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EQUIVARIANT DEGENERATIONS OF SPHERICAL
MODULES FOR GROUPS OF TYPE A

by Stavros Argyrios PAPADAKIS
& Bart VAN STEIRTEGHEM

Abstract. — V. Alexeev and M. Brion introduced, for a given a complex
reductive group, a moduli scheme of affine spherical varieties with prescribed weight
monoid. We provide new examples of this moduli scheme by proving that it is an
affine space when the given group is of type A and the prescribed weight monoid
is that of a spherical module.
Résumé. — V. Alexeev et M. Brion ont introduit, pour un groupe complexe

réductif donné, un schéma de modules de variétés sphériques affines ayant le même
semi-groupe moment. Nous donnons de nouveaux exemples de ce schéma de mo-
dules en montrant qu’il est un espace affine lorsque le groupe donné est de type A
et le semi-groupe moment fixé est celui d’un module sphérique.

1. Introduction and statement of results
As part of the classification of affine G-varieties X, where G is a complex

connected reductive group, a natural question is to what extent the G-
module structure of the ring C[X] of regular functions on X determines
X. Put differently, to what extent does the G-module structure of C[X]
determine its algebra structure?
In the mid 1990s, F. Knop conjectured that the answer to this question

is “completely” when X is a smooth affine spherical variety. To be precise,
Knop’s Conjecture, which has since been proved by I. Losev [22], says
that if X is a smooth affine G-variety such that the G-module C[X] has no
multiplicities, then this G-module uniquely determines the G-variety X (up
to G-equivariant isomorphism). Knop also proved [20] that the validity of
his conjecture implies that of Delzant’s Conjecture [12] about multiplicity-
free symplectic manifolds.

Keywords: Invariant Hilbert scheme, spherical module, spherical variety, equivariant
degeneration.
Math. classification: 14D22, 14C05, 14M27, 20G05.
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In [1], V. Alexeev and M. Brion brought geometry to the general question.
Given a maximal torus T in G and an affine T -variety Y such that all T -
weights in C[Y ] have finite multiplicity, they introduced a moduli scheme
MY which parametrizes (equivalence classes of) pairs (X,ϕ), where X is
an affine G-variety and ϕ : X//U → Y is a T -equivariant isomorphism (here
U ⊆ G is a fixed maximal unipotent subgroup normalized by T andX//U :=
SpecC[X]U is the categorical quotient). They also proved that MY is an
affine connected scheme, of finite type over C, and that the orbits of the
natural action of AutT (Y ) on MY are in bijection with the isomorphism
classes of affine G-varieties X such that X//U ' Y . See also [8, Section 4.3]
for more information on MY .
The first examples of MY were obtained by S. Jansou [16]. He dealt

with the following situation. Suppose Λ+ is the set of dominant weights
of G (with respect to the Borel subgroup B = TU of G) and let λ ∈ Λ+.
Jansou proved that if Y = C with T acting linearly with weight −λ, then
Mλ := MY is a (reduced) point or an affine line. Moreover, he linked MY

to the theory of wonderful varieties (see, e.g., [5] or [27]) by showing that
Mλ is an affine line if and only if λ is a spherical root for G.
P. Bravi and S. Cupit-Foutou [3] generalized Jansou’s result as follows.

Given a free submonoid S of Λ+ such that

(1.1) 〈S〉Z ∩ Λ+ = S,

put Y := SpecC[S] and MS := MY . Bravi and Cupit-Foutou proved that
MS is isomorphic to an affine space. More precisely, the map T → AutT (Y )
coming from the action of T on Y induces an action of T on MS , and
they proved that MS is (isomorphic to) a multiplicity-free representation
of T whose weight set is the set of spherical roots of a wonderful variety
associated to S. The connections between the moduli schemes MY and
wonderful varieties have been studied further in [10, 11].
In this paper we compute examples of MS where S is a free submonoid

of Λ+, but does not necessarily satisfy (1.1). To be more precise, we prove
that MY is (again) isomorphic to an affine space whenever Y = W//U with
W a spherical G-module and G of type A (see Theorem 1.1 below for the
precise statement). The reason we chose to work with spherical modules
is that they have been classified (“up to central tori”) and that many of
their combinatorial invariants have been computed (see [19]). We prove
Theorem 1.1 by reducing it to a case-by-case verification (Theorem 1.2). It
turns out that in most of our cases, condition (1.1) is not satisfied. The fact
that the classification of spherical modules is “up to central tori” means
that this verification needs some care, see Section 4 and Remark 4.4. In this
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paper we restrict ourselves to groups of type A because the work needed
is already quite lengthy. The reduction of the proof of Theorem 1.1 to the
case-by-case analysis is independent of the type of G.

The main consequence of the absence of condition (1.1) is that computing
the tangent space to MS at its unique T -fixed point and unique closed T -
orbit X0, which is also the first step in the work of Jansou, and Bravi
and Cupit-Foutou, becomes more involved (see Section 3 below). On the
other hand, we know, by definition, that our moduli schemes MS = MY

(where Y = W//U) contain the closed point (W,π) where π : W//U → Y is
the identity map. By general results from [1] this point has an (open) T -
orbit of which we know the dimension dW . This implies that once we have
determined that dimTX0MS 6 dW , our main result follows. Jansou and
especially Bravi–Cupit-Foutou have to do quite a bit more work (involving
the existence of a certain wonderful variety depending on S) to prove that
MS contains a T -orbit of the same dimension as TX0MS .

1.1. Notation and preliminaries

We will consider algebraic groups and schemes over C. In addition, like
in [1], all schemes will be assumed to be Noetherian. By a variety, we mean
an integral separated scheme of finite type over C. In particular, varieties
are irreducible.
In this paper, unless stated otherwise, G will be a connected reductive

linear algebraic group over C in which we have chosen a (fixed) maximal
torus T and a (fixed) Borel subgroup B containing T . We will use U for
the unipotent radical of B; it is a maximal unipotent subgroup of G. For
an algebraic group H, we denote X(H) the group of characters, that is,
the set of all homomorphisms of algebraic groups H → Gm, where Gm
denotes the multiplicative group C×. By a G-module or a representation of
G we will always mean a (possibly infinite dimensional) rational G-module
(sometimes also called a locally finite G-module). For the definition, which
applies to non-reductive groups too, see for example [1, p. 86]. Because G
is reductive, every G-module E is the direct sum of irreducible (or simple)
G-submodules. We call E multiplicity-free if it is the direct sum of pairwise
non-isomorphic simple G-modules.
We will use Λ for the weight lattice X(T ) of G, which is naturally iden-

tified with X(B), and Λ+ for the submonoid of X(T ) of dominant weights
(with respect to B). Every λ ∈ Λ+ corresponds to a unique irreducible rep-
resentation of G, which we will denote V (λ). It is specified by the property
that λ is its unique B-weight. Conversely every irreducible representation
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1768 Stavros Argyrios PAPADAKIS & Bart VAN STEIRTEGHEM

of G is of the form V (λ) for a unique λ ∈ Λ+. Furthermore, we will use
vλ for a highest weight vector in V (λ). It is defined up to nonzero scalar:
V (λ)U = Cvλ. For λ ∈ Λ+, we will use λ∗ for the highest weight of the dual
V (λ)∗ of V (λ). We then have that λ∗ = −w0(λ), where w0 is the longest
element of the Weyl group NG(T )/T of G. For a G-moduleM and λ ∈ Λ+,
we will use M(λ) for the isotypical component of M of type V (λ).

We denote the center of G by Z(G) and use Tad for the adjoint torus
T/Z(G) of G. The set of simple roots of G (with respect to T and B) will be
denoted Π, the set of positive roots R+ and the root lattice ΛR. When α is
a root, α∨ ∈ HomZ(Λ,Z) will stand for its coroot. In particular, 〈α, α∨〉 = 2
where 〈·, ·〉 is the natural pairing between Λ and its dual HomZ(Λ,Z) (which
is naturally identified with the group of one-parameter subgroups of T ).

The Lie algebra of an algebraic group G,H, T,B, U etc. will be denoted
by the corresponding fraktur letter g, h, t, b, u, etc. At times, we will also
use Lie(H) for the Lie algebra of H. For a reductive group G, we will use
G′ for its derived group (G,G). It is a semisimple group and its Lie algebra
is g′ = [g, g]. When G acts on a set X and x ∈ X, then Gx stands for
the isotropy group of x. We adopt the convention that G′x := (G′)x and
analogous notations for g-actions. For every root α of G, we choose a non-
zero element Xα of the (one-dimensional) root space gα ⊆ g. We call Xα a
root operator.

A reductive group G is said to be of type A if g′ is 0 or isomorphic to a
direct sum

sl(n1)⊕ sl(n2)⊕ · · · ⊕ sl(nk)
for some positive integer k and integers ni > 2 (1 6 i 6 k).
When G = SL(n) and i ∈ {1, . . . , n−1}, we denote ωi the highest weight

of the module
∧iCn. In addition, for SL(n) we put ωn = ω0 = 0. Similarly,

when G = GL(n) and i ∈ {1, . . . , n}, the highest weight of the module∧iCn will also be denoted ωi. The set {ω1, . . . , ωn} forms a basis of the
weight lattice Λ of GL(n). Moreover, we put ω0 = 0. It is well-known that
the simple roots of GL(n) have the following expressions in terms of the ωi:

(1.2) αi = −ωi−1 + 2ωi − ωi+1 for i ∈ {1, 2, . . . , n− 1},

and that the same formulas also hold for SL(n). The representations V (ωi)
are called the fundamental representations of GL(n) (resp. SL(n)).
A finitely generated C-algebraA is called aG-algebra if it comes equipped

with an action ofG (by automorphisms) for which A is a rationalG-module.
The weight set of A is then defined as

Λ+
A :=

{
λ ∈ Λ+ : A(λ) 6= 0

}
.
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Such an algebra A is called multiplicity-free if it is multiplicity-free as a G-
module. When the G-algebra A is an integral domain, the multiplication on
A induces a monoid structure on Λ+

A, which we then call the weight monoid
of A; it is a finitely generated submonoid of Λ+ (see e.g. [7, Corollary 2.8]).
For an affine scheme X, we will use C[X] for its ring of regular functions.

In particular, X = SpecC[X]. As in [1], an affine G-scheme is an affine
scheme X of finite type equipped with an action of G. Then C[X] is a
G-algebra for the following action:

(g · f)(x) = f(g−1 · x) for f ∈ C[X], g ∈ G and x ∈ X.

We remark that even when G is abelian we use this action on C[X]. A
G-variety is a variety equipped with an action of G. If X is an affine G-
scheme, then its weight set Λ+

(G,X) is defined, like in [1, p. 87], as the weight
set of the G-algebra C[X]. If X is an affine G-variety, then we call Λ+

(G,X)
its weight monoid, and the weight group Λ(G,X) of X is defined as the
subgroup of X(T ) generated by Λ+

(G,X). It is well–known that Λ(G,X) is
also equal to the set of B-weights in the function field of X (see e.g. [7,
p. 17]). When no confusion can arise about the group G in question, we will
use Λ+

X and ΛX for Λ+
(G,X) and Λ(G,X), respectively. An affine G-scheme

X is called multiplicity-free if C[X] is multiplicity-free as a G-module. An
affine G-variety is multiplicity-free if and only if it has a dense B-orbit.
We call a G-variety spherical if it is normal and has a dense orbit for B.
A spherical G-module is a finite-dimensional G-module that is spherical
as a G-variety. We remark that if W is a spherical G-module, then any
two distinct simple G-submodules of W are non-isomorphic. For general
information on spherical varieties we refer to [7, Section 2] and [27].
The indecomposable saturated spherical modules were classified up to

geometric equivalence by Kac, Benson-Ratcliff and Leahy [17, 2, 21], see [19]
for an overview or Section 4 for the definitions of these terms. We will use
Knop’s presentation in [19, Section 5] of this classification and refer to it as
Knop’s List. For groups of type A we recall the classification in List 5.1
on page 1797.
When H is a torus and M is a finite-dimensional H-module, then by the

H-weight set of M , we mean the (finite) set of elements λ of X(H) such
that M(λ) 6= 0. For the weight monoid Λ+

M of M (seen as an H-variety) we
then have that

Λ+
M =

〈
−λ|λ is an element of the H-weight set of M

〉
N.

Given an affine T -scheme Y such that each T -eigenspace in C[Y ] is
finite-dimensional, Alexeev and Brion [1] introduced a moduli scheme MY
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which classifies (equivalence classes of) pairs (X,ϕ), where X is an affine
G-scheme and ϕ : X//U → Y is a T -equivariant isomorphism. Here X//U :=
Spec(C[X]U ) is the categorical quotient. Moreover, they proved that MY

is a connected, affine scheme of finite type over C and they equipped it
with an action by Tad, induced by the action of AutT (Y ) on MY and the
map T → AutT (Y ). We call γ this action of Tad on MY (see Section 2.1
for details).
Now, suppose S is a finitely generated submonoid of Λ+ and Y =

SpecC[S] is the multiplicity-free T -variety with weight monoid S. Like [1],
we then put

MS := MY .

We will use MG
S for MS when we want to stress the group under consider-

ation.
We need to define one more combinatorial invariant of affine G-varieties.

Let X be such a variety. Put R := C[X] and define the root monoid ΣX of
X as the submonoid of X(T ) generated by{

λ+ µ− ν ∈ Λ | λ, µ, ν ∈ Λ+ :
〈
R(λ)R(µ)

〉
C ∩R(ν) 6= 0

}
,

where 〈R(λ)R(µ)〉C denotes the C-vector subspace of R spanned by the set
{fg | f ∈ R(λ), g ∈ R(µ)}. Note that ΣX ⊆ 〈Π〉N. We call dX the rank of
the (free) abelian group generated (in X(T )) by ΣX , that is,

dX := rk〈ΣX〉Z.

We remark that for a given spherical module W , the invariant dW is easy
to calculate from the rank of ΛW , see Lemma 2.7.

1.2. Main results

The main result of the present paper is the following theorem. Its formal
proof will be given in Section 1.3.

Theorem 1.1. — Assume W is a spherical G-module, where G is a
connected reductive algebraic group of type A. Let S be the weight monoid
of W . Then
(a) ΣW is a freely generated monoid; and
(b) the Tad-scheme MS , where the action is γ, is Tad-equivariantly iso-

morphic to the Tad-module with weight monoid ΣW . In particular,
the scheme MS is isomorphic to the affine space AdW , hence it is
irreducible and smooth.

ANNALES DE L’INSTITUT FOURIER
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Our strategy for the proof of Theorem 1.1 is as follows. Suppose W is
a spherical module with weight monoid S. Because dim MS > dW , it is
sufficient to prove that dimTX0MS 6 dW , where X0 is the unique Tad-
fixed point and the unique closed Tad-orbit in MS (see Corollary 2.6). In
Section 4 (see Corollary 4.17) we further reduce the proof of Theorem 1.1
to the following theorem.

Theorem 1.2. — Suppose (G,W ) is an entry in Knop’s List of satu-
rated indecomposable spherical modules with G of type A (see List 5.1 on
page 1797). If G is a connected reductive group such that

(1) G′ ⊆ G ⊆ G; and
(2) W is spherical as a G-module

then
dimTX0MG

S = dW ,

where S is the weight monoid of (G,W ).

In Section 5 we will prove this theorem case-by-case for the 8 families of
spherical modules in Knop’s List with G of type A.
For that purpose X0 is identified in Section 2.1 with the closure of a

certain orbit G · x0 in a certain G-module V and TX0MS with the vector
space of G-invariant global sections of the normal sheaf of X0 in V . This is
a subspace of the space of G-invariant sections of the same sheaf over G·x0.
This latter space is naturally identified with (V/g · x0)Gx0 . In Section 5 we
use the Tad-action (more precisely a variation of it) to bound (V/g·x0)Gx0 by
explicit computations for the pairs (G,W ) in the statement of Theorem 1.2.
In most cases we find that already dim(V/g · x0)Gx0 6 dW . To obtain
the desired inequality for dimTX0MS in the remaining cases we use the
exclusion criterion of Section 3, which was suggested to us by M. Brion, to
prove that enough sections over G · x0 do not extend to X0.

1.3. Formal proof of Theorem 1.1
We now give the proof of Theorem 1.1. Corollary 2.6 and Corollary 4.17

reduce the proof to Theorem 1.2, which we prove by a case-by-case verifi-
cation in Section 5.

1.4. Structure of the paper
In Section 2 we present known results, mostly from [1] and [3], in the

form we need them. In Section 3, which may be of independent interest,
we formulate a criterion about non-extension of invariant sections of the
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normal sheaf. In Section 4 we review the known classification of spherical
modules [17, 2, 21] as presented in [19] and reduce the proof of Theorem 1.1
to a case-by-case verification. We perform this case-by-case analysis in Sec-
tion 5, using results from [3] mentioned in Section 2 and, for the most
involved cases, also the exclusion criterion of Section 3.

2. From the literature

In this section we gather known results, mostly from [1] and [3], together
with immediate consequences relevant to our purposes. In particular we ex-
plain that to prove Theorem 1.1 it is sufficient to show that MS is smooth
when S is the weight monoid of a spherical module W for G of type A.
Indeed, [1, Corollary 2.14] then implies Theorem 1.1 (see Corollary 2.6).
That result of Alexeev and Brion’s also tells us that dim MS > dW . More-
over, by [1, Theorem 2.7], we only have to prove smoothness at a specific
point X0 of MS (see Corollary 2.4), and for that it is enough to show that

(2.1) dimTX0MS 6 dW .

Here is an overview of the content of this section. In Sections 2.1 and 2.2
we recall known facts (mostly from [1]) about the moduli scheme MS when
S is a freely generated submonoid of Λ+ and apply them to the case where
S is the weight monoid Λ+

W of a spherical G-module W . More specifically,
in Section 2.1 we identify MS with a certain open subscheme of an invariant
Hilbert scheme HilbGS (V ), where V is a specific finite-dimensionalG-module
determined by S. Under this identification, the point X0 of MS corresponds
to a certain G-stable subvariety of V , which we also denote X0. Moreover,
X0 is the closure of the G-orbit of a certain point x0 ∈ V . We then have
that

TX0MS ' H0(X0,NX0)G ↪→ H0(G · x0,NX0)G ' (V/g · x0)Gx0 ,

where NX0 is the normal sheaf of X0 in V . In addition, following [1] we
introduce an action of Tad on MS . In Section 2.2 we give some more details
about the inclusion H0(X0,NX0)G ↪→ (V/g · x0)Gx0 which will be of use
in Section 3 and in the case-by-case analysis of Section 5. In Section 2.3
we collect some elementary technical lemmas on (V/g · x0)Gx0 and the
Tad-action. Finally, in Section 2.4 we recall some results from [3] about
(V/g · x0)Gx0 .
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2.1. Embedding of MS into an invariant Hilbert scheme and the
Tad-action

Here we recall, from [1], that if S is a freely generated submonoid of Λ+,
then MS can be identified with an open subscheme of a certain invariant
Hilbert scheme HilbGS (V ). We also review the Tad-action on HilbGS (V ) de-
fined in [1], its relation to the natural action of GL(V )G on that Hilbert
scheme and how it allows us to reduce the question of the smoothness of
MS to the question whether MS is smooth at a specific point X0.

Like the results in Sections 2.2, 2.3 and 3 everything in this section
applies to any MS with S freely generated. In particular, by the following
well-known proposition it applies to MS with S = Λ+

W when (G,W ) is a
spherical module. For a proof, see [19, Theorem 3.2].

Proposition 2.1. — The weight monoid of a spherical module is freely
generated; that is, it is generated by a set of linearly independent dominant
weights.

For the following, we fix a freely generated submonoid S of Λ+ and let E∗
be its (unique) basis. Put E = {λ∗ | λ ∈ E∗} and

V = ⊕λ∈EV (λ).

Alexeev and Brion [1] introduced the invariant Hilbert scheme HilbGS (V ),
which parametrizes all multiplicity-free closed G-stable subschemes X of V
with weight set S (they actually introduced the invariant Hilbert scheme
in a more general setting; for more information on this object, see the
survey [8]). They also defined an action of Tad on HilbGS (V ), see [1, Sec-
tion 2.1], which we call γ and now briefly review. It is obtained by lifting
the natural action of GL(V )G on HilbGS (V ) to T . First, define the following
homomorphism:

(2.2) h : T → GL(V )G, t 7→ (−λ∗(t))λ∈E .

Composing the natural action of GL(V )G on V with h yields an action φ
of T on V :

φ(t, v) = h(t) · v for t ∈ T and v ∈ V .
Note that φ is a linear action on V and that each G-isotypical component
V (λ∗) of V ∗ (with λ ∈ E) is the T -weight space for φ of weight λ∗. Since
GL(V )G acts naturally on HilbGS (V ), φ induces an action of T on HilbGS (V ).
We call this last action γ. It has Z(G) in its kernel and so descends to an
action of Tad = T/Z(G) on HilbGS (V ) which we also call γ. Indeed, if
ρ : G → GL(V ) is the (linear) action of G on V , then for every z ∈ Z(G),
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1774 Stavros Argyrios PAPADAKIS & Bart VAN STEIRTEGHEM

ρ(z) = h(z), because −λ∗ = w0λ is the lowest weight of V (λ) and therefore
differs from all other weights in V (λ) by an element of 〈Π〉N. This implies
that if I is a G-stable ideal in C[V ], then h(z) · I = ρ(z) · I = I. More
generally, if S is a scheme with trivial G-action and I is a G-stable ideal
sheaf on V × S, then I is also stable under the action induced by h on the
structure sheaf OV×S , since ρ|Z(G) = h|Z(G). Because HilbGS (V ) represents
the functor (Schemes) → (Sets) that associates to a scheme S the set of
flat families Z ⊆ V × S with invariant Hilbert function the characteristic
function of S ⊆ Λ+ (see [1, Section 1.2] or [8, Section 2.4]), this implies our
claim.
From [1, Corollary 1.17] we know that the open subscheme HilbGE∗ of

HilbGS (V ) that classifies the (irreducible) non-degenerate subvarieties X ⊆
V with Λ+

X = S is stable under GL(V )G and therefore under the Tad-
action γ. Recall from [1, Definition 1.14] that a closed G-stable subvariety
of V is called non-degenerate if its projections to the simple components
V (λ) of V , where λ ∈ E, are all nonzero. We call a closed G-stable subva-
riety of V degenerate if it is not non-degenerate.
Next suppose Y = SpecC[S], the multiplicity-free T -variety with weight

monoid S. Recall that MS = MY classifies (equivalence classes of) pairs
(X,ϕ) where X is an affine G-variety and ϕ : X//U → Y is a T -equivariant
isomorphism. The action of T on Y through T → AutT (Y ) induces an
action of T on MS . From [1, Lemma 2.2] we know that this action descends
to an action of Tad on MS . By Corollary 1.17 and Lemma 2.2 in [1] the
moduli scheme MS is Tad-equivariantly isomorphic to HilbGE∗ , where the
Tad-action on HilbGE∗ is γ. From now on, we will identify MS with HilbGE∗ .
As in [3], the Tad-action it carries will play a fundamental role in what
follows.

Remark 2.2.

(a) Let (G,W ) be a spherical module with weight monoid S, put Y =
W//U and let π : W//U → Y be the identity map. Then (W,π) cor-
responds to a closed point of MY = MS = HilbGE∗ ⊆ HilbGS (V ). On
the other hand, note that the highest weights of W belong to E. Put
E1 = {λ ∈ Λ+ : W(λ) 6= 0} ⊆ E and E2 = E r E1. Then

V = ⊕λ∈EV (λ) = [⊕λ∈E1V (λ)]⊕ [⊕λ∈E2V (λ)]
'W ⊕ [⊕λ∈E2V (λ)].

Identifying W with ⊕λ∈E1V (λ) ⊆ V we see that W corresponds
to a closed point of HilbGS (V ). As soon as E2 6= ∅, W ⊆ V is a
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degenerate subvariety of V , that is, it corresponds to a closed point
of HilbGS (V ) r HilbGE∗ .

(b) The subvariety of V corresponding to the closed point (W,π) of MS =
HilbGE∗ ⊆ HilbGS (V ) can be described as follows. Let MorG(W,V (λ))
be the set of G-equivariant morphisms of algebraic varieties W →
V (λ). We consider MorG(W,V (λ)) with vector space structure in-
duced from the one of V (λ). Note that, by Schur’s lemma and be-
cause W is spherical,

MorG(W,V (λ)) ' (C[W ]⊗C V (λ))G ' (V (λ∗)⊗ V (λ))G

is one-dimensional for every dominant weight λ with λ∗ ∈ S. After
choosing, for every λ ∈ E2, a nonzero fλ ∈ MorG(W,V (λ)), we can
define the following G-equivariant closed embedding of W into V :

ϕ : W → V, w 7→ w +
(
⊕λ∈E2fλ(w)

)
.

Its image corresponds to a closed point of HilbGE∗ . An appropriate
choice of the functions fλ (which depends on the identification MS =
HilbGE∗) yields the closed point of HilbGE∗ corresponding to (W,π).

The next proposition, taken from [1, Theorem 2.7], means we can verify
the smoothness of MS at just one of its points. It also implies that MS is
connected.

Proposition 2.3. — The affine scheme MS has a unique Tad-fixed
point X0, which is also its only closed orbit.

Using the well-known fact that every orbit closure contains a closed orbit,
we have the following corollary.

Corollary 2.4. — MS is smooth if and only if it is smooth at X0.

Under the identification of MS with HilbGE∗ the distinguished point X0
of MS corresponds to a certain subvariety of V , which we also denote X0
(see [1, p. 99]). It is the closure of the G-orbit in V of

x0 :=
∑
λ∈E

vλ ∈ ⊕λ∈EV (λ) = V.

Indeed this orbit closure has the right weight monoid by [29, Theorem 6]
and is fixed under the action of GL(V )G. Yet another result of Alexeev and
Brion’s gives us an a priori lower bound on the dimension of the moduli
schemes we are considering. We first recall a result of F. Knop. Suppose X

TOME 62 (2012), FASCICULE 5



1776 Stavros Argyrios PAPADAKIS & Bart VAN STEIRTEGHEM

is an affine G-variety. Let Σ̃X be the saturated monoid generated by ΣX ,
that is

Σ̃X := Q>0ΣX ∩ 〈ΣX〉Z ⊆ X(T )⊗Z Q.
Then by [18, Theorem 1.3] the monoid Σ̃X is free. In the following propo-
sition we apply some standard facts about (not necessarily normal) toric
varieties.

Proposition 2.5 (Cor 2.9, Prop 2.13 and Cor 2.14 in [1]). — Suppose
X is a spherical affine G-variety. We view X as a closed point of MΛ+

X
.

(1) The weight monoid of the closure of the Tad-orbit of X in MΛ+
X

is
ΣX . Consequently dim MΛ+

X
> dX .

(2) The normalization of the Tad-orbit closure of X in MΛ+
X
has weight

monoid Σ̃X . Consequently, it is Tad-equivariantly isomorphic to a
multiplicity-free Tad-module of dimension dX .

(3) Suppose X is a smooth variety. Then its Tad-orbit is open in MΛ+
X

and, consequently, MΛ+
X
is smooth if and only if dimTX0MΛ+

X
6 dX .

Applying this proposition to our situation we immediately obtain the
following corollary. It reduces the proof of Theorem 1.1 to Corollary 4.17
and Theorem 1.2.

Corollary 2.6. — Let W be a spherical G-module and let S be its
weight monoid. Then the following are equivalent

(1) MS is smooth;
(2) dimTX0MS = dW ;
(3) dimTX0MS 6 dW .

Moreover, if MS is smooth then ΣW = Σ̃W and MS is Tad-equivariantly
isomorphic to the multiplicity-free Tad-module with Tad-weight set −ΨW ,
where ΨW is the (unique) basis of ΣW .

The following formula for dW , which is an immediate consequence of [9,
Lemme 5.3], will be of use. For the convenience of the reader, we provide
a proof suggested by the referee.

Lemma 2.7. — If W is a spherical G-module, then dW = a− b, where a
is the rank of the (free) abelian group ΛW and b is the number of summands
in the decomposition of W into simple G-modules.

Proof. — Let G/H be the open orbit in W . From [6, Théorème 4.3], we
have that dW = rk ΛW − dimNG(H)/H. Since NG(H)/H is isomorphic to
the group of G-equivariant automorphisms AutG(G/H) of G/H, we obtain
by [23, Lemma 3.1.2] that NG(H)/H ' AutG(W ). Moreover, AutG(W ) =
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GL(W )G, because a G-automorphism of the multiplicity-free G-algebra
C[W ] preserves all irreducible submodules of C[W ] and therefore sends
W ∗ to W ∗. Since dim GL(W )G = b, it follows that dimNG(H)/H = b,
which finishes the proof. �

Remark 2.8. — In [19] Knop computed the simple reflections of the
so-called “little Weyl group” of W ∗, whenever W is a saturated indecom-
posable spherical module. This entry in Knop’s List is equivalent to giving
the basis of the free monoid Σ̃W∗ = −w0Σ̃W : that basis is the set of sim-
ple roots of a certain root system of which the “little Weyl group” is the
Weyl group (see [18, Section 1], [22, Section 3] or [4, Appendix A] for de-
tails). Knop’s List also contains the basis of Λ+

W∗ = −w0Λ+
W for the same

modules W . Those were computed in [14] and [21].

Here now is a proposition which provides a concrete description of the
tangent space TX0MS .

Proposition 2.9 ([1], Proposition 1.13). — Let V be a finite dimen-
sional G-module and suppose X is a multiplicity-free closed G-subvariety
of V . Also writing X for the corresponding closed point in HilbGΛ+

X
(V ), we

have that the Zariski tangent space TXHilbGΛ+
X

(V ) is canonically isomorphic
to H0(X,NX)G, where NX is the normal sheaf of X in V .

2.2. (V/g · x0)Gx0 as a first estimate of TX0MS
In this section we describe a natural inclusion of TX0MS into (V/g·x0)Gx0 ,

see Corollary 2.14. For calculational purposes we introduce a second Tad-
action on HilbGS (V ) denoted ψ̂, which is a twist of the action γ defined
in Section 2.1, and also the infinitesimal version of ψ̂ on (V/g · x0)Gx0

denoted α. The action α is the one used throughout [3]. The main ideas of
this section come from the proof of [1, Proposition 1.15]. We continue to
use the notation of Section 2.1.
Because G · x0 is dense in X0, we have an injective restriction map

H0(X0,NX0) ↪→ H0(G · x0,NX0) = H0(G · x0,NG·x0),

where NG·x0 is defined as the restriction of NX0 to the open subset G ·x0 ⊆
X0. This map is G×GL(V )G-equivariant because X0 and G ·x0 are stable
under the natural action of G×GL(V )G on V . Restricting to G-invariants
we obtain a GL(V )G-equivariant inclusion

(2.3) H0(X0,NX0)G ↪→ H0(G · x0,NX0)G = H0(G · x0,NG·x0)G.
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Since G·x0 is homogeneous, NG·x0 is the G-linearized sheaf on G/Gx0 asso-
ciated with the Gx0 -module V/g · x0, that is, the vector bundle associated
to NG·x0 is G-equivariantly isomorphic to G×Gx0

(V/g · x0). In particular,
we have a canonical isomorphism

(2.4) H0(G · x0,NG·x0)G → (V/g · x0)Gx0 , s 7→ s(x0)

which is the precise way of saying that G-invariant global sections of NG·x0

are determined by their value at x0.
The T -action φ on V defined in Section 2.1 induces an action on H0(G ·

x0,NG·x0)G and we could use the isomorphism (2.4) to induce an action
on (V/g · x0)Gx0 . Because it is better suited to our calculations, we prefer
to work with a slightly different action. Recall that φ was obtained by
composing the natural action of GL(V )G with the homomorphism h of
(2.2). Instead, we obtain a T -action, denoted ψ, on V by composing the
action of GL(V )G with the homomorphism

(2.5) f : T → GL(V )G, t 7→ (λ(t))λ∈E .

In other words, ψ is the following action:

ψ : T × V → V, ψ(t, v) = f(t) · v.

Remark 2.10. — We note that since the elements of E are linearly in-
dependent, f is surjective.

Since ψ commutes with the action of G on V , it induces an action of T
on HilbGS (V ) and on H0(G ·x0,NG·x0)G. By slight abuse of notation we call
both of these actions ψ̂. Using the isomorphism of equation (2.4) we now
translate this action into an action of T on (V/g · x0)Gx0 . The relationship
(via f) between the action of T on (V/g ·x0)Gx0 and the action of GL(V )G
on H0(G · x0,NG·x0)G ' (V/g · x0)Gx0 will play a part in the proof of
Proposition 3.4. Let ρ : T × V → V be the action of T on V induced by
restriction of the action of G.

Definition 2.11. — We denote α the action of T on V given by

α(t, v) := ψ(t, ρ(t−1, v)) for t ∈ T and v ∈ V .

Remark 2.12. — One immediately checks that for all λ ∈ E and every
v ∈ V (λ) ⊆ V ,

(2.6) α(t, v) = λ(t)t−1v.

Proposition 2.13. — The action α induces an action of T on
(V/g · x0)Gx0 , which we also call α. For H0(G · x0,NX0)G equipped with
the action ψ̂ and (V/g · x0)Gx0 with the action α, the isomorphism (2.4) is
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T -equivariant. Moreover, both actions α and ψ̂ have Z(G) in their kernel,
whence the isomorphism (2.4) is Tad-equivariant.

Proof. — In this proof, we will write N for NX0 . Suppose t ∈ T and
s ∈ H0(G · x0,NG·x0)G. Then

ψ̂(t, s)(x0) = (f(t) · s)(x0) = f(t) · s(f(t)−1 · x0)

= f(t) · s(ψ(t−1, x0)).

Now note that ψ(t−1, x0) = ρ(t−1, x0) by the definitions of f and x0. In
other words, we have that ψ̂(t, s)(x0) = f(t) · s(ρ(t−1, x0)). Let v be an
element of V such that s(x0) = [v] ∈ N|x0 = V/g ·x0. Then s(ψ(t−1, x0)) =
[ρ(t−1, v)] ∈ N|ρ(t−1,x0) because s is G-invariant and therefore T -invariant.
It follows that

(2.7) f(t) · s(ρ(t−1, x0)) = [ψ(t, ρ(t−1, v))] = [α(t, v)] ∈ V/g · x0.

This shows that α induces a well-defined action on (V/g·x0)Gx0 . From (2.7)
we can also conclude that the isomorphism (2.4) is T -equivariant. Because
f(z) = h(z) for all z ∈ Z(G), where h is the homomorphism (2.2), Z(G) is
contained in the kernel of ψ̂ (see page 1773) and of α. �

From now on, the Tad-action on V (and on V/g ·x0, (V/g ·x0)Gx0 , etc.)
will refer to the action given by α, and the Tad-action on HilbGS (V ) (and
on MS) will refer to the action given by ψ̂. Combining Proposition 2.9
and equations (2.3) and (2.4) we obtain a natural injection TX0MS ↪→
(V/g · x0)Gx0 .

Corollary 2.14. — The natural injection TX0MS ↪→ (V/g · x0)Gx0

just defined is Tad-equivariant, where we consider TX0MS as a Tad-module
via ψ̂ and (V/g · x0)Gx0 via α.

Remark 2.15. — Thanks to [1, Proposition 1.15 (iii)] and Lemma 3.2
below, we know that the injection in Corollary 2.14 is an isomorphism when
X0rG·x0 has codimension at least 2 in X0. This condition is often not met
in our situation. Even when it is not, the injection is often an isomorphism,
but we also have a number of cases where the injection is not surjective;
see, for example, Remark 5.20.

2.3. Auxiliary lemmas on (V/g · x0)Gx0 and the Tad-action
We continue to use the notation of Sections 2.1 and 2.2. Let Go Tad be

the semidirect product of G and Tad, where Tad acts on G as follows:

(2.8) Tad ×G→ G, (t, g) 7→ t−1gt.
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As explained in [1, p. 102], the linear actions of Tad and G on V can be
extended together to a linear action of G o Tad on V as follows. Suppose
(g, t) ∈ Go Tad and v ∈ V , then

(2.9) (g, t) · v := g · α(t, v) = α(t, (tgt−1) · v),

where α is the Tad-action. Since Tad fixes x0, we have that (G o Tad)x0 =
Gx0 o Tad and (Go Tad) · x0 = G · x0. It follows that (Go Tad)x0 acts on
g · x0 = Tx0(G · x0) and we have an exact sequence of (Gx0 o Tad)-modules

(2.10) 0 −→ g · x0 −→ V −→ V/g · x0 −→ 0.

The next lemma gathers some elementary facts about Gx0 and g · x0.
They will be of use in Sections 3 and 5.

Lemma 2.16. — Let E be a finite subset of Λ+, and define V and x0
as before, that is, x0 :=

∑
λ∈E vλ ∈ V := ⊕λ∈EV (λ). Then the following

hold:
(1) Gx0 = Tx0 .G

◦
x0
, where G◦x0

is the connected component of Gx0

containing the identity;
(2) Tx0 = ∩λ∈E kerλ;
(3) gx0 = u ⊕ tx0 ⊕

⊕
α∈E⊥ g−α, where E⊥ :=

{
α ∈ R+ | 〈λ, α∨〉 =

0 for all λ ∈ E
}
;

(4) The Tad-weight set of g · x0 is (R+ r E⊥) ∪ {0}.

Proof. — The proof of (1) just requires replacing vλ by x0 in the proof
of [16, Lemme 1.7]. (2) is immediate. (3) follows form the well-known prop-
erties of the action of root operators on highest weight vectors. For (4) just
note that g ·x0 = b− ·x0, where b− is the Lie algebra of the Borel subgroup
B− opposite to B with respect to T . �

In addition to the facts listed in Lemma 2.16, the following will be useful
too in Section 5. Recall our convention that G′x0

:= (G′)x0 and g′x0
:=

(g′)x0 . Recall also that if k is a Lie-subalgebra of gx0 , then (V/g · x0)k =
{[v] ∈ V/g · x0 | Xv ∈ g · x0 for all X ∈ k}, by definition.

Lemma 2.17. — Using the notations of this section, the following hold:
(a) The inclusions (V/g · x0)Gx0 ⊆ (V/g · x0)G

′
x0 ⊆ (V/g · x0)g

′
x0 are

inclusions of Tad-modules;
(b) Let H be a subgroup of G and let TH be a subtorus of T ∩H. Let

Γ be the subgroup of X(TH) generated by the image of E under
the restriction map p : X(T ) � X(TH). Suppose v ∈ V is a Tad-
eigenvector of weight β so that [v] is a nonzero element of (V/g ·
x0)Hx0 . Then p(β) belongs to Γ;
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(c) If h is a Lie-subalgebra of g containing g′, then

(V/gx0)Gx0 = (V/gx0)hx0
〈E〉,

where (V/gx0)hx0
〈E〉 is the subspace of (V/gx0)hx0 spanned by{

[v] ∈ (V/gx0)hx0 | v is a Tad-eigenvector with weight in 〈E〉Z
}
.

Proof. — For assertion (a) we first note that the subgroups G′x0
and

(G′x0
)◦ of G are stable under the action of Tad on G in (2.8), so that the

(Gx0 o Tad)-action on V/g · x0 restricts to G′x0
o Tad and (G′x0

)◦ o Tad.
The assertion now follows since Lie(G′x0

) = g′x0
. We now prove (b). Let β

be the Tad-weight of v and for every λ ∈ E, let xλ be the projection of v
onto V (λ) ⊆ V . Then v =

∑
λ∈E xλ. Since v is nonzero, at least one of

the xλ is nonzero. Choose one. Then xλ is a T -eigenvector of weight λ−β.
Since v is fixed by (TH)x0 it follows that xλ is and so (λ − β)|(TH)x0

= 0.
Since (TH)x0 = ∩λ∈E ker p(λ) this implies that p(λ−β) and therefore p(β)
lie in Γ. Assertion (c), finally, is a consequence of parts (1) and (2) of
Lemma 2.16. �

Lemma 2.18. — We use the notations of this section. Let v ∈ V be a
Tad-eigenvector. If [v] is a nonzero element of (V/gx0)g

′
x0 , then the following

two statements hold.

(A) For every positive root α one of the following situations occurs
(1) Xαv = 0;
(2) Xαv is a Tad-eigenvector of weight 0;
(3) Xαv is a Tad-eigenvector with weight in R+ r E⊥;

(B) There is at least one simple root α such that Xαv 6= 0.

Proof. — Part (A) follows from the fact that u ⊆ g′x0
and part (4) of

Lemma 2.16. For (B) first note that the linear independence of E implies
that the subspace t ·x0 of g ·x0 contains all the highest weight vectors of V .
Therefore [v] 6= 0 implies that v is not a sum of highest weight vectors. �

Lemma 2.19. — Let (G,W ) be a spherical G-module and let G be a
reductive subgroup of G containing G′ and such that (G,W ) is spherical.
Then g · x0 = g · x0.

Proof. — We have that g · x0 = t · x0 + g′ · x0. By hypothesis, g′ = g′.
Finally t ·x0 = 〈vλ : λ ∈ E〉C = t ·x0 because the elements of E are linearly
independent (for both G and G). �
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2.4. Further results and notions from [3]

We continue to use the notation of Sections 2.1 and 2.2. In this section
we recall results from [3] about MS and TX0MS under the condition that S
is G-saturated (see Definition 2.20), and we mention some immediate con-
sequences.
The following condition on submonoids of Λ+ was considered by

D. Panyushev in [25]. It also occurs in [29]. We will use the terminology
of [8, Section 4.5].

Definition 2.20. — A submonoid S of Λ+ is called G-saturated if
〈S〉Z ∩ Λ+ = S.

Remark 2.21. — As explained in [3, Section 3] the injection TX0MS ↪→
(V/g · x0)Gx0 of Corollary 2.14 is an isomorphism when S is G-saturated.
The reason is that, by Theorem 9 of [29], X0 r G · x0 then has codimen-
sion at least 2 in X0, which is a normal variety (cf. Lemma 3.2); see also
Remark 2.15.

Remark 2.22. — Clearly, a submonoid S ⊆ Λ+ is G-saturated if and
only if −w0(S) is. This fact will be used in Section 5, because if S is the
weight monoid of a spherical module (G,W ), then −w0(S) is the weight
monoid of the dual module (G,W ∗).

Lemma 2.23 (Lemma 2.1 in [3]). — Let λ1, . . . , λk be linearly indepen-
dent dominant weights. The following are equivalent:
(a) S = 〈λ1, . . . , λk〉N is G-saturated;
(b) there exist k simple roots αt1 , .., αtk such that 〈λi, α∨tj 〉 6= 0 if and

only if i = j.

Theorem 2.24 (Theorem 2.2 and Corollary 2.4 in [3]). — Suppose G is
a semisimple group and S is a G-saturated and freely generated submonoid
of Λ+. Then

(1) the tangent space TX0MG
S ' (V/g ·x0)Gx0 is a multiplicity-free Tad-

module whose Tad-weights belong to Table 1 of [3, p. 2810];
(2) the moduli scheme MG

S is isomorphic as a Tad-scheme to (V/g ·
x0)Gx0 .

Remark 2.25. — When G is of type A, the Tad-weights which can occur
in the space (V/g · x0)Gx0 of Theorem 2.24 are (see [3, Table 1, p. 2810]):
(SR1) α+ α′ with α, α′ ∈ Π and α ⊥ α′;
(SR2) 2α with α ∈ Π;
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(SR3) αi+1 + αi+2 + · · · + αi+r with r > 2 and αi, αi+1, . . . , αi+r simple
roots that correspond to consecutive vertices in a connected com-
ponent of the Dynkin diagram of G;

(SR4) αi + 2αi+1 + αi+2 with αi, αi+1, αi+2 simple roots that correspond
to consecutive vertices in a connected component of the Dynkin
diagram of G.

For several cases in Knop’s List, Theorem 1.2 is a consequence of Bravi
and Cupit-Foutou’s result mentioned above, thanks to Corollary 2.27 be-
low. We first establish a lemma needed in the proof of Corollary 2.27 and
of Proposition 4.11.

Lemma 2.26. — Suppose X is an affine G-variety and let H be a con-
nected subgroup of G containing G′. Let BH be the Borel subgroup B ∩H
of H and let p : X(B)� X(BH) be the restriction map. Let ΣX be the root
monoid of the G-variety X and let Σ′X be the root monoid of X considered
as an H-variety (where H acts as a subgroup of G). If the restriction of p to
Λ(G,X) ⊆ X(B) is injective, then Σ′X = p(ΣX). Consequently, the invariant
dX is the same for (G,X) as for (H,X).

Proof. — By Lemma 4.6 below, p(Λ+
(G,X)) = Λ+

(H,X). Put R = C[X] and
let R = ⊕λ∈Λ+

(G,X)
R(λ) be its decomposition into isotypical components as

a G-module. Then, because p|Λ+
(G,X)

is injective and G′ ⊆ H, we have that
for every λ ∈ Λ+

(G,X), R(λ) ⊆ R is the H-isotypical component of R of type
V (p(λ)). The lemma now follows from the definitions of ΣX and dX . �

Corollary 2.27. — Let G be a connected reductive group and let X
be a smooth affine spherical G-variety with weight monoid S. Suppose X is
spherical for the restriction of the G-action to G′. Put T ′ = T ∩G′. Let S ′
be the image(1) of S under the restriction map p : X(T )� X(T ′).
If S ′ is freely generated then so is S. Suppose S ′ is freely generated and G′-

saturated. Then dim(V/g ·x0)G
′
x0 =dX and, consequently, dimTX0MG

S =dX .

Proof. — The fact that X is spherical for G′ implies that the restriction
of p to S is injective (see Lemma 4.6 below). This proves that S is freely
generated when S ′ is.
We now assume that S ′ is freely generated and G′-saturated. First note

that

(2.11) V ' ⊕λ∈EV (p(λ))

(1)By Lemma 4.6 below, S′ is the weight monoid of the G′-variety X.
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as a G′-module and that, because the sets E ⊆ X(T ) and p(E) ⊆ X(T ′)
are linearly independent,

(2.12) g · x0 = t · x0 + u− · x0 = t′ · x0 + u− · x0 = g′ · x0.

where u− is the sum of the negative root spaces of g′.
Now consider X as a closed point of MG′

S′ . By Theorem 2.24, MG′

S′ is
smooth, and so Proposition 2.5 (with Lemma 2.26) tells us that
dimTX0MG′

S′ = dX . Since TX0MG′

S′ ' (V/g′ · x0)G
′
x0 (using (2.11)) and,

since from (2.12) we have that (V/g · x0) = (V/g′ · x0) and therefore that
(V/g · x0)G

′
x0 = (V/g′ · x0)G

′
x0 , it follows that dim(V/g · x0)G

′
x0 = dX . By

Corollary 2.14, TX0MG
S ⊆ (V/g ·x0)Gx0 ⊆ (V/g ·x0)G

′
x0 , and Proposition 2.5

now finishes the proof. �

3. Criterion for non-extension of sections
We continue to use the notation of Sections 2.1 and 2.2. In particu-

lar, by the Tad-action on V and (V/g · x0)Gx0 we mean the action α

of Definition 2.11. The criterion we give here (Proposition 3.4) for ex-
cluding certain Tad-weight spaces of (V/g · x0)Gx0 from TX0MS was sug-
gested to us by M. Brion. It consists of sufficient conditions on a section
s ∈ H0(G · x0,NX0)G ' (V/g · x0)Gx0 for it not to extend to X0. The basic
idea is that the conditions guarantee that there is a point z0 ∈ X0 (which
depends on s) whose G-orbit has codimension 1 in X0 and such that s does
not extend to z0 along the line joining x0 and z0.
Before we prove the criterion we recall some facts. We begin with the

orbit structure of X0. It is known (see [29, Theorem 8]) that the following
map describes a one-to-one correspondence between the set of subsets of E
and the set of G-orbits in X0:

(D ⊆ E) 7→ G · vD where vD :=
∑
λ∈D

vλ.

Recall that GL(V )G ' G|E|m and that an element (tλ)λ∈E ∈ GL(V )G acts
on V = ⊕λ∈EV (λ) by scalar multiplication by tλ ∈ Gm on the submodule
V (λ). Given D ⊆ E, define the one-parameter subgroup σD of GL(V )G as
follows:

σD : Gm → GL(V )G, t 7→ (pλ(t))λ∈E
where pλ(t) = t if λ /∈ D and pλ(t) = 1 otherwise. Then limt→0 σD(t) ·
x0 = vD. We also put zt := σD(t) · x0 for t ∈ Gm and z0 := vD so that
limt→0 zt = z0. The orbits (of codimension 1) that will play a part in the
criterion correspond to subsets D = E r {λ} where λ ∈ E is a judiciously
chosen element, depending on the section to be excluded.
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The following proposition tells us which subsets D ⊆ E correspond to
orbits of codimension 1 in X0.

Proposition 3.1. — Let E, V and x0 be as before. Suppose λ0 ∈ E.
Put z0 =

∑
λ∈E,λ6=λ0

vλ. Then dim tz0 = dim tx0 + 1. Consequently, the
following are equivalent:
(a) dim gz0 = dim gx0 + 1;
(b) E⊥ = (E r {λ0})⊥ (see Lemma 2.16 (3) for the definition of ⊥);
(c) E⊥ ∩Π = (E r {λ0})⊥ ∩Π.

Proof. — The first assertion follows from (the Lie-algebra version of)
Lemma 2.16 (2) and the fact that E is linearly independent. The equiv-
alence of (a) and (b) is an immediate consequence of Lemma 2.16 (3).
For (b)⇔ (c) we use a standard fact about parabolic subgroups containing
B. Indeed, let P(V ) be the projective space of lines through 0 in V and
V r{0} → P(V ), v 7→ [v] the canonical map. Define the parabolic subgroup
P of G by P := G[x0]. Then −E⊥ is the set of negative roots of P . As is
well known (see, e.g. [15, Theorem 30.1]), −E⊥ is the set of negative roots
of G that are Z-linear combinations of the simple roots in E⊥ ∩Π. Conse-
quently, E⊥ is completely determined by E⊥∩Π. Similarly, (Er{λ0})⊥∩Π
determines (E r {λ0})⊥. �

Lemma 3.2. — The G-variety X0 is normal.

Proof. — Because S is freely generated, we have that 〈S〉Z∩Q>0S = S in
Λ⊗ZQ. We then apply [29, Theorem 10] or the general fact [28, Theorem 6]
that X0 is normal if and only if X0//U is a normal T -variety (recall that
X0//U ' SpecC[S]). �

Lemma 3.3. — Suppose λ ∈ E is such that forD = Er{λ}, the G-orbit
of z0 = vD has codimension 1 in X0. Then Tz0X0 = g · z0 ⊕ Cvλ.

Proof. — By Lemma 3.2, X0 is normal. Therefore its singular locus has
codimension at least 2. Since the singular locus is G-stable and G · z0 has
codimension 1, it follows that X0 is smooth at z0. Therefore, dimTz0X0 =
dim g · z0 + 1. Moreover t 7→ zt = σD(t) · x0 is an irreducible curve in X0
(because the elements of E are linearly independent) and zt = t · vλ + z0.
Thus d

dt |t=0zt = vλ and so vλ ∈ Tz0X0. Further vλ /∈ g · z0 since g · z0 lies
in the complement of V (λ) ⊆ V . �

Now let [v] be a Tad-eigenvector in (V/g · x0)Gx0 . We denote the corre-
sponding section in H0(G ·x0,NX0)G by s, that is, s(x0) = [v]. Recall from
Proposition 2.13 that the Tad-action on (V/g ·x0)Gx0 comes from the action
of T on H0(G ·x0,NX0)G through f : T → GL(V )G, defined in (2.5). Since
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f is surjective (see Remark 2.10), we can also consider s as an eigenvector
for GL(V )G. Because it will play a part in what follows, we remark that if
the GL(V )G-weight of s is δ, then the Tad-weight of s(x0) = [v] is f∗(δ).
By definition, we have that for a ∈ GL(V )G

sa(x0) := a · s(a−1 · x0) = δ(a)s(x0).

This implies that for every D ⊆ E and t ∈ Gm,

s(zt) = s(σD(t) · x0) = δ(σD(t))−1σD(t) · s(x0)(3.1)

= [δ(σD(t))−1σD(t)v] ∈ V/g · zt.

We need one final ingredient for the proof of Proposition 3.4. Recall that
any v ∈ V defines a global section sv ∈ H0(X0,NX0) by

sv(x) = [v] ∈ V/TxX0 for all x ∈ X0.

Here then is the proposition we will use in Sections 5.5, 5.6 and 5.7 to
prove that certain sections in H0(G · x0,NX0)G do not extend to X0. As
mentioned at the beginning of this section, by the Tad-action on V we
mean α. Recall also that ΛR stands for the root lattice.

Proposition 3.4. — Suppose v ∈ V is a Tad-eigenvector of weight
β ∈ ΛR such that [v] ∈ (V/g · x0)Gx0 . Let s ∈ H0(G · x0,NX0)G be defined
by s(x0) = [v]. If there exists λ ∈ E so that
(ES1) the coefficient of λ in the unique expression of β ∈ 〈E〉Z as a Z-linear

combination of the elements of E is positive;
(ES2) the projection of v ∈ V onto V (λ) ⊆ V is zero;
(ES3) if η is a simple root so that 〈λ, η∨〉 6= 0 then there exists λ̃ ∈ Er{λ}

so that 〈λ̃, η∨〉 6= 0;
(ES4) if β ∈ R+ r E⊥ (see Lemma 2.16 for the definition of E⊥), then

there exists ξ in E r {λ} so that 〈ξ, β∨〉 6= 0 and the projection of
v onto V (ξ) is zero;

then s does not extend to X0.

Proof. — The idea of the proof is to “compare” the section s to the
section sv ∈ H0(X0,NX0). Put D = E r {λ}. We first show that

(i) there exists a positive integer k so that s(σD(t) ·x0) = t−ksv(σD(t) ·
x0) for all t ∈ Gm;

(ii) sv(z0) 6= 0,
where z0 = vD = limt→0 σD(t) · x0. We then show that (i) and (ii) imply
that limt→0 s(σD(t) · x0) does not exist, i.e. that s(z0) does not exist.
We first prove (i). Let f : T → GL(V )G be the map (2.5) on page 1778.

Since it is surjective, f∗ : X(GL(V )G) → X(T ), δ 7→ δ ◦ f is injective.
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Moreoverβ ∈ im(f∗). Put δ := (f∗)−1(β), the GL(V )G-weight of s. From
equation (3.1) we have that s(zt) = [δ(σD(t))−1σD(t)v] for every t ∈ Gm.
Using (ES2), σD(t)v = v for every t ∈ Gm. Therefore

s(zt) = [δ(σD(t))−1v] = δ(σD(t))−1[v] = δ(σD(t))−1sv(zt)

for all t ∈ Gm. Let k be the coefficient of λ in the expression of β as a
Z-linear combination of the elements of E. Then δ(σD(t)) = tk for every
t ∈ Gm. Consequently s(zt) = t−ksv(zt) for all t ∈ Gm. By (ES1) k > 0,
and we have proved (i).
We now prove (ii). Condition (ES3) together with Proposition 3.1 tells

us that G · z0 has codimension 1 in X0. It follows from Lemma 3.3 that
Tz0X0 = g ·z0⊕Cvλ. We now proceed by contradiction. Indeed, if sv(z0) =
[v] were zero than we would have v ∈ g · z0 ⊕ vλ. Since, by (ES1), v has
nonzero Tad-weight this would imply that v ∈ g · z0. The nonzero Tad-
weights in g · z0 are (by (ES3)) the same as those in g ·x0, that is, they are
the elements of R+ r E⊥ (by (4) of Lemma 2.16). So if β /∈ R+ r E⊥ we
are done. We only need to deal with the case where β ∈ R+ r E⊥. Then
the Tad-weight space in g · z0 of weight β is the line spanned by X−βz0.
Now (ES4) tells us that v cannot belong to that line: X−βz0 has a nonzero
projection to V (ξ), whereas v does not.
We now prove the claim that (i) and (ii) establish the proposition. Denote

by X61
0 the union of G · x0 and all G-orbits of codimension 1 in X0. Then

X61
0 is open because X0 has finitely many orbits, and it is smooth because

X0 is normal. Again by the normality of X0, s extends to X0 if and only if
it extends to X61

0 (cf. [8, Lemma 3.7]). Since X61
0 is smooth, the normal

sheaf N
X

61
0

of X61
0 in V , which is the restriction of NX0 to X61

0 , is locally
free. The claim follows. �

4. Reduction to classification of spherical modules
In this section we reduce the proof of Theorem 1.1 to a case-by-case

verification, that is, we reduce it to Theorem 1.2. This reduction (formally,
Corollary 4.17) does not use the fact that G is of type A: if Theorem 1.2
holds for groups of arbitrary type, then so does Theorem 1.1. We first
introduce some more notation. We will use R for the radical of G; since G
is reductive, R is the connected component Z(G)◦ of Z(G) containing the
identity. When (G,W ) is a spherical module and S is its weight monoid,
we will use MG

W for the moduli scheme MS (in fact, it is easy to check
that MG

S is, up to isomorphism (of schemes), independent of the choice of
maximal torus T and Borel subgroup B and therefore determined by the
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pair (G,W ), see [26, Lemma 4.13]). We introduce this notation because
we will have to relate moduli schemes for different modules and different
groups to one another. Given a spherical module (G,W ) we will also use
ρ : G→ GL(W ) for the representation and we put

Gst := G′ ×GL(W )G.

We begin with an overview of the reduction. To make the classification of
spherical modules in [17, 2, 21] possible, several issues had to be dealt with
(see [19, Section 5]). Indeed, Knop’s List gives the saturated indecompos-
able spherical modules up to geometric equivalence. We begin by recalling
the definitions of these terms from [19, Section 5].

Definition 4.1.

(a) Two finite-dimensional representations ρ1 : G1 → GL(W1) and ρ2 :
G2 → GL(W2) are called geometrically equivalent if there is an iso-
morphism of vector spaces φ : W1 → W2 such that for the induced
map(2) GL(φ) : GL(W1)→ GL(W2) we have

GL(φ)(ρ1(G1)) = ρ2(G2).

(b) By the product of the representations (G1,W1), . . . , (Gn,Wn) we
mean the representation (G1 × · · · ×Gn,W1 ⊕ · · · ⊕Wn).

(c) A finite-dimensional representation (G,W ) is decomposable if it is
geometrically equivalent to a representation of the form (G1 × G2,

W1 ⊕W2) with W1 a non-zero G1-module and W2 a non-zero G2-
module. It is called indecomposable if it is not decomposable.

(d) A finite-dimensional representation ρ : G → GL(W ) is called satu-
rated if the dimension of the center of ρ(G) equals the number of
irreducible summands of W .

Remark 4.2.

(a) If ρ is saturated and multiplicity-free, then the center of ρ(G) is equal
to the centralizer GL(W )G.

(b) Suppose (G1,W1) and (G2,W2) are geometrically equivalent repre-
sentations. Then (G1,W1) is spherical if and only if (G2,W2) is, and
(G1,W1) is saturated if and only if (G2,W2) is.

(2)By definition, GL(φ)(f) = φ ◦ f ◦ φ−1 for every f ∈ GL(W1).
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Example 4.3 ([19], p. 311). — The spherical modules (SL(2), S2C2) and
(SO(3),C3) are geometrically equivalent. Every finite-dimensional repre-
sentation is geometrically equivalent to its dual representation. The spher-
ical module

(SL(2)×Gm × SL(2))× (C2 ⊕ C2) −→ C2 ⊕ C2 : ((A, t,B), (x, y))
7−→ (tAx, tBy)

is indecomposable but not saturated.

For our reduction to Theorem 1.2, we deal with geometric equivalence
and products of spherical modules in a straightforward matter. Indeed,
we prove in Proposition 4.9 that if (G1,W1) and (G2,W2) are geometri-
cally equivalent spherical modules, then MG1

W1
' MG2

W2
as schemes. That

the tangent space to MG
W behaves as expected under products is proved in

Proposition 4.12. Dealing with the fact that the classification consists of
saturated spherical modules requires a bit more effort. Indeed, we could not
establish an a priori isomorphism between MG

W and MG
W , where (G,W ) is a

(saturated) spherical module and G is a subgroup of G containing G′ such
that (G,W ) is spherical. This is why in Theorem 1.2 we cannot restrict our-
selves to the modules (G,W ) of Knop’s List. We circumvent this difficulty
by proving in Proposition 4.15 that even when (Gst,W ) is decomposable
Theorem 1.2 implies the equality

(4.1) dimTX0MGst

W = dimTX0MG′×ρ(R)
W

for a spherical module ρ : G→ GL(W ) with G of type A. In (4.1), by abuse
of notation, X0 on each side denotes the unique closed orbit of the corre-
sponding moduli scheme. From Proposition 4.5 we have that (G′×ρ(R),W )
is geometrically equivalent to (G,W ). Using Theorem 1.2 and Lemma 2.26
we then deduce that dimTX0MGst

W = dW , thus proving Corollary 4.17.

Remark 4.4. — Theorem 1.1 proves, a posteriori, that MG
W and MG

W are
isomorphic, when G is of type A, (G,W ) is a (saturated) spherical module
and G is a subgroup of G containing G′ such that (G,W ) is spherical. We
note that Remarks 5.18 and 5.20 show that, contrary to the tangent space
TX0MG

W , the Tad-module (V/g · x0)Gx0 that contains it does in general
depend on the subgroup G of G as above: these remarks give instances
where the inclusion (V/g ·x0)Gx0 ⊆ (V/g ·x0)Gx0 is strict. (Recall that V =
⊕λ∈EV (λ) with E the basis of the weight monoid of the dual module W ∗.)
Furthermore, we expect that the isomorphism MG

W ' MG
W cannot follow

from “very general” considerations, as the following example, where S is
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not the weight monoid of a spherical module W , illustrates. Take G =
SL(3) × Gm, G = SL(3) and S = 〈ω1 + ε, ω2 + ε〉, where ε is a nonzero
character of Gm. Set V = V (ω1 +ε)∗⊕V (ω2 +ε)∗ as in Section 2.1. Since S
is G-saturated, TX0MG

S ' (V/g · x0)Gx0 and TX0MG
S ' (V/g · x0)Gx0 by

Remark 2.21. A direct calculation shows that dim(V/g·x0)Gx0 = 1, whereas
dim(V/g · x0)Gx0 = 0.

The following proposition explains how a general spherical module (G,W )
fits into the classification of spherical modules. It is (somewhat implicitly)
contained in [21, Section 2] and [9, Section 5.1]. Recall that given a spherical
module (G,W ), we put Gst := G′ ×GL(W )G.

Proposition 4.5 (Leahy). — Suppose ρ : G → GL(W ) is a spherical
module. Then the following hold:

(i) If (G,W ) is saturated and indecomposable, then (G,W ) is geomet-
rically equivalent to an entry in Knop’s List;

(ii) (Gst,W ) is a saturated spherical module;
(iii) (Gst,W ) is geometrically equivalent to a product of indecomposable

saturated spherical modules;
(iv) ρ(R) ⊆ GL(W )G and ρ(G) = ρ(G′)ρ(R) ⊆ GL(W );
(v) Suppose (G1,W1), (G2,W2), . . . , (Gn,Wn) are spherical modules

and let (K,E) be their product. Suppose (K,E) and (Gst,W ) are
geometrically equivalent and denote by φ : W → E a linear isomor-
phism establishing their geometric equivalence (see Definition 4.1).
If A = GL(φ)(ρ(R)), then A ⊆ GL(E)K and (G,W ) is geometri-
cally equivalent to (K ′ ×A,E).

Proof. — Assertion (i) just says that Knop’s List contains all indecom-
posable saturated spherical modules up to geometric equivalence (see [21,
Theorem 2.5] or [2, Theorem 2]). Next, let b be the number of irreducible
components of (G,W ). Assertion (ii) follows from the fact that GL(W )G '
Gbm (because W is a multiplicity-free G-module). Assertion (iii) follows
from the fact that if (G1×G2,W1⊕W2) is saturated (resp. spherical) then
(G1,W1) and (G2,W2) are saturated (resp. spherical). We come to (iv).
Note that R commutes with G and so ρ(R) commutes with ρ(G) hence the
first assertion. For the second, we use a well-known decomposition of reduc-
tive groups: G = G′R. Finally we prove (v). Let us call ψ : K → GL(E) and
ρst : Gst → GL(W ) the representations. Then GL(φ) : ρst(Gst) → ψ(K)
is an isomorphism of algebraic groups. As GL(W )G ⊆ Z(Gst), its im-
age GL(φ)(GL(W )G) belongs to the center of ψ(K), which is a subset
of GL(E)K . Because ρ(R) ⊆ GL(W )G, it follows that A = GL(φ)(ρ(R)) ⊆
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GL(E)K . This proves the first assertion. Next, note that GL(φ)(ρ(G)) =
GL(φ)(ρ(G′)) ·GL(φ)(ρ(R)). Moreover,

GL(φ)(ρ(G′)) = GL(φ)(ρ((Gst)′)) = [GL(φ)(ρst(Gst))]′ = ψ(K)′ = ψ(K ′)

and the second assertion follows. �

The following lemma is well-known and straightforward. For a proof, see
e.g. [26, Lemma 4.6].

Lemma 4.6. — Let X be an affine G-variety and let H be a connected
subgroup of G containing G′. Let BH be the Borel subgroup B ∩H of H
and let p : X(B)� X(BH) be the restriction map. If we consider X as an
H-variety, then its weight monoid is p(Λ+

(G,X)).
If, moreover, X is an affine spherical G-variety, then the following are

equivalent

(i) X is spherical as an H-variety;
(ii) the restriction of p to Λ+

(G,X) is injective
(iii) the restriction of p to Λ(G,X) is injective.

Remark 4.7.

(1) Theorem 5.1 of [19] is a somewhat refined version of Lemma 4.6.
(2) For every saturated indecomposable spherical module (G,W ),

Knop’s List, following [21], gives a basis for 〈ker p〉C ∩ 〈ΛW 〉C ⊆ t∗,
where p is as in Lemma 4.6. In Knop’s List, 〈ker p〉C is denoted z∗

and 〈ΛW 〉C is denoted a∗.

Using that when f : G → H is a surjective homomorphism, represen-
tations of H are the same as representations of G with kernel containing
ker f , it is straightforward to prove the following proposition (for details,
see [26, Proposition 4.10]).

Proposition 4.8. — Suppose f : G � H is a surjective group ho-
momorphism between connected reductive groups. Put TH := f(T ) and
BH = f(B) and write f∗ for the map X(TH) ↪→ X(T ) given by λ→ λ ◦ f .
Let S ⊆ X(TH) be the weight monoid of an affine spherical H-variety (with
respect to the Borel subgroup BH). Then MH

S ' MG
f∗(S) as schemes.

Straightforward arguments using Proposition 4.8 prove that geometri-
cally equivalent spherical modules have isomorphic moduli schemes (again,
for details see [26, Proposition 4.15]).
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Proposition 4.9. — Suppose ρ1: G1→ GL(W1) and ρ2: G2→ GL(W2)
are geometrically equivalent spherical modules. Then we have an isomor-
phism of schemes MG1

W1
' MG2

W2
. Consequently,

dimTX0MG1
W1

= dimTX0MG2
W2
,

where by abuse of notation, X0 on each side denotes the unique closed orbit
of the corresponding moduli scheme.

The next lemma states how the invariant dW behaves under restriction
of center, geometric equivalence and taking products. We need two of its
assertions in the proof of Proposition 4.11. It will also be of use later.

Lemma 4.10.
(a) Suppose G is a connected reductive group and let (G,W ) be a spher-

ical module. Let G be a connected (reductive) subgroup of G con-
taining G

′. Assume that the restriction (G,W ) of (G,W ) is also
spherical. Then both modules have the same invariant dW .

(b) Suppose (G1,W1) and (G2,W2) are geometrically equivalent spheri-
cal modules. Then dW1 = dW2 .

(c) Let (G1,W1), (G2,W2), . . . , (Gn,Wn) be spherical modules and let
(G,W ) be their product. Then dW = dW1 + · · ·+ dWn .

Proof. — For (a) just combine Lemma 4.6 with Lemma 2.26 (or with
Lemma 2.7). Next, to prove (b), let ρ1 : G1 → GL(W1) and ρ2 : G2 →
GL(W2) be the representations. Suppose φ : W1 → W2 is a linear iso-
morphism establishing the geometric equivalence. Then GL(φ) : ρ1(G1)→
ρ2(G2) is an isomorphism of algebraic groups. Let U be a maximal unipo-
tent subgroup of G1. Then U1 := ρ1(U) is a maximal unipotent sub-
group of ρ1(G1) and U2 := GL(φ)(ρ1(U)) is a maximal unipotent sub-
group of ρ2(G2). Moreover, φ induces an isomorphism of vector spaces
WU1

1 ' WU2
2 and an isomorphism of algebras C[W1]U1 ' C[W2]U2 . Since,

for i ∈ {1, 2}, dimWUi
i is the number of irreducible components of Wi

and dim Spec(C[Wi]Ui) is the rank of the weight group of Wi, Lemma 2.7
proves assertion (b). We turn to (c). This assertion follows by combining
Lemma 2.7 with the fact that Λ+

(G,W ) = Λ+
(G1,W1) ⊕ · · · ⊕ Λ+

(Gn,Wn). �

Proposition 4.11. — Let (G,W ) be an indecomposable saturated
spherical module. Suppose that G = Gst (hence Z(G)◦ = GL(W )G) and
that H ⊆ Z(G)◦ is a subtorus such that W is spherical for G′ × H. As-
sume that the conclusion of Theorem 1.2 holds for every pair (G,W ) in
Knop’s List with G of a type that occurs in the decomposition of G′ into
almost simple components. Then dimTX0MG′×H

W = dimTX0MG
W = dW ,

ANNALES DE L’INSTITUT FOURIER



DEGENERATIONS OF SPHERICAL MODULES IN TYPE A 1793

where by abuse of notation each X0 stands for the unique closed orbit of
the corresponding moduli scheme.

Proof. — By Proposition 4.5 (i), (G,W ) is geometrically equivalent to
an entry in Knop’s List, say (K,E). Suppose φ : W → E is a map es-
tablishing the geometric equivalence (see Definition 4.1) between (G,W )
and (K,E). We first claim that there exists a connected reductive sub-
group K ⊆ K containing K

′ for which E is still spherical and so that
φ also establishes the geometric equivalence of (G′ × H,W ) and (K,E).
Indeed, let ρ : G → GL(W ) and ψ : K → GL(E) be the representations
and put ρ1 = ρ|G′×H . Then F := GL(φ)(im ρ1) is a connected subgroup of
ψ(K) containing ψ(K)′ = ψ(K ′). The reason is that GL(φ)(im ρ1) contains
GL(φ)((im ρ)′) = (GL(φ)(im ρ))′ = (ψ(K))′, since im ρ1 contains (im ρ)′.
Now set K̃ := ψ−1(F ) and let K be the identity component of K̃. Then
K̃ is a subgroup of K containing K ′ and therefore so is K. Moreover, K
is reductive. Clearly ψ(K̃) = F = GL(φ)(im ρ1) (since F ⊆ imψ). Since
ψ(K̃) = ψ(K) because ψ(K̃) is connected (see e.g. [15, Proposition B of
§7.4]), φ establishes the geometric equivalence of ρ1 and ψ|K . It also follows
(by Remark 4.2 (b)) that E is a spherical module for K. This proves the
claim.
By Lemma 4.10 (a), (G,W ) and (G′ × H,W ) have the same invari-

ant dW , and (K,E) and (K,E) have the same invariant dE . By assump-
tion, the conclusion of Theorem 1.2 holds for (K,E) and so dimTX0MK

E =
dimTX0MK

E = dE . Thanks to Lemma 4.10 (b), dE = dW . Finally, by Propo-
sition 4.9, dimTX0MK

E = dimTX0MG
W and dimTX0MK

E = dimTX0MG′×H
W ,

and we have proved the proposition. �

The next proposition reminds us that the normal sheaf behaves as ex-
pected with respect to products.

Proposition 4.12. — Let n be a positive integer. Suppose that for
every positive integer i 6 n we have a finite-dimensional G-module Vi and
a G-stable closed subscheme Xi of Vi. For every i, we put Ri := C[Vi],
Ii := I(Xi) ⊆ Ri (the ideal of Xi in Vi) and Ni := HomRi(Ii, Ri/Ii). We
also put V := ⊕iVi, R := C[V ], X := X1 × · · · × Xn, I := I(X) ⊆ C[V ]
and N := HomR(I,R/I). We then have a canonical isomorphism of R-G-
modules:

N ' ⊕i(Ni ⊗Ri R)

Proof. — It is clear that, for 1 6 j 6 n, we can consider Ij as a subset
of I. For 1 6 i 6 n we define the G-stable R-submodule Ñi ⊆ N by

Ñi =
{
φ ∈ N such that φ(a) = 0 when a is in Ij and j 6= i

}
.
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Using [24, Lemma 9] it follows that N = ⊕ni=1Ñi, and that Ñi is canonically
isomorphic to Ni ⊗Ri R as an R-module with the isomorphism being G-
equivariant. �

We note that, with the notation of Proposition 4.12, there is a canonical
isomorphism Ni ⊗Ri R ' Ni ⊗C R̂i for every i ∈ {1, . . . , n}, where R̂i :=
⊗j 6=iRj/Ij (tensor product over C). We will use this formulation of the
proposition in what follows.

Corollary 4.13. — Let n be a positive integer and suppose that for
every positive integer i 6 n, Gi is a connected reductive group, Vi is a
finite-dimensional Gi-module and Xi is a multiplicity-free Gi-stable closed
subscheme of Vi. Put G := G1 × · · · ×Gn. Define N and Ni as in Proposi-
tion 4.12. Then we have a canonical isomorphism of C-vector spaces

(4.2) NG ' ⊕iNGi
i .

Proof. — In this proof all the tensor products are over C. We intro-
duce the following notation for every i ∈ {1, . . . , n} : Ĝi := ×j 6=iGj . Using
Proposition 4.12 we have that

(4.3) NG ' ⊕i
(
Ni ⊗ R̂i

)G = ⊕i
(
NGi
i ⊗ R̂

Ĝi
i

)
' ⊕iNGi

i ,

where the last isomorphism uses that R̂Ĝii = C by the multiplicity-freeness
of R̂i. �

Remark 4.14. — An immediate consequence of this corollary is that if
(G1,W1) and (G2,W2) are spherical modules and (G,W ) is their product,
then dimTX0MW = dimTX0MW1 + dimTX0MW2 , where by abuse of nota-
tion each X0 denotes the unique closed orbit of the corresponding moduli
scheme. This is how we will use the corollary (in the proof of Corollary 4.17).

Proposition 4.15. — Suppose that for every i ∈ {1, . . . , n} we have
an indecomposable saturated spherical module (Gi,Wi). For every i, as-
sume that Gi = Gst

i and that the conclusion of Theorem 1.2 holds for
every pair (G,W ) in Knop’s List with G of a type that occurs in the
decomposition of G′i into almost simple components. For every i we put
Zi := Z(Gi)◦ = GL(Wi)Gi , Ei := Λ+

Wi
, Vi := ⊕λ∈EiV (λ), Xi = Gixi,

where xi =
∑
λ∈Ei vλ. Put G := G1×· · ·×Gn. We also define Ni and N as

in Proposition 4.12. Finally suppose that A is a subtorus of Z1 × · · · × Zn
such that W1 ⊕ · · · ⊕Wn is spherical for G := G′1 × · · · ×G′n ×A. Then

(4.4) NG = NG.
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Proof. — We continue to use the notation Ĝi introduced in the proof of
Corollary 4.13. In this proof all the tensor products are over C. To prove
(4.4) it is sufficient (by Proposition 4.12) to prove that (Ni⊗ R̂i)G = (Ni⊗
R̂i)G for every i. We clearly have that (Ni⊗ R̂i)G = (NG′i

i ⊗ R̂
Ĝ′i
i )A. Recall

from equation (4.3) that (Ni ⊗ R̂i)G = NGi
i ⊗ F0, where F0 := R̂Ĝii ' C.

We will prove that

F := (NG′i
i ⊗ R̂

Ĝ′i
i )A = NGi

i ⊗ F0.

The inclusion NGi
i ⊗ F0 ⊆ F is clear. For the other inclusion, assume, by

contradiction, that F is not a subspace of NGi
i ⊗ F0. Then there exist a

character λ ∈ X(A), a nonzero vector v in NG′i
i of weight −λ and a nonzero

vector w of weight λ in R̂Ĝ
′
i

i such that v ⊗ w /∈ NGi
i ⊗ F0. It follows that

λ 6= 0, for otherwise

v ⊗ w ∈ NG′i×A
i ⊗ R̂Ĝ

′
i×A

i = N
G′i×A
i ⊗ F0 = N

G′i×p(A)
i ⊗ F0

where p : ×j Zj → Zi is the projection, while Proposition 4.11 tells us that
N
G′i×p(A)
i = NGi

i (because Wi is spherical for G′i × p(A)).
Now, by Lemma 4.16 below, we have that Xi is spherical for G′i × kerλ,

hence for G′i × p(kerλ), since A acts on Xi through the factor Zi. Again
by Proposition 4.11, we have that NG′i×p(kerλ)

i = NGi
i . We obtain a con-

tradiction: v ∈ NG′i×p(kerλ)
i since v has A-weight λ, but v /∈ NGi

i since λ is
nonzero and therefore p(A) ⊆ Gi does not fix v. �

Lemma 4.16. — Let G1 and G2 be connected reductive groups and let
A1 and A2 be tori. Suppose that for every i ∈ {1, 2} we have a normal affine
Gi × Ai-variety Xi. Let A ⊆ A1 × A2 be a subtorus such that X1 ×X2 is
spherical for the action restricted to G1 × A × G2 ⊆ G1 × A1 × A2 × G2.
If λ ∈ X(A) is such that the eigenspace C[X2]G2 contains a nonzero A-
eigenvector of weight λ, then X1 is spherical for G1 × kerλ.

Proof. — Pick Borel subgroups and maximal tori T1 ⊆ B1 ⊆ G1 and
T2 ⊆ B2 ⊆ G2. In this proof we identify X(A) with its image under the
canonical embeddings into X(A×Ti) for i ∈ {1, 2} and into X(A×T1×T2).
Clearly, X1 is spherical for G1×A. If X1 is not spherical for the subgroup

G1 × kerλ, then there are highest weight vectors fα, fβ ∈ C[X1](B1×A) of
weight α and β respectively such that α 6= β and α = β on kerλ ⊆ T1×A.
This implies that α − β = dλ for some integer d. Reversing the roles of α
and β if necessary, we assume d nonnegative.
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It is given that there is a gλ in C[X2](A×B2) of weight λ. We then have
that the two (B1×A×B2)-eigenvectors fα⊗1 and fβ⊗gdλ in C[X1]⊗C[X2]
have the same weight. This contradicts the sphericality of X1 ×X2 for the
action of G1 ×A×G2. �

Corollary 4.17. — Let (G,W ) be a spherical module and let S be
its weight monoid. Assume that the conclusion of Theorem 1.2 holds for
every pair (G,W ) in Knop’s List with G of a type that occurs in the
decomposition of G′ into almost simple components. Then

(4.5) dimTX0MS = dW .

Proof. — In this proof, by abuse of notation,X0 will stand for the unique
closed orbit of the relevant moduli scheme. By Proposition 4.5 there ex-
ist indecomposable saturated spherical modules (Gi,Wi) in Knop’s List,
with i ∈ {1, 2, . . . , n}, such that (Gst,W ) is geometrically equivalent to
the product (K,E) of the (Gi,Wi), and such that (G,W ) is geometrically
equivalent to (K ′×A,E) where A is a subtorus of GL(E)K . By assumption,
the conclusion of Theorem 1.2 holds for each (Gi,Wi) and so

dimTX0MGi
Wi

= dWi
for every i ∈ {1, 2, . . . , n}.

As a consequence, Corollary 4.13 and Lemma 4.10 (c) yield that

(4.6) dimTX0MK
E = dE .

On the other hand, using that GL(E)K = ×iGL(Wi)Gi , Proposition 4.15
tells us that

(4.7) dimTX0MK′×A
E = dimTX0MK

E ,

whereas by Proposition 4.9, dimTX0MG
W = dimTX0MK′×A

E . With equa-
tions (4.6) and (4.7) and Lemma 4.10 (a,b) this implies equation (4.5), as
desired. �

5. Proof of Theorem 1.2
In this section, we prove Theorem 1.2 through case-by-case verification.

Formally the proof runs as follows. We have to check the theorem for
the 8 families in List 5.1 below. For families (1), (2) and (3), the argu-
ments are given in Sections 5.1, 5.2 and 5.3, respectively. For family (4),
the theorem follows from Proposition 5.11 on page 1801; for family (5) it
follows from Proposition 5.12 on page 1802; for family (6) from Proposi-
tion 5.19 on page 1806; for family (7) from Proposition 5.21 on page 1807;
and for family (8) from Proposition 5.22 on page 1807. Thus, all cases are
covered.
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Each subsection of this section corresponds to one of the eight families
given in the following list. We provide the full argument for only two repre-
sentative cases (family (1) in Section 5.1 and family (5) in Section 5.5) and
refer the reader to [26] for details about the similar verifications required
for the remaining six families.

List 5.1. — The 8 families of saturated indecomposable spherical mod-
ules (G,W ) with G of type A in Knop’s List are

(1) (GL(m)×GL(n),Cm ⊗ Cn) with 1 6 m 6 n;
(2) (GL(n),Sym2 Cn) with 1 6 n;
(3) (GL(n),

∧2 Cn) with 2 6 n;
(4) (GL(n)×Gm,

∧2 Cn ⊕ Cn) with 4 6 n;
(5) (GL(n)×Gm,

∧2 Cn ⊕ (Cn)∗) with 4 6 n;
(6) (GL(m)×GL(n), (Cm ⊗ Cn)⊕ Cn) with 1 6 m, 2 6 n;
(7) (GL(m)×GL(n), (Cm ⊗ Cn)⊕ (Cn)∗) with 1 6 m, 2 6 n;
(8) (GL(m)×SL(2)×GL(n), (Cm⊗C2)⊕ (C2⊗Cn)) with 2 6 m 6 n.

Remark 5.2. — The indices m and n in family (6) and family (7) run
through a larger set than that given in Knop’s List. Knop communicated
the revised range of indices for these families to the second author. We
remark that these cases do appear in the lists of [21] and [2].

Remark 5.3.
(i) Recall from Lemma 2.7 that for a given spherical module W it is

easy to compute dW from the rank of ΛW .
(ii) Recall that by Corollary 2.6 it is enough to prove that dimTX0MG

S 6
dW for every (G,W ) as in Theorem 1.2 to establish the theorem.

In each subsection, (G,W ) will denote a member of the family from
List 5.1 under consideration. Here is some more notation we will use for
the rest of this section. Given a spherical module (G,W ) from Knop’s List,

– E denotes the basis of the weight monoid Λ+
(G,W∗)

of W ∗ (the ele-
ments of E are called the “basic weights” in Knop’s List);

– V = ⊕λ∈EV (λ);
– x0 =

∑
λ∈E vλ.

Except if stated otherwise, G will denote a connected subgroup of G con-
tainingG′ such that (G,W ) is spherical. Recall that such a groupG is neces-
sarily reductive. To lighten notation, we will useG′ for the derived subgroup
G
′ of G. This should not cause confusion since (G,G) = (G,G) = G′. We

will use T for a fixed maximal torus inG and put T = T∩G and T ′ = T∩G′.
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Then T ⊆ G and T ′ ⊆ G′ are maximal tori. We will use p : X(T )� X(T ′),
q : X(T ) � X(T ) and r : X(T ) � X(T ′) for the restriction maps. Simi-
larly, B is a fixed Borel subgroup of G containing T and we put B = B∩G
and B′ = B ∩ G′. Then B and B’ are Borel subgroups of G and G′, re-
spectively. Note that the restriction of p to ΛR is injective and we can, and
will, identify the root lattices of G,G and G′. Moreover, our choice of Borel
subgroups allows us to identify the sets of positive roots (which we denote
R+) and the sets of simple roots (which we denote Π) of G,G and G′.
Note also that since Z(G′) = Z(G) ∩ T ′, we have that T ′ ↪→ T induces an
isomorphism T ′/Z(G′) ' T/Z(G). We therefore can (and will) identify the
adjoint torus of G,G and of G′ and we denote it Tad. We will use ω, ω′, ω′′
for weights of the first, second and third non-abelian factor of G, while ε
will refer to the character Gm → Gm, z 7→ z of Gm.
Recall our convention that by the Tad-action on V (and on V/g · x0,

(V/g · x0)Gx0 , etc.) we mean the action given by α (see Definition 2.11).
The Tad-action on MS refers to the action given by ψ̂, see page 1778.

Remark 5.4. — A consequence of using the action α is that the Tad-
weight set we obtain below for each TX0MG

S is the basis of the free monoid
Σ̃W∗ = −w0Σ̃W (instead of −Σ̃W as in Theorem 1.1 where the action γ

was used).

Remark 5.5. — We have the following isomorphism ofG-modules (where
G acts on V as a subgroup of G): V ' ⊕λ∈EV (q(λ)). Using Lemma 2.19
it follows that the Tad-module (V/g · x0)G

′
x0 only depends on (G,W ) (that

is, it does not depend on the particular subgroup G).

We will also use S for the weight monoid of (G,W ), S for the weight
monoid of (G,W ), ∆ for the weight group of (G,W ∗), and ∆ for the weight
group of (G,W ∗). Note that ∆ = 〈E〉Z ⊆ X(T ), ∆ = q(∆), S = q(S),
that the weight group of (G′,W ∗) (which is not necessarily spherical) is
r(∆) = p(∆) and that the weight monoid of (G′,W ) is r(S) = p(S).

Remark 5.6. — In proving Theorem 1.2 for families (5), (6) and (7)
we exclude certain Tad-weight spaces in (V/g · x0)Gx0 from belonging to
the subspace TX0MG

S . Comparing with the simple reflections of the little
Weyl group of W ∗ computed in Knop’s List suggested which Tad-weights
we had to exclude. Logically however, that information from Knop’s List
plays no part in our proof. In fact, because dimTX0MG

S is minimal (by
Theorem 1.2), the computations of the Tad-weights in TX0MG

S we perform
in this section confirm Knop’s computations of the little Weyl group of the
spherical modules under consideration. For the relationship between the
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Tad-weights in TX0MG
S and the little Weyl group of W ∗, see Remarks 2.8

and 5.4.

5.1. The modules (GL(m)×GL(n),Cm ⊗ Cn) with 1 6 m 6 n
Here

E =
{
ω1 + ω′1, ω2 + ω′2, . . . , ωm + ω′m

}
and dW = m− 1.

When m < n the module W is spherical for G′ = SL(m) × SL(n) and
its weight monoid p(S) is G′-saturated. Corollary 2.27 therefore takes care
of these cases. The only case that remains is when m = n. Then W is not
spherical for G′ because the determinant yields a non-constant invariant
function (after identifying W with the space of m-by-m matrices). Since
ωm + ω′m ∈ E, S is not G-saturated for any intermediate group G for
which W is spherical. We prove that in that case too (V/g · x0)G

′
x0 has

dimension dW .

Proposition 5.7. — Suppose m = n. Then the Tad-module (V/g ·
x0)G

′
x0 is multiplicity-free and its weight set is{

α1 + α′1, α2 + α′2, . . . , αm−1 + α′m−1
}
.

In particular, dim(V/g · x0)G
′
x0 = dW . Consequently, dimTX0MG

S = dW .

Proof. — First note that p(∆) = 〈ω1 +ω′1, . . . , ωm−1 +ω′m−1〉Z ⊆ X(T ′).
Suppose v is a Tad-eigenvector in V of weight γ so that [v] is a nonzero
element of (V/g · x0)G

′
x0 . Then

(5.1) γ ∈ p(∆) ∩ ΛR
by Lemma 2.17 (b). Clearly, p(∆) ∩ ΛR is the diagonal of ΛR, that is, the
group 〈

α1 + α′1, α2 + α′2, . . . , αm−1 + α′m−1
〉
Z ⊆ ΛR.

Moreover, Lemma 2.18 (B) implies that there exists a simple root δ of G′
so that

(5.2) γ − δ (which is the weight of Xδv) belongs to R+ ∪ {0}.

Equations (5.1) and (5.2) imply that γ = αi + α′i for some i with 1 6 i 6
m− 1.
We next claim that the Tad-eigenspace of weight αi + α′i in V is one

dimensional for every i with 1 6 i 6 m−1. Indeed, the only G′-submodule
of V which contains an eigenvector of that weight is V (ωi + ω′i) and the
eigenspace is the line spanned by X−αiX−α′ix0 = X−α′

i
X−αix0. This fin-

ishes the proof. �
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Example 5.8. — We illustrate Proposition 5.7 for m = n = 3 and G =
G = GL(3)×GL(3). Consider two copies of C3, one with basis e1, e2, e3, the
other with basis f1, f2, f3, and with the first (resp. second) copy of GL(3)
acting on the first (resp. second) copy of C3 by the defining representation.
Then we can take

V = C3 ⊗ C3 ⊕ ∧2C3 ⊗ ∧2C3 ⊕ ∧3C3 ⊗ ∧3C3;
x0 = e1 ⊗ f1 + e1 ∧ e2 ⊗ f1 ∧ f2 + e1 ∧ e2 ∧ e3 ⊗ f1 ∧ f2 ∧ f3.

Consequently,

g · x0 =
〈
e1 ⊗ f1, e1 ∧ e2 ⊗ f1 ∧ f2, e1 ∧ e2 ∧ e3 ⊗ f1 ∧ f2 ∧ f3,

e2 ⊗ f1, e3 ⊗ f1 − e2 ∧ e3 ⊗ f1 ∧ f2, e1 ∧ e3 ⊗ f1 ∧ f2,

e1 ⊗ f2, e1 ⊗ f3 − e1 ∧ e2 ⊗ f2 ∧ f3, e1 ∧ e2 ⊗ f1 ∧ f3
〉
C,

G′x0
=


a c1 c2

0 b c3
0 0 (ab)−1

 ,

a−1 c4 c5
0 b−1 c6
0 0 ab

 ∣∣∣∣ a, b ∈ C×, ci ∈ C


and (V/g · x0)G

′
x0 =

〈
[e2 ⊗ f2], [e1 ∧ e3 ⊗ f1 ∧ f3]

〉
C.

5.2. The modules (GL(n),Sym2 Cn) with 1 6 n

Here
E =

{
2ω1, 2ω2, . . . , 2ωn

}
and dW = n− 1.

Because 2ωn ∈ E, there is no group G with G′ ⊆ G ( G for which (G,W )
is spherical. Hence we assume that G = G = GL(n). For the same reason,
S = S is notG-saturated. For the proof of the following proposition, see [26,
Proposition 5.9].

Proposition 5.9. — The Tad-module (V/g · x0)Gx0 is multiplicity-free
and has Tad-weight set {

2α1, 2α2, . . . , 2αn−1
}
.

In particular, its dimension is dW . Consequently, dimTX0MG
S = dW .

5.3. The modules (GL(n),
∧2 Cn) with 2 6 n

Here
E =

{
ω2i : 1 6 i 6

⌊n
2

⌋}
and dW =

⌊n
2

⌋
− 1.

ANNALES DE L’INSTITUT FOURIER



DEGENERATIONS OF SPHERICAL MODULES IN TYPE A 1801

When n is odd this module is spherical for G′ = SL(n), because 〈ωn〉Z ∩
∆ = 0, and p(S) is G′-saturated. Corollary 2.27 therefore takes care of
these cases.
On the other hand, when n is even, ωn ∈ E, and so there is no group

G with G′ ⊆ G ( G for which (G,W ) is spherical. Moreover, for the same
reason, S = S is not G-saturated. As it needs no extra work compared to
(V/g · x0)Gx0 , we show that (V/g · x0)G

′
x0 has dimension dW . For the proof

of the following proposition, see [26, Proposition 5.11].

Proposition 5.10. — Suppose n > 2 is even. Then the Tad-module
(V/g · x0)G

′
x0 is multiplicity-free and has Tad-weight set{

αi + 2αi+1 + αi+2 : 1 6 i 6 n− 3 and i is odd
}
.

In particular, dim(V/g ·x0)G
′
x0 = n

2 −1 = dW . Consequently, dimTX0MG
S =

dW .

5.4. The modules (GL(n)×Gm,
∧2 Cn ⊕ Cn) with 4 6 n

We now have

E =
{
ω2i−1 +ε : 1 6 i 6

⌈n
2

⌉}
∪
{
ω2i : 1 6 i 6

⌊n
2

⌋}
and dW = n−2.

The modulesW are not spherical for G′ because ∆∩〈ωn, ε〉Z 6= 0. Moreover,
for the same reason, S is not G-saturated for any intermediate group G for
which W is spherical. For the proof of the following proposition, see [26,
Proposition 5.13].

Proposition 5.11. — The Tad-module (V/g ·x0)G
′
x0 is multiplicity-free

with Tad-weight set {
αi + αi+1 : 1 6 i 6 n− 2

}
.

In particular, dim(V/g · x0)G
′
x0 = dW . Consequently, dimTX0MG

S = dW .

5.5. The modules (GL(n)×Gm,
∧2 Cn ⊕ (Cn)∗) with 4 6 n

For these modules we have

E =
{
λi : 1 6 i 6 n− 2, i odd

}
∪
{
λj : 1 6 j 6 n, j even

}
∪ {µ}

and dW = n− 2,

where λi := ωi + ε for 1 6 i 6 n − 2 with i odd, λj := ωj for 1 6 j 6 n

with j even, and µ := ωn−1 − ωn + ε.
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These modules are not spherical for G′ because ∆ ∩ 〈ωn, ε〉Z 6= 0. More-
over, for the same reason, S is notG-saturated for any intermediate groupG
for which W is spherical.

Proposition 5.12. — Suppose n > 4. The Tad-module TX0MG
S is

multiplicity-free and has Tad-weight set{
αi + αi+1 : 1 6 i 6 n− 2

}
when n is even;(5.3) {

αi + αi+1 : 1 6 i 6 n− 3} ∪ {αn−1
}

when n is odd.(5.4)

In particular, dimTX0MG
S = dW .

Proof. — When n is even, we are done by Proposition 5.13, because
dim(V/g · x0)G

′
x0 = dW . On the other hand, when n is odd, let J be the

set (5.4) and put β = αn−2 + αn−1. We prove in Proposition 5.14 that
(V/g · x0)G

′
x0 is multiplicity-free, and that its Tad-weight set is J ∪ {β}.

In particular, dim(V/g · x0)G
′
x0 = dW + 1. When β is not a Tad-weight of

(V/g · x0)Gx0 , it follows that dim(V/g · x0)Gx0 6 dW and we are done. We
show in Proposition 5.17 that even when β is a Tad-weight of (V/g ·x0)Gx0 ,
the corresponding section in H0(G · x0,NX0)G does not extend to X0.
Consequently dimTX0MG

S 6 dW and the proposition follows. �

Proposition 5.13. — Suppose n > 4 is even. Then (V/g · x0)G
′
x0 is a

multiplicity-free Tad-module with Tad-weight set{
αi + αi+1 : 1 6 i 6 n− 2

}
.

In particular, dim(V/g · x0)G
′
x0 = dW .

Proof. — Consider the G-submodule V ′ of V defined as

V ′ := V (λ1)⊕ V (λ2)⊕ · · · ⊕ V (λn−2)⊕ V (µ).

Note that as a G′-module, V ′ is the direct sum of the fundamental repre-
sentations. Furthermore, V = V ′ ⊕ V (λn) and V (λn) is one-dimensional.
If we put x′0 := x0− vλn , then we have (V/g · x0)G

′
x0 ' (V ′/g′ · x′0)

G′
x′0 , and

by [3, Corollary 3.9 and Theorem 3.10] we know that (V ′/g′ · x′0)
G′
x′0 is a

multiplicity-free Tad-module whose Tad-weight set is {αi + αi+1 : 1 6 i 6
n− 2}. �

When n is odd, determining (V/g · x0)G
′
x0 requires a little more care,

because V (λn−1) ' V (µ) as G′-modules.

Proposition 5.14. — Suppose n > 5 is odd. Then (V/g · x0)G
′
x0 is a

multiplicity-free Tad-module. Its Tad-weight set is

(5.5)
{
αi + αi+1 : 1 6 i 6 n− 2

}
∪
{
αn−1

}
.
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The eigenspace of the weight β = αn−2 + αn−1 is spanned by the vector[
X−βvλn−2

]
= −

[
X−β(vλn−1 + vµ)

]
.

Proof. — Let V ′ be the following G′-submodule of V :

V ′ := V (λ1)⊕ V (λ2)⊕ · · · ⊕ V (λn−2)⊕ Vn−1

where Vn−1 := 〈G′ · (vλn−1 + vµ)〉C. Then

V = V ′ ⊕ Zn−1,(5.6)

where Zn−1 := 〈G′ · (vλn−1 − vµ)〉C, and

g · x0 = g′ · x0 ⊕ C(vλn−1 − vµ).(5.7)

Moreover, we have an inclusion of G′x0
oTad-modules g·x0 ⊆ V ′⊕C(vλn−1−

vµ) ⊆ V and so an exact sequence

0 −→
V ′ ⊕ C(vλn−1 − vµ)

g · x0
−→ V/g · x0 −→

V

V ′ ⊕ C(vλn−1 − vµ) −→ 0.

Taking G′x0
-invariants, we obtain an exact sequence of Tad-modules

(5.8) 0 −→
(V ′ ⊕ C(vλn−1 − vµ)

g · x0

)G′x0

−→ (V/g · x0)G
′
x0 −→

( V

V ′ ⊕ C(vλn−1 − vµ)

)G′x0

From (5.7) we have that

V ′ ⊕ C(vλn−1 − vµ)
g · x0

' V ′

g′ · x0

as G′x0
o Tad-modules. Clearly, as a G′-module, V ′ is the direct sum of the

fundamental representations, and g′ ·x0 is the tangent space to the orbit of
the sum of the highest weight vectors in V ′. Therefore [3, Cor 3.9 and Thm

3.10] tells us that
(
V ′⊕C(vλn−1−vµ)

g·x0

)G′x0 is a multiplicity-free Tad-module
with weight set {α1 + α2, α2 + α3, . . . , αn−2 + αn−1}. On the other hand,
(5.6) tells us that

V

V ′ ⊕ C(vλn−1 − vµ) '
Zn−1

C(vλn−1 − vµ) .

Furthermore, we claim that

(5.9)
( Zn−1

C(vλn−1 − vµ)

)G′x0 = C
[
X−αn−1(vλn−1 − vµ)

]
.
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Indeed, if [v] is a nonzero Tad-eigenvector in
(

Zn−1
C(vλn−1−vµ)

)G′x0 then there
exists a simple root α so that Xαv 6= 0 (because v is not a highest weight
vector) and Xαv ∈ C(vλn−1 − vµ) = ZUn−1. Hence Xαv has trivial Tad-
weight and therefore v has weight α. Since Zn−1 ' V (ωn−1), this implies
that α = αn−1 and the claim (5.9).
From the sequence (5.8) and the description of its first and third term

above, we know that the Tad-module (V/g · x0)G
′
x0 is multiplicity-free, and

that its Tad-weight set is a subset of (5.5) and contains all its weights
except possibly αn−1. But αn−1 belongs to the Tad-weight set because
[X−αn−1vλn−1 ] = −[X−αn−1vµ] ∈ (V/g · x0)G

′
x0 by a straightforward ver-

ification (or because sn−1n is a “simple reflection” in Knop’s List). The
assertion about the eigenspace of weight β merely needs a straightforward
verification. �

The next lemma determines for which groups G the weight β = αn−2 +
αn−1 is a Tad-weight of (V/g · x0)Gx0 .

Lemma 5.15. — Suppose n > 5 is odd and let β be defined as in Propo-
sition 5.14. Then the following are equivalent (recall that, by assumption,
(G,W ) is spherical)

(1) β is a Tad-weight of (V/g · x0)Gx0 ;
(2) β ∈ ∆;
(3) t = ker[(a+ 1)ωn − (a− 1)ε] ⊆ Lie(T ) for some integer a.

If t = ker[(a+1)ωn−(a−1)ε] for some integer a, then we have the following
equality in ∆:

(5.10) β = λn−2 + (a+ 1)λn−1 − aµ− λn−3.

Remark 5.16. — We use t = Lie(T ) in Lemma 5.15 instead of T because
ker[(a+ 1)ωn − (a− 1)ε] ⊆ T is not necessarily connected (for example, it
is disconnected when a = 1).

Proof. — Since β is a Tad-weight of (V/g·x0)G
′
x0 by Proposition 5.13, the

fact that (1) and (2) are equivalent follows from Lemma 2.17 (c). We now
prove that (2) and (3) are equivalent. Recall that r : X(T ) � X(T ′) and
q : X(T ) � X(T ) are the restriction maps. Recall further that ∆ = q(∆)
and note that ker q ⊆ ker r = 〈ωn, ε〉Z. Now β = −ωn−3 + ωn−2 + ωn−1 −
ωn ∈ X(T ). So q(β) ∈ ∆ if and only if q(β + λn−3 − λn−2 − λn−1) =
q(−ωn − ε) ∈ ∆. In other words, q(β) ∈ ∆ if and only if there exists
γ ∈ ∆ so that q(−ωn − ε) = q(γ), that is, so that γ + ωn + ε ∈ ker q. Since
ωn + ε ∈ ker r this is equivalent to the existence of γ ∈ ∆ ∩ ker r so that
q(γ + ωn + ε) = 0.
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Next we claim that ∆∩ker r = 〈ωn−ε〉. The inclusion “⊇” is immediate:
ωn − ε = λn−1 − µ. The other inclusion follows from a direct calculation,
or from Knop’s List which tells us that(3) 〈∆〉C ∩ 〈ker r〉C = 〈ωn − ε〉C as
subspaces of Lie(T )∗.
Consequently, q(β) ∈ ∆ if and only if there exists an integer a so that

a(ωn − ε) + ωn + ε = (a+ 1)ωn − (a− 1)ε

belongs to ker q. Equivalently, T ⊆ ker[(a+ 1)ωn − (a− 1)ε], or (since T is
connected)

(5.11) t ⊆ ker
[
(a+ 1)ωn − (a− 1)ε

]
.

On the other hand, [19, Theorem 5.1] tells us that W is spherical as a
G-module if and only if

(5.12) t 6⊆ ker(ωn − ε).

Because t′ = 〈ωn, ε〉⊥C is of codimension 2 in Lie(T ), and for every integer
a, the two vectors (a+ 1)ωn − (a− 1)ε and ωn − ε in Lie(T )∗ are linearly
independent, t satisfies (5.12) and (5.11) for some integer a if and only if
t = ker[(a + 1)ωn − (a − 1)ε]. The equivalence of (2) and (3) follows. The
straightforward verification of (5.10) is left to the reader. �

Proposition 5.17. — Suppose n > 5 is odd and let β be defined as
in Proposition 5.14. Let a be an integer and suppose that the maximal
torus T of G satisfies t = ker[(a + 1)ωn − (a − 1)ε]. Then the section
s ∈ H0(G · x0,NX0)G defined(4) by

s(x0) =
[
X−βvλn−2

]
= −

[
X−β(vλn−1 + vµ)

]
∈ (V/g · x0)Gx0

does not extend to X0.

Proof. — We consider two cases: a < 0 and a > 0.
(i) If a < 0, we apply Proposition 3.4 with λ = µ and v = X−βvλn−2 .

We check the four conditions: (ES1) follows from equation (5.10); (ES2) is
clear from the description of v given above; (ES3) follows from the equalities
µ = ωn−1 − ωn + ε and 〈λn−1, α

∨
n−1〉 = 1; for (ES4) take δ = λn−1.

(ii) If a > 0, we apply Proposition 3.4 with λ = λn−1 and the same v.
We check the four conditions: (ES1) follows from equation (5.10); (ES2) is
clear from the description of v given above; (ES3) follows from the equalities
λn−1 = ωn−1 and 〈µ, α∨n−1〉 = 1; for (ES4) take δ = µ. �

(3) In the notation of Knop’s List, a∗ ∩ z∗ is used for 〈∆〉C ∩ 〈ker r〉C.
(4)The fact that this formula defines a section of H0(G ·x0,NX0 )G ' (V/g ·x0)Gx0 uses
Lemma 5.15.
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Remark 5.18. — We now obtain a description of the Tad-module (V/g ·
x0)Gx0 ; for details see [26, Remark 5.22]. For n even, this is done in Propo-
sition 5.13 since (V/g · x0)Gx0 = (V/g · x0)G

′
x0 . For n odd, the Tad-module

(V/g · x0)G
′
x0 is described in Proposition 5.14. Call its Tad-weight set F .

Now (V/g · x0)Gx0 is the Tad-submodule of (V/g · x0)G
′
x0 with Tad-weight

set F r {β}. Since (V/g · x0)Gx0 ⊆ (V/g · x0)Gx0 ⊆ (V/g · x0)G
′
x0 , the Tad-

module (V/g · x0)Gx0 is completely determined by our characterization in
Lemma 5.15 of those intermediate groups G for which β is a Tad-weight of
(V/g · x0)Gx0 .

5.6. The modules (GL(m)×GL(n), (Cm ⊗ Cn)⊕ Cn)
with 1 6 m, 2 6 n

We begin with some notation. PutK = min(m+1, n) and L = min(m,n).
We also put λi = ωi−1+ω′i for i ∈ {1, . . . ,K} (with ω0 = 0), and λ′i = ωi+ω′i
for i ∈ {1, . . . , L}. For the modules under consideration,

E =
{
λi : 1 6 i 6 K

}
∪
{
λ′i : 1 6 i 6 L

}
dW = K + L− 2 = min(2m+ 1, 2n)− 2.

These modules are not spherical for G′ because ∆ ∩ 〈ωm, ω′n〉Z 6= 0. More-
over, for the same reason, S is not G-saturated for any intermediate group
G for which W is spherical. For the proof of the following proposition,
see [26, Proposition 5.23].

Proposition 5.19. — The Tad-module TX0MG
S is multiplicity-free and

has Tad-weight set

(5.13)
{
αi : 1 6 i 6 L− 1

}
∪
{
α′j : 1 6 j 6 K − 1

}
.

In particular, dimTX0MG
S = dW .

Remark 5.20. — We remark that except for a few small values of m and
n, the inclusion TX0MG

S ⊆ (V/g · x0)Gx0 turns out to be strict. Moreover,
for n = m − 1 and for m = n − 2 there exist groups G ⊆ G, containing
G
′, for which W is spherical and for which the inclusion (V/g · x0)Gx0 ⊆

(V/g · x0)Gx0 is strict. For details see [26, Remark 5.24].

5.7. The modules (GL(m)×GL(n), (Cm ⊗ Cn)⊕ (Cn)∗)
with 1 6 m, 2 6 n

We begin with some notation. PutK = min(m,n−1) and L = min(m,n).
We also put λi = ωi+ω′i−1 for i ∈ {1, . . . ,K} (with ω′0 = 0), µ = ω′n−1−ω′n,
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and λ′i = ωi + ω′i for i ∈ {1, . . . , L}. For the modules under consideration,

E =
{
λi : 1 6 i 6 K

}
∪
{
λ′i : 1 6 i 6 L

}
∪ {µ};

dW = K + L− 1 = min(2m+ 1, 2n)− 2.

These modules are not spherical for G′ because ∆ ∩ 〈ωm, ω′n〉Z 6= 0. More-
over, for the same reason, S is not G-saturated for any intermediate group
G for which W is spherical. For the proof of the following proposition,
see [26, Proposition 5.46].

Proposition 5.21. — The Tad-module TX0MG
S is multiplicity-free. Its

Tad-weight set is

(5.14)
{
αi : 1 6 i 6 L− 1

}
∪
{
α′j : 1 6 j 6 K − 1

}
∪
{
α′K + α′K+1 + · · ·+ α′n−1

}
.

In particular, dimTX0MG
S = dW .

5.8. The modules (GL(m)× SL(2)×GL(n), (Cm ⊗ C2)⊕ (C2 ⊗ Cn))
with 2 6 m 6 n

Here

E =
{
ω1 + ω′, ω′ + ω′′1 , ω1 + ω′′1 , ω2, ω

′′
2
}

and dW = 3.

In this case S is not G-saturated for any group G for which W is spherical
as one easily checks using Lemma 2.23. The module W is spherical for G′
if and only if m > 2. For the proof of the following proposition, see [26,
Proposition 5.57].

Proposition 5.22. — The Tad-module (V/g ·x0)G
′
x0 is multiplicity-free

and its Tad-weight set is {α1, α
′, α′′1}. In particular, dim(V/g ·x0)G

′
x0 = dW .

Consequently, dimTX0MG
S = dW .
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