodromy of the meromorphic connection corresponding to QAC in the
decomposition (2.4).

A nondegenerate ¢-pairing Qp on (Lg, Lk..) with values in k is deter-
mined by a pair of nondegenerate pairings Q2 : L1 ® Lok — k and
Qo1 : Lok ® Ly — k which satisfy Qo1(z2,21) = Q12(S™ 22, 5 21), and
the (—1)"-t-symmetry amounts to Qo1 (z2, 1) = (—1)"Q12(z1, 22) (cf. [12,
(3.3) & (3.4)]). In the fixed bases of Ly and Lo, we define® Qo1 (x9,21) =
txy - w1, 80 that Qio(xy, 20) = a1t - ¥/ 7 Lag; the (—1)%-symmetry follows
from ¥/ = (—1)¥-t3. From the Riemann-Hilbert correspondence we finally
obtain a nondegenerate (—1)"-.-symmetric pairing

(4'1 *) Op : ((g7 V), (Ekm ‘Ck,-))®L*((g7 V), (‘Ck" £k7-)) — ((C({Z})’ d, kS)
We will set (using the notation of §2.e, and stressing upon the fact that
the construction of (G, V) and (L, L,) above depends on the parity of w):
(4.1 %) ncH(C, 0,, %, w) = (DM~ “V/2(G. V), (L, Li..), Up).
Let us note that Corollary 2.18 reads as follows:
4.2. COROLLARY. — Let (C,0,,%,w) be as above. Assume that
ker(2,, 4+ '%.,) = 0 for all i. Then DM>~(“+1/2 — pM~(W+D/2 and the

pairing Qp given by (4.1x) induces a nondegenerate (—1)“-i-symmetric
pairing, also denoted by Qg:

DM~ “HD/2(G V) @cp,y o DM™TD/2(G v) — (27VC{2},d).

(1) Compared with the definition of h;5 and h,gy in [12, §3c& 3.e], which is the case
where w is odd, we changed the sign in order to have a better correspondence with the
k-structure and the example of §3.8.
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4.3. THEOREM (cf. [12]). — Let (C,0,,%,w) be as in §4.1. We moreover
assume the following:
(1) for each c€ C, the diagonal block 3. of ¥ satisfies ker(3. + ') = 0,
(2) the quadratic form ¥ + 'S is positive semi-definite.
Then ncH(C,0,,%,w) is a pure and polarized nc. k-Hodge structure of
weight w.

Proof. — The condition 4.3(1) implies that the assumption of Corollary
4.2 holds. The case where w = —1 is contained in the statement of [12,
Th. 5.9], where Qp above corresponds to —hp there (cf. Footnote (1)), and
where the assumption 4.3(1) implies K, = 0 for each ¢ € C in [12, (5.9 %x)].
The proof of [12, Th.5.9] consists in expressing ncH(C,0,,%, —1) as the
Fourier-Laplace transform of a variation of complex polarized Hodge struc-
ture of type (0,0) on C\ C, and to use Theorem 5.5 explained in §5 below.

In order to treat the general case, we remark that (cf. (4.1%x)):

ncH(C, 0,,%, w — k)
=ncH(C,0,, %, w) ® ncH(C = {0},0, =0,X = 1,w = —k),

for each k € Z. According to §3.9, it is thus enough to prove that the rank-
one object ncH(C = {0},0, = 0,% = 1,w = —k) is pure and polarized of
weight —k and, by iterating tensor products, it is enough to consider k£ = 1.

Let us compute the polarization Q(/2) for the object (Ou,,d +
(1/2)dz/z, 2= */?kg), which is seen to correspond to C = {0}, 6, = 0,
w = —1. Then L1 = k - ey is the space of sections of L on (0,7) and
Ly = k-e5 on (—m,0). Moreover, 9511/2)(62, e1) = 1and 9512/2)(61, er) = —1.
The sections exp(if/2)e; € Oy,j0,x) and exp(if/2)ez € Oy,j—r,0) are
the restriction of the Op,-basis v, = 1 € Op,: indeed, v, restricted to
Uo ~ {z € R} is written 27/2¢;, i = 1,2. We have P(1/2)V = jQ(1/2) and
€(1/2) is the o-sesquilinear extension of P(1/2)

The map z +— o(Z) = —1/z restricts to R/27Z as

(07 7T) — (O’ W) (771—7 0) — (771—7 0)
0 — —(0—m) 0 — —(04m)

We then have

(1/2) — ef/2 . e=il0=m)/2 4. 9512/2)(61, eg) =1, for 6 € (0, 7),
Cls™ (Vo,0™Wa) =\ s (1/2)
/2 e=i0+m/2 ;. QL (e9,e1) = 1, for O € (—,0).

This shows that (v,,0*7,) is an orthonormal basis for €1/2), hence (cf. the
remark in §3.7) the corresponding (Oy,,d + 3dz/z,C1/2)) is pure of
weight 0 and polarized. (|
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4.4. Remark. — By rotating the Q-structure, the last argument can be
used similarly to show that the Tate pure nc. k-Hodge structure Tg(¢) of
weight —2¢ is polarized, and make explicit its polarization.

5. Non-commutative k-Hodge structures by
Fourier-Laplace transformation

5.1.— Let C C A be a finite set of points on the complex affine line
with coordinate t. Let (Vg, F*V,V,Qp) be a variation of polarized Hodge
structure of weight w € Z on X := Al \ C. Namely,

e (V,V) is a holomorphic vector bundle with connection on X,

e F*'V is a finite decreasing filtration of V by holomorphic
sub-bundles satisfying the Griffiths transversality property:
VFPV C FPYV @0, Ok,

e V. is a k-local system on X with Vy @, C=VV,

e Qi : Vi ®k Vi — k is a nondegenerate (—1)"-symmetric pairing,
all these data being such that the restriction at each x € X is a polarized
Hodge structure of weight w (cf. e.g. [34] or the example in §3.8). We denote
by @ the nondegenerate pairing (V,V) ® (V,V) — Ox that we get from
@B through the canonical isomorphism Ox ®x Vi = V. The associated
nondegenerate sesquilinear pairing is denoted by &k : (V, V)®c(V, V) — C¥,
which is obtained from kg : V®cV — C similarly. It is (—1)“-Hermitian and
i~k induces a flat Hermitian pairing on the C*°-bundle (C¥ ®0, V, V+0).
We can regard (V,V, F*V,i~"k) as a variation of polarized complex Hodge
structure, pure of weight 0.

5.2. The middle (or minimal) extension. — This procedure transforms
the previous data, defined on A \ C, into similar data defined on A'. Let
j: X < Al denote the inclusion.

Betti side: The pairing Qp (resp. kp) extends in a unique way as a
nondegenerate (—1)“-symmetric (resp. (—1)"-Hermitian) pairing j.@p :
3+ Vi Qk jx Vie — kar (vesp. jikp : 7. Ve Q¢ j« Ve — Cu).

De Rham side: The bundle (V,V) can be extended in a unique way
as a free Op1(%C U {o0})-module with a connection V having a regular
singularity at C' U {oco} (Deligne meromorphic extension). Taking global
sections on P! produces a left module M on the Weyl algebra C[t](d,).
The minimal extension (along C) of M is the unique submodule M of
M which coincides with M after tensoring both by C(t), and which has no
quotient submodule supported in C. The pairing k extends first (due to the
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regularity of the connection) as a pairing k : M ®c M — S'(Al . C), where
S’(Al) denotes the Schwartz space of temperate distributions on Al = R?
and §'(A' N C) :=C[t, [[.ec(t — ©) 1] ®cfy S'(A'). Then one shows that,
when restricted to M ®c M, k takes values in S’ (Al), and we denote it by k
(cf. [12, §1.a], where no distinction is made between h and k since we only
deal there with variations of Hodge structures of type (p,p) for some p).

Hodge side: The Hodge filtration F*V extends, according to a procedure
due to M. Saito [43, §3.2], to a good filtration F*M of M as a C[t]{0;)-
module (cf. [39, §3.d]).

5.3. Fourier-Laplace transformation. — The Fourier transformation F; :
S'(A}) — S'(AL,) with kernel exp(tz'—tz') 5= dtAdt is an isomorphism from
the Schwartz space S'(Al) considered as a C[t](9;) ®c C[t](d;)-module, to
S'(AL,) considered as a C[2'](9,/) @c C[z']{dz)-module.

Composing k with F; defines a sesquilinear pairing ¥k : FM @¢ «TFM —
S'(AL,), where "M is the Laplace transform of M as in §2.10, and where 1™
denotes the pull-back by ¢ in the sense of C[z'](d,)-modules (or C[z']-
modules with connection). See [39, §1.a] for the need of .

Restricting to C* produces a sesquilinear pairing ¥k : (G, V)®:*(G, V) —
(C22,d), whose horizontal part restricted to S defines a pairing CY
L ®171L — Cs (we use here the notation of §2.10). We then define € as
in §3.7.

The pairing ¥k restricts to horizontal sections of (G, V) to produce a Betti
t-sesquilinear pairing (¥k)g on L. It is defined only over C*. On the other
hand, in a way similar to Proposition 2.13, there is a topological Fourier-

Laplace transform j/*%, which is compatible with the Stokes filtration. The
comparison between both is given by:

5.4. LEMMA (cf. [39, Prop. 1.18] & [12, Appendix]). — Over C* we have
(k)B = 3=jiks. 0

Lastly, we denote by H C G the Brieskorn lattice of the good filtration
F*M (cf. §2.11), and we recall that the connection has a pole of order two
at most on H.

5.5. THEOREM ([39, Cor. 3.15]). — Let (V, F*V,V, Q) be a variation
of polarized Hodge structure of weight w € Z on X := Al \ C. Then
(H,V,i~"C) defined as above is a pure polarized complex nc. Hodge struc-
ture of weight 0. |

We now make more precise Theorem 5.5, which only produces a polar-
ized complex nc. Hodge structure, in order to get a polarized nc. k-Hodge
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structure. Recall that the pairing ]TQ\B has been considered in Proposition
2.13. We notice that the topological Laplace transform j.kp is nothing but
the t-sesquilinear pairing associated with the (-pairing j.Qp on Lg.

5.6. THEOREM. — Let (Vi,F*V,V,Qp) be a variation of polar-
ized k-Hodge structure of weight w € 7Z on X := Al \ C. Then
(("H,V),(ﬁk,ﬁk,,),f@) is a pure polarized nc.k-Hodge structure
of weight w + 1.

Remark. — One can show (see [39, Rem. 2.5]) that the pure polarized
nc. k-Hodge structures that one gets by Fourier-Laplace transformation are
rescalable, in the sense given in §3.11.

Remark. — In order to go from Theorem 5.5 to Theorem 5.6, we need
some more work on bilinear pairings (while Lemma 5.4 and Theorem 5.5
only use sesquilinear pairings at the topological or analytical level). The
pair (Q, Qp) of (3.8%) that we wish to use consists of Qp = —]@ and of a
constant multiple of the Laplace transform of the algebraic duality isomor-
phism of the C[t](9;)-module M associated with (V, V) as in §5.2. We first
check that this algebraic duality is compatible with filtrations (Lemma 5.7),
hence satisfies the holomorphic part of (3.8 %), by using properties of Hodge
D-modules (Corollary 5.8). We then show that the pairing corresponding to
— @ by the Riemann-Hilbert correspondence essentially coincides with
this algebraic pairing (Lemma 5.9). Moreover, notice that Lemma 5.4 only
holds over C*, while Lemma 5.9 holds including at z = 0. In particular,
Lemma 5.9 and Lemma 5.4 are not of the same nature and are independent
one from the other.

Proof of Theorem 5.6. — Let (Vi, F*V,V,Qp) be a variation of po-
larized Hodge structure of weight w on X. According to [43, Th. 2], it
corresponds to a polarized Hodge module which is pure of weight w4+ 1. It
extends in a unique way as a polarized Hodge module on A', with under-
lying filtered C[t](0;)-module (M, F*M) as considered in §5.2 above. The
polarization induces a (—1)“*1-symmetric isomorphism Q : (M, F*M) —
D(M,F*M)(—(w + 1)) (cf. loc. cit. for the duality of filtered D-modules,
and Lemma 5.2.12 there for the polarization, which is denoted by S’ and
corresponds to (27i) (@), and where, for a filtered module (N, F*N), we
set (N, F*N)(k) = (N,F*tFN). It is easy to check, from the very defini-
tion of the Brieskorn lattice of a good filtration (cf. [39, §1.d]), that the
Brieskorn lattice of (N, F*N)(k) is equal to z*H, where H is the Brieskorn
lattice of (N, F*N).
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On the other hand, according to the relation between duality and
Laplace transforms of C[t](0;)-modules (cf. [28, Lem. 3.6, p. 86], see also
[36, §V.2.b]), we have ¥(DM) = +* D¥M (where it denotes the pull-back
of C[Z']{0,/)-modules and D is the duality of holonomic C[¢](9;)-modules),
and thus, according to [45, §2.7] (cf. also [38, Lem. 3.8]), the localized
Laplace transform of DM is identified with +*GY (cf. Lemma 2.16 for the
notation).

Given a holonomic C[t](0;)-module with a good filtration (M, F*M), we
say that D(M,F°M) is strict (cf. [43]) if the dual complex DRpM (as
RpC[t](0)-modules, cf. §A.1) has cohomology in degree one only, without
C[z]-torsion. This cohomology can then be written in a unique way as
RrpDM for some good filtration F*DM.

For a polarizable Hodge module, D(M, F'* M) is strict (cf. [43]), and the
polarization gives a filtered isomorphism between M and DM as above.

The proof of the following lemma will be sketched in Appendix A.

5.7. LEMMA. — Assume that D(M, F*M) is strict. Then, through the
previous identification of the localized Laplace transform of DM with t*G",
the Brieskorn lattice of (DM, F*DM) is identified with t*H".

5.8. COROLLARY. — The morphism YQ induces an isomorphism
(G, V) — 1*(G, V)" which sends H onto z~ (W1, *H"  and thus induces
a nondegenerate (—1)¥+1-i-symmetric pairing Q on H. a

Let us now denote by j/*C\Q the nondegenerate pairing (G,V) —
t*(G, V)Y induced by j.Qp through the inverse RH correspondence.
The proof of the following lemma will be sketched in Appendix B.

5.9. LEMMA. — The pairings *Q andj/*@ coincide up to a multiplicative
constant.

Let us set Qp = — jj@g. Then, according to Lemma 5.9 and Corollary
5.8, (Q,Qp) satisfies (3.8 %) with w + 1 instead of w. For the polarizability
property, let us set GSV = i_(“’“‘l)QSV made sesquilinear. We thus have
ey = —i~ D s = o . i~%(¥k)p, according to Lemma 5.4. Hence
Theorem 5.5 gives the polarizability. O

6. The nc. Q-Hodge structure attached to a tame function

6.1. — Let X be a complex smooth quasi-projective variety and let
f: X — A be a regular function on it, that we regard as a morphism to
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the affine line A! with coordinate t. For each k € Z, the perverse cohomology
sheaf PH* (R f.Qx) underlies a mixed Hodge module (cf. [46]). The fibre at
z = 1 of its topological Laplace transform (cf. [28, Chap. VI, §2]) is the k-th
exponential cohomology space of X with respect to f (or simply of (X, f)).

The exponential periods attached to f are the integrals f e fw, where w
is an algebraic differential form of degree k on X and ~ is a k-cycle in the
Borel-Moore homology of X, such that Re f > ¢ > 0 on the support of
and away from a compact set in X.

Formulas like [, e dr = /7 suggest (cf. [8, p.118]) to produce a
“Hodge filtration” with rational or real indices (here 1/2) on the expo-
nential cohomology of (X, f). This is developed in loc. cit. for particular
examples.

On the other hand, when f is proper, PH* (R f.Qx) * 1Qur oy s expo-
nentially pure in the sense of Kontsevich-Soibelman [27] (cf. §3.12), but so
is also the case when all the graded object, except one, with respect to the
weight filtration are constant, hence killed by the convolution operation.
The cohomologically tame case considered below enters this frame.

The non-commutative Hodge structure approach that we explain below
consists, when ka(Rf*QX)*j!QAl\{O} is exponentially pure, in considering
the k-th exponential cohomology space of (X, f) as I‘(]P’l,ﬁ), where #
is defined in §3.7. In particular, the non-commutative Hodge structure is
defined on H. The relation with the construction of Deligne quoted above
is explained in [41, §6].

6.2. — For the sake of simplicity, we will only consider the case of a
cohomologically tame function f : U — Al on a smooth affine complex
manifold U, for which there is only one non-zero exponential cohomology
space. We will constantly refer to [35, 38] and [39].

Recall (cf. loc. cit.) that cohomological tameness implies that there exists
a diagram

U——X

AN
Al
where X is quasi-projective and F' is projective, such that the cone of
natural morphism xQuy — Rk.Qy has no vanishing cycle with respect to
F — ¢ for any ¢ € C (cf. also [23, Th. 14.13.3]).

We will use the perverse shift convention by setting PQpy = Q[dim U]. By
Poincaré-Verdier duality, we have a natural pairing

Qb : RAPQu 99 RE"Qy — Qu[2).
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Considering the Q-perverse sheaf F = PH°(Rf.PQ ), we therefore get a
morphism DF — F, whose kernel and cokernel (in the perverse sense)
are constant sheaves up to a shift. Let (Lq,Lg,.) be the Stokes-filtered
local system on S deduced from the topological Laplace transform of F
(cf. §2.12). According to Lemma 2.13, it comes equipped with a nondegen-
erate pairing

Qp = —ij\B : (EQ,,CQ.) X Lil(ﬁQ,ﬁQ,.) — Qs.
On the other hand, let Gy denote the Brieskorn lattice of f. By definition,
Go = QM Y(U)[2]/(2d — df QI T U) 2],
and set G = Clz,27'] ®cpy) Go, with the action of Vj  induced by
0.+ )22 =ef/200, 0e1/7 on QIMU(U)[z]. We also set Gy, = 2~ *Gy.
For ¢ € 7Z we set e(¢) = (—1)*¢=1/2,

6.3. THEOREM. — The data ((Gaimuv, V), (Lo, Lg..),e(dimU — 1)Qp)
is a polarized nc. Q-Hodge structure which is pure of weight dim U.

Sketch of proof. — We refer to [39, Proof of Th. 4.10]. We first replace
the perverse sheaf F defined above with Fi, := p?‘[O(RF*H!*pQU), which
generically is the local system of intersection cohomology of the fibres of F',
and we have a corresponding Poincaré-Verdier duality pairing Qg 1., whose
topological Laplace transform — j*/Q-B\,[* coincides with Qp. By applying
M. Saito’s results on polarizable Hodge D-modules, together with Theorem
5.6, we find that (G, V), (Lg, Lo..),e(dimU — 1)Qp) is a pure polarized
nc. Q-Hodge structure of weight dim U, where GE! is the Brieskorn lattice
of the Hodge filtration of the Hodge module corresponding to JFi.. By [39,
Lem. 4.7], taking also into account the shift between the standard filtration
and M. Saito’s Hodge filtration, we have GE = Ggim v O

6.4. COROLLARY. — The data
((GQ, V)7 (EQ, EQ’,% E(dimU — I)QB)

is a pure polarized nc. Q-Hodge structure of weight —dim U, and the cor-
responding P can be written as i~ 4™ UYs(dim U)j,Qp. |

7. Numerical invariants of nc. Hodge structures

7.1. Spectrum at z = oco. — To any germ (#,V) consisting of a free
C{z}-module of finite rank equipped with a meromorphic connection (with
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pole of arbitrary order at z = 0) for which the eigenvalues of the mon-
odromy have absolute value equal to one, is attached a numerical invariant
called its spectrum at infinity (cf. [36, §II1.2.b] or [41, §1.a]), and encoded
as a polynomial Spy; (T') = [[ (' — )", where v varies in R (and more
precisely, €277 is an eigenvalue of the monodromy), and v, € N. Its be-
haviour by duality is described in [36, Prop.I11.2.7], and the behaviour
with respect to tensor product is better described in terms of the divisor
of the polynomial Sp3;(7T'), an element of the ring Z[R] which is sometimes
written as ) v,u”. Then this divisor behaves in a multiplicative way with
respect to tensor product, provided that both terms of the tensor product
are essentially self-dual (cf. [36, Ex. I11.2.9]).

7.2. Spectrum at z = 0. — Assume now that (#, V) is of nr. exponential
type, so has a formal decomposition (2.5). Assume also that the eigenvalues
of the monodromy of each H; have absolute value equal to one. Then each
(H;,V;) has a spectrum at the origin, defined with the help of the V-
filtration (cf. §2.b) at z = 0. We use the convention of [41, Def. 1.7]. The
product of the spectral polynomials Spg_” (T) for all ¢ is denoted Spg_l (T). Tt
has properties similar to that of Sp3; (1) with respect to various operations
(cf. [36, §IIL.1.c] and [41, 1.b]).

7.3. The “new supersymmetric index” (cf. [10]). — Let T = (H,V,C)
be a pure complex nc. Hodge structure of weight 0 (cf. §3.7) and let Q be
the “new supersymmetric index” associated to it through the correspon-
dence of §3.10. Its characteristic polynomial will be denoted by Susy(T).
If (H,V,Q) is polarized, then Q is self-adjoint with respect to the corre-
sponding positive definite Hermitian form h, hence is semi-simple with real
eigenvalues, so the roots of Susy,(7T') are real. If ((H,V),(Lq, Lg,.), 2B)
is a polarized nc. Hodge structure which is pure of weight w, then the
“new supersymmetric index” of the corresponding pure complex nc. Hodge
structure of weight 0 is purely imaginary, hence its (real) eigenvalues are
symmetric with respect to the origin.

Example (cf. [41, Lemma 5.4]). — For a polarized Hodge struc-
ture of weight w and Hodge numbers hP"~P, we have Susy;(T)
[I(T —p+w/2)"" 7. On the other hand, Sp3(T) = Spy, (T)

[L,(T ="

Rescaling. — This relationship between Sp®,Sp™ and Susy can be
generalized by considering the action of the rescaling (cf. §3.11), when the
nc. Hodge structure is stable by rescaling, and has a good limiting be-
haviour, as in the case of a Fourier-Laplace transform of a variation of
Hodge structure. More precisely, one gets:
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7.4. THEOREM (cf. [41, Th.7.1]). — Let (*,V),(Lq, Lq..), OB) be the
nc. Q-Hodge structure obtained by Fourier-Laplace transformation from a
variation of polarized Hodge structure of weight w on Al \ C' (cf. §5) and
let T be the associated polarized complex nc. Hodge structure of weight 0.
Then

Spy(T) = lim Susy,,, (T — w/2),
Spy (T) = ILm Susy . 7(1' — w/2).

7.5. Limit theorems. — The previous theorem is proved by showing
that the rescaled objects uk((#H,V),(Lqg,Lqg.),9p) form a variation of
nc. Q-Hodge structures parametrized by x € C*, and p}7 extends as a
pure polarized wild twistor D-module (cf. [40]) on the projective comple-
tion P! > C* (wildness only occurs at = 0). One proves limit theorems in
such a setting (cf. [41]), showing that the limiting twistor structure, when
T — 00, is a mixed Hodge structure polarized by a nilpotent endomorphism,
giving the first equality, and, when x — 0, this limiting structure decom-
poses as the direct sum of exponentially twisted mixed Hodge structures
polarized by a nilpotent endomorphism, giving the second equality.

A more general approach to these limit theorems, more in the spirit of
Schmid’s nilpotent orbit theorem, but in both tame and wild cases, and
with many parameters, has been obtained by T. Mochizuki in [32], proving
thereby a conjecture of C.Hertling and Ch. Sevenheck [13, Conj.9.2] on
nilpotent orbits of pure polarized TERP structures.

Appendix

A. Proof of Lemma 5.7. We first make more precise the notion of
Brieskorn lattice of a filtered C[t](J;)-module, in order to manipulate it
more easily. We mainly refer to [39, §2.d].

A.1. The Brieskorn lattice. — Let (M, F,M) be a holonomic C[t]{(0;)-
module equipped with a good filtration (here we use the increasing version
of a filtration, in order to be compatible with [39, §2.d]; recall the stan-
dard convention F),, = F~P relating increasing and decreasing filtrations).
The Rees module RpM = @, F,Mz* is a module of finite type over the
Rees ring RpC[t](0;), that we identify with the ring CIt, z](d;) by set-
ting 0; = 20;. The Laplace transform ¥(RpM) is the C[z]-module RpM
equipped with the structure of a Cl[r, 2](d,)-module, where 7 acts as O,
and 0, as —t. It is also of finite type. Moreover, RpM is also equipped

ANNALES DE L’INSTITUT FOURIER



NON-COMMUTATIVE HODGE STRUCTURES 2713

with an action of 229, (i.e., is a C[t, 2](dy, 220.)-module), which is the
natural one on RpM, defined as 220.(m; ® 2°) = ¢my ® 2T, The ac-
tion of 220, on ¥(RpM) (i.e., its C[r, 2](3,, 220, )-structure) is twisted as
220.5(my ® 2%) = (st + £)my ® 2+ (cf. [39, Rem. 2.2]). The Brieskorn
lattice G(()F’) of (M, F,M) is the restriction to 7 = 1 of ¥(RpM), with the
induced C[2](220,) structure.

Moreover, let € : C[r, z](d,) — CJ[r, 2](0,) denote the involution 7 — —,
0, + —0,. The restriction at 7 = 1 of e*¥(Rp M) is equal to the restriction
at 7 = —1 of ¥(RpM), and the formulas given in [39, Lem. 2.1 & Rem. 2.2]
identify it with *G{).

A.2. Duality and Laplace transformation. — Exactly as in the case of
C[t](0)-modules (cf. [28, Lem. V.3.6], see also [36, §V.2.b]), the relation
between duality and Laplace transformation of RpC[t](0;)-modules is given
by DY(RpM) = e*¥(DRpM). Since D(M, F,M) is strict, i.e., DRpM
has cohomology in degree one only, without C[z]-torsion, then ¥(DRpM)
is also strict, hence so is D¥(RpM). Moreover, the unique cohomology of
Y DRrM) is (RpDM), and we denote by D¥(RpM) the unique coho-
mology of D¥(RrpM), so D¥(RpM) = e*¥(RpDM). Let us now localize
with respect to 7 as in [39, Lem. 2.1], i.e., apply C[r, 77!, 2]®cr ) to both
terms, which then become C[r, 771, z]-free of finite type. After loc. cit., the
right-hand term is identified with C[r,771] ® t*H’, where H' denotes the
Brieskorn lattice of (DM, F,DM). On the other hand, arguing as in [45,
§2.7] (cf. also [38, Lem. 3.8]), the left-hand term is identified with the dual
module (C[r, 771, 2] ®c[r,2) R M) with its natural connection. Restricting
to 7 =1 gives HV. Therefore, :*H' = H", as wanted. O

B. Sketch of proof of Lemma 5.9. This kind of comparison result
goes back at least to the notion of higher residue pairings, due to K. Saito, in
the theory of singularities of complex hypersurfaces. One finds in [45, §2.7]
a similar result, proved by using a universal unfolding of a holomorphic
function having an isolated singularity. Another geometric approach, in
the present setting, has been proposed by C. Hertling (unpublished notes)
following the geometric construction, due to F.Pham, of the intersection
form on Lefschetz thimbles (cf. [9, Th. 10.28] for the analogous result in
Singularity theory). We will sketch a sheaf-theoretic proof, by following
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the Riemann-Hilbert correspondence all along the Fourier-Laplace trans-
formation.

A.3. — The Laplace transform "M of M can be obtained by an “inte-
gral formula” FM = py (p* M @ E~'%"), where p,p denote the projections
AL x AL, — AL AL, and E7% = (C[t, 2], d — d(tz")).

A.4. — The duality isomorphism ¥(DM) =+ 1+ D ¥M mentioned in the
proof of Theorem 5.6 can be obtained by applying standard isomorphisms
of commutation between the duality functor and the proper direct image
functor one the one hand, the smooth inverse image functor on the other
hand, in the realm of D-module theory (cf. e.g. [2, VI1.9.6 & VII1.9.13] or
[22, Th. 4.33 & Th. 4.12]). In order to do so, it is convenient to extend the
previous setting to P} x P!, in order to work with a proper map p. In such
a way, the duality isomorphism at the level of D-modules and the one at
the level of Stokes-filtered local systems are constructed in parallel ways.

A.5. — The correspondence between the duality isomorphism for proper
maps, in both settings, is proved in [44]. A similar statement for pull-back
by a smooth morphism can be proved similarly.

A.6. — This reduces the problem to a comparison between both iso-
morphisms on P} x P!,. For our purpose, one can show that it is enough
to compare both isomorphisms over P} x C%,. On the one hand, we have
D(ptM ® E~%") ~ pT(DM) @ E**" (the change of sign explaining the
need of ¢). On the other hand, let Z = P} x C?, and w : 7 — Z be the
oriented real blowing-up along {oo} x C¥,. If F is the perverse sheaf as-
sociated to M on Al via the de Rham functor, the perverse sheaf on Z
associated to ptM ® E~'% via the de Rham functor can be written as
Rw.(iRa.(p o j)~LF[1], where, setting

<o=1{(t2)|t=0o0r argt+arg2’ € [r/2,37/2] mod 27} C Z,

a, B are the inclusions

B

1 o ~
A, xCl —— Lgg—— Z.
and j = wo Boa is the inclusion A} x Cf, < Z. The question is then

reduced to a local duality theorem, comparing the duality isomorphism for
D-modules and the Poincaré-Verdier duality for perverse sheaves. g
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