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µ-CONSTANT MONODROMY GROUPS
AND MARKED SINGULARITIES

by Claus HERTLING (*)

Abstract. — µ-constant families of holomorphic function germs with isolated
singularities are considered from a global perspective. First, a monodromy group
from all families which contain a fixed singularity is studied. It consists of auto-
morphisms of the Milnor lattice which respect not only the intersection form, but
also the Seifert form and the monodromy. We conjecture that it contains all such
automorphisms, modulo ± id. Second, marked singularities are defined and global
moduli spaces for right equivalence classes of them are established. The conjecture
on the group would imply that these moduli spaces are connected. The relation
with Torelli type problems is discussed and a new global Torelli type conjecture for
marked singularities is formulated. All conjectures are proved for the simple and
22 of the 28 exceptional singularities.
Résumé. — Nous considérons d’un point de vue global les familles µ-constantes

de germes de fonctions holomorphes à singularités isolées. Tout d’abord, nous étu-
dions un groupe de monodromie des familles contenant une singularité fixée. Ce
groupe est constitué d’automorphismes du réseau de Milnor qui respectent non
seulement la forme d’intersection, mais aussi la forme de Seifert et la monodromie.
Nous conjecturons qu’il contient tous les automorphismes de ce type, modulo ± id.
Ensuite, nous définissons les singularités marquées et construisons leurs espaces
de modules globaux pour leurs classes d’équivalence à droite. La conjecture sur
le groupe impliquerait que ces espaces de modules sont connexes. Nous discutons
de la relation avec les problèmes de type Torelli et nous formulons une nouvelle
conjecture de type Torelli global pour les singularités marquées. Toutes ces conjec-
tures sont montrées pour les singularités simples et pour 22 des 28 singularités
exceptionnelles.

1. Introduction

This paper studies local objects from a global perspective. The local
objects are holomorphic function germs f : (Cn+1, 0) → (C, 0) with an

Keywords: µ-constant deformation, monodromy group, marked singularity, moduli
space, Torelli type problem, symmetries of singularities.
Math. classification: 32S15, 32S40, 14D22, 58K70.
(*) This work was supported by the DFG grant He2287/2-1 and the ANR grant ANR-
08-BLAN-0317-01 (SEDIGA).



2644 Claus HERTLING

isolated singularity at 0 (short: singularity). Two types of global objects for
them are considered. The first are new monodromy groups, the µ-constant
monodromy groups. The second are moduli spaces for marked singularities.
They are related. And both are important for the study of period maps to
spaces of Brieskorn lattices, that is, regular singular TERP-structures or
non-commutative Hodge structures.
The Milnor lattice of a singularity f is Ml(f) := Hn(f−1(τ),Z) ∼= Zµ

(reduced homology if n = 0), here µ is the Milnor number, τ > 0, and
f−1(τ) is a regular fiber in a suitable representative of the function germ f .
It comes equipped with two pairings, the intersection form I and the Seifert
form L, and with the monodromy Mh ∈ Aut(Ml(f), L, I). We put them
together in one tuple ML(f) := (Ml(f), L,Mh, I). In fact, L determines
Mh and I, so

GZ(f) := Aut(ML(f)) = Aut(Ml(f), L).

We consider two kinds of µ-constant families, either C∞-families F of
singularities over a base space X which is a C∞-manifold, or holomorphic
families F where the base space X is a reduced complex space. In either
case the Milnor lattices Ml(Ft), t ∈ X, of the members of the family F
glue to a local system of Z-lattices of rank µ with Seifert form, monodromy
automorphism and intersection form. After fixing one point t0 ∈ X, the
monodromy group G(F,X, t0) of such a family is the image of the natural
homomorphism π1(X, t0)→ GZ(Ft0) (Definition 3.1 (a)).
For a singularity f , the µ-constant monodromy group Gsmar(f) is the

subgroup of GZ(f) generated by all monodromy groups of all µ-constant
families which contain f (Definition 3.1 (b)). But using k-jets and the finite
determinacy of singularities, it is not hard to construct one global holomor-
phic µ-constant family whose monodromy group is Gsmar(f) (Lemma 3.5
(c)).
This global µ-constant family was the starting point in [11, Theorem

13.15] for the construction of a global moduli spaceMµ(f0) for right equiv-
alence classes of singularities in the µ-homotopy class of a fixed singular-
ity f0. Here we will adapt this construction and establish a moduli space
Mmar
µ (f0) [respectively M smar

µ (f0)] of [strongly] marked singularities (The-
orem 4.3).
Fix one singularity f0. A [strongly] marked singularity is a pair (f,±ρ)

[respectively (f, ρ)] where f is a singularity in the µ-homotopy class of f0
and ρ : ML(f) → ML(f0) is an isomorphism. Here ±ρ means the set
{ρ,−ρ}, so neither ρ nor −ρ is distinguished. Two [strongly] marked singu-
larities (f1,±ρ1) and (f2,±ρ2) [(f1, ρ1) and (f2, ρ2)] are right equivalent

ANNALES DE L’INSTITUT FOURIER



MARKED SINGULARITIES 2645

if a coordinate change ϕ : (Cn+1, 0) → (Cn+1, 0) exists with f1 = f2 ◦ ϕ
and ρ1 = ±ρ2 ◦ ϕhom [respectively ρ1 = ρ2 ◦ ϕhom], here ϕhom : ML(f1)→
ML(f2) is the induced isomorphism.
A surprising fact is that the strongly marked singularities (f, ρ) and

(f,−ρ) are right equivalent if and only if mult f = 2 (Theorem 3.3 (e) and
(g)). This leads to potential problems for the space M smar

µ : If there would
exist a µ-homotopy class which contains singularities with multiplicity 2
and singularities with multiplicity > 3 (which I don’t believe), then its
moduli space M smar

µ of strongly marked singularities would not be Haus-
dorff (Theorem 4.3 (e)). The moduli space Mmar

µ is not sensitive to this, it
exists always as an analytic geometric quotient.
This is one reason why we consider not only strongly marked singu-

larities, but also marked singularities. The other is that the period map
M smar
µ (f0) → DBL(f0) to a classifying space for Brieskorn lattices factors

through Mmar
µ (f0).

Locally Mmar
µ and M smar

µ (if it is Hausdorff) are isomorphic to the µ-
constant stratum of a singularity (Theorem 4.3 (b)). The group GZ(f0)
acts on Mmar

µ and M smar
µ by ψ : [(f,±ρ)] 7→ [(f,±ψ ◦ ρ)] [respectively

ψ : [(f, ρ)] 7→ [(f, ψ ◦ ρ)]]. The action is properly discontinuous (on M smar
µ

if it is Hausdorff), the quotient is Mµ (Theorem 4.3 (d)).
The µ-constant monodromy group Gsmar(f0) turns out to be the sub-

group of GZ(f0) which acts on that topological component (M smar
µ )0 which

contains [(f0, id)] (if M smar
µ is Hausdorff), and likewise, the group

Gmar(f0) := {±ψ |ψ ∈ Gsmar(f0)}

is the subgroup of GZ(f0) which acts on the component (Mmar
µ )0 which

contains [(f0,± id)] (Theorem 4.4 (a) and (b)). Especially, there is a 1–1
correspondence

GZ(f0)/Gmar(f0) → {topological components of Mmar
µ }

ψ ·Gmar(f0) 7→ ψ((Mmar
µ )0)

[and similarly for Gsmar(f0) and M smar
µ if it is Hausdorff].

Conjecture. — (3.2)
(a) Gmar(f0) = GZ(f0), equivalent: Mmar

µ is connected.
(b) If all singularities in the µ-homotopy class of f0 have multiplicity>3

then Gmar(f0) = Gsmar(f0)× {± id}, equivalent: − id /∈ Gsmar(f0).

Part (a) is a fragile conjecture. If it is true, it points at hidden properties
which distinguish the lattice Ml(f0) from other monodromy invariant lat-
tices in Ml(f0)⊗Z Q. For example, it implies that any basis which has the

TOME 61 (2011), FASCICULE 7



2646 Claus HERTLING

same Coxeter-Dynkin diagram as a distinguished basis is also distinguished
(Remark 3.4).
Part (b) leads to the question how in cases where it is true, the index 2

subgroup Gsmar(f0) ⊂ Gmar(f0) can be described a priori. Both conjec-
tures are proved in Section 8 for the simple and 22 of the 28 families of
exceptional singularities. In another paper they will be proved for the re-
maining 6 families of exceptional singularities, for the simple-elliptic and
the hyperbolic singularities.
In [10] a classifying space DBL(f0) for (candidates of) Brieskorn lattices

was constructed. It is a complex manifold, and GZ(f0) acts properly dis-
continuously on it. Now one obtains a holomorphic period map

BL : Mmar
µ (f0)→ DBL(f0),

which is GZ(f0)-equivariant. An infinitesimal Torelly type result is that it
is an immersion ([11, Theorem 12.8]). The following is a global Torelli type
conjecture for marked singularities.

Conjecture. — (5.3) BL : Mmar
µ (f0)→ DBL(f0) is injective.

It is equivalent to two Torelli type conjectures which I had proposed
earlier. One is that the period map after taking the quotient by GZ(f0)

LBL : Mmar
µ (f0)/GZ(f0) = Mµ(f0)→ DBL(f0)/GZ(f0)

is injective. It says that the right equivalence class of a singularity is de-
termined by its Brieskorn lattice (up to isomorphism). I worked on it in
[7]–[11]. The other is that for any [(f,±ρ)] ∈Mmar

µ (f0)

StabGZ(f0)([(f,±ρ)]) = StabGZ(f0)(BL([(f,±ρ)])),

this is [11, Conjecture 13.12]. Obvious is only ⊂ and that both groups
are finite, because GZ(f0) acts properly discontinuously on Mmar

µ (f0) and
DBL(f0).
Nevertheless, the isotropy group StabGZ(f0)([(f,±ρ)]) and also the sub-

group StabGZ(f0)([(f, ρ)]) are much better understood than the monodromy
groups Gmar(f0) and Gsmar(f0). The isotropy groups had been studied from
the point of view of symmetries of singularities in [11, 13.1 and 13.2]. Sec-
tion 6 reviews the results.
The isotropy group StabGZ(f0)([(f, ρ)]) can also be seen as a µ-constant

monodromy group, but for µ-constant families where all members are right
equivalent to f (Theorem 4.4 (d)).

This paper deals almost exclusively with µ-constant families of singulari-
ties. Semiuniversal unfoldings are only used in the discussion of symmetries

ANNALES DE L’INSTITUT FOURIER
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of singularities and in the construction of Mmar
µ . But later I hope to ex-

tend Mmar
µ to a manifold of dimension µ which is locally a semiuniversal

unfolding and which allows to consider distinguished bases and Stokes data
of deformations which are not µ-constant from a global perspective.

Section 2 reviews the topology of singularities. Section 3 defines and
studies the µ-constant monodromy groups. Section 4 establishes the moduli
spaces for [strongly] marked singularities, though the main proof is given
in Section 7. Section 5 discusses the period maps BL and LBL. Section 6
reviews the symmetries of singularities. Section 8 proves all conjectures for
the simple and 22 of the 28 exceptional singularities.

I thank the organizers for the workshop on the geometry and physics
of the Landau-Ginzburg model in the summer 2010 in Grenoble. I thank
Martin Guest and the Tokyo Metropolitan University for hospitality in the
winter 2010/2011.

2. Review on the topology
of isolated hypersurface singularities

First, we recall some classical facts and fix some notations. An isolated
hypersurface singularity (short: singularity) is a holomorphic function germ
f : (Cn+1, 0)→ (C, 0) with an isolated singularity at 0. Its Milnor number

µ := dimOCn+1,0/
( ∂f
∂xi

)
is finite. A Milnor fibration for f is constructed as follows [19]. Choose
ε > 0 such that f is defined on the ball B2n+2

ε := {x ∈ Cn+1 | |x| < ε} and
f−1(0) is transversal to ∂B2n+2

ε̃
for all ε̃ 6 ε. Choose δ > 0 such that f−1(τ)

is transversal to ∂B2n+2
ε for all τ ∈ Tδ := {τ ∈ C | |τ | < δ}. Define T ′δ :=

Tδ−{0}, Y (ε, δ) := B2n+2
ε ∩f−1(Tδ) and Y ′(ε, δ) := Y (ε, δ)−f−1(0). Then

f : Y ′(ε, δ)→ T ′δ is a locally trivial C∞-fibration, the Milnor fibration, and
each fiber has the homotopy type of a bouquet of µ n-spheres [19].
Therefore the (reduced for n = 0) middle homology groups are

H
(red)
n (f−1(τ),Z) ∼= Zµ for τ ∈ T ′δ. Each comes equipped with an inter-

section form I, which is a datum of one fiber, a monodromy Mh and a
Seifert form L, which come from the Milnor fibration, see [3, I.2.3] for their
definitions (for the Seifert form, there are several conventions in the liter-
ature, we follow [3]). Mh is a quasiunipotent automorphism, I and L are
bilinear forms with values in Z, I is (−1)n-symmetric and L is unimodular.
L determines Mh and I because of the formulas [3, I.2.3]

L(Mha, b) = (−1)n+1L(b, a), I(a, b) = −L(a, b) + (−1)n+1L(b, a).

TOME 61 (2011), FASCICULE 7



2648 Claus HERTLING

If f : Y ′(ε̃, δ̃) → T ′
δ̃
is a Milnor fibration with ε̃ < ε and δ̃ < δ then the

inclusion
Y ′(ε̃, δ̃) ∩ f−1(∂T ′

δ̃
) ↪→ Y ′(ε, δ) ∩ f−1(∂T ′

δ̃
)

is a fiber homotopy equivalence between the restrictions to ∂T ′
δ̃
of the new

and the old Milnor fibration ([19] or [26, Lemma 2.2]). Therefore the Mil-
nor lattices Hn(f−1(τ),Z) for all Milnor fibrations and all τ ∈ R>0 ∩ T ′δ
are canonically isomorphic, and the isomorphisms respect Mh, I and L.
These lattices are identified and called Ml(f), the tuple (Ml(f), L,Mh, I)
is called ML(f) (for MiLnor and Lattice and L = Seifert form). Remark
that Aut(ML(f)) = Aut(Ml(f), L) because L determines Mh and I. This
group is called GZ(f).

The function germ f(x0, ..., xn) + x2
n+1 ∈ OCn+2,0 is called stabilization

or suspension of f . There is a canonical isomorphismMl(f)⊗Ml(x2
n+1)→

Ml(f+x2
n+1) [3, I.2.7]. As there are only two isomorphismsMl(x2

n+1)→ Z,
and they differ by a sign, there are two equally canonical isomorphisms
Ml(f)→Ml(f +x2

n+1), and they differ just by a sign. Therefore automor-
phisms and bilinear forms on Ml(f) can be identified with automorphisms
and bilinear forms on Ml(f + x2

n+1). In this sense

L(f + x2
n+1) = (−1)n · L(f) and Mh(f + x2

n+1) = −Mh(f)

[3, I.2.7], and GZ(f + x2
n+1) = GZ(f).

The group of biholomorphic map germs ϕ : (Cn+1, 0) → (Cn+1, 0) is
called R, its elements are called coordinate changes. Two singularities f
and g ∈ OCn+1,0 are right equivalent, if f = g ◦ϕ for some ϕ ∈ R, notation:
f ∼R g. In that case ϕ induces an isomorphism

ϕhom : ML(f)→ML(g).

The multiplicity of f is mult f := max(k | f ∈ mk), here m ⊂ OCn+1,0
is the maximal ideal. The splitting lemma says for isolated hypersurface
singularities f, f1, f2 ∈m2

Cn+1,0 [2]

mult f = 2 ⇐⇒ f ∼R g(x0, ..., xn−1) + x2
n for some g ∈m2

Cn,0

f1 ∼R f2 ⇐⇒ f1 + x2
n+1 ∼R f2 + x2

n+1

(in the first equivalence ⇐ is trivial, in the second ⇒).
The next definition and the theorem after it are preparations for Sec-

tion 3.

Definition 2.1.
(a) A C∞ µ-constant family consists of a number µ ∈ Z>1, a connected

C∞-manifold X, possibly with boundary (e.g., X = [0, 1]), an open

ANNALES DE L’INSTITUT FOURIER
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neighborhood Y ⊂ Cn+1 × X of {0} × X and a C∞-function F :
Y → C, such that Ft := F|Y ∩Cn+1×{t} for any t ∈ X is holomorphic
and has an isolated singularity with Milnor number µ at 0.

(b) A holomorphic µ-constant family consists of a number µ ∈ Z>1, a
connected reduced complex space X, an open neighborhood Y ⊂
Cn+1×X of {0}×X and a holomorphic function F : Y → C, such
that Ft := F|Y ∩Cn+1×{t} for any t ∈ X has an isolated singularity
with Milnor number µ at 0.

(c) The µ-homotopy class of f consists of all singularities g such that
a C∞ µ-constant family exists which contains f and g.

Theorem 2.2. — In both cases ((a) and (b) in Definition 2.1) the Mil-
nor latticesMl(Ft) and the tuplesML(Ft) for t ∈ X are locally canonically
isomorphic. They glue to a local system Ml(F ) of free Z-modules of rank
µ on X with a flat unimodular pairing L, a flat automorphism Mh and a
flat intersection form I. The tuple (Ml(F ), L,Mh, I) is called ML(F ).

Proof. — (a) For any t ∈ X one can choose ε(t) and δ(t) such that
Ft : Y ′(ε(t), δ(t)) × {t} → T ′δ(t) is a Milnor fibration. But it may happen
that ε(t) and δ(t) cannot be chosen as continuous functions (a vanishing
fold might exist). Luckily [26, Lemma 2.2] says that for Ft with t close to
t0 and ε(t) 6 ε(t0), δ(t) 6 δ(t0), the inclusion

Y ′(ε(t), δ(t))× {t} ∩ F−1
t (∂T ′δ(t)) ↪→ B2n+2

ε(t0) × {t} ∩ F
−1
t (∂T ′δ(t))

is a fiber homotopy equivalence over ∂T ′δ(t). And the second fibration is
obviously diffeomorphic to the restriction of the Milnor fibration of Ft0 to
∂T ′δ(t). This proves (a).
(b) This follows from (a). �

3. µ-constant monodromy groups

Definition 3.1 presents the first main subject of this paper, the µ-constant
monodromy groups and some subgroups.

Definition 3.1. — Let f ∈m2
Cn+1,0 have an isolated singularity at 0.

(a) For any C∞ or holomorphic µ-constant family (X,Y, F ) (Defini-
tion 2.1) with Ft0 = f for some t0 ∈ X, the local systemMl(F ) over
X yields a homomorphism π1(X, t0)→ GZ(f). The image is the µ-
constant monodromy group G(F, t0) ⊂ GZ(f) of this µ-constant
family.

TOME 61 (2011), FASCICULE 7



2650 Claus HERTLING

IfX = S1 we call the image of the standard generator of π1(S1, t0)
the monodromy of the µ-constant family.

(b) We define four subgroups of GZ(f). The first two are called µ-
constant monodromy groups of f .

Gsmar(f) := {the subgroup generated by all G(F, t0) as in (a)},
Gmar(f) := {±ψ |ψ ∈ Gsmar(f)},
Gsmar
R (f) := {the subgroup generated by all G(F, t0) as in (a)

where Ft ∼R f for all t ∈ X},
Gmar
R (f) := {±ψ |ψ ∈ Gsmar

R (f)}.

In Lemma 3.5 (c) and in Theorem 3.3 (e) other more compact descrip-
tions of Gsmar(f) and Gsmar

R (f) will be given. The indices "smar" and "mar"
stand for strongly marked andmarked. They are motivated by Theorem 4.4
(a) and (b). Theorem 4.4 will put Gsmar(f) and Gmar(f) into action. Ob-
viously

Gsmar
R (f) ⊂ Gmar

R (f)
∩ ∩

Gsmar(f) ⊂ Gmar(f) ⊂ GZ(f).

The two groups Gsmar
R (f) and Gmar

R (f) are finite (Theorem 6.1 (f)). They
depend on the right equivalence class of f . They were studied already in
[11, ch. 13]. We cite some results about them in Theorem 3.3 and discuss
them in Section 6. Conjecture 5.1 would give complete control on them
through the Brieskorn lattice.
The two groups Gsmar(f) and Gmar(f) depend up to conjugacy only

on the µ-homotopy class of f . They are hard to calculate. I propose the
following two conjectures.

Conjecture 3.2. — Let f ∈m2
Cn+1,0 have an isolated singularity at 0.

(a)
Gmar(f) = GZ(f).

(b) If all singularities in the µ-homotopy class of f have multiplicity
> 3 then − id /∈ Gsmar(f), equivalent: then Gmar(f) = Gsmar(f) ×
{± id}.

At first sight, Conjecture 3.2 (a) might look safe as all monodromy
groups of all µ-constant families together should give a large subgroup
of GZ(f). At second sight, it turns out to be a fragile conjecture. Often
there are other Z-lattices VZ of maximal rank in Ml(f) ⊗Z Q such that
Aut(VZ, L) ) GZ(f). Conjecture 3.2 (a) is related to hidden properties

ANNALES DE L’INSTITUT FOURIER
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which distinguish (Ml(f), L) from other Z-lattices in Ml(f)⊗Z Q. Section
8 will give examples. See also Remark 3.4.
Conjecture 3.2 (b) is even more mysterious. If both conjectures are true

then GZ(f) = Gsmar(f)×{± id} for f as in (b). Is there an a priori way to
distinguish such a subgroup of index 2 in GZ(f)?
Theorem 3.3 collects some evidence for the conjectures and some results

about the four groups. The singularities with modality 6 2 are given in [2].

Theorem 3.3. — Let f ∈m2
Cn+1,0 have an isolated singularity at 0.

(a) The conjectures 3.2 (a) and (b) are true for all singularities with
modality 6 1, that means, simple (ADE), simple-elliptic (=para-
bolic, Ẽ6 = P8, Ẽ7 = X9, Ẽ8 = J10), hyperbolic (Tpqr) and excep-
tional unimodal. They are also true for the 14 families of exceptional
bimodal singularities (for the other bimodal singularities I did not
yet make enough calculations), and for the Brieskorn-Pham singu-
larities

∑n
i=0 x

ai
i with pairwise coprime exponents.

(b) If some singularity in the µ-homotopy class of f has multiplicity 2
then − id ∈ Gsmar(f), equivalent: then Gsmar(f) = Gmar(f).

(c) Mh ∈ Gsmar(f). If f is quasihomogeneous then Mh ∈ Gsmar
R (f).

(d) If mult f > 3 then Mk
h 6= − id for any k ∈ Z.

(e)

Gsmar
R (f) = {ϕhom ∈ GZ(f) |ϕ ∈ R with f = f ◦ ϕ}.

(f) Gsmar
R (f) and Gmar

R (f) are finite.
(g)

− id /∈ Gsmar
R (f) ⇐⇒ mult f > 3.

Equivalent: Gmar
R (f) = Gsmar

R (f) if mult f = 2, and Gmar
R (f) =

Gsmar
R (f)× {± id} if mult f > 3.

(h) Gmar
R (f) = Gmar

R (f + x2
n+1).

(i) If all singularities in the µ-homotopy class of f + x2
n+1 have multi-

plicity 2 then Gmar(f) = Gmar(f + x2
n+1).

Proof. — (a) See Theorem 8.3, Theorem 8.4 and Remark 8.5 (i) for the
simple, 22 of the 28 exceptional and the Brieskorn-Pham singularities. The
remaining 6 families of unimodal and bimodal exceptional singularities, the
simple-elliptic and the hyperbolic singularities will be treated in another
paper.

(b) Let g(x0, ..., xn−1) + x2
n be in the µ-homotopy class of f . Then

g + t · x2
n, t ∈ S1 =: X,

TOME 61 (2011), FASCICULE 7
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is a C∞ µ-constant family. With the canonical isomorphism Ml(g+ x2
n) ∼=

Ml(g)⊗Ml(x2
n) one sees that its monodromy is id⊗(− id) = − id ∈ GZ(g+

x2
n). Any path from f to g + x2

n in a C∞ µ-constant family induces an
isomorphism B : ML(f)→ML(g+ x2

n) with Gsmar(f) = B−1 ◦Gsmar(g+
x2
n) ◦B.
(c) The monodromy of the C∞ µ-constant family

Ft := t−1 · f, t ∈ S1,

is Mh, because F−1
t (τ) = f−1(t · τ) for τ > 0. If f is quasihomogeneous

then Ft ∼R f .
(d) Théorème 1 in [1] (and already a letter from Deligne to A’Campo,

see [1]) shows

traceMk
h = (−1)n+1 if 0 < k < mult f.

Let Φm for m ∈ Z>1 be the cyclotomic polynomial of primitive unit roots
of order m. It is well known that∑

Φm(λ)=0

λ =


0 if p2|m for some prime number p,

(−1)s if m = p1 · ... · ps with different
prime numbers p1, ..., ps.

Now suppose mult f > 3. Then µ > 2 and traceMh = traceM2
h = (−1)n+1.

Further suppose Mk
h = − id for some k ∈ Z. Then there exist a ∈ Z>1 and

odd numbers b1, ..., br ∈ Z>1 with

{ordλ |λ eigenvalue of Mh} = {2a · b1, ..., 2a · br}.

Now traceMh 6= 0 implies a = 1. Then {ordλ |λ eigenvalue of M2
h} =

{b1, ..., br} and traceM2
h = − traceMh, a contradiction.

(e) See Theorem 4.4 (d).
(f)+(g)+(h) See Theorem 6.1 (i)
(i) See Theorem 4.4 (e). �

Remarks 3.4. — There is a set B∗ ⊂Ml(f)µ of distinguished bases, see
[3] or [5] for the definition.
Claim: The elements of Gmar(f) respect this set, so

Gmar(f) ⊂ Aut(Ml(f), L,B∗) ⊂ GZ(f).

If one knows how distinguished bases arise, it is not hard to see this claim. I
will discuss it in another paper. Here I just want to point to an implication
of Conjecture 3.2 (a): It would imply equalities. Equivalent to the second
equality Aut(Ml(f), L,B∗) = GZ(f) is that any basis of Ml(f) which has
the same Coxeter-Dynkin diagram as some distinguished basis is also dis-
tinguished. This is true for the singularities in Theorem 3.3 (a). For the
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simple and the simple-elliptic singularities there are older proofs. It seems
to be hard to establish it in any case.

Now we will describe a holomorphic µ-constant family which in a certain
sense induces any µ-constant family of singularities in a fixed µ-homotopy
class and whose monodromy group is the group Gsmar. This is based on
the theory of Tougeron and Mather of jets and finite determinacy of sin-
gularities [17] (see also [4]).
Write O = OCn+1,0 and m = mCn+1,0. The k-jet of a function germ

f ∈ O is the class jkf ∈ O/mk+1, the k-jet of a coordinate change ϕ =
(ϕ0, ..., ϕn) ∈ R is jkϕ = (jkϕ0, ..., jkϕn). The action of R on m2 pushes
down to an action of the algebraic group jkR on m2/mk+1 as a smooth
affine algebraic variety.
By a result of Tougeron and Mather [17, Theorem (3.5)] a singularity

f ∈m2 with Milnor number µ is µ+1-determined, that means, any function
germ g ∈m2 with jµ+1g = jµ+1f is right equivalent to f .

Fix µ and k > µ+ 1. For any singularity g ∈ m2 with µ(g) 6 k − 1 the
codimension of the orbit jkR· jkg in m2/mk+1 is µ(g)−1. The union of all
orbits with codimension > µ − 1 is an algebraic subvariety of m2/mk+1.
The set {jkg | g ∈m2, µ(g) = µ} is Zariski open in it and thus a quasiaffine
variety.
For a fixed singularity f ∈ m2 with µ(f) = µ denote by C(k, f) the

topological component of it which contains jkf . It is also a quasiaffine
variety. For any t ∈ C(k, f) denote by Ft the unique polynomial of degree
6 k with jkFt = t. These polynomials glue to a regular function F :
Cn+1 × C(k, f)→ C.

Lemma 3.5.
(a) (C(k, f),Cn+1 × C(k, f), F ) is a holomorphic µ-constant family.
(b) For any C∞ µ-constant family (X,Y,E) in the µ-homotopy class

of f the local system ML(E) over X is obtained from ML(F ) by
pull back via the jet map X → C(k, f), t 7→ jkEt.

(c) Denote by B : ML(f) → ML(jkf) the isomorphism induced from
the C∞ µ-constant family f + t · (jkf − f), t ∈ [0, 1]. Then

Gsmar(f) = B−1 ◦G(F, jkf) ◦B,

Gsmar
R (f) = B−1 ◦G(F|jkR·jkf , jkf) ◦B.

Proof. — (a) µ(Ft) = µ due to the finite determinacy.
(b) Again due to the finite determinacy, the family

Ẽ(s,t) := Es + t · (jkEs − Es), (s, t) ∈ X × [0, 1],
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is a C∞ µ-constant family. Its restriction to X × {1} is induced by F via
the natural map X × {1} → C(k, f).
(c) This follows from (b) and an analogous statement for µ-constant

families (X,Y,G) with Gs ∼R f for any s ∈ X and the restriction of the
family F to jkR · jkf . �

Remarks 3.6. — (i) In Definition 3.1 (b) it is sufficient to consider C∞
µ-constant families over S1. Replacing C∞ by continuous and piecewise C∞
would not give more, because one can smoothen a curve at a point where
it is only piecewise C∞ by a reparametrization using a (monotonous) C∞-
function [0, 1] → [0, 1] with 0 7→ 0, 1

2 7→
1
2 and 1 7→ 1 which is constant

near 1
2 .

(ii) Also a µ-constant family G : Y → C over S1 where Y → S1 is a
priori only locally isomorphic to ((a neighborhood of {0} × S1 in Cn+1 ×
S1) → S1) would not give more. Then Y → S1 is globally isomorphic to
((a neighborhood of {0} × S1 in Cn+1 × S1) → S1), as a C∞-family of
neighborhoods of 0 in Cn+1.

4. Moduli space of marked singularities

Now we come to the second main subject of this paper, (strongly) marked
singularities and moduli spaces for them.

Definition 4.1. — Let f0 ∈ m2
Cn+1,0 be a function germ with an iso-

lated singularity at 0 with Milnor number µ (short: a singularity). Recall
ML(f) = (Ml(f), L,Mh, I) from Section 2.

(a) A strongly marked singularity is a tuple (f, ρ) where f ∈ m2 is a
singularity in the µ-homotopy class of f0 and ρ : ML(f)→ML(f0)
is an isomorphism.

(b) A marked singularity is a tuple (f,±ρ) with f and ρ as in (a)
(writing ±ρ we mean the set {ρ,−ρ}, neither ρ nor −ρ is preferred,
so (f,±ρ) = (f,±(−ρ))).

(c) Two strongly marked singularities (f1, ρ1) and (f2, ρ2) are right
equivalent (notation: (f1, ρ1) ∼R (f2, ρ2)) if a coordinate change
ϕ ∈ R exists with

f1 = f2 ◦ ϕ and ρ1 = ρ2 ◦ ϕhom.

(d) Two marked singularities (f1,±ρ1) and (f2,±ρ2) are right equiv-
alent (notation: (f1,±ρ1) ∼R (f2,±ρ2)) if a coordinate change
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ϕ ∈ R exists with

f1 = f2 ◦ ϕ and (ρ1 = ρ2 ◦ ϕhom or ρ1 = −ρ2 ◦ ϕhom).

Remarks 4.2. — (a) The notions strongly marked and marked are clo-
sely related, but the first looks more natural than the second. We use also
the second notion, for two reasons:

(i) (f, ρ) and (f,−ρ) have the same value under the period map to
DBL considered in Section 5.

(ii) (f, ρ) ∼R (f,−ρ) if mult f = 2 and (f, ρ) 6∼R (f,−ρ) if mult f > 3,
by Theorem 3.3 (e) and (g). This implies that the moduli space
for strongly marked singularities in Theorem 4.3 is not Hausdorff
if a µ-homotopy class contains singularities with multiplicity > 3
and singularities with multiplicity 2. The moduli space for marked
singularities is not affected by this.

(b) Because of (ii), we will sometimes make one of the following two
assumptions.

Assumption (4.1) : Any singularity in the µ-homotopy class(4.1)
of f0 has multiplicity > 3.

Assumption (4.2) : Any singularity in the µ-homotopy class(4.2)
of f0 has multiplicity 2.

For n 6= 2 the topological type of a singularity is constant within a µ-
homotopy class [26, Theorem (2.1)]. Then one of the two assumptions
would follow from Zariski’s multiplicity conjecture. But Zariski’s multiplic-
ity conjecture is proved essentially only for curve singularities and quasi-
homogeneous singularities. For curve singularities and quasihomogeneous
singularities (4.1) or (4.2) holds.

Theorem 4.3 and Theorem 4.4 (and Theorem 3.3) are the main results of
the paper. Theorem 4.3 is related to [11, Theorem 13.15]. It will be proved
in Section 7.

Theorem 4.3. — Let f0 ∈m2
Cn+1,0 be a singularity with Milnor number

µ and jkf0 = f0 for some k > µ+ 1. Fix this k. Define the sets

M smar
µ (f0) := {strongly marked (f, ρ) |

f in the µ-homotopy class of f0}/ ∼R,
Mmar
µ (f0) := {marked (f,±ρ) |

f in the µ-homotopy class of f0}/ ∼R .
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(a) Recall the set C(k, f0) ⊂ m2/mk+1 discussed before Lemma 3.5.
The sets

Csmar(k, f0) := {(f, ρ) | f ∈ C(k, f0),
ρ : ML(f)→ML(f0) an isomorphism},

Cmar(k, f0) := {(f,±ρ) | f ∈ C(k, f0),
ρ : ML(f)→ML(f0) an isomorphism}

are reduced complex spaces and locally isomorphic to C(k, f0). As
sets M smar

µ = Csmar(k, f0)/jkR, Mmar
µ = Cmar(k, f0)/jkR, here

jkR acts by jkϕ : (f, ρ) 7→ (f ◦ jkϕ−1, ρ◦ϕ−1
hom) on Csmar(k, f0) and

similarly on Cmar(k, f0).
(b) Cmar(k, f0)/jkR is an analytic geometric quotient. The induced re-

duced complex structure on Mmar
µ is independent of k. The germ

(Mmar
µ , [(f,±ρ)]) is isomorphic to the µ-constant stratum in a semi-

universal unfolding of f (see Section 7 for the µ-constant stratum).
The canonical complex structure on µ-constant strata from [11,
Theorem 12.4] induces a canonical complex structure on Mmar

µ . If
not said otherwise,Mmar

µ will be considered with the canonical com-
plex structure.

(c) For any ψ ∈ GZ(f0) =: GZ, the map

ψmar : Mmar
µ →Mmar

µ , [(f,±ρ)]→ [(f,±ψ ◦ ρ)]

is an automorphism of Mmar
µ . The action

GZ ×Mmar
µ , (ψ, [(f,±ρ)] 7→ ψmar([(f,±ρ)])

is a group action from the left.
(d) The action of GZ on Mmar

µ is properly discontinuous. The quotient
Mmar
µ /GZ is the moduli spaceMµ from [11, Theorem 13.5] for right

equivalence classes in the µ-homotopy class of f0, with its canonical
complex structure. Especially [(f1,±ρ1)] and [(f2,±ρ2)] are in one
GZ-orbit if and only if f1 and f2 are right equivalent.

(e) If Assumption (4.1) or (4.2) holds then (b), (c) and (d) are also true
for Csmar(k, f0), M smar

µ and ψsmar with ψsmar([(f, ρ)]) := [(f, ψ ◦
ρ)]. If neither (4.1) nor (4.2) holds then the quotient topology on
Csmar(k, f0)/jkR is not Hausdorff.

Theorem 4.4. — Consider the same data as in Theorem 4.3.
(a) Let (Mmar

µ )0 be the topological component of Mmar
µ (with its re-

duced complex structure) which contains [(f0,± id)]. Then

Gmar(f0) = {ψ ∈ GZ |ψ maps (Mmar
µ )0 to itself},
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and the map

GZ/G
mar(f0)→ {topological components of Mmar

µ }

ψ ·Gmar(f0) 7→ (the component ψmar((Mmar
µ )0)

is a bijection.
(b) If Assumption (4.1) or (4.2) holds then (a) is also true for M smar

µ

and Gsmar(f0).
(c) For any [(f,±ρ)] ∈Mmar

µ

StabGZ([(f,±ρ)]) = ρ ◦Gmar
R (f) ◦ ρ−1

(this does not use Theorem 4.3 (b)-(d)).
(d) For any [(f, ρ)] ∈M smar

µ

StabGZ([(f, ρ)]) = ρ ◦Gsmar
R (f) ◦ ρ−1

= ρ ◦ {ϕhom |ϕ ∈ R with f = f ◦ ϕ} ◦ ρ−1

(this does not require Assumption (4.1) or (4.2), and it does not
use Theorem 4.3 (e)).

(e) − id∈GZ acts trivially onMmar
µ (f0). Suppose that Assumption (4.2)

holds and that f0 = g0(x0, ..., xn−1) + x2
n. Then − id acts trivially

on M smar
µ (f0) and

M smar
µ (f0) = Mmar

µ (f0) = Mmar
µ (g0),

Gmar(f0) = Gsmar(f0) = Gmar(g0).
Suppose additionally that Assumption (4.1) holds for g0 (instead of
f0 in (4.1)). Then {± id} acts freely onM smar

µ (g0), and the quotient
map

M smar
µ (g0) /{± id}−→ Mmar

µ (g0), [(f, ρ)] 7→ [(f,±ρ)]

is a double covering.

Proof. — (a) C(k, f0) is the base space for the holomorphic µ-constant
family (C(k, f0),Cn+1 × C(k, f0), F ) considered in Lemma 3.5 (a). By
Lemma 3.5 (c) and f0 = jkf0

Gmar(f0) = {±ψ |ψ ∈ G(F, f0)}.

The space Cmar(k, f0) contains the set {f0} ×GZ/{± id}. The component
(Cmar(k, f0))0 of Cmar(k, f0) which contains (f0,± id) intersects {f0} ×
GZ/{± id} precisely in the set {f0} ×Gmar/{± id}.
The group GZ acts on Cmar(k, f0) by ψ : (f,±ρ) 7→ (f,±ψ ◦ ρ) for

ψ ∈ GZ. The subgroup which maps the component (Cmar(k, f0))0 to itself
is Gmar(f0). The quotient map Cmar(k, f0) → Mmar

µ is GZ-equivariant.

TOME 61 (2011), FASCICULE 7



2658 Claus HERTLING

As jkR is connected, the component (Mmar
µ (f0))0 is the quotient of the

component (Cmar(k, f0))0. Therefore Gmar(f0) is the subgroup which maps
(Mmar

µ (f0))0 to itself. The bijective correspondence is clear.
(b) Similar to (a).
(c) Similar to (a). Instead of Cmar(k, f0) one considers the (smooth)

analytic subvariety

{(g,±σ) | g ∈ C(k, f0), g ∼R f, σ : ML(g)→ML(f0) an isomorphism}.

The action of jkR on Cmar(k, f0) restricts to a transitive action on each
component of this subvariety. The components are not permuted as jkR is
connected. The components are mapped to different points in Mmar

µ .
The component which contains (f,±ρ) intersects {f} × (GZ/{± id}) ◦ ρ

precisely in {f} × ρ ◦ (Gmar
R (f)/{± id}), because of Lemma 3.5 (c). There-

fore the subgroup which maps this component to itself is ρ ◦ Gmar
R (f) ◦

ρ−1. As the quotient map is GZ-equivariant, this subgroup coincides with
StabGZ([(f,±ρ)]).

(d) The first equality follows as in (c). The equality of the first and
the third term follows immediately from the definition of right equivalence
classes of strongly marked singularities.

(e) By Assumption (4.2) any [(f, ρ)] ∈ M smar
µ (f0) satisfies mult f = 2,

so (f, ρ) ∼R (f,−ρ) by part (d) and Theorem 3.3 (g). Therefore − id acts
trivially on M smar

µ (f0), and M smar
µ (f0) = Mmar

µ (f0). Theorem 3.3 (b) says
Gsmar(f0) = Gmar(f0). With the two isomorphisms

Ml(g)→Ml(g)⊗Ml(x2
n) = Ml(g + x2

n)

which just differ by a sign, the map

Mmar
µ (g0)→Mmar

µ (f0), [(g,±σ)] 7→ [(g + x2
n,±σ ⊗ id)]

is well defined. It is surjective because of the splitting lemma and Assump-
tion (4.2) for f0. It is bijective because of part (c) and Theorem 3.3 (h).
Part (a) and Mmar

µ (f0) = Mmar
µ (g0) show Gmar(f0) = Gmar(g0).

By Assumption (4.1) for g0, mult g > 3 for any (g, σ) ∈ M smar
µ (g0),

so (g, σ) 6∼R (g,−σ) by part (d) and Theorem 3.3 (g). Therefore ± id
acts freely on M smar

µ (g0) and the map M smar
µ (g0)→ Mmar

µ (g0) is a double
covering. �

Remarks 4.5. — (i) Theorem 4.4 (a) shows that Conjecture 3.2 (a) is
equivalent to the connectedness of Mmar

µ (f0). Theorem 4.4 (b) shows that
Conjecture 3.2 (b) is equivalent to [(f, ρ)] and [(f,−ρ)] being in different
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components of M smar
µ (f0) if Assumption (4.1) holds. Together the conjec-

tures say that under Assumption (4.1) M smar
µ (f0) has two components,

each isomorphic to Mmar
µ (f0), and that they are permuted by − id.

(ii) Theorem (4.4) (a) and (b) use thatMmar
µ (f0) respectivelyM smar

µ (f0)
is an analytic quotient. But Theorem 4.4 (c) and (d) use only the (triv-
ial) equality Cmar(k, f0)/jkR = Mmar

µ as sets (respectively for smar). In
part (e) only the equality Gmar(f0) = Gmar(g0) uses that Mmar

µ (f0) and
Mmar
µ (g0) are analytic geometric quotients. The other statements can be

understood and proved without this.

5. Period maps and Torelli type problems

In [7] I had defined an analytic invariant LBL(f) of the right equivalence
class of a singularity f and had formulated the Torelli type conjecture that
LBL(f) determines f up to right equivalence. I worked on it in [7]–[11]. It
is reformulated in Conjecture 5.4. Using Mmar

µ , now a stronger conjecture
for marked singularities can be proposed, Conjecture 5.3.
First, the invariant LBL(f) will be described, but with the minimum of

details necessary to appreciate it. More detailed accounts can be found in
[7]–[11, ch. 10]. It builds on the Brieskorn lattice and the Gauss-Manin con-
nection, which had been studied in many ways, e.g., [16][27][3, III][23][21]
[22][15].
Fix a singularity f ∈ m2

Cn+1,0 and a Milnor fibration f : Y ′(ε, δ) → T ′δ
for it as in Section 2. The cohomology bundle

Hn
C :=

⋃
τ∈T ′

δ

Hn(f−1(τ),C) ⊃ Hn
Z :=

⋃
τ∈T ′

δ

Hn(f−1(τ),Z)

is a flat vector bundle of rank µ and contains a flat Z-lattice bundle. De-
note by H∞ ⊃ H∞Z the spaces of global flat multivalued sections in Hn

C
respectively in Hn

Z .
A holomorphic section can be written as a linear combination of a basis

of H∞C (or H∞Z ) with multivalued holomorphic coefficients. A section in a
punctured neighborhood of 0 is said to have moderate growth respectively
vanishing growth if these coefficients have moderate growth respectively
vanishing growth. The spaces of germs at 0 of such sections are denoted
V >−∞ and V >0. Write also V >α := ταV >0 for α ∈ Z. Then V >−∞ is a
C{τ}[τ−1]-vector space of dimension µ and V >α is a free C{τ}-module of
rank µ in it with V >α ⊗C{τ} C{τ}[τ−1] = V >−∞.
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The Brieskorn lattice H ′′0 (f) is a free C{τ}-module of rank µ whose
(germs of) sections come from differential forms as follows: For ω ∈ Ωn+1

Y (ε,δ)
the section s[ω] on T ′δ with value

s[ω](τ) :=
[
ω

df |f−1(τ)

]
∈ Hn(f−1(τ),C)

is holomorphic, its germ s[ω]0 at 0 turns out to be in V >−1 [16]. H ′′0 (f) is
generated by such germs. Therefore V >−1 ⊃ H ′′0 (f). Also H ′′0 (f) ⊃ V >n−1

holds.
The Brieskorn lattice is a rich invariant. It induces a (sum of two) polar-

ized mixed Hodge structure(s) on H∞ ⊃ H∞Z (the mixed Hodge structure:
[27][23][21], its polarization: [10], but see [11, Remark 10.25] for a sign
mistake in [10]).
Any fiber Hn

Z,τ for τ > 0 is canonically isomorphic to the dual of the
Milnor lattice Ml(f). Therefore the Milnor lattice Ml(f) and its mon-
odromyMh determine uniquelyHn

Z ,H∞Z , V >−∞, V >α. Any automorphism
of (Ml(f),Mh) induces automorphisms of Hn

Z , H∞Z , V >−∞, V >α, which
will be denoted by the same letter as the original automorphism (here
ψ ∈ Aut(Ml(f),Mh) induces ψ(γ) := γ ◦ ψ−1 for γ ∈ Hn

Z,τ ). Like Ml(f),
the germ at 0 of the bundle Hn

Z and the spaces H∞Z , V >−∞, V >α, H ′′0 (f)
are independent of the choice of the Milnor fibration. The tuple

(ML(f), the germ at 0 of Hn
Z , V

>−∞, H ′′0 (f))

will be abbreviated (ML(f), V >−∞, H ′′0 (f)). It is a datum of the germ f ∈
m2

Cn+1,0 (and not of some special representative). The invariant LBL(f)
is the isomorphism class of (ML(f), V >−∞, H ′′0 (f)). It is a datum of the
right equivalence class of f .

The group

StabGZ(f)(H ′′0 (f)) := Aut(ML(f), V >−∞, H ′′0 (f)) ⊂ GZ(f)

is finite because of the polarized mixed Hodge structure on H∞ ⊃ H∞Z [10].
If ϕ ∈ R with f = f ◦ ϕ then ϕhom ∈ StabGZ(f)(H ′′0 (f)), because H ′′0 (f) is
defined by the geometry and is independent of the choice of coordinates.
Therefore (and because of Theorem 3.3 (e))

Gmar
R (f) ⊂ StabGZ(f)(H ′′0 (f)),

and Gmar
R (f) is also finite. Conjecture 5.1 for Gmar

R (f) is similar to Conjec-
ture 3.2 (a) for Gmar(f).

Conjecture 5.1. — [11, Conjecture 13.12]

Gmar
R (f) = StabGZ(f)(H ′′0 (f)).
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See Theorem 5.6 for some cases in which it holds.
In a µ-constant family (X,Y, F ) as in Definition 2.1, locally the Mil-

nor lattices with Seifert forms ML(Ft) are canonically isomorphic (The-
orem 2.2). Therefore also the germs of bundles Hn

Z (Ft) and the spaces
H∞Z (Ft), V >−∞(Ft), V >α(Ft) are canonically isomorphic. But the Brieskorn
lattices vary holomorphically.
Now fix one singularity f0 ∈m2

Cn+1,0. In [10] a classifying space DBL(f0)
for C{τ}-lattices in V >−∞(f0) which have many properties of Brieskorn
lattices was constructed, a classifying space for Brieskorn lattices. It is a
complex manifold.
Let (f,±ρ) be a marked singularity, so f is in the µ-homotopy class of f0

and ρ : ML(f) → ML(f0) is an isomorphism. Then ρ induces an isomor-
phism ρ : V >−∞(f) → V >−∞(f0), and ρ(H ′′0 (f)) is a point in DBL(f0).
One obtains a period map

BL : Mmar
µ (f0)→ DBL(f0), [(f,±ρ)] 7→ ρ(H ′′0 (f)).

Locally, Mmar
µ (f0) is isomorphic to a µ-constant stratum (Theorem 4.3

(b)). Locally, this period map had been studied in [21][22][7]–[11], and it is
holomorphic, so BL is holomorphic.

Theorem 5.2. — [11, Theorem 12.8] BL is an immersion, here the
reduced complex structure on Mmar

µ (f0) is considered.

This improves a slightly weaker result (finite-to-one) in [22]. It is an
infinitesimal Torelli type result. I have some evidence that BL is also an
immersion with the canonical complex structure on Mmar

µ (f0). But if true,
this will be subject of another paper.
The following is a global Torelli type conjecture for marked singularities.

Conjecture 5.3. — (New) BL is injective, here the canonical complex
structure on Mmar

µ (f0) is considered.

The group GZ(f0) acts onMmar
µ (f0) and on DBL(f0) properly discontin-

uously, and by its definition the period map BL is GZ(f0)-equivariant. The
quotientMmar

µ (f0)/GZ(f0) is the moduli spaceMµ(f0) of right equivalence
classes of singularities in the µ-homotopy class of f0 (Theorem 4.3 (d)),
the quotient DBL(f0)/GZ(f0) is a moduli space for the invariants LBL(f).
One obtains a period map

LBL : Mµ(f0)→ DBL(f0)/GZ(f0), [f ] 7→ LBL(f).

The global Torelli type conjecture for right equivalence classes of singulari-
ties from [7] says that LBL is injective where the reduced complex structure
on Mµ(f0) is considered. It can be strengthened as follows.
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Conjecture 5.4. — [11, Conjecture 12.7] LBL is injective, here the
canonical complex structure on Mµ(f0) is considered.

Lemma 5.5. — Conjecture 5.3 ⇐⇒ Conjecture 5.1 (for all singularities
f in the µ-homotopy class of f0) and Conjecture 5.4.

Proof. — Conjecture 5.4 says that ρ(H ′′0 (f)) 6= ρ̃(H ′′0 (f̃)) for all possible
markings ±ρ and ±ρ̃ of f and f̃ if and only if f 6∼R f̃ . In the case f = f̃ ,
ρ(H ′′0 (f)) = ρ̃(H ′′0 (f)) is equivalent to ρ̃−1 ◦ ρ ∈ StabGZ(f)(H ′′0 (f)). By
Conjecture 5.1 this is equivalent to (f,±ρ) ∼R (f,±ρ̃).
This shows the equivalence in the case of the reduced complex structures.

For the canonical complex structures, one observes that the one onMµ(f0)
is induced by the one on Mmar

µ (f0) by the quotient map Mmar
µ (f0) →

Mµ(f0) = Mmar
µ (f0)/GZ(f0) (Theorem 4.3 (d)). �

Theorem 5.6.
(a) Conjecture 5.4 is true for all singularities with modality6 2 possibly

with the exception of the subseries Z1,14k, S1,10k, S]1,10k (k > 1)
[7][8]. It is true for the µ-homotopy classes of the Brieskorn-Pham
singularities

∑n
i=0 x

ai
i with pairwise coprime exponents and for the

µ-homotopy class of the singularity x3
0 + x3

1 + x3
2 + x3

3 [9].
(b) [12] StabGZ(H ′′0 (f)) = {± id} for generic semiquasihomogeneous

singularities with n+1
2 −

∑n
i=0 wi > 4.

(c) [12] The period map LBL is generically injective for the semiquasi-
homogeneous singularities with n+1

2 −
∑n
i=0 wi > 4.

(d) Conjecture 5.3 (and by Lemma 5.5 also the conjectures 5.1 and 5.4,
but the last one is known since [7]) is true for all singularities listed
in Theorem 3.3 (a).

The new part of this theorem is part (d). For the simple, 22 of the 28
exceptional and the Brieskorn-Pham singularities it will be proved in Sec-
tion 8. The remaining 6 exceptional, the simple-elliptic and the hyperbolic
singularities will be treated in another paper. In all these cases one can
build on the study of the period map LBL : Mµ → DBL/GZ in [7]. The
crucial new point is to determine Mmar

µ . And central for this is to prove
Conjecture 3.2 (a). ThenMmar

µ has only one component by Theorem 4.4 (a).
One may expect that StabGZ(H ′′0 (f)) = {± id} for generic singularities in

one µ-homotopy class, if that class is not too small. Part (b) shows this for
semiquasihomogeneous singularities with n+1

2 −
∑n
i=0 wi > 4. But special

members may have a large finite isotropy group of their Brieskorn lattice.
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6. Symmetries of singularities

Here we will review some results on symmetries of singularities from [11,
13.1 and 13.2] and simplify the proofs. The results will imply Theorem 3.3
(f)+(g)+(h). They will also be used in the proof of Theorem 4.3 in Section 7.
They build on work of Slodowy [24] and Wall [28][29].

An unfolding of a singularity f ∈m2
Cn+1,0(a germ with an isolated singu-

larity at 0) is a holomorphic function germ F : (Cn+1 ×M, 0)→ (Cn+1, 0)
with F|(Cn+1×{0},0) = f and (M, 0) a germ of a manifold. It is versal if it
induces any unfolding G : (Cn+1×N, 0)→ (C, 0), that means, a morphism
ϕ : (N, 0) → (M, 0) and a morphism Φ : (Cn+1 × N, 0) → (Cn+1 ×M, 0)
exist such that

prM ◦Φ = ϕ ◦ prN and G = F ◦ Φ and Φ|(Cn+1×{0},0) = id .

It is semiuniversal if it is versal und if dim(M, 0) is minimal.
Semiuniversal unfoldings exist (see e.g., [17][2]). Denote by JF :=

(∂F/∂xi) ⊂ OCn+1×M,0 the Jacobi ideal of F , and by Jf the one of f .
An unfolding is semiuniversal if and only if the map

aC : TM,0 → OCn+1×M,0/JF ,
∂

∂ti
7→
[
∂F

∂ti

]
is an isomorphism. Equivalent is that the map

a0 : T0M → OCn+1,0/Jf

is an isomorphism. Then aC induces a multiplication ◦ on TM,0, a unit vec-
tor field e := a−1

C (1) and an Euler field E := a−1
C ([F ]). Then ((M, 0), ◦, e, E)

is the germ of an F-manifold with Euler field, see [13][11] for its definition.
One can choose good representatives F and M . Then for all t ∈ M the

sum of the Jacobi algebras of the critical points of Ft is isomorphic via aC
to TtM as an algebra. For generic t ∈ M Ft has only A1-singularities, so
the multiplication on TM is generically semisimple. Such an F-manifold is
called massive. The group AutM := Aut((M, 0), ◦, e, E) of automorphisms
of a germ of a massive F-manifold with Euler field is finite [11, Theo-
rem 4.14].
Denote by

Rf := {ϕ ∈ R | f = f ◦ ϕ}

the group of symmetries of f .
Consider a semiuniversal unfolding F of f with base space (M, 0) and a

symmetry ϕ of f . Then F ◦ ϕ−1 is a semiuniversal unfolding of f with the
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same base space (M, 0). It is induced by F via a pair (Φ, ϕM ) of isomor-
phisms with

F ◦ ϕ−1 = F ◦ Φ, Φ|(Cn+1×{0},0) = id, ϕM ∈ AutM .

Then Φ̃ := Φ ◦ ϕ satisfies

(6.1) prM ◦Φ̃ = ϕM ◦ prM , F = F ◦ Φ̃, Φ̃|(Cn+1×{0},0) = ϕ.

Here Φ is not at all unique, but ϕM is unique because AutM is finite and
a0 ◦ (dϕM )|0 ◦ a−1

0 is the automorphism of OCn+1,0/Jf which is induced by
ϕ. One obtains a group homomorphism

()M : Rf → AutM , ϕ 7→ ϕM .

The group Rf is possibly ∞-dimensional, but the group jkRf of k-jets in
Rf is an algebraic group for any k. Let

Rf := j1Rf/(j1Rf )0

be the finite group of components of j1Rf . It is easy to see that Rf =
jkRf/(jkRf )0 for any k > 1 [11, Lemma 13.8]. The following theorem is
contained in [11, Theorem 13.9], except for part (d). Some parts of the
proof below are simpler than in [11].

Theorem 6.1. — Fix a singularity f ∈ m2
Cn+1,0 and a semiuniversal

unfolding F with base space (M, 0).
(a) The homomorphism ()M : Rf → AutM factors through Rf to a

homomorphism ()M : Rf → AutM .
(b) If mult f > 3 then ()M : Rf → AutM is an isomorphism. And then

j1Rf = Rf .

(c) If mult f = 2 then ()M : Rf → AutM is surjective with kernel of
order 2. If f = g(x0, ..., xn−1) + x2

n then the kernel is generated by
the class of the symmetry (x 7→ (x0, ..., xn−1,−xn)).

(d) If mult f = 2 denote by ϕ(1) and ϕ(2) the (linear) actions of ϕ ∈ Rf

on m
m2+Jf and on m2+Jf

m2 . Then detϕ(2) ∈ {±1}. The homomor-
phism

Rf → Aut
(

m
m2 + Jf

)
× {±1}, ϕ 7→ (ϕ(1),detϕ(2))

factors through Rf to an injective homomorphism

Rf → Aut
(

m
m2 + Jf

)
× {±1}.

(e) If f = g(x0, .., xm) + x2
m+1 + ... + x2

n and mult g > 3 then Rf =
Rg × (ker()M ) ∼= Rg × S2. If mult g = 2 then Rf = Rg.
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(f) The homomorphism ()hom : Rf → GZ(f) factors through Rf to a
homomorphism ()hom : Rf → GZ(f). The image is

(Rf )hom = Gsmar
R (f) ⊂ StabGZ(H ′′0 (f)) ⊂ GZ(f).

(g) The homomorphism ()hom : Rf → Gsmar
R (f) is an isomorphism.

(h) The homomorphism ()M ◦ ()−1
hom : Gsmar

R (f) → AutM is an isomor-
phism if mult f > 3. It is 2–1 with kernel {± id} if mult f = 2. In
any case it extends to a 2–1 morphism ()hom→M : Gmar

R (f)→ AutM
with kernel {± id}.

(i) Theorem 3.3 (f)+(g)+(h) is true.

Proof. — (a) The action of ϕ ∈ Rf on OCn+1,0/Jf depends only on a
sufficiently high k-jet of ϕ, and it depends continuously on it. Because
of O/Jf ∼= T0M and because AutM is finite, k-jets of symmetries in one
component of jkRf induce the same element of AutM .
(b) Surjectivity: The F-manifold (M, ◦, e, E) determines a Lagrange vari-

ety in T ∗M , and this determines up to isomorphism a semiuniversal unfold-
ing, see [11, Theorem 5.6] for details and [2, 19.3] for the relation between
Lagrange maps and unfoldings. Therefore any ϕM ∈ AutM lifts to an au-
tomorphism (Φ̃, ϕM ) of the unfolding F , with Φ̃ as in (6.1).

Injectivity: mult f > 3 implies Jf ⊂ m2 and surjectivity of the map
m/Jf → m/m2. The action of j1Rf on m/m2 is faithful. Therefore
j1Rf = Rf and ()M : Rf → AutM is injective.

(c)+(d)+(e) Surjectivity in (c): as in (b).
It is sufficient to consider the case f = g(x0, ..., xm) + x2

m+1 + ... + x2
n

with mult g > 3, m < n. Then

m
m2 + Jf

= m
m2 + (xm+1, ..., xn) and m2 + Jf

m2 = m2 + (xm+1, ..., xn)
m2 .

The kernel of the natural homomorphism

j1Rf → Aut
(

m
m2 + Jf

)
×Aut

(
m2 + Jf

m2

)
is unipotent, so connected. The image is Rg×O(n−m). The second factor is
due to j2f = x2

m+1+...+x2
n. For the first factor observe the following: (M, 0)

is also the base space of a semiuniversal unfolding of g, ()M : Rg → AutM
is an isomorphism, ()M : Rf → AutM is surjective, so Rg and Rf induce
the same automorphisms of T0M . Also

T0M ∼=
OCm+1,0

Jg
⊃

mCm+1,0

Jg
�

mCm+1,0

m2
Cm+1,0

∼=
m

(m2 + Jf ) ,
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and j1Rg = Rg acts faithfully on mCm+1,0/m2
Cm+1,0 Therefore the image

above is Rg ×O(n−m).
As the kernel of j1Rf → Rg ×O(n−m) is connected

Rf = j1Rf/(j1Rf )0 = Rg ×O(n−m)/(Rg ×O(n−m))0

= Rg × {id, (the class of (x 7→ (x0, ..., xn−1,−xn) in Rf )}.

The rest is clear now, too.
(f) GZ(f) is a discrete group. (Rf )hom = Gsmar(f) is Theorem 3.3 (e).
(g) It rests to show that ()hom : Rf → GZ(f) is injective. Suppose ϕhom =

id for some ϕ ∈ Rf . Then ϕhom acts trivially on H ′′0 (f). The space

Ωf := Ωn+1
Cn+1,0/df ∧ ΩnCn+1,0

is a quotient of H ′′0 (f) (due to Brieskorn, see e.g., [16][3][11]). It is a free
O/Jf -module of rank 1, generated by the class [ω0] of the volume form
ω0 := dx0 ∧ ... ∧ dxn. The action of ϕ on Ωf is trivial, because the action
on H ′′0 (f) is trivial. Therefore [ϕ∗ω0] = [ω0] and the action of ϕ on O/Jf is
trivial. Therefore det

(
∂ϕj
∂xi

)
(0) = 1 and ϕM = id. Because of (b) and (c)

the class of ϕ in Rf is id.
(h) For f = g(x0, ..., xn−1) + x2

n the proof of Theorem 3.3 (b) shows

(x 7→ (x0, ..., xn−1,−xn))hom = − id .

Thus if mult f = 2 then − id ∈ Gsmar
R (f) and ({± id})−1

hom = ker()M .
If mult f > 3 then ()M ◦ ()−1

hom : Gsmar
R (f) → AutM is an isomorphism,

and the extension to Gsmar
R (f +x2

n+1) is 2-1 with kernel {± id}, thus − id /∈
Gsmar
R (f).
(i) Compare (e)–(h). �

In the case of a quasihomogeneous singularity the group Rf has a canon-
ical lift to Rf . It will be useful for the calculation of Rf .

Theorem 6.2. — [11, Theorem 13.11] Let f ∈ C[x0, ..., xn] be a quasi-
homogeneous polynomial with an isolated singularity at 0 and weights
w0, ..., wn ∈ Q ∩ (0, 1

2 ] and weighted degree 1. Suppose that w0 6 ... 6
wn−1 <

1
2 (then f ∈ m3 if and only if wn < 1

2 ). Let Gw be the algebraic
group of quasihomogeneous coordinate changes, that means, those which
respect C[x0, ..., xn] and the grading by the weights w0, ..., wn on it. Then

Rf ∼= StabGw(f).
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7. Proof of Theorem 4.3

The proof of Theorem 4.3 will be similar to the proof of Theorem 13.15
in [11]. Like that proof it will use results from [11, 13.3], they are refor-
mulated in Theorem 7.2. But it will use also joint consequences of these
results and Theorem 6.1, they are formulated in Corollary 7.3. The proof of
Theorem 4.3 comes after it. The results in [11, 13.3] concern the µ-constant
stratum.
For a moment, fix a singularity f ∈m2

Cn+1,0 and choose a good represen-
tative F : U ×M → C with U ⊂ Cn+1 of a semiuniversal unfolding, with
base space M . The µ-constant stratum Sµ ⊂M is

Sµ = {t ∈M |Crit(Ft) = {x} and Ft(x) = 0}
= {t ∈M | 0 is the only critical value of Ft}
= {t ∈M |E ◦ is nilpotent on TtM}.

The second equality is due to Gabrielov [6], Lazzeri and Lê. The third
equality follows from the definition of multiplication and Euler field on M
(see Section 6): The eigenvalues of E◦ on TtM are the critical values of Ft.

The germ (Sµ, 0) ⊂ (M, 0) is a datum of the germ (M, 0) of an F-manifold
with Euler field, any automorphism ψ ∈ AutM := Aut((M, 0), ◦, e, E) re-
stricts to an automorphism of (Sµ, 0).
The critical points x of Ft with t ∈ Sµ might a priori not be equal to 0.

But by a result of Teissier [25, 6.14] there exists a holomorphic section σ :
M → U×M with Crit(Ft) = {σ(t)} for t ∈ Sµ. Because F (x+σ(t), t) is also
a semiuniversal unfolding of f , we can assume from now on that for t ∈ Sµ
Crit(Ft) = {0}, Then the restriction of F to Sµ is a holomorphic µ-constant
family in the sense of Definition 2.1. By Theorem 2.2 it comes equipped
with a flat bundle ML(F|Sµ) of Milnor lattices with Seifert forms L.

Any ϕ ∈ AutM lifts to an automorphism of the (germ of the) unfolding
F (see the proof of Theorem 6.1 (b) and [11, Theorem 5.6]). Therefore
one may expect that (Sµ, 0)/ ∼R= (Sµ, 0)/AutM . This is true and part
of much stronger results in [11, 13.3]. They are cited in Theorem 7.2. The
existence of an unfolding with the properties in Definition 7.1 is part of
them.

Definition 7.1. — Fix a singularity f ∈m2
Cn+1,0. A representative F :

U×M → C of a semiuniversal unfolding, with U ⊂ Cn+1 a neighborhood of
0 andM the base space, is called a very good representative if the following
holds.
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(i) Any ϕ ∈ AutM extends (from the germ) to an automorphism of the
F-manifold M .

(ii) Any isomorphism ψ : (M, t)→ (M, t̃) of germs of F-manifolds with
Euler fields and with t, t̃ ∈ Sµ is the restriction of an element of
AutM .

(iii) Any ϕ ∈ AutM lifts to an automorphism (Φ, ϕ) of the unfolding F ,
that means, Φ : Y1 → Y2 is an isomorphism of suitable open subsets
Y1 and Y2 of U ×M which contain all critical points of all Ft, with
prM ◦Φ = ϕ ◦ prM and F = F ◦ Φ.

(iv) Sµ is contractible. Therefore ML(Ft) for t ∈ Sµ can and will be
identified with ML(f).

Theorem 7.2 collects the main results of [11, 13.3]. We will not review
the proofs here. They use the construction of Frobenius manifolds on the
base spaces of semiuniversal unfoldings and an interplay of this with the
polarized mixed Hodge structures on the spaces H∞ from Section 5.

Theorem 7.2. — Fix a singularity f ∈m2
Cn+1,0.

(a) [11, Theorem 13.18] A very good representative of a semiuniversal
unfolding exists. For such a representative Sµ/ ∼R= Sµ/AutM .

(b) [11, Theorem 13.17] If f̃ ∈m2
Cn+1,0 is a singularity in the µ-homotopy

class of f , but not right equivalent to f , then very good represen-
tatives F and F̃ of semiuniversal unfoldings of f and f̃ exist with
µ-constant strata Sµ ⊂M and S̃µ ⊂ M̃ such that Ft 6∼R F̃

t̃
for any

t ∈ Sµ and any t̃ ∈ S̃µ.
(c) [11, Theorem 13.15] Recall the space C(k, f) ⊂ m2/mk+1 from

Section 3. For k > µ + 1, the space C(k, f)/jkR is an analytic
geometric quotient. It is a moduli space for the right equivalence
classes in the µ-homotopy class of f . Locally at [f ] it is isomorphic
to Sµ/AutM where Sµ is the µ-constant stratum of a very good
representative of a semiuniversal unfolding of f . A priori it carries
the induced reduced complex structure. But it comes also equipped
with a canonical complex structure induced by that on µ-constant
strata in [11, Theorem 12.4].

Corollary 7.3. — Fix two singularities f0 and f ∈ m2
Cn+1,0 in the

same µ-homotopy class. Fix a very good representative F : U ×M → C of
a semiuniversal unfolding of f . Fix two isomorphisms ρ and ρ̃ : ML(f)→
ML(f0). Suppose that (Ft,±ρ) ∼R (F

t̃
,±ρ̃) for some t, t̃ ∈ Sµ [respectively

that (Ft, ρ) ∼R (F
t̃
, ρ̃) and that Assumption (4.1) or (4.2) holds].
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Then ρ̃−1 ◦ ρ ∈ Gmar
R (f) [respectively ρ̃−1 ◦ ρ ∈ Gsmar

R (f)], and the image
(ρ̃−1 ◦ ρ)hom→M in AutM (defined in Theorem 6.1 (h)) satisfies: For any
s, s̃ ∈ Sµ

s̃ = (ρ̃−1 ◦ ρ)hom→M (s) ⇐⇒ (Fs,±ρ) ∼R (F
s̃
,±ρ̃)

[respectively (Fs, ρ) ∼R (F
s̃
, ρ̃)].

Proof. — A coordinate change ϕ ∈ R with Ft = F
t̃
◦ϕ and ρ = ±ρ̃◦ϕhom

[respectively ρ = ρ̃ ◦ ϕhom] exists. Exactly as in the discussion of the ho-
momorphism Rf → AutM before Theorem 6.1, it induces an isomorphism
ϕM : (M, t) → (M, t̃) of germs of F-manifolds with Euler fields. Because
F is a very good representative of a semiuniversal unfolding, ϕM is in
AutM , and ϕM lifts to an automorphism (Φ, ϕM ) of the unfolding. Denote
Φs := Φ|(Cn+1×{s},0) for s ∈ Sµ. Then f = f ◦ Φ0, Ft = F

t̃
◦ Φt, and

ϕM = (Φ0)M . Thus

Ft = Ft ◦ ϕ−1 ◦ Φt, (ϕ−1 ◦ Φt)M = id,

and
(ϕ−1 ◦ Φt)hom = ± id

by Theorem 6.1 (h) [(ϕ−1 ◦ Φt)hom = id in the case of Assumption (4.1)].
Therefore

f = f ◦ Φ0, ϕM = (Φ0)M , ±ρ̃−1 ◦ ρ = ϕhom = ±(Φ0)hom ∈ Gmar
R (f)

[(ρ̃−1 ◦ ρ ∈ Gsmar
R (f) in the case of Assumption (4.1)]. In the case of As-

sumption (4.2) − id ∈ Gsmar
R (f), and also ρ̃−1 ◦ ρ ∈ Gsmar

R (f).
In any case (ρ̃−1 ◦ ρ)hom→M = ϕM .
Going again through the proof, now with s and s̃ instead of t and t̃ one

obtains⇐. The implication⇒ follows from Fs = FϕM (s)◦Φs and (Φs)hom =
±ρ̃−1 ◦ ρ [respectively (Φs)hom = ρ̃−1 ◦ ρ in the case of Assumption (4.1),
and with (Fs, ρ) ∼R (Fs,−ρ) in the case of Assumption (4.2)]. �

Proof of Theorem 4.3. — (a) This is clear.
(b) We will use a result of Holmann [14, Satz 17] which shows that

the quotient is an analytic geometric quotient if two criteria are satisfied.
The first is that the quotient topology is Hausdorff. The second is the
existence of holomorphic functions in a neighborhood of a point (f,±ρ) in
Cmar(k, f0) which are constant on jkR orbits and which separate points in
different orbits.
Fix (f,±ρ) ∈ Cmar(k, f0). A transversal disk for f is an embedding

j : M̌ → m2/mk+1 of an open neighborhood of 0 in Cµ−1 into m2/mk+1

such that j(0) = f and j(M̌) intersects jkR · f transversally in f .
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By a construction of Gabrielov [6] and the result of Teissier [25, 6.14]
cited above, the germ (j(M̌) ∩C(k, f0), f) is isomorphic to the µ-constant
stratum of f with reduced complex structure in a semiuniversal unfolding,
by an isomorphism which maps singularities in j(M̌) ∩ C(k, f0) to param-
eters of right equivalent singularities in the µ-constant stratum (see [11,
Proof of Theorem 13.15] for the details).
Now Theorem 7.2 (b) and Corollary 7.3 show that the quotient topology

on Cmar(k, f0)/jkR is Hausdorff. This gives the first criterion of Holmann.
Let us choose a small submanifold R ⊂ jkR which contains id ∈ jkR

and which is transversal at id to the stabilizer in jkR of f . Then

R×(j(M̌)∩C(k,f0))
∼=−→ (a certain neighborhood of f in C(k, f0)) =: S(f).

The marking ±ρ in (f,±ρ) induces a marking (g,±ρ) for all g ∈ S(f).
S(f)× {±ρ} is a neighborhood of (f,±ρ) in Cmar(k, f0).
Because of Corollary 7.3 the jkR-orbit of (g,±ρ) intersects this neigh-

borhood only in R·g×{±ρ}. The holomorphic functions on j(M̌)∩C(k, f0)
lift to this neighborhood and satisfy the second criterion of Holmann.
Therefore Mmar

µ = Cmar(k, f0)/jkR is an analytic geometric quotient,
and locally it is isomorphic to the µ-constant stratum of a singularity with
the reduced complex structure.
The canonical complex structures from [11, Theorem 12.4] on all the µ-

constant strata glue together. This follows from their construction: By con-
struction, if (Sµ, 0) is a germ of a µ-constant stratum and Sµ is a sufficiently
small representative then its canonical complex structure from (Sµ, 0) re-
stricts for any t ∈ Sµ to the canonical complex structure on (Sµ, t). There-
fore the canonical complex structures glue to a canonical complex structure
on Mmar

µ .
(c) The map ψmar is a bijection, and locally it maps one copy of a µ-

constant stratum of f to another copy, so it is an isomorphism. The rest is
clear.
(d) By definition of ψmar, [(f1,±ρ1)] and [(f2,±ρ2)] ∈ Mmar

µ are in one
GZ-orbit if and only if f1 ∼R f2. Therefore Mmar

µ /GZ = Mµ as a set.
For some [(f,±ρ)] ∈ Mmar

µ choose a very good representative F of a
semiuniversal unfolding with base space M and µ-constant stratum Sµ ⊂
M such that a neighborhood of [(f,±ρ)] in Mmar

µ is isomorphic to Sµ.
Suppose that ψmar([(Ft,±ρ)]) = [(F

t̃
,±ρ)] for some t, t̃ ∈ Sµ. Corol-

lary 7.3 shows that ρ−1 ◦ ψ ◦ ρ ∈ Gmar
R (f), by Theorem 4.4 (c) then

ψ ∈ StabGZ([(f,±ρ)]). Therefore the action of GZ on Mmar
µ is properly

discontinuous.
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Locally at [(f,±ρ)] the quotient is isomorphic to Sµ/Gmar
R (f)=Sµ/AutM ,

and this is a neighborhood of [f ] in Mµ. Therefore Mmar
µ /GZ = Mµ.

(e) If Assumption (4.1) or (4.2) holds, the proofs of (b)–(d) can be re-
peated for strongly marked singularities.

Suppose that neither (4.1) nor (4.2) holds. Then an (f, ρ) ∈ Csmar(k, f0)
exists such that mult f > 3, but mult g = 2 for arbitrarily close (g, ρ).
Then (g, ρ) ∼R (g,−ρ), but (f, ρ) 6∼R (f,−ρ). The quotient topology of
Csmar(k, f0)/jkR does not separate the orbits of (f, ρ) and (f,−ρ). So it is
not Hausdorff. This finishes the proof of Theorem 4.3. �

8. Examples: Simple and exceptional singularities

Here we will prove Conjecture 3.2 and Conjecture 5.3 for the simple
singularities and 22 of the 28 families of exceptional singularities. Con-
jecture 5.3 will use calculations in [7] of period maps to DBL (for the
exceptional singularities) and an analysis of Conjecture 3.2 for the simple
singularities and the quasihomogeneous exceptional singularities.
For the remaining 6 families of exceptional singularities, for the simple-

elliptic singularities and for the hyperbolic singularities the conjectures are
also true. They will be treated in another paper.
We denote e(a) := e2iπa ∈ C for a ∈ C.

Lemma 8.1. — [9, Lemma 6.5] Let p be a prime number, k,m ∈ Z>1,
c(x) ∈ Z[x] such that c(e( 1

pkm
)) = 1 and |c(e( 1

m ))| = 1.

(a) If p > 3 then c(e( 1
m )) = 1.

(b) If p = 2 then c(e( 1
m )) = ±1.

(c) If p = 2 and c(e( 1
plm

)) = 1 for some l ∈ Z>1−{k} then c(e( 1
m )) = 1.

Lemma 8.2 can be seen as a generalisation of the number theoretic fact:
For any unit root λ

{g(λ) ∈ Z[λ] | |g(λ)| = 1} = {±λk |k ∈ Z}.

The proof of Lemma 8.2 uses this fact and Lemma 8.1.

Lemma 8.2. — Let H be a free Z-module of finite rank µ, and HC :=
H ⊗Z C. Let Mh : H → H be an automorphism of finite order, called
monodromy, with three properties:

(i) Each eigenvalue has multiplicity 1.
Denote Hλ := ker(Mh − λ · id : HC → HC).
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(ii) Denote Ord := {ordλ |λ eigenvalue of Mh} ⊂ Z>1 . There exist
four sequences (mi)i=1,...,|Ord |, (j(i))i=2,...,|Ord |, (pi)i=2,...,|Ord |,
(ki)i=2,...,|Ord | of numbers in Z>1 and two numbers i1, i2 ∈ Z>1
with i1 6 i2 6 |Ord | and with the properties:
Ord = {m1, ...,m|Ord |},
pi is a prime number, pi = 2 for i1 + 1 6 i 6 i2, pi > 3 else,
j(i) = i− 1 for i1 + 1 6 i 6 i2, j(i) < i else,

mi = mj(i)/p
ki
i .

(iii) A cyclic generator a1 ∈ H exists, that means,

H =
µ−1⊕
i=0

Z ·M i
h(a1).

Finally, let I be an Mh-invariant nondegenerate bilinear form (not neces-
sarily (±1)-symmetric) on

⊕
λ6=±1Hλ with values in C. Then

Aut(H,Mh, I) = {±Mk
h | k ∈ Z}.

Proof. — For any A ∈ Aut(H,Mh) the polynomial c(x) =
∑µ−1
i=0 cix

i ∈
Z[x] with A(a1) = c(Mh)(a1) is well-defined because of (iii). Then, also
because of (iii), A = c(Mh). The eigenvalue of A on Hλ is c(λ). It maps H1
and H−1 to themselves, and H±1∩H are rank 1 sublattices, so |c(±1)| = 1.

Now suppose A ∈ Aut(H,Mh, I). As I : Hλ × Hλ → C for λ 6= ±1 is
nondegenerate, |c(λ)| = 1 for such λ, hence for all eigenvalues λ.

By the number theoretic fact cited above, there exist k ∈ Z and ε1 ∈
{±1} such that

ε1 · e
( 1
m1

)k
· c
(
e
( 1
m1

))
= 1.

Define c(2)(x) := ε1 · xk · c(x), so c(2)(e( 1
m1

)) = 1. One finds inductively
c(2)(e( 1

mi
)) = 1 for i = 2, ..., i1 by applying lemma 8.1 (a) at each step.

Now distinguish two cases.
Case 1, i1 = i2, so all pi > 3: Define c(3)(x) := c(2)(x).
Case 2, i1 < i2: Lemma 8.1 (b) shows

c(2)
(
e
( 1
mi1+1

))
= ε2 ∈ {±1}.

Define
c(3)(x) :=

{
c(2)(x) if ε2 = 1
(−xm1/2) · c(2)(x) if ε2 = −1.

Then
c(3)
(
e
( 1
mi

))
= 1 for 1 6 i 6 i1 + 1.
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With Lemma 8.1 (c) one finds inductively

c(3)
(
e
( 1
mi

))
= 1 for i = i1 + 2, ..., i2.

Now in both cases one finds inductively c(3)(e( 1
mi

)) = 1 for i = i2 +
1, ..., |Ord |, with Lemma 8.1 (a). Therefore c(3)(Mh) = id and
A ∈ {±Mk

h | k ∈ Z}. �

Theorem 8.3.
(a) The quasihomogeneous singularities with modality 6 2 and with

one-dimensional eigenspaces (of the monodromy) are the singulari-
ties Aµ, D2k+1, Eµ and 22 of the 28 quasihomogeneous exceptional
unimodal and bimodal singularities, the exceptions are Z12, Q12,
U12, Z18, Q16, U16.

(b) For all of them
GZ := Aut(Milnor lattice, Seifert form) = {±Mk

h | k ∈ Z}.

This is independent of the number of variables. The orders of the
groups can be read off from the characteristic polynomials (table in
the proof). For the simple singularities they are

A1 Aµ (µ > 2) Dµ (µ = 2k + 1 > 5) E6 E7 E8
2 2(µ+ 1) 4(µ− 1) 24 18 30

(c) For all of them, Mmar
µ
∼= Cmod(f), here mod(f) ∈ {0, 1, 2} is the

modality of f , and the period mapMmar
µ → DBL is an isomorphism.

Therefore for all of them Conjecture 3.2 (a) and Conjecture 5.3
are true (and thus also Conjecture 5.1 and Conjecture 5.4, though
Conjecture 5.4 was shown already in [7]). Also Conjecture 3.2 (b)
is true for all of them.

Proof. — (a) The following table lists the characteristic polynomials of
all quasihomogeneous surface singularities with modality 6 2. It can be
extracted from the tables of spectral numbers in [3, 13.3.4] or from [7].
Inspection of the tables gives (a). Φm for m ∈ Z>1 denotes the cyclotomic
polynomial of primitive unit roots of order m.

Aµ
tµ+1−1
t−1 E3,0 Φ2

18Φ6Φ2
2

Dµ (tµ−1 + 1)Φ2 Z1,0 Φ2
14Φ3

2
E6 Φ12Φ3 Q2,0 Φ2

12Φ2
4Φ3

E7 Φ18Φ2 W1,0 Φ2
12Φ6Φ4Φ3Φ2

E8 Φ30 S1,0 Φ2
10Φ5Φ2

2
Ẽ6 Φ3

3Φ2
1 U1,0 Φ2

9Φ3

Ẽ7 Φ2
4Φ3

2Φ2
1

Ẽ8 Φ6Φ2
3Φ2

2Φ2
1
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E12 Φ42 E18 Φ30Φ15Φ3
E13 Φ30Φ10Φ2 E19 Φ42Φ14Φ2
E14 Φ24Φ12Φ3 E20 Φ66
Z11 Φ30Φ6Φ2 Z17 Φ24Φ12Φ6Φ3Φ2
Z12 Φ22Φ2

2 Z18 Φ34Φ2
2

Z13 Φ18Φ9Φ2 Z19 Φ54Φ2
Q10 Φ24Φ3 Q16 Φ21Φ2

3
Q11 Φ18Φ6Φ3Φ2 Q17 Φ30Φ10Φ6Φ3Φ2
Q12 Φ15Φ2

3 Q18 Φ48Φ3
W12 Φ20Φ5 W17 Φ20Φ10Φ5Φ2
W13 Φ16Φ8Φ2 W18 Φ28Φ7
S11 Φ16Φ4Φ2 S16 Φ17
S12 Φ13 S17 Φ24Φ8Φ6Φ3Φ2
U12 Φ12Φ6Φ2

4Φ2
2 U16 Φ15Φ2

5

(b) In Section 2 GZ(f) = GZ(f + x2
n+1) was shown. Therefore it is suf-

ficient to show (b) for the surface singularities in (a). Lemma 8.2 with
H = Ml(f), I = intersection form or Seifert form, Mh = monodromy
shall be applied to the surface singularities in (a). Condition (i) is clear.
Condition (ii) can be checked by inspection of the table of characteristic
polynomials above (only for D2k+1, Q11 and Q17 one has to choose i1 > 1).
Condition (iii) is a special case of the following conjecture of Orlik [20]:
For a quasihomogeneous singularity consider the unique decomposition

of its characteristic polynomial pch into a product pch = p1 · ... ·pl of unitary
polynomials with pl|pl−1|...|p1, pl 6= 1. ThenMl(f) is a direct sum of cyclic
modules,

Ml(f) =
l⊕
i=1

deg pj⊕
j=1

Z ·M j−1
h (aj)


for suitable a1, ..., al ∈ Ml(f) such that the monodromy on the j-th block
has characteristic polynomial pj .
Of course, if the conjecture holds for a singularity f(x0, ..., xn) then it

holds also for any suspension f(x0, ..., xn) + x2
n+1. Michel and Weber can

prove the conjecture for n = 1 [18]. In [7, 3.1] it is proved (using Coxeter-
Dynkin diagrams) for those quasihomogeneous surface singularities with
modality 6 2 which are not suspensions of curve singularities. So, for the
singularities in (a) the conjecture is true with l = 1. There condition (iii)
holds. Lemma 8.2 applies and gives the statement.
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(c) By Theorem 3.3 (c) (and Theorem 4.4 (c)), for any quasihomogeneous
singularity

{±Mk
h | k ∈ Z} ⊂ StabGZ(f)([(f,± id)]) = Gmar

R (f) ⊂ Gmar(f) ⊂ GZ(f).

Part (b) gives equalities for the singularities f in (a), especially Gmar(f) =
GZ(f), which is Conjecture 3.2 (a). By Theorem 4.4 (a)Mmar

µ is connected.
In [2] for the simple and the exceptional singularities, holomorphic µ-

constant families with base spaces X ∼= Cmod(f) are given. The base space
is equipped with a good C∗-action (good = positive weights), the point
0 stands for the quasihomogeneous singularity, the other points for semi-
quasihomogeneous singularities.
For any singularity f̃0, the moduli space Mmar

µ (f̃0) comes equipped with
a C-action, by

C×Mmar
µ (f̃0), (c, [(f̃ ,±ρ)]) 7→ [(e−c · f̃ ,±ρ ◦ σ(c)],

here σ(c) : ML(e−c · f̃)→ML(f̃) is the canonical isomorphism within the
µ-constant family {e−c · f̃ | c ∈ C}.

In the case of the quasihomogeneous exceptional singularities f , the germ
(Mmar

µ (f), [(f,± id)]) and the germ (X, 0) are isomorphic. The C-action
on Mmar

µ (f) factors through to an action of C/2πimZ ∼= C∗ where m ∈
Z>1 is minimal with Mm

h = ± id. Any class in Mmar
µ (f) is obtained by

this C∗-action from a class close to [(f,± id)]. The isomorphism of germs
(Mmar

µ (f), [(f,± id)]) ∼= (X, 0) is compatible with the C∗-actions. Therefore

Mmar
µ (f) ∼= X.

In [7] (copied in [8] and [15]) the period map X → DBL was calculated
and shown to be an isomorphism. Therefore Conjecture 5.3 is true (and
thus also Conjecture 5.1 and Conjecture 5.4, though Conjecture 5.4 was
shown already in [7]).
Finally we come to Gsmar and M smar

µ and Conjecture 3.2 (b). Assump-
tion (4.1) or (4.2) holds. Suppose that Assumption (4.1) holds, that means
that we consider curve or surface singularities, depending on the type. Then
by Theorem 4.4 (e), {± id} ⊂ GZ acts freely onM smar

µ with quotientMmar
µ ,

and the quotient map is a double covering. But Mmar
µ
∼= Cmod(f). The only

possible double covering is that which maps two copies of Mmar
µ to Mmar

µ .
By Theorem 4.4 (b) then GZ = Gsmar(f)× {± id} and

Gsmar(f) = StabGZ([(f, id)]) = {Mk
h | k ∈ Z}

(here Mh is the monodromy of f with mult(f) > 3; whether this is the
surface or curve singularity, depends on the type). �
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Theorem 8.4. — Also for the simple singularities D2k the Conjectu-
res 3.2 (a) and (b) are true. Therefore here Mmar

µ
∼= {pt}, and the period

map Mmar
µ → DBL is an isomorphism (mapping one point to one point).

Therefore the Conjectures 5.3 and 5.1 are true (Conjecture 5.4 is trivial for
the simple singularities.)
In the case mult f > 3 (that is, mult f = 3, it is the case n = 1)

Gsmar = {Ma
h | a = 0, 1, ..., 2k − 2} × U,

GZ = Gmar = Gsmar × {± id}

with U ∼= S3 for D4 and U ∼= S2 for k > 3. So, |GZ| = 36 for D4 and
|GZ| = 4(µ− 1) if µ = 2k > 6.

Proof. — Consider the curve singularity f = x2k−1 − xy2 with weights
(wx, wy) = ( 1

2k−1 ,
k−1
2k−1 ). Because of mod(f) = 0 and Theorem 4.4 (b),

M smar
µ consists of |GZ/G

smar| many points, and Gsmar = StabGZ([(f, id)]).
By Theorem 6.2 and Theorem 6.1 (g), this group can be calculated: The
restriction of the homomorphism ()hom : Rf → StabGZ([(f, id)]) to the
finite group StabGw(f) ⊂ Rf with

StabGw(f) := {ϕ ∈ Rf |ϕ is a quasihomogeneous coordinate change}

is an isomorphism ()hom : StabGw(f)→ StabGZ([(f, id)]).
It is easy to see that StabGw(f) is generated by the coordinate changes

ϕ1 : (x, y) 7→ (e(wx)x, e(wy)y) with (ϕ1)hom = Mh,

ϕ2 : (x, y) 7→ (x,−y),

ϕ3 : (x, y) 7→ (−1
2x+ 1

2y,
3
2x+ 1

2y) only for k = 2.

The element ϕ2 [and ϕ3 if k = 2] generates a subgroup of Gw isomorphic
to S2 [respectively S3 if k = 2]. The image under ()hom is called U . Thus

Gsmar = StabGZ([(f, id)]) = {Mk
h | k = 0, 1, ..., 2k − 2} × U.

By Theorem 3.3 (g) − id /∈ StabGZ([(f, id)]), therefore Gmar = Gsmar ×
{± id} and |Gmar| = 36 for D4 and |Gmar| = 4(µ− 1) for k > 3. It rests to
see |GZ| = |Gmar|. Then GZ = Gmar, and everything is proved.
For the calculation of |GZ| we go over to f̃ = f(x, y) + x2

2 + x2
3 + x2

4 with
n = 4. It is well known that then (Ml(f̃), I) is the root lattice of type D2k
and Mh is a Coxeter element. Then GZ = Aut(Ml(f),Mh, I) because I is
nondegenerate.
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Choose a basis e1, ..., eµ of Ml(f̃) which corresponds to the standard
Dynkin diagram,

I(ei, ei) = 2, I(ei, ei+1) = −1 for 1 6 i 6 µ− 2, I(eµ−2, eµ) = −1.
I(ei, ej) = 0 for all other i and j with i < j.

Then

Mh = se1 ◦ se2 ◦ ... ◦ seµ ,

B1 := ker(Mh + id) ∩Ml(f̃) = Z · b1 + Z · b2, where

b1 = eµ−1 − eµ, b2 = eµ−1 + eµ−3 + ...+ e1,

I(b1, b1) = 4, I(b1, b2) = 2, I(b2, b2) = 2k.

If k = 2 this is an A2-lattice. If k > 3, I(β, β) = 4 ⇐⇒ β = ±b1 for
β ∈ B1. One sees easily |Aut(B1, I)| = 12 if k = 2 and |Aut(B1, I)| = 4 if
k > 3.
Any ψ ∈ GZ maps B1 to itself because ψ ◦Mh = Mh ◦ ψ. There is an

exact sequence

1 7→ {ψ ∈ GZ |ψ = id on B1} → GZ → Aut(B1, I).

Orlik’s conjecture holds also for D2k (see the proof of Theorem 8.3 (b)),
with pch = (tµ−1 + 1)Φ2 = p1 · p2, p1 = tµ−1 + 1, p2 = Φ2: There are
a1 ∈Ml(f̃), a2 ∈ B1 with

Ml(f̃) =
(
µ−2⊕
i=0

Z ·M i
h(a1)

)
⊕ Z · a2 =: B2 ⊕ Z · a2.

Any ψ ∈ GZ with ψ = id on B1 restricts to an automorphism of B2.
Lemma 8.2 applies and shows ψ|B2 = ±(Mh|B2)k for some k. Now ψ|B1 = id
forces ψ = (−Mh)k for some k ∈ Z (here Mh is the mondromy of f̃ , so
minus the monodromy of f). Now

|GZ| = |{(−Mh)k | k ∈ Z}| · |image of GZ in Aut(B1, I)|

6

{
3× 12 = |Gmar| if k = 2,
(2k − 1) · 4 = |Gmar| if k > 3.

Therefore GZ = Gmar. And GZ → Aut(B1, I) is surjective. �

Remarks 8.5. — (i) Let f be any quasihomogeneous singularity such
that its Milnor lattice and its monodromy satisfy the properties (i) – (iii)
in Lemma 8.2. Property (i) implies that there are no nontrivial µ-constant
deformations of weight 0. Therefore a holomorphic µ-constant family with
base space X ∼= Cmod(f) and good C∗-action on it exists, where the point 0
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stands for the quasihomogeneous singularity and all other points for semi-
quasihomogeneous singularities, and it contains representatives of any right
equivalence class in the µ-homotopy class of f [2]. Then the proof of The-
orem 8.3 (c) goes through without changes. Then Mmar

µ
∼= X ∼= Cmod(f),

and the period map Mmar
µ → DBL is an isomorphism.

In [9, ch. 6] most of this (only not Conjecture 3.2 (b) for Gsmar) was
carried out for the Brieskorn-Pham singularities with pairwise coprime ex-
ponents.
(ii) In Theorem 8.3 the quasihomogeneous singularities Z12, Q12, U12,

Z18, Q16, U16 are missing. Also they have holomorphic µ-constant families
with base spaces X ∼= Cmod(f) as in (i). A part of the proof of Theorem 8.3
applies and shows that each component of Mmar

µ is isomorphic to X, and
it shows that in the case mult(f) > 3 Conjecture 3.2 (b) is true. The only
missing part is a proof of Conjecture 3.2 (a): Gmar = GZ. This will be shown
in another paper. Then the proof of Theorem 8.3 goes through and gives
everything else. Then the period map Mmar

µ → DBL is an isomorphism.
(iii) For the simple singularities GZ had also been calculated in [30][31].

There specific properties of the ADE root lattices were used. Also GZ =
Gmar is contained implicitly in [30][31].
(iv) In the case of the simple and the exceptional singularities, Mmar

µ

[respectively any component ofMmar
µ for the cases Z12, Q12, U12, Z18, Q16,

U16] is simply connected. A discussion in another paper will show that
this holds also for the simple-elliptic singularities Ẽk (k = 6, 7, 8) and the
hyperbolic singularities Tpqr ( 1

p + 1
q + 1

r < 1).
But I expect that it does not hold for the six bimodal quadrangle singu-

larities. In those cases DBL is a line bundle over the hyperbolic plane H,
and the image of the period mapMmar

µ → DBL is the restriction of the line
bundle to the complement in H of the countably many elliptic fixed points
of a certain triangle group with angles > 0 [7].
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