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WELL-POSEDNESS FOR DENSITY-DEPENDENT
INCOMPRESSIBLE FLUIDS

WITH NON-LIPSCHITZ VELOCITY

by Boris HASPOT

Abstract. — This paper is dedicated to the study of the initial value problem
for density dependent incompressible viscous fluids in RN with N > 2. We address
the question of well-posedness for large and small initial data having critical Besov
regularity in functional spaces as close as possible to the ones imposed in the
incompressible Navier Stokes system by Cannone, Meyer and Planchon (where u0 ∈

B
N
p

−1
p,r with 1 6 p < +∞, 1 6 r 6 +∞). This improves the classical analysis where

u0 is considered belonging in B
N
p

−1
p,1 such that the velocity u remains Lipschitz.

Our result relies on a new a priori estimate for transport equation introduce by
Bahouri, Chemin and Danchin when the velocity u is not necessary Lipschitz but
only log Lipschitz. Furthermore it gives a first kind of answer to the problem of
self-similar solution.
Résumé. — Ce papier est dédié à l’étude de Cauchy pour le système de Navier-

Stokes non homogène dans RN avec N > 2. Nous adressons la question du caractère
bien posé pour des données initiales grandes et petites ayant une régularité critique
dans des espaces de Besov aussi proches que possible de ceux utilisés par Cannone,

Meyer et Planchon pour Navier Stokes incompressible (où u0 ∈ B
N
p

−1
p,r avec 1 6

p < +∞, 1 6 r 6 +∞). Cela améliore l’analyse classique où la vitesse initiale u0 est

supposée appartenir à B
N
p

−1
p,1 de telle manière que la vitesse u reste Lipschitz. Notre

résultat utilise de nouvelles estimées pour l’équation de transport introduites par
Bahouri, Chemin et Danchin lorsque la vitesse u n’est pas nécessairement Lipschitz
mais seulement log Lipschitz. De plus, cela donne une première réponse de résultat
au problème des solutions autosimilaires.

Keywords: Navier-Stokes equations Cauchy problem, Littlewood-Paley theory, losing
estimates for the transport equation.
Math. classification: 76D03, 76D05, 35S50.
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1. Introduction

In this paper, we are concerned with the following model of incompress-
ible viscous fluid with variable density:

(1.1)


∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ)Du) +∇Π = ρf,

div u = 0,
(ρ, u)/t=0 = (ρ0, u0).

Here u = u(t, x) ∈ RN stands for the velocity field and ρ = ρ(t, x) ∈ R+

is the density, Du = 1
2 (∇u +t ∇u) is the strain tensor. We denote by µ

the viscosity coefficients of the fluid, which is assumed to satisfy µ > 0.
The term ∇Π (namely the gradient of the pressure) may be seen as the
Lagrange multiplier associated to the constraint div u = 0. We supplement
the problem with initial condition (ρ0, u0) and an outer force f . Throughout
the paper, we assume that the space variable x ∈ RN or to the periodic
box TNa with period ai, in the i-th direction. We restrict ourselves to the
case N > 2.

The existence of global weak solution for (1.1) under the assumption that
ρ0 ∈ L∞ is nonnegative and that √ρ0u0 ∈ L2 has been studied by different
authors. It is based on the energy equality:
(1.2)

‖√ρu(t)‖2L2+
∫ t

0
‖
√
µ(ρ)Du(τ)‖2L2dτ = ‖√ρ0u0‖2L2+

∫
2(ρf ·u)(τ, x)dτ dx.

Using (1.2) and the fact that the density is advected by the flow of u so that
the Lp norms of ρ are (at least formally) conserved during the evolution,
it is then possible to use compactness methods for proving the existence
of global weak solution. This approach has been introduced by J. Leray in
1934 in the homogeneous case (i.e., ρ = 1) and no external force. For the
non-homogeneous equation (1.1), we refer to [3] and to [25] for an overview
of results on weak solution. Some recent improvements have been obtained
by B. Desjardins in [16]. In the sequel we shall only consider the case of
constant viscosity coefficients.
The question of unique resolvability for (1.1) has been first addressed

by O. Ladyzhenskaya and V. Solonnikov in the late seventies (see [23]).
The authors consider system (1.1) in a bounded domain Ω with homo-
geneous Dirichlet boundary conditions for u. Under the assumption that
u0 ∈ W 2− 2

q ,q (q > N) is divergence-free and vanishes on ∂Ω and that
ρ0 ∈ C1(Ω̄) is bounded away from zero, the results are the following:
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WELL-POSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE 1719

• global well-posedness in dimension N = 2,
• local well-posedness in dimension N = 3. If in addition u0 is small
in W 2− 2

q ,q, then global well-posedness holds true.
Let us mention by passing that for the dimension N = 2, O. Ladyzhenskaya
and V. Solonnikov use a quasi-conservation law for the H1 norm of the
velocity and get global H1 solutions. We would like also to point out that
the problem of the existence of global strong solution in dimension N = 2
is open when the viscosity coefficients are variable.
The case of unbounded domains has been investigate by S. Itoh and

A. Tani in [21]. In this framework, they show that the system (1.1) is locally
well-posed. In the present paper, we aim at proving similar qualitative
results in the whole space RN or in the torus TN under weaker regularity
assumptions.
Guided in our approach by numerous works dedicated to the incompress-

ible Navier-Stokes equation (see z.g [26]):

(NS)
{
∂tv + v · ∇v − µ∆v +∇Π = 0,
div v = 0,

we aim at solving in the case where the initial data (ρ0, u0, f) have critical
regularity for the scaling of the equations and in particular when the ini-
tial velocity belongs to the same Besov spaces than Cannone, Meyer and
Planchon in [6] for the incompressible Navier-Stokes system. It means that
we would like to obtain strong solutions results when u0 is in B

N
p −1
p,r with

1 6 p < +∞, 1 6 r 6 +∞ (we refer to the Section 2 for the definition
of Besov spaces). By critical, we mean that we want to solve the system
in functional spaces with norm is invariant by the changes of scales which
leaves (1.1) invariant. That approach has been initiated by H. Fujita and
T. Kato in [17]. In the case of incompressible fluids, it is easy to see that
the transformations:

v(t, x) −→ lv(l2t, lx), ∀ l ∈ R

have that property.
For density-dependent incompressible fluids, one can check that the ap-

propriate transformations are:

(1.3)
(ρ0(x), u0(x)) −→ (ρ0(lx), lu0(lx)), ∀ l ∈ R.

(ρ(t, x), u(t, x),Π(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx), l2Π(l2t, lx)).
The use of critical functional frameworks led to several new well-posedness
results for incompressible fluids (see [6], [22]). In the case of the density
dependent incompressible fluids we would like to cite recent improvements
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1720 Boris HASPOT

by R. Danchin in [10], [9], [13] , H. Abidi in [1] (when the viscosity co-
efficients are variable) and H. Abidi, M. Paicu in [2]. All these works
deal with the existence of strong solutions in critical spaces for the scal-
ing of the equations. More precisely R. Danchin shows the existence of
strong solution in finite time in [10], [9], [13] when the initial data check
(ρ−1

0 − 1, u0) ∈
(
B
N
2

2,∞ ∩ L∞
)
× B

N
2 −1

2,1 or (ρ−1
0 − 1, u0) ∈ B

N
p

p,1 × B
N
p

p,1 with
1 6 p 6 N . In addition R. Danchin needs a condition of smallness on the
initial density, it means that ‖ρ−1

0 −1‖
B
N
p
p,1

is assumed small. More recently

H. Abidi and M. Paicu in [2] improved these results by working with initial
data in Besov space with different Lebesgue index for the velocity and the
density (we would like to point out that this idea has also been used in
the context of compressible Navier-Stokes equations, see [20]), in particu-
lar (ρ0 − 1) and u0 belong respectively to B

N
p1
p1,1 and B

N
p2
−1

p2,1 with p1 and p2
suitably chosen. This enables them to get strong solution for initial data
u0 in B

N
p2
−1

p2,1 with 1 6 p2 < 2N which extends the results of R. Danchin.
In the same way, they obtain in the same functional spaces the existence of
global strong solution with small initial data. All these results use in a cru-
cial way the fact that the solution are Lipschitz. In particular, it explains
the choice of the third index r = 1 for these different Besov space, indeed
it entails a Lipschitz control on the velocity u, more precisely ∇u belongs
in L1

T (B
N
p

p,1) which is embedded in L1
T (L∞). This control is imperative in

these works in order to estimate via the transport equation the density.
However the scaling of (1.3) suggests to choose initial data (ρ0, u0) in

B
N
p1
p1,r

′ × B
N
p2
−1

p2,r with (p1, p2) ∈ [1,+∞)2 and (r, r′) ∈ [1,+∞]2. Indeed
it seems that it is not mandatory just by some scaling considerations to
impose a condition of type r, r′ = 1 as in the works of H. Abidi, R. Danchin
and M. Paicu. The goal of this article is to reach the critical case with a
general third index for the Besov spaces r and r

′ . More precisely in the
sequel we will restrict our study to the case where the initial data (ρ0, u0)
and external force f are such that, for some positive constant ρ̄ > 0:

(ρ0 − ρ̄) ∈ B
N
p1

+ε
p1,∞ ∩ L∞, u0 ∈ B

N
p2
p2,r and f ∈ L̃1

loc

(
R+,∈ B

N
p2
−1

p2,r

)
.

with r ∈ [1,+∞], ε > 0 and with p1, p2 suitably chosen (for a definition of
L̃1 we refer to the Section 2).
In this article we extend the result of H. Abidi, R. Danchin and M. Paicu

by working with initial data in B
N
p2
p2,r with the third index r in[1,+∞]. In

particular we generalize to the case of the Navier-Stokes incompressible
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WELL-POSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE 1721

dependent density the well-known result of existence of strong solution of
Cannone-Meyer-Planchon for incompressible Navier-Stokes equations (see
[6]) when u0 is assumed belonging inB

N
p −1
p,r with 1 6 p < +∞, 1 6 r 6

+∞). To do this, we need new estimates in order to control the density
via the transport equation when the velocity is not Lipschitz. We then use
some new a priori estimates on the transport equation when the velocity is
only assumed log Lipschitz. One of the main difficulty is to deal in this case
with the loss of regularity on the density, that is why to compensate this
loss we shall work with a bit more regularity on the density ρ0. The crucial
point consists in obtaining sufficient regularity on the density inasmuch as
this density remains in a good multiplier space for the velocity (indeed we
recall that the momentum equation is close from a Stoke equation with
variable coefficient in the density).
Furthermore we also extends the results of H. Abidi, R. Danchin and

M. Paicu inasmuch as we do not need to assume any condition of smallness
on the initial density. In [10], [9], [13], [1] and [2] , it is mandatory to
make the additional assumption that ρ − ρ̄ is small in B

N
p

p,1. To do this,
we follow an idea of R. Danchin in [14] used for the case of compressible
Navier-Stokes equations, it consists in handling the elliptic operator in the
momentum equation of (1.1) as a constant coefficient second order operator
plus a perturbation introduced by ρ−ρ̄ which, may be treated as a harmless
source term. It is precisely at this point of the proof that we need to control
the vacuum (it means 1

ρ ) in the space L∞T
(
B

N
p1
p1,∞∩L∞

)
(which is embedded

in the multiplier spaceM
(
B
N
p −1
p,r

)
with p1 and p suitably chosen) in order

to obtain regularizing effects on the velocity u. We recall that our choice
of (ρ0− 1) ∈ B

N
p1

+ε
p1,∞ (with ε > 0) allows to compensate the eventual loss of

regularity on the density when the velocity is only assumed log Lipschitz.
Indeed by this way we are able to conserve the L∞T

(
B

N
p1
p1,∞ ∩ L∞

)
of the

density.
As long as ρ does not vanish, the equations for (a = ρ−1 − 1,u) read:

(1.4)


∂ta+ u · ∇a = 0,
∂tu+ u · ∇u+ (1 + a)(∇Π− µ∆u) = f,

div u = 0,
(a, u)/t=0 = (a0, u0).
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1722 Boris HASPOT

One can now state our main result which generalizes the work of Cannone,
Meyer, Planchon (see [6]) on the existence of strong solution for Navier-
Stokes equations to the density-dependent incompressible Navier-Stokes
equations.

Theorem 1.1. — Let 1 6 r < ∞, 1 6 p1 < ∞, 1 < p2 < ∞ and ε > 0
such that:

N

p1
+ ε <

N

p2
+ 1 and N

p2
− 1 6 N

p1
.

Assume that u0 ∈ B
N
p2
−1

p2,r with div u0 = 0, f ∈ L̃1
loc

(
R+, B

N
p2
−1

p2,r

)
and

a0 ∈ B
N
p1

+ε
p1,∞ ∩L∞, with 1 + a0 bounded away from zero and it exists c > 0

such that:
‖a0‖

B
N
p1
p1,∞∩L∞

6 c.

If 1
p1

+ 1
p2
> 1

N , there exists a positive time T such that system (1.4) has
a solution (a, u) with 1 + a bounded away from zero and:

a ∈ C̃
(

[0, T ], B
N
p1

+ ε
2

p1,∞

)
, u ∈

(
C̃
(

[0, T ];B
N
p2
−1

p2,r

)
∩ L̃1

(
0, T, B

N
p2

+1
p2,r

))N
and ∇Π ∈ L̃1

(
0, T, B

N
p2
−1

p2,r

)
.

If in addition we assume that a0 ∈ Lp1 , it exists a constant c such that if:

‖u0‖
Ḃ
N
p2
−1

p2,r

+ ‖a0‖
Ḃ
N
p1

+ε
p1,∞ ∩L∞∩L

p1
+ ‖f‖

L̃1
(
Ḃ
N
p2
−1

p2,r

) 6 cµ,
then T = +∞. This solution is unique when 2

N 6
1
p1

+ 1
p2
.

Remark 1.2. — We can observe that we need additional information in
low frequencies for getting the global existence of strong solution, indeed
we ask that a0 belongs in Lp1 . Furthermore we are working with homoge-
neous Besov spaces which is absolutely mandatory in order to obtain global
solution. The fact that we add the condition a0 ∈ Lp1 is due to the different
behavior in low and high frequencies when we are dealing with estimates
on the transport equation with loss of regularity. We will give additional
details on this fact in the proof of the Theorem 1.1 (see Section 8).

Remark 1.3. — In the present paper we did not strive for unnecessary
generality which may hide the new ideas of our analysis. Hence we focused
on the case of constant viscosity coefficients. We believe that our analysis
may be generalized to the case of variable viscosity coefficients.
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Remark 1.4. — As in the work of H. Abidi and M. Paicu in [2], we are
able to get strong solution when u0 ∈ B

N
p2
−1

p2,r with 1 < p2 6 2N , it improves
the result of R. Danchin in [10, 9] and [13].
Moreover we get weak solution with initial data very close from (a0, u0) ∈

B1+ε
N,∞ ×B−1

∞,r and (a0, u0) ∈ Bε∞,∞ ×B0
N,r. It means that in the first case

we are not far away from the results of Koch-Tataru in [22] when the
initial data for the velocity u0 is belonging in BMO−1; in the second case
the initial density a0 is close from being only in L∞, which is of great
interest for the system multifluids. We refer also to the interesting work of
P. Germain in [18].

Remark 1.5. — It would be possible to improve in dimension N = 2
the existence of global strong solution by working close to a solution uL
of incompressible Navier-Stokes equations when the initial data is u0. In-
deed in our case for simplicity we are working close to a solution uL of the
heat equation (see the proof for more details). Indeed we would be able
in this case to obtain global strong solution in dimension N = 2 without
assuming smallness on the initial velocity. We could proceed similarly in
order to obtain global strong solution in dimension N = 3 with a family
of large initial velocity for the critical Besov norms (however there would
be a condition of smallness in low frequencies). We refer to the works of
J.-Y. Chemin, I. Gallagher and M. Paicu (see [7]) in the case of incompress-
ible Navier-Stokes equations. The idea of the proof consists in choosing ini-
tial data such that uL · ∇uL is small in L̃1(B

N
p2
−1

p2,1 ) in order to "cancel out"
in some sense the nonlinearity which requires in general smallness condition
on the initial data. Here uL is solution of the Stokes equateion.

Remark 1.6. — In the previous theorem, we need a condition of small-
ness, because when p2 6= 2, we have extra term in our Proposition 4.1 which
requires a condition of smallness on a.

In the following theorem, we improve the previous result in the specific
case where p2 = 2. In this case we don’t need to impose condition of
smallness on the initial data.

Theorem 1.7. — Let 1 6 r <∞, 1 6 p1 <∞ and ε > 0 such that:
N

p1
+ ε <

N

2 + 1 and N

2 6 1 + N

p1
.

Assume that u0 ∈ B
N
2 −1

2,r with div u0 = 0, f ∈ L̃1
loc

(
R+, B

N
2 −1

2,r

)
and a0 ∈

B
N
p1

+ε
p1,∞ ∩L∞, with 1 + a0 bounded away from zero. There exists a positive
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1724 Boris HASPOT

time T such that system (1.4) has a solution (a, u) with 1 + a bounded
away from zero and:

a ∈ C̃
(

[0, T ], B
N
p1

+ ε
2

p1,∞

)
, u ∈

(
C̃
(

[0, T ];B
N
2 −1

2,r

)
∩ L̃1

(
0, T, B

N
2 +1

2,r

))N
and ∇Π ∈ L̃1

(
0, T, B

N
2 −1

2,r

)
.

If in addition we assume that a0 ∈ Lp1 , it exists a constant c such that if:

‖u0‖
Ḃ
N
2 −1

2,r

+ ‖a0‖
Ḃ
N
p1

+ε
p1,∞ ∩L∞∩L

p1
+ ‖f‖

L̃1(Ḃ
N
p2
−1

p2,r )
6 cµ,

then T = +∞. This solution is unique when 2
N 6

1
p1

+ 1
2 .

In the following theorems we want to deal with the case r = +∞, we
have to treat the case of a linear loss of regularity on the density ρ which
depends on the behavior of the velocity u when u belongs in L̃1

T

(
B
N
p +1
p,∞

)
.

Theorem 1.8. — Let 1 6 p1 <∞, 1 < p2 <∞, and ε > 0 such that:
N

p1
+ ε <

N

p2
+ 1 and N

p2
6 1 + N

p1
.

Assume that u0 ∈ B
N
p2
−1

p2,∞ with div u0 = 0, f ∈ L̃1
loc
(
R+, B

N
p2
−1

p2,∞
)
and

a0 ∈ B
N
p1

+ε
p1,∞ ∩L∞, with 1 + a0 bounded away from zero and it exists c > 0

such that:
‖a0‖

B
N
p1
p1,∞∩L∞

6 c.

If 1
p1

+ 1
p2
> 1

N , there exists a positive time T such that system (1.4) has
a solution (a, u) with 1 + a bounded away from zero and:

a ∈ C̃
(

[0, T ], Bσ(T )
p1,∞

)
, u ∈

(
C̃
(

[0, T ];B
N
p2
−1

p2,∞ ∩ L̃1
(

0, T, B
N
p2

+1
p2,∞

))N
and ∇Π ∈ L̃1

(
0, T, B

N
p2
−1

p2,∞

)
,

with:
σ(T ) = N

p1
+ ε− λ‖u‖

L̃1
T

(
B
N
p2

+1
p2,∞

)
for any λ > 0 depending only on N , p1 and p2. If in addition we assume
that a0 ∈ Lp1 , it exists a constant c such that if:

‖u0‖
Ḃ
N
p2
−1

p2,∞

+ ‖a0‖
Ḃ
N
p1

+ε
p1,∞ ∩L∞∩L

p1
+ ‖f‖

L̃1
(
Ḃ
N
p2
−1

p2,∞

) 6 cµ,
then T = +∞. This solution is unique when 2

N 6
1
p1

+ 1
p2
.
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Remark 1.9. — We would like to point out that in the previous theorem
we can choose initial velocity such that u0 is homogeneous of degree −1.
Indeed an important open problem concerns the existence of self similar
solutions, it means solutions such that ρ0 is homogeneous of degree 0 and
u0 homogeneous of degree −1. Via the scaling of the equation, if we have
existence of strong solutions for such initial data, we have then for all l ∈ R:

(ρ(t, x), u(t, x),Π(t, x)) = (ρ(l2t, lx), lu(l2t, lx), l2Π(l2t, lx)).

The existence of such solution for incompressible Navier-Stokes equation
with dependent density is actually open (indeed the main difficulty consists
in dealing with “the a priori loss” of regularity on the initial density while
we assumed the initial density critical). For the classical incompressible
Navier-Stokes equations we refer to the book of Lemarié-Rieusset in [24]
and the works of Cannone, Meyer and Planchon [6].
However our result gives a first kind of answer to this problem. Indeed we

are able to choose initial homogeneous velocity of degree −1 (for example
u0 = 1

|x| ), more precisely we obtain a solution u which can be splitter in
a self-semilar solution plus a small perturbative term. Indeed following the
proof of Theorem 1.8, the solution is such that:

u = uL + ū,

with uL solution of the Stokes equation with initial data u0. uL is then
self-similar and ū has to be considered as a smallperturbation. It means
that the solution u remains close to a self similar solution along the time.

In the following theorem, we generalize the previous result with large
initial data for the initial density when p2 = 2.

Theorem 1.10. — Let 1 6 p1 <∞ and ε > 0 such that:
N

p1
+ ε <

N

2 + 1 and N

2 6 1 + N

p1
.

Assume that u0 ∈ B
N
2 −1

2,∞ with div u0 = 0, f ∈ L̃1
loc
(
R+, B

N
2 −1

2,∞
)
and a0 ∈

B
N
p1

+ε
p1,∞ ∩L∞, with 1 + a0 bounded away from zero. There exists a positive

time T such that system (1.4) has a solution (a, u) with 1 + a bounded
away from zero and:

a ∈ C̃
(
[0, T ], Bσ(T )

p1,∞
)
, u ∈

(
C̃
(

[0, T ];B
N
2 −1

2,∞

)
∩ L̃1

(
0, T, B

N
2 +1

2,∞

))N
and ∇Π ∈ L̃1

(
0, T, B

N
2 −1

2,∞

)
,
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1726 Boris HASPOT

with:

σ(T ) = N

p1
+ ε− λ‖u‖

L̃1
T

(
B
N
2 +1

2,∞

),
for λ > 0 depending only on N and p1. If in addition we assume that
a0 ∈ Lp1 , it exists a constant c such that if:

‖u0‖
Ḃ
N
2 −1

2,∞

+ ‖a0‖
Ḃ
N
p1

+ε
p1,∞ ∩L∞∩L

p1
+ ‖f‖

L̃1
(
Ḃ
N
2 −1

2,∞

) 6 cµ,
then T = +∞. This solution is unique when 2

N 6
1
p1

+ 1
2 .

The key of the Theorems 1.1, 1.7, 1.8 and 1.10 is based on new estimates
for transport equation on the velocity u when it is is not considered Lips-
chitz. In this case we have to pay a loss of regularity on the density ρ. The
basic idea to deal with this loss of regularity is to add a little bit regularity
on the initial density a0 in order to conserve a on a small interval (0, T )
in C̃T

(
B

N
p1
p1,+∞

)
∩ L∞ which has good properties of multiplier for the term

∆u.
Our paper is structured as follows. In the Section 2, we give a few notation

and briefly introduce the basic Fourier analysis techniques needed to prove
our result. Section 4 and 5 are devoted to the proof of key estimates for the
linearized system (1.4) in particular the elliptic operator of the momentum
equation with variable coefficients and the transport equation when the
velocity is not assumed Lipschitz. In Section 6, we prove the existence of
solutions for Theorem 1.1 whereas Section 7 is devoted to the proof of
uniqueness. In Section 8, we prove the part of Theorem 1.1 concerning
the global existence and the Theorem 1.7. Finally in Section 9, we briefly
show how to prove Theorem 1.8 and 1.10. Elliptic and technical estimates
commutator are postponed in an appendix.

2. Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning
depends on the context. The notation A . B means that A 6 CB. For all
Banach space X, we denote by C([0, T ], X) the set of continuous functions
on [0, T ] with values in X. For p ∈ [1,+∞], the notation Lp(0, T,X) or
LpT (X) stands for the set of measurable functions on (0, T ) with values in
X such that t→ ‖f(t)‖X belongs to Lp(0, T ).
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2.1. Littlewood-Paley decomposition

Littlewood-Paley decomposition corresponds to a dyadic decomposition
of the space in Fourier variables. Let α > 1 and (ϕ, χ) be a couple of smooth
functions valued in [0, 1], such that ϕ is supported in the shell supported
in {ξ ∈ RN/α−1 6 |ξ| 6 2α}, χ is supported in the ball {ξ ∈ RN/|ξ| 6 α}
such that:

∀ξ ∈ RN , χ(ξ) +
∑
l∈N

ϕ(2−lξ) = 1.

Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆lu = 0 if l 6 −2,

∆−1u = χ(D)u = h̃ ∗ u with h̃ = F−1χ,

∆lu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy with h = F−1χ, if l > 0,

Slu =
∑
k6l−1

∆ku.

Formally, one can write that: u =
∑
k∈Z ∆ku. This decomposition is called

nonhomogeneous Littlewood-Paley decomposition.

2.2. Nonhomogeneous Besov spaces and first properties

Definition 2.1. — For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈
S ′(RN ) we set:

‖u‖Bsp,q =
(∑
l∈Z

(2ls‖∆lu‖Lp)q
) 1
q

.

The Besov space Bsp,q is the set of temperate distribution u such that
‖u‖Bsp,q < +∞.

Remark 2.2. — The above definition is a natural generalization of the
nonhomogeneous Sobolev and Hölder spaces: one can show that Bs∞,∞ is
the nonhomogeneous Hölder space Cs and that Bs2,2 is the nonhomogeneous
space Hs.

Proposition 2.3. — The following properties holds:
(1) there exists a constant universal C such that:

C−1‖u‖Bsp,r 6 ‖∇u‖Bs−1
p,r
6 C‖u‖Bsp,r .

(2) If p1 < p2 and r1 6 r2 then Bsp1,r1 ↪→ B
s−N(1/p1−1/p2)
p2,r2 .
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(3) (Bs1p,r, Bs2p,r)θ,r′ = B
θs1+(1−θ)s2
p,r′

.

Let now recall a few product laws in Besov spaces coming directly from
the paradifferential calculus of J-M. Bony (see [5]) and rewrite on a gener-
alized form in [2] by H. Abidi and M. Paicu (in this article the results are
written in the case of homogeneous sapces but it can easily generalize for
the nonhomogeneous Besov spaces).

Proposition 2.4. — We have the following laws of product:
• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

(2.1) ‖uv‖
B̃sp,r
6 C

(
‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r

)
.

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that: 1
p 6

1
p1

+ 1
p2
, p1 6 λ2,

p2 6 λ1, 1
p 6

1
p1

+ 1
λ1

and 1
p 6

1
p2

+ 1
λ2
. We have then the following

inequalities:
if s1 +s2 +N inf

(
0, 1− 1

p1
− 1
p2

)
> 0, s1 + N

λ2
< N

p1
and s2 + N

λ1
< N

p2
then:

(2.2) ‖uv‖
B
s1+s2−N( 1

p1
+ 1
p2
− 1
p

)
p,r

. ‖u‖Bs1p1,r
‖v‖Bs2p2,∞

,

when s1 + N
λ2

= N
p1

(resp. s2 + N
λ1

= N
p2
) we replace ‖u‖Bs1p1,r

‖v‖Bs2p2,∞

(resp. ‖v‖Bs2p2,∞
) by ‖u‖Bs1p1,1

‖v‖Bs2p2,r
(resp. ‖v‖Bs2p2,∞∩L∞

), if s1 +
N
λ2

= N
p1

and s2 + N
λ1

= N
p2

we take r = 1.
If s1 + s2 = 0, s1 ∈

(
N
λ1
− N

p2
, Np1
− N

λ2

]
and 1

p1
+ 1

p2
6 1 then:

(2.3) ‖uv‖
B
−N( 1

p1
+ 1
p2
− 1
p

)
p,∞

. ‖u‖Bs1p1,1
‖v‖Bs2p2,∞

.

If |s| < N
p for p > 2 and −N

p′
< s < N

p else, we have:

(2.4) ‖uv‖Bsp,r 6 C‖u‖Bsp,r‖v‖
B
N
p
p,∞∩L∞

.

Remark 2.5. — In the sequel p will be either p1 or p2 and in this case
1
λ = 1

p1
− 1

p2
if p1 6 p2, resp 1

λ = 1
p2
− 1

p1
if p2 6 p1.

Corollary 2.6. — Let r ∈ [1,+∞], 1 6 p 6 p1 6 +∞ and s such
that:

• s ∈
(
− N

p1
, Np1

)
if 1
p + 1

p1
6 1,

• s ∈
(
− N

p1
+N

( 1
p + 1

p1
− 1
)
, Np1

)
if 1
p + 1

p1
> 1,

then we have if u ∈ Bsp,r and v ∈ B
N
p1
p1,∞ ∩ L∞:

‖uv‖Bsp,r 6 C‖u‖Bsp,r‖v‖
B
N
p1
p1,∞∩L∞

.
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The study of non stationary PDE’s requires space of type Lρ(0, T,X)
for appropriate Banach spaces X. In our case, we expect X to be a Besov
space, so that it is natural to localize the equation through Littlewood-
Payley decomposition. But, in doing so, we obtain bounds in spaces which
are not type Lρ(0, T,X) (except if r = p). We are now going to define the
spaces of Chemin-Lerner in which we will work, which are a refinement of
the spaces LρT (Bsp,r).

Definition 2.7. — Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖
L̃ρ
T

(Bs1p,r) =
(∑
l∈Z

2lrs1‖∆lu(t)‖rLρ(Lp)

) 1
r

.

We then define the space L̃ρT (Bs1p,r) as the set of temperate distribution u
over (0, T )× RN such that S ′((0, T )× RN ) ‖u‖

L̃ρ
T

(Bs1p,r) < +∞.

We set C̃T (B̃s1p,r) = L̃∞T (B̃s1p,r) ∩ C([0, T ], Bs1p,r).

Remark 2.8. — Let us emphasize that, according to Minkowski inequal-
ity, we have:

‖u‖
L̃ρ
T

(Bs1p,r) 6 ‖u‖LρT (Bs1p,r) if r > ρ, ‖u‖
L̃ρ
T

(Bs1p,r) > ‖u‖LρT (Bs1p,r) if r 6 ρ.

Remark 2.9. — It is easy to generalize Proposition 2.4, to L̃ρT (Bs1p,r)
spaces. The indices s1, p, r behave just as in the stationary case whereas
the time exponent ρ behaves according to Hölder inequality.

Here we recall a result of interpolation which explains the link of the
space Bsp,1 with the space Bsp,∞, see [4].

Proposition 2.10. — There exists a constant C such that for all s ∈ R,
ε > 0 and 1 6 p < +∞,

‖u‖
L̃ρ
T

(Bsp,1) 6 C
1 + ε

ε
‖u‖

L̃ρ
T

(Bsp,∞)

(
1 + log

‖u‖
L̃ρ
T

(Bs+εp,∞)

‖u‖
L̃ρ
T

(Bsp,∞)

)
.

Definition 2.11. — Let Γ be an increasing function on [1,+∞[. We
denote by BΓ(RN ) the set of bounded real valued functions u over RN
such that:

‖u‖BΓ = ‖u‖L∞ + sup
j>0

‖∇Sju‖L∞
Γ(2j) < +∞.

We give here a proposition concerning these spaces showed by
J-Y. Chemin (it can be found in [4]).
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Proposition 2.12. — Let ε > 0 and u ∈ L̃1
T

(
B
N
p +1
p,r

)
then we have

u ∈ L1
T (BΓ(RN )) with Γ(t) = (− log t)1+ε− 1

r for 0 6 t 6 1 .

3. Homogeneous Besov spaces

Littlewood-Paley decomposition corresponds to a dyadic decomposition
of the space in Fourier variables. We have then:∑

l∈Z
ϕ(2−lξ) = 1 if ξ 6= 0.

Denoting h = F−1ϕ, we then define the dyadic blocks for l ∈ Z by:

∆̇lu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy and Ṡlu =
∑
k6l−1

∆ku.

Formally, one can write that:

u =
∑
k∈Z

∆̇ku.

This decomposition is called homogeneous Littlewood-Paley decomposi-
tion. Let us observe that the above formal equality does not hold in S ′(RN )
for two reasons:

(1) The right hand-side does not necessarily converge in S ′(RN ).
(2) Even if it does, the equality is not always true in S ′(RN ) (consider

the case of the polynomials).
This motivates the following definition:

Definition 3.1. — We note by S ′h the space of temperate distributions
u such that:

lim
j→−∞

Ṡju = 0 in S
′
.

Definition 3.2. — For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈
S ′(RN ) we set:

‖u‖Ḃsp,q =
(∑
l∈Z

(2ls‖∆lu‖Lp)q
) 1
q

.

The Besov space Ḃsp,q is the set of temperate distribution u ∈ S ′h such that
‖u‖Ḃsp,q < +∞.

The properties of homogeneous Besov spaces are essentially the same
than in the case of the nonhomogeneous Besov spaces. For more details we
refer to [4].
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4. Estimates for parabolic system with variable coefficients

In this section, the following linearization of the momentum equation is
studied:

(4.1)


∂tu+ b(∇Π− µ∆u) = f + g,

div u = 0,
u/t=0 = u0

where b, f , g and u0 are given. Above u is the unknown function. We assume
that u0 ∈ Bsp,r and f ∈ L̃1(0, T ;Bsp,r), that b is bounded by below by a

positive constant b and that a = b− 1 belongs to L̃∞
(
0, T ;B

N
p1

+α
p1,∞

)
∩ L∞.

In the present subsection, we aim at proving a priori estimates for (4.1) in
the framework of nonhomogeneous Besov spaces. Before stating our results
let us introduce the following notation:

(4.2) AT = 1 + b−1‖∇b‖
L̃∞
(
B
N
p1

+α−1
p1,∞

) with α > 0.

Proposition 4.1. — Let ν = bµ and (p, p1) ∈ [1,+∞].
• If p1 > p we assume that s ∈

(
− N

p1
, Np1

)
if 1

p + 1
p1
6 1 and s ∈(

− N
p1

+N
( 1
p + 1

p1
− 1
)
, Np1

)
if 1
p + 1

p1
> 1.

• If p1 6 p then we suppose that s ∈
(
− N

p ,
N
p

)
if p > 2 and s ∈(

− N
p′
, Np
)
if p < 2.

If p 6= 2 we need to assume than there exists c > 0 such that:

‖∇a‖
L̃∞
(
B
N
p1

+α−1
p1,∞

) 6 c.
Let m ∈ Z be such that bm = 1 + Sma satisfies:

(4.3) inf
(t,x)∈[0,T )×RN

bm(t, x) > b

2 .

There exist three constants c, C and κ (with c, C, depending only on N

and on s, and κ universal) such that if in addition we have:

(4.4) ‖a− Sma‖
L̃∞(0,T ;B

N
p1
p1,∞)∩L∞

6 c
ν

µ

then setting:

Zm(t) = 22mαµ2ν−1
∫ t

0
‖a‖2

B
N
p1
p1,∞∩L∞

dτ,
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Let α′ > 0 checking α′ 6 min
(
1, α, s−2+ 2

m

2
)
. We have for all t ∈ [0, T ] and

κ = s
α′
:

(4.5)

‖u‖
L̃∞
T

(Bsp,r) + κν‖u‖
L̃1
T

(Bs+2
p,r ) 6 e

CZm(T )
(
‖u0‖Bsp,r +AκT

(
‖Pf‖

L̃1
T

(Bsp,r)

+ µ
1
m ‖Pg‖

L̃m
T

(
B
s−2+ 2

m
p,r

) + µ
1
m

(ν(p− 1)
p

)
AT ‖u‖

L̃1
T

(Bs+2−α′
p,r )

))
.

Moreover we have ∇Π = ∇Π1 +∇Π2 with:

b‖∇Π1‖L̃1
T

(Bsp,r) 6 A
κ
T ‖Pf‖L̃1

T
(Bsp,r),

(4.6)

b‖∇Π2‖L̃1
T

(Bsp,r) 6 A
κ
T

(
‖Qg‖

L̃m
T

(
B
s−2+ 2

m
p,r

)
+ µ‖a‖

L̃∞
T

(
B
N
p1

+α

p1,+∞

)‖∆u‖
L̃m
T

(
B
s−2+ 2

m
p,r

)).
Remark 4.2. — Let us stress the fact that if a ∈ L̃∞

(
(0, T ) × B

N
p1
p1,∞

)
then Assumption (4.3) and (4.4) are satisfied for m large enough. This
will be used in the proof of Theorem 1.7 and 1.10. Indeed, according to
Bernstein inequality for m large enough 9 (4.3) and (4.4) are satisfied.

Proving Proposition 4.1 in the case b = cste is not too involved as one
can easily get rid of the pressure by taking advantage of the Leray projector
P on solenoidal vector-fields. Then system (4.1) reduce to a linear ψDO
which may be easily solved by mean of energy estimates. In our case where
b is not assumed to be a constant, getting rid of the pressure will still be
an appropriate strategy. This may be achieved by applying the operator
div to (4.1). Indeed by doing so, we see that the pressure solves the elliptic
equation:

(4.7) div(b∇Π) = divF

with F = f+g+µa∆u. Therefore denoting by Hb the linear operator F →
∇Π, system (4.1) reduces to a linear ODE in Banach spaces. Actually, due
to the consideration of two forcing terms f and g with different regularities,
the pressure has to be split into two parts, namely Π = Π1 + Π2 with:

(4.8) div(bΠ1) = div f

(4.9) div(bΠ2) = divH and H = g + µa∆u.
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Proof of Proposition 4.1. — Let us first rewrite (4.1) as follows:

(4.10)


∂tu− bmµ∆u+ b∇Π = f + g + Em,

div u = 0,
ut=0 = u0

with Em = µ∆u (Id− Sm)a and bm = 1 + Sma. Note that by using Corol-
lary 2.6 and as −N

p1
< s < N

p1
for p > 2 or N

p
′
1
< s < N

p1
else, the error term

Em may be estimated by:

(4.11) ‖Em‖Bsp,r . ‖a− Sma‖
B
N
p1
p1,∞∩L∞

‖D2u‖Bsp,r .

Now applying operator ∆q and next operator of free divergence yield P to
momentum equation (4.10) yields:

(4.12) d

dt
uq − µdiv(bm∇uq) = Pfq + Pgq + ∆qPEm + R̃q −∆qP(a∇Π),

where we denote by uq = ∆qu and with:

R̃q = R̃1
q + R̃2

q

where:

R̃1
q = µ

(
P∆q(bm∆u)− P div(bm∇uq)

)
,

R̃2
q = µ

(
P div(bm∇uq)− div(bm∇uq)

)
= −µQdiv(Sma∇uq)

where Q is the gradient yield projector. �

Case p 6= 2

Next multiplying both sides by |uq|p−2uq, and integrating by parts in
the second, third and last term in the left-hand side, we get by using Bony
decomposition (for the notation see [4]):
(4.13)
1
p

d

dt
‖uq‖pLp + µ

∫
RN

bm|∇uq|2|uq|p−2dx+ µ

∫
RN

bm|uq|p−4|∇|u|2|2dx

6 ‖uq‖p−1
Lp (‖Pfq‖Lp + ‖Pgq‖Lp + ‖R̃q‖Lp + ‖∆q(T∇aΠ)‖Lp

+ 2q‖∆q(TaΠ)‖Lp + ‖∆q(T
′

∇Πa)‖Lp + ‖P∆qEm‖Lp).
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Indeed we have as div u = 0 and by using Bony’s decomposition and by
performing an integration by parts:

∫
RN

∆q(a∇Π)|uq|p−2uq =
∫
RN

∆q(T
′

∇Πa)|uq|p−2uqdx

−
∫
RN

∆q(T∇aΠ)|uq|p−2uqdx−
∫
RN

∆q(TaΠ) div(|uq|p−2uq)dx.

Next we have:

∇(|uq|p−2) · uq = (p− 2)|uq|p−4
∑
i,k

ukq∂iu
k
qu

i
q,

and by Hölder’s and Berstein’s inequalities:

‖∇(|uq|p−2) · uq‖
L

p
p−1
6 C(p− 2)2q‖uq‖p−1

Lp .

Next from inequality (4.13), we get by using classical lemma on the heat
equation (see [4]):

1
p

d

dt
‖uq‖pLp + ν(p− 1)

p2 22q‖uq‖pLp

6 ‖uq‖p−1
Lp

(
‖Pfq‖Lp + ‖Pgq‖Lp + ‖P∆qEm‖Lp

+ ‖∆q(T∇aΠ)‖Lp + 2q‖∆q(TaΠ)‖Lp + ‖∆q(T
′

∇Πa)‖Lp + ‖R̃q‖Lp
)
.

Therefore, elementary computation yield (at least formally):

e
− ν(p−1)

p2 22qt d

dt

(
e
ν(p−1)
p2 22qt‖uq‖Lp

)
. ‖Pfq‖Lp + ‖Pgq‖Lp + ‖P∆qEm‖Lp

+ ‖∆q(T∇aΠ)‖Lp + 2q‖∆q(TaΠ)‖Lp + ‖∆q(T
′

∇Πa)‖Lp + ‖R̃q‖Lp .

We thus have:

‖uq(t)‖Lp . e
− ν(p−1)

p2 22qt‖∆qu0‖Lp +
∫ t

0
e
− ν(p−1)

p2 22q(t−τ)

(
‖Pfq‖Lp + ‖Pgq‖Lp + ‖P∆qEm‖Lp + ‖∆q(T∇aΠ)‖Lp + 2q‖∆q(TaΠ)‖Lp

+ ‖∆q(T
′

∇Πa)‖Lp + ‖R̃q‖Lp
)
(τ)dτ,
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which leads for all q > −1, after performing a time integration and using
convolution inequalities to:

(ν(p− 1)
p2

) 1
m 2

2q
m ‖uq‖Lm

T
(Lp) . ‖∆qu0‖Lp + ‖Pfq‖L1

T
(Lp)

(4.14)

+ ‖∆q(T∇aΠ1)‖L1
T

(Lp) + 2q‖∆q(TaΠ1)‖L1
T

(Lp) + ‖∆q(T
′

∇Π1
a)‖L1

T
(Lp)

+ ‖R̃q‖L1
T

(Lp) + ‖P∆qEm‖L1
T

(Lp) +
(ν(p− 1)

p2

) 1
m−1

2q( 2
m−2)(‖∆q(T∇aΠ2)‖L1

T
(Lp) + 2q‖∆q(TaΠ2)‖L1

T
(Lp)

+ ‖∆q(T
′

∇Π2
a)‖L1

T
(Lp) + ‖Pgq‖Lm

T
(Lp)

)
.

We are now interested by treating the commutator term R̃1
q , we have then

by using Lemma 10.2 in the appendix the following estimates with α < 1:

(4.15) ‖R̃1
q‖Lp . cq ν̄2(−1+α)qs‖Sma‖

B
N
p1

+α
p1,∞

‖Du‖Bsp,r ,

where (cq)q∈Z is a positive sequence such that cq ∈ lr, and ν̄ = µ. Note
that, owing to Bernstein inequality, we have:

‖Sma‖
B
N
p1

+α
p1,∞

. 2mα‖a‖
B
N
p1
p1,∞

.

Next we have by Corollary 2.6:

(4.16) ‖R̃2
q‖Lp . cq ν̄2−qs‖Sma‖

B
N
p1
p1,r∩L∞

‖u‖Bs+2
p,r

.

Hence, plugging (4.15), (4.16) and (4.11) in (4.14), then multiplying by 2qs
and summing up on q ∈ Z in lr, we discover that, for all t ∈ [0, T ]:

‖u‖
L̃∞
T

(Bsp,r) +
(ν(p− 1)

p

) 1
m ‖u‖

L̃m
T

(
B
s+ 2

m
p,r

) 6 ‖u0‖Bsp,r + ‖Pf‖
L̃1
T

(Bsp,r)

(4.17)

+ ‖TaΠ1‖L̃1
T

(Bs+1
p,r ) + ‖T∇aΠ1‖L̃1

T
(Bsp,r) + ‖T

′

∇Π1
a‖
L̃1
T

(Bsp,r)

+ Cν̄‖a−Sma‖
L̃∞
(
B
N
p1
p1,∞∩L∞

)‖u‖
L̃1(Bs+2

p,r )+2mα
∫ T

0
‖a‖

B
N
p1
p1,∞

(τ)‖u‖Bs+1
p,r

(τ)dτ

+
(ν(p− 1)

p2

) 1
m
(
‖Pg‖

L̃m
T

(
B
s−2+ 2

m
p,r

) + ‖TaΠ2‖
L̃m
T

(
B
s−1+ 2

m
p,r

)
+ ‖T∇aΠ2‖

L̃m
T

(
B
s−2+ 2

m
p,r

) + ‖T
′

∇Π2
a‖
L̃m
T

(
B
s−2+ 2

m
p,r

)),
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for a constant C depending only on N and s. With our assumption on α, α′

and s, the terms ‖T∇aΠ1‖L̃1
T

(Bsp,r) and ‖T ′∇Π1
a‖
L̃1
T

(Bsp,r) may be bounded
by:

‖a‖
L̃∞
(
B
N
p1

+α
p,∞ ∩L∞

)‖∇Π1‖
L̃1
T

(Bs−α
′

p,r )

whereas ‖T∇aΠ2‖
L̃m
T

(
B
s−2+ 2

m
p,r

) and ‖T ′∇Π2
a‖
L̃m
T

(
B
s−2+ 2

m
p,r

) may be bounded

by:

‖a‖
L̃∞
(
B
N
p1

+α
p,∞ ∩L∞

)‖∇Π2‖
L̃m
T

(
B
s−2+ 2

m
−α′

p,r

).
Moreover we control ‖TaΠ1‖L̃1

T
(Bs+1
p,r ) and ‖TaΠ2‖

L̃m
T

(
B
s−1+ 2

m
p,r

) by respec-

tively:

‖a‖
L̃∞
(
B
N
p1
p,∞∩L∞

)‖∇Π1‖L̃1
T

(Bsp,r).

‖a‖
L̃∞
(
B
N
p1
p,∞∩L∞

)‖∇Π2‖
L̃m
T

(
B
s−2+ 2

m
p,r

).
Hence in view of Proposition 10.1 and provided that 0 < α

′
< min(1, α, s2 )

and s < N
p1

(which is assumed in the statement of Proposition 4.1) and
α
′′ ∈ [0, α′ ],

(4.18) b‖∇Π1‖
L̃1
T

(Bs−α
′′

p,r )
. A

s−α
′′

α
′

T ‖Qf‖
L̃1(Bsp,r).

On the other hand, by virtue of Proposition 2.4, and of assumption on α,
α
′ , α′′ and s, we have:

‖QH‖
L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

) . ‖Qg‖
L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

)
+ µ‖a‖

L̃∞
(
B
N
p1

+α
p1,∞ ∩L∞

)‖∆u‖
L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

).
As α′ 6 min(1, α, 1

2 (s− 2 + 2
m )), Proposition 10.1 with σ = s− 2 + 2

m −α
′′

(here comes s > 2 − 2
m ) applies, from which we get for all ε > 0 (ε = 0

does if m > 2),
(4.19)

b‖∇Π2‖
L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

) . A s−2+ 2
m

+ε

α
′

T

(
‖Qg‖

L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

)
+ µ‖a‖

L̃∞
(
B
N
p1

+α
p1,∞ ∩L∞

)‖∆u‖
L̃m
T

(
B
s−2+ 2

m
−α′′

p,r

)).
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Let X(t) = ‖u‖L∞t (Bsp,r) +νb‖u‖L1
t (B

s+2
p,r ). Assuming that m has been chosen

so large as to satisfy:

Cν̄‖a− Sma‖
L∞
T

(B
N
p1
p1,∞∩L∞)

6 ν ,

and by interpolation we get:

(4.20) Cν̄2mα‖a‖
B
N
p1
p1,∞

‖u‖Bs+2
p,r
6 κν + C2ν̄222mα

4κν ‖a‖2
B
N
p1
p1,∞

‖u‖Bsp,r .

Plugging (4.18), (4.19) and (4.20) in (4.17), we end up with:

X(T ) 6 ‖u0‖Bsp,r +A
s

α
′

T

(
‖Pf‖

L̃1
t (Bsp,r) + ‖Pg‖

L̃mt

(
B
s−2+ 2

m
p,r

)
+ C

∫ t

0

( ν̄2

ν
22mα‖a‖2

B
N
p1
p1,∞

(τ)×X(τ)
)
dτ

+
(ν(p− 1)

p

) 1
mAT ‖u‖

L̃1
T

(Bs+2−α′
p,r )

)
.

Grönwall lemma then leads to the desired inequality.

Case p = 2

In this case we do not need any condition of smallness on ‖a‖
B
N
p1
p1,∞∩L∞

,

indeed the bad terms as R̃2
q or 2q‖∆q(TaΠ)‖L2 disappear in the integration

by parts as div uq = 0. So we can follow the same procedure and conclude.

5. The mass conservation equation

5.1. Losing estimates for transport equation

We now focus on the mass equation associated to (1.1):

(5.1)
{
∂ta+ v · ∇a = g,

a/t=0 = a0.

We will precise in the sequel the regularity of a0, v and g. In this section
we intend to recall some result on transport equation associated to vector
fields which are not Lipschitz with respect to the space variable. Since we
still have in mind to get regularity theorems, those vector field cannot be
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to rough. In order to measure precisely the regularity of the vector field v,
we shall introduce the following notation:

(5.2) V
′

p1,α(t) = sup
j>0

2j
N
p1 ‖∇Sjv(t)‖Lp1

(j + 1)α < +∞.

Let us remark that if p1 = +∞ then V
′

p1,α is exactly the norm ‖BΓ‖ of
Definition 2.11.

5.1.1. Limited loss of regularity

In this section, we make the assumption that there exists some α ∈]0, 1[
such that the function V ′p1,α defined in (5.2) be locally integrable. We will
show that in the case α = 1, then a linear loss of regularity may occur.
In the theorem below, Bahouri, Chemin and Danchin show in [4] that if
α ∈]0, 1[ then the loss of regularity in the estimate is arbitrarily small.
Theorem 5.1. — Let (p, p1) be in [1,+∞]2 such that 1 6 p 6 p1 and

σ satisfying σ > −1 − N min( 1
p1
, 1
p′

). Assume that σ < 1 + N
p1

and that
V
′

p1,α ∈]0, 1[ is in L1([0, T ]). Let a0 ∈ Bσp,∞ and g ∈ L̃1
T (Bσp,∞). Then the

equation (5.1) has a unique solution a ∈ C([0, T ],∩σ′<σBσ
′

p,∞) and the
following estimate holds for all small enough ε:
(5.3)
‖a‖

L̃∞
T

(Bσ−εp,∞ ) 6 C
(
‖a0‖Bσp,∞ + ‖g‖

L̃1
T

(Bσp,∞)

)
exp

( C

ε
α

1−α
(Vp1,α(T ))

1
1−α

)
,

where C depends only on α, p, p1, σ and N .
In the following proposition, we are interested in showing a control of

the high frequencies on the density when u is not Lipschitz. Indeed we
recall that in the Proposition 4.1 when p = 2, we need to control the high
frequencies of the density. In particular the following proposition is useful
only in the case of Theorem 1.7.
Proposition 5.2. — Let (p, p1) be in [1,+∞]2 such that 1 6 p 6 p1

and σ satisfying σ > −1 − N min
( 1
p1
, 1
p′

)
. Assume that σ < 1 + N

p1
and

that V ′p1,α ∈]0, 1[ is in L1([0, T ]). Let a0 ∈ Bσp,∞ and g ∈ L̃1
T (Bσp,∞), the

equation (5.1) has a unique solution a ∈ C([0, T ],∩σ′<σBσ
′

p,∞) and the
following estimate holds for all small enough ε:

sup
l>m

2(σ−ε)l‖∆la(t
′
)‖L∞(Lp) . sup

l>m
(2σl‖∆la0‖Lp) + Cη

α
1−α

∫ t

0
V
′

p1,α(t
′
)

×
(
‖a0‖Bσp,∞ + ‖g‖

L̃1
t
′ (Bσp,∞)

)
exp

( C

ε
α

1−α
(Vp1,α(t

′
))

1
1−α

)
dt
′
,
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where C depends only on α, p, p1, σ and N .

Proof. — By using the proof of Bahouri, Chemin and Danchin in [4] one
can write:

(5.4) 2(2+l)σt‖∆la(t)‖Lp 6 2(2+l)σ‖∆la0‖Lp

+ C
( 2C
η log 2

) α
1−α

∫ t

0
V
′

p1,α(t
′
)‖a(t

′
)‖
B
σ
t
′

p,∞
dt
′
.

Whence taking the supremum over l > m, we get

sup
t′∈[0,t]

sup
l>m

(2σt′ l‖∆la(t
′
)‖Lp) . sup

l>m
(2σl‖∆la0‖Lp)

+ Cη
α

1−α

∫ t

0
V
′

p1,α(t
′
)‖a(t

′
)‖
B
σ
t
′

p,∞
dt
′
.

We now insert in previous inequality (5.3) which leads to the proposition.
�

Remark 5.3. — In the sequel, we will use the Theorem 5.1 and the
Proposition 5.2 when p1 = ∞ and α = 1 + ε

′ − 1
r . Indeed we will have u

is in L̃1(B N
p2

+1
p2,r

)
(with 1 6 r < ∞) and according Proposition 2.12 and

Definition 2.11 we get:∫ t

0
V
′

∞,α(t
′
)dt
′
. ‖u‖

L̃1
(
B
N
p2

+1
p2,r

).
So it will allow to get estimates on the density with an arbitrarly small loss
of regularity.

5.1.2. Loss of regularity in Besov spaces in terms of ‖v‖
L̃1
T

(
B
N
p

+1
p,∞

)
with 1 6 p < +∞

This section is devoted to the estimates with loss of regularity on the
density a when we assume only that the velocity u belongs to ‖v‖

L̃1
T

(
B
N
p

+1
p,∞

).
In this particular case, we remind a very interesting result due to Danchin
and Paicu in [15] p. 286.

Proposition 5.4. — Let s ∈]− 1− N
2 , 1 + N

2 [ and a a solution of (5.1).
Then there exists N0 ∈ N depending on ϕ, C0 a universal constant and two
constants c, C such that if:

‖v‖
L̃1
T

(
B

1+N
2

2,∞

) 6 c,
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then we have the following estimate ∀t ∈ [0, T ]:

sup
l>−1,τ∈[0,t]

2ls−εl(τ)‖∆la(τ)‖L2

6 C0

(
‖a0‖Bs2,∞ + sup

l>−1

∫ t

0
2ls−εl(τ)‖∆lg(τ)‖L2dτ

)
where:

εl(t) = C

l∑
l′=−1

2l
′
(1+N

2 )
∫ t

0
‖∆̃l′ v‖L2dτ,

with ∆̃l′ =
∑
|α|6N0

∆l′+α.

Corollary 5.5. — Let 1 6 p 6 p1 6 ∞ and s1 ∈ R satisfies s1 >

−N min
( 1
p1
, 1
p′

)
. Let σ in ]s1, 1 + N

p1
[ and v a vector field such that v ∈

L̃1(B N
p1

+1
p1,∞

)
and:

‖v‖
L̃1
T

(
B

1+N
2

2,∞

) 6 c,
(as in the previous proposition). There exists constants C and λ depending
only on p, p1, σ, s1 and N such that for any T > 0 and and if σT > s1
with:

σt = σ − λ‖v‖
L̃1
t

(
B
N
p1

+1
p1,∞

)
then the following property holds true.
Let a0 ∈ Bσp,∞ ans a ∈ C([0, T ];Bs1p,∞) be a solution of (5.1), then the

following estimate holds:

‖a(t)‖
L̃∞t (Bσtp,∞) 6

λ

λ− C

(
‖a0‖Bσp,∞ + sup

l>−1

∫ t

0
2ls−εl(τ)‖∆lg(t)‖Lpdt

)
,

with εl(t)=C
∑l
l′=−1 2l

′
(1+ N

p1
) ∫ t

0 ‖∆̃l′ v‖Lp1dτ, where ∆̃l′ =
∑
|α|6N0

∆l′+α
(N0 an universal constant).

Proof. — We will just prove this result in the case where p = p1 = 2 (the
more general case follows the same lines than the proof of Proposition 5.4
in [15] and of the case p = p1 = 2). By using the Proposition 5.4, we have:

sup
l>−1,τ∈[0,t]

2ls−εl(τ)‖∆la(τ)‖L2

6 C0

(
‖a0‖Bs2,∞ + sup

l6−1

∫ t

0
2ls−εl(τ)‖∆lg(τ)‖L2dτ

)
,

(5.5)
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where:

εl(t) = C

l∑
l′=−1

2l
′
(1+N

2 )
∫ t

0
‖∆̃l′ v‖L2dτ,

with ∆̃l′ =
∑
|α|6N0

∆l′+α. We now have for τ ∈ [0, t]:

εl(τ) = C

l∑
l′=−1

2l
′
(1+N

2 )
∫ τ

0
‖∆̃l′ v‖L2dτ 6 Cl sup

−16l′6l
2l
′
(1+N

2 )‖∆̃l′ v‖L1
t (L2),

6 Cl
∑
|α|6N0

2(l
′
+α)(1+N

2 )‖∆̃l′ v‖L1
t (L2)2−α(1+N

2 ),

6 Cl 2N0(1+N
2 )

∑
|α|6N0

2(l
′
+α)(1+N

2 )‖∆̃l′+αv‖L1
t (L2),

6 C
′
l‖v‖

L̃1
t

(
B
N
2 +1

2,∞

).
We have then from (5.7) and the previous inequality:

sup
l>−1,τ∈[0,t]

2
l
(
s−C

′
‖v‖

L̃1
t

(
B

N
2 +1

2,∞

))
‖∆la(τ)‖L2

6 C0(‖a0‖Bs2,∞ + sup
l6−1

∫ t

0
2ls−εl(τ)‖∆lg(τ)‖L2dτ).

(5.6)

We have then obtained that:
(5.7)

‖a‖
L̃∞t

(
B

s−C′ ‖v‖
L̃1
t

(
B

N
2 +1

2,∞

)
2,∞

)6 C
(
‖a0‖Bs2,∞+ sup

l6−1

∫ t

0
2ls−εl(τ)‖∆lg(τ)‖L2dτ

)
.

�

Remark 5.6. — In the sequel, we will use the Corollary 5.5 when we
will control only the velocity u in L̃1(B

N
p2

+1
p2,∞ ).

6. Proof of the existence for Theorem 1.1

We use a standard scheme:
(1) We smooth out the data and get a sequence of smooth solutions

(an, un)n∈N to (1.4) on a bounded interval [0, Tn] which may depend
on n.
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(2) We exhibit a positive lower bound T for Tn, and prove uniform
estimates in the space:

ET = C̃T

(
B

N
p1

+ ε
2

p1,∞

)
×
(
C̃T
(
B

N
p2
−1

p2,r

)
∩ L̃1(B N

p2
+1

p2,r

))N
,

for the smooth solution (an, un) with 1 6 r < +∞.
(3) We use compactness to prove that the sequence converges, up to

extraction, to a solution of (1.4).

Construction of approximate solutions

We smooth on the data as follows:

an0 = Sna0, un0 = Snu0 and fn = Snf.

Note that we have:

∀l ∈ Z, ‖∆la
n
0‖Lp1 6 ‖∆la0‖Lp1 and ‖an0‖

B
N
p1

+ε′

p,∞

6 ‖a0‖
B
N
p1

+ε′

p,∞

,

and similar properties for un0 and fn, a fact which will be used repeatedly
during the next steps. Now, according [2], one can solve (1.4) with the
smooth data (an0 , un0 , fn). We get a solution (an, un) on a non trivial time
interval [0, Tn] such that:

(6.1) an ∈ C̃([0, Tn), HN+ε), un ∈ C([0, Tn), HN ) ∩ L̃1
Tn(HN+2)

and ∇Πn ∈ L̃1
Tn(HN ).

Uniform bounds

Let Tn be the lifespan of (an, un), that is the supremum of all T > 0
such that (1.4) with initial data (an0 , un0 ) has a solution which satisfies
(6.1). Let T be in (0, Tn), we aim at getting uniform estimates in ET for
T small enough. For that, we need to introduce the solution (unL,∇Πn

L) to
the nonstationary Stokes system:

(L)


∂tu

n
L − µ∆unL +∇Πn

L = fn,

div unL = 0,
(unL)t=0 = un0 .

Now, the vectorfields ũn = un − unL and ∇Πn = ∇Πn
L + ∇Π̃n satisfy the

parabolic system:

(6.2)


∂tũ

n − µ(1 + an)∆ũn + (1 + an)∇Π̃n = H(an, un,∇Πn),
div ũn = 0,
ũn(0) = 0,
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which has been studied in Proposition 4.1 with:

H(an, un,∇Πn) = an(µ∆unL −∇Πn
L)− un · ∇un.

Define m ∈ Z by:

(6.3) m = inf
{
p ∈ Z/ 2ν̄

∑
ł>q

2l
N
p1 ‖∆la0‖Lp1 6 cν̄

}
where c is small enough positive constant (depending only N) to be fixed
hereafter.
Let:

b̄ = 1+ sup
x∈RN

a0(x), A0 =1+2‖a0‖
B
N
p1

+ε′

p1,∞

, U0 = ‖u0‖
B
N
p2
−1

p2,r

+‖f‖
L̃1
(
B
N
p2
−1

p2,r

),
and Ũ0 = 2CU0 + 4Cν̄A0 (where C stands for a large enough constant
depending only N which will be determined when applying Proposition 2.4,
4.1 and 5.2 in the following computations.) We assume that the following
inequalities are fulfilled for some η > 0, α > 0:

(H1) ‖an − Sman‖
L̃∞
T

(
B
N
p1
p1,∞

)
∩L∞

6 cνν̄−1,

(H2) Cν̄2T‖an‖2
L̃∞
T

(
B
N
p1
p1,∞

)
∩L∞

6 2−2mν,

(H3) 1
2b 6 1 + an(t, x) 6 2b̄ for all (t, x) ∈ [0, T ]× RN ,

(H4) ‖an‖
L̃∞
T

(
B
N
p1

+ ε
2

p1,∞

)
∩L∞

6 A0,

(H5) ‖unL‖
L̃1
(
B
N
p2

+1
p2,r

) 6 η,
(H6) ‖ũn‖

L̃∞
(
B
N
p2
−1

p2,r

) + ν‖ũn‖
L̃1
(
B
N
p2

+1
p2,r

) 6 Ũ0η,

(H7) ‖∇Πn
L‖

L̃1
(
B
N
p2
−1

p2,r

) 6 η,
(H8) ‖∇Π̃n‖

L̃1
(
B
N
p2
−1

p2,r

) 6 Π̃0η.

We just want to mention here that in fact when p2 6= 2, the inequality (H1)
is not necessary (it is just important in the proof of Theorem 1.7 as we do
not assume any condition of smallness on a0). Indeed in this case we can
choose A0 small in (H4) and we can then easily apply the Proposition 4.1.
However we prefer to keep the condition (H1) because it gives an idea of
how to prove Theorem 1.7.
Remark that since:

1 + Sma
n = 1 + an + (Sman − an),
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assumptions (H1) and (H3) insure that:

(6.4) inf
(t,x)∈[0,T ]×RN

(1 + Sma
n)(t, x) > 1

4b ,

provided c has been chosen small enough (note that ν
ν̄ 6 b̄).

We are going to prove that under suitable assumptions on T and η (to
be specified below) if condition (H1) to (H8) are satisfied, then they are
actually satisfied with strict inequalities. Since all those conditions depend
continuously on the time variable and are strictly satisfied initially, a basic
bootstrap argument insures that (H1) to (H8) are indeed satisfied for a
small T ′n 6 Tn. First we shall assume that η satisfies:

(6.5) C(1 + ν−1Ũ0)η 6 log 2

so that denoting:

(Ṽ n)p2,1− 1
r
(t)=

∫ t

0
(Ṽ n)

′

p2,1− 1
r
(s)ds and (V nL )p2,1− 1

r
(t)=

∫ t

0
(V nL )

′

p2,1− 1
r
(s)ds,

with:

(Ṽ n)
′

p2,1− 1
r
(s) = sup

l>0

(2l
N
p2 ‖∇Slũn(s)‖Lp2

(l + 1)1− 1
r

)
ds

and (V nL )
′

p2,1− 1
r
(s) = sup

l>0

(2l
N
p2 ‖∇SlunL(s)‖Lp2

(l + 1)1− 1
r

)
ds.

We recall now that according Proposition 2.12:

(Ṽ n)p2,1− 1
r
(t) 6 C‖ũn‖

L̃1
t

(
B
N
p2

+1
p2,r

) and (V nL )p2,1− 1
r
(t) 6 C‖unL‖

L̃1
t

(
B
N
p2

+1
p2,r

),
we have, according to (H5) and (H6):

(6.6) e

C( e2 )1−r
(
‖ũn‖

L̃1
t

(
B

N
p2

+1
p2,r

)+‖unL‖
L̃1
t

(
B

N
p2

+1
p2,r

))
< 2.

In order to bound an in L̃∞T
(
B

N
p1

+ ε
2

p1,∞
)
, we apply Theorem 5.1 and get:

(6.7)

‖an‖
L̃∞
T

(
B
N
p1

+ ε
2

p1,∞

) < eC( ε2 )1−r
(
‖ũn‖

L̃1
t

(
B
N
p2
p2,r

) + ‖unL‖
L̃1
t

(
B
N
p2
p2,r

))‖a0‖
B
N
p1

+ε
p1,∞

.

Moreover as we know that ‖an‖L∞ 6 ‖a0‖L∞ , (H4) is satisfied with a strict
inequality. Next, applying classical proposition on heat equation (see [11])
yields:

(6.8) ‖unL‖
L̃∞
T

(
B
N
p2
−1

p2,r

) 6 U0,
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κν‖unL‖
L̃1
T

(B
N
p2

+1
p2,r )

6

(∑
l∈Z

2lr(
N
p2
−1)(1− e−κν22lT )r(‖∆lu0‖rLp2

+ ‖∆lf‖rL1(R+,Lp2 ))
) 1
r

.

(6.9)

Hence taking T such that:
(6.10)(∑

l∈Z
2lr
(
N
p2
−1
)
(1− e−κν22lT )r

(
‖∆lu0‖rL2 + ‖∆lf‖rL1(R+,L2)

)) 1
r

< κην,

insures that (H5) is strictly verified.
Since (H1), (H2) and (6.4) are satisfied, Proposition 4.1 may be applied

with α = ε
2 . We get:

‖ũn‖
L̃∞
T

(
B
N
p2
−1

p2,r

) + ν‖ũn‖
L̃1
T

(
B
N
p2

+1
p2,r

)
6 CeCZ

n
m(T )

(
‖u0‖

B
N
p2
−1

p2,r

+AκT,n ×
(
‖an(∆unL −∇Πn

L)‖
L̃1
(
B
N
p2
−1

p2,r

)
+ ‖un · ∇un‖

L̃1
(
B
N
p2
−1

p2,r

) +AT,n‖u‖
L̃1
T

(
B
N
p2

+1−α′

p2,r

))).

with Znm(T ) = 2mεν̄2ν−1 ∫ T
0 ‖a

n‖2
B
N
p1
p1,∞∩L∞

dτ. Next using Bony’s decom-

position and div un = 0, one can write:

div(un ⊗ un) = T∂jv(un)j + T(un)j∂ju
n + ∂jR(un, (un)j),

with the summation convention over repeated indices.
Hence combining Proposition 1.4.1 and 1.4.2 in [11] with the fact that

L̃ρT
(
B

N
p2
− 1

2
p2,r

)
↪→ L̃ρT

(
B
− 1

2∞,∞
)
for ρ = 4

3 or ρ = 4, we get:

‖div(un ⊗ un)‖
L̃1
T

(
B
N
p2
−1

p2,r

) 6 C‖un‖
L̃

4
3
T

(
B
N
p2

+ 1
2

p2,r

)‖un‖
L̃4
T

(
B
N
p2
− 1

2
p2,r

).
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By taking advantage of Proposition 4.1, 2.4, 2.3 and Young’inequality, we
end up with:

‖ũn‖
L̃∞
T

(
B
N
p2
−1

p2,r

) + ν‖ũn‖
L̃1
T

(
B
N
p2

+1
p2,r

)
6 eCZ

n
m(T )

(
‖u0‖

B
N
p2
−1

p2,r

+
(
‖an‖

L̃∞
T

(
B
N
p1

+ ε
2

p1,∞ ∩L∞
) + 1

)κ
×
(
C‖unL‖

L̃1
T

(
B
N
p2

+1
p2,r

)(ν̄‖an‖
L∞
T

(
B
N
p1
p1,∞∩L∞

) + ‖unL‖
L̃∞
T

(
B
N
p2
−1

p2,r

))
+ ‖∇Πn

L‖
L̃1
T

(
B
N
p2
−1

p2,r

)×‖an‖
L∞
T

(
B
N
p1
p1,∞∩L∞

))+(‖an‖
L̃∞
T

(
B
N
p1

+ ε
2

p1,∞ ∩L∞
)+1
)

T
ε
2 ‖ũn‖

L̃1
T

(
B
N
p2

+1
p2,r

))
with C = C(N) and Cg = (N, g, b, b̄). Now, using assumptions (H2), (H4),
(H5), (H6) and (H7), and inserting (6.6) in the previous inequality and
choosing T enough small gives:

‖ũn‖
L̃∞
T

(
B
N
p2
−1

p2,r

) + ‖ũn‖
L̃1
T

(
B
N
p2

+1
p2,r

) 6 2C(ν̄A0 + U0)η + 2CgTA0,

hence (H6) is satisfied with a strict inequality provided:

(6.11) CgT < Cν̄η.

To show that (H7) and (H8) are strictly verified on (0, T ′n), we proceed
similarly as for (H5) and (H6). We now have to check whether (H1) is
satisfied with strict inequality. For that we apply Proposition 5.2 which
yields for all m ∈ Z,

sup
l>m

2l
N
p1 ‖∆la

n‖L∞
T

(Lp1 )

6 C
(

sup
l>m

2l
N
p1 ‖∆la0‖Lp1 )

)(
1 + ‖ũn‖

L̃1
t

(
B
N
p2
p2,r

) + ‖unL‖
L̃1
t

(
B
N
p2
p2,r

)).(6.12)

Using (6.5) and (H5), (H6), we thus get:
‖an − Sman‖

L∞
T

(
B
N
p1
p1,∞

)
∩L∞

6 sup
l>m

2l
N
p1 ‖∆la0‖Lp1 + C

log 2

(
1 + ‖a0‖

B
N
p1
p1,∞∩L∞

)
(1 + ν−1L̃0)η.

Hence (H1) is strictly satisfied provided that η further satisfies:

(6.13) C

log 2

(
1 + ‖a0‖

B
N
p1
p1,∞∩L∞

)
(1 + ν−1L̃0)η < cν

2ν̄ .

So H1 is strictly verified.
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(H3) is trivially verified by the transport equation as we assume that
1 + a0 is bounded away and that a0 ∈ L∞.
Next, according to (H4) condition (H2) is satisfied provide:

(6.14) T <
2−2mν

Cν̄2A2
0
.

One can now conclude that if T < Tn has been choosen so that conditions
(6.10), (6.11) and (6.14) are satisfied (with η verifying (6.5) and (6.13), and
m defined in (6.3) and n > m then (an, un,Πn) satisfies (H1) to (H8), thus
is bounded independently of n on [0, T ].

We still have to state that Tn may be bounded by below by the supremum
T̄ of all times T such that (6.10), (6.11) and (6.14) are satisfied. This is
actually a consequence of the uniform bounds we have just obtained, and of
a theorem of blow-up of R. Danchin in [13]. Indeed, by combining all these
informations, one can prove that if Tn < T̄ then (an, un,∇Πn) is actually
in:

L̃∞Tn
(
B

N
p1

+ε
′

p1,∞ ∩B
N
2 +1

2,1

)
×

(
L̃∞Tn

(
B

N
p2
−1

p2,r ∩B
N
2

2,1

)
∩L̃1

Tn

(
B

N
p2

+1
p2,r ∩B

N
2 +2

2,1

))N
× L̃1

Tn

(
B

N
p2
−1

p2,r ∩B
N
2

2,1

)
.

hence may be continued beyond T̄ (see the remark on the lifespan in [13]
where a control of ∇u in L̃1(B0

∞,∞) is required). We thus have Tn > T̄ .

Compactness arguments

We now have to prove that (an, un)n∈N tends (up to a subsequence) to
some function (a, u) which belongs to ET and satisfies (1.4). The proof
is based on Ascoli’s theorem and compact embedding for Besov spaces.
As similar arguments have been employed in [10] or [9], we only give the
outlines of the proof.

• Convergence of (an)n∈N:
We use the fact that ãn = an − an0 satisfies:

∂tã
n = −un · ∇an.

Since (un)n∈N is uniformly bounded in L̃1
T

(
B

N
p2

+1
p2,r

)
∩ L̃∞T

(
B

N
p2
−1

p2,r

)
,

it is, by interpolation, also bounded in L̃r
′

T

(
B

N
p2
−1+ 2

r
′

p2,r

)
for any

r
′ ∈ [1,+∞]. By taking r = 2 and using the standard product
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laws in Besov spaces, we thus easily gather that (∂tãn) is uniformly
bounded in L̃2

T

(
B

N
p1
−1

p1,∞

)
.

‖∂tãn‖
L̃2
T

(
B
N
p1
−1

p1,∞

) . ‖un‖
L̃2
T

(
B
N
p2
p2,r

)‖∇an‖
L̃∞
T

(
B
N
p1
−1

p1,∞

).
Hence (ãn)n∈N is bounded in L̃∞T

(
B

N
p1
−1

p1,∞ ∩B
N
p1
p1,∞

)
and equicontin-

uous on [0, T ] with values in B
N
p1
−1

p1,∞ . Since the embedding B
N
p1
−1

p1,∞ ∩
B

N
p1
p1,∞ ↪→ B

N
p1
−1

p1,∞ is (locally) compact, and (an0 )n∈N tends to a0 in
B

N
p1
p1,∞, we conclude that (an)n∈N tends (up to extraction) to some

distribution a. Given that (an)n∈N is bounded in L̃∞T
(
B

N
p1

+ ε
2

p1,r

)
, we

actually have a ∈ L̃∞T
(
B

N
p1

+ ε
2

p1,r

)
.

• Convergence of (unL)n∈N:
From the definition of unL and classical proposition on Stokes equa-
tion, it is clear that (unL)n∈N and (∇Πn

L)n∈N tend to solution uL
and ∇ΠL to:

∂tuL − µ∆ul +∇ΠL = f, uL(0) = u0

in L̃∞T

(
B

N
p2
−1

p2,r

)
∩ L̃1

T

(
B

N
p2

+1
p2,r

)
for (unL)n∈N and L̃1

T

(
B

N
p2
−1

p2,r

)
for

(∇Πn
L)n∈N.

• Convergence of (ũn)n∈N:
We use the fact that:

∂tũ
n = −unL · ∇ũn − ũn · ∇un + (1 + an)∆ũn + an∆unL − unL · ∇unL −∇Π̃n.

As (an)n∈N is uniformly bounded in L̃∞T

(
B

N
p1
p1,∞

)
and (un)n∈N is

uniformly bounded in L̃∞T
(
B

N
p2
−1

p2,r

)
∩ L̃ 4

3

(
B

N
p2

+ 1
2

p2,r

)
, it is easy to see

that the last term of the right-hand side is uniformly bounded in
L̃∞T

(
B

N
p2
−1

p2,r

)
and that the other terms are uniformly bounded in

L̃
4
3

(
B

N
p2
− 3

2
p2,r

)
.

Hence (ũn)n∈N is bounded in L̃∞T
(
B

N
p2
−1

p2,r

)
and equicontinuous on

[0, T ] with values in B
N
p2
−1

p2,r + B
N
p2
− 3

2
p2,r . This enables to conclude

that (ũn)n∈N converges (up to extraction) to some function ũ ∈
L̃∞T

(
B

N
p2
−1

p2,r

)
∩ L̃1

T

(
B

N
p2

+1
p2,r

)
.
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We proceed similarly for (Πn
L)n∈N and (Π̃n)n∈N. By interpolating with the

bounds provided by the previous step, one obtains better results of conver-
gence so that one can pass to the limit in the mass equation and in (6.2).
Finally by setting u = ũ+ uL and Π = Π̃ + ΠL, we conclude that (a, u,Π)
satisfies (1.4).
In order to prove continuity in time for a it suffices to make use of

Proposition 5.1. Indeed, a0 is in B
N
p1

+ε
p1,∞ ∩L∞, and having a ∈ L̃∞T

(
B

N
p1

+ ε
2

p1,∞

)
∩

L∞ and u ∈ L̃1
T

(
B

N
p2

+1
p2,r

)
insure that ∂ta+ u · ∇a belongs to L̃1

T

(
B

N
p1
p1,∞

)
.

Similarly, continuity for u may be proved by using that u0 ∈ B
N
p2
p2,r and that

(∂tu− µ∆u) ∈ L̃1
T

(
B

N
p2
−1

p2,r

)
.

7. The proof of the uniqueness

The proof of uniqueness is classical now and we inspire us of the works
of R. Danchin in [12].

7.1. Uniqueness when 1 6 p2 < 2N , 2
N < 1

p1
+ 1

p2
and N > 3

In this section, we focus on the case N > 3 and postpone the analysis
of the other cases (which turns out to be critical) to the next section.
Throughout the proof, we assume that we are given two solutions (a1, u1)
and (a2, u2) of (1.4) which belongs to:(

C̃
(

[0, T ];B
N
p1

+ ε
2

p1,∞

)
∩ L∞

)
×
(
C̃
(

[0, T ];B
N
p2
−1

p2,r

)
∩ L̃1

(
0, T ;B

N
p2

+1
p2,r

))N
.

Let δa = a2− a1, δu = u2− u1 and δΠ = Π2−Π1. The system for (δa, δu)
reads:

(7.1)
{
∂tδa+ u2 · ∇δa = −δu · ∇a1,

∂tδu− (1 + a2)(µ∆δu−∇δΠ) = F (ai, ui,Πi)
with:

F (ai, ui,Πi) = u1 · ∇δu+ δu · ∇u2 + δa(µ∆u1 −∇Π1).

The function δa may be estimated by taking advantage of Proposition 5.1
with s = N

p1
− 1 + ε

2 . We get for all t ∈ [0, T ],

‖δa(t)‖
B
N
p1
−1

p1,∞

6 C‖δu · ∇a1‖
L̃1
T

(
B
N
p1
−1+ ε

4
p1,∞

) exp
(

C

εr−1 (Vp1,1− 1
r
(t))r

)
.
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We have then by Proposition 2.4 and 2.12:

‖δa(t)‖
B
N
p1
−1

p1,∞

6 C‖δu‖
L̃1
T

(
B
N
p2
− ε4

p2,r

)‖∇a1‖
L̃∞
T

(
B
N
p1
−1+ ε

2
p1,∞

)
exp
(

C

εr−1

(
‖u2‖

L̃1
T

(
B
N
p2

+1
p2,r

))r),(7.2)

6 C‖δu‖
L̃1
T

(
B
N
p2
p2,r

)‖a1‖
L̃∞
T

(
B
N
p1

+ ε
2

p1,∞

)
exp
(

C

εr−1

(
‖u2‖

L̃1
T

(
B
N
p2

+1
p2,r

))r).
For bounding δu, we aim at applying Proposition 4.1 to the second equation
of (7.1). So let us fix an integer m such that:

(7.3) 1 + inf
(t,x)∈[0,T ]×RN

Sma
2 >

b

2 and ‖a2 − Sma2‖
L∞
T

(
B
N
p1
p1,∞

) 6 cν
ν̄
.

Now applying Proposition 4.1 with s = N
p2
− 2 insures that for all time

t ∈ [0, T ], we have:

‖u‖
L̃∞
T

(
B
N
p2
−2

p2,r

) + κν‖u‖
L̃1
T

(
B
N
p2
p2,r

) + ‖∇δΠ‖
L̃1
T

(
B
N
p2
−2

p2,r

)
(7.4)

6 eCZm(T )×
(
‖PF (ai, ui,Πi)‖

L̃1
T

(
B
N
p2
−2

p2,r

)+(ν(p2 − 1)
p2

)
AT ‖u‖

L̃1
T

(
B
N
p2
−α′

p,r

))
with Zm(t) = 2mµ2ν−1 ∫ t

0 ‖a(τ)‖2
B
N
p1
p1,∞∩L∞

dτ .

Hence, applying Proposition 2.4, Corollary 2.6 and the fact that div δu =
0, we get as example:

‖δu · ∇u2‖
L̃1
T

(
B
N
p2
−2

p2,r

) . ‖u2‖
1
2

L̃∞
T

(
B
N
p2
−1

p2,r

)‖u2‖
1
2

L̃1
T

(
B
N
p2

+1
p2,r

)(
‖δu‖

L̃∞
T

(
B
N
p2
−2

p2,r

) + ‖δu‖
L̃∞
T

(
B
N
p2
p2,r

)),
and:

‖u1 · ∇δu‖
L̃1
T

(
B
N
p2
−2

p2,r

) . ‖u1‖
1
2

L̃∞
T

(
B
N
p2
−1

p2,r

)‖u1‖
1
2

L̃1
T

(
B
N
p2

+1
p2,r

)(
‖δu‖

L̃∞
T

(
B
N
p2
−2

p2,r

) + ‖δu‖
L̃∞
T

(
B
N
p2
p2,r

)),
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By the fact that 2
N < 1

p1
+ 1

p2
, N > 3 and 1

p2
6 1

N + 1
p1

imply that:

‖δa(µ∆u1 −∇δΠ)‖
L̃1
T

(
B
N
p2
−2

p2,r

) . ‖δa‖
L̃∞
T

(
B
N
p1
−1

p1,∞

)(
‖∆u1‖

L̃1
T

(
B
N
p2
−1

p1,r

) + ‖∇Π1‖
L̃1
T

(
B
N
p2
−1

p2,r

)).
(7.5)

Now let choose T1 enough small to control AT ‖u‖
L̃1
T

(
B
N
p2
−α′

p,r

) in (7.4)

and ‖∆u1‖
L̃1
T

(
B
N
p2
−1

p1,r

) + ‖∇Π1‖
L̃1
T

(
B
N
p2
−1

p2,r

) in (7.5) and by the fact that

‖a1‖
L̃∞
T

(
B
N
p1

+ ε
2

p1,∞

) 6 c with c small, we obtain finally:

‖(δa, δu,∇δΠ)‖FT1
6 cC‖(δa, δu,∇δΠ)‖FT1

,

with:

FT = C̃T ([0, T ], B
N
p1
p1,∞)×

(
L̃1
T

(
B

N
p2
p2,r

)
∩ L̃∞T

(
B

N
p2
−2

p2,r

))
× L̃1

T

(
B

N
p2
−2

p2,r

)
.

We obtain so (δa, δu,∇δΠ) = 0 on [0, T1] for T1 enough small. By connexity
we obtain that (δa, δu, δ∇Π) = 0 on [0, T ]. This conclude this case.

7.2. Uniqueness when: 2
N = 1

p1
+ 1

p2
or p2 = 2N or N = 2

The above proof fails in dimension two. One of the reasons why is that
the product of functions does not map B

N
p1
−1

p1,∞ ×B
N
p2
−1

p2,r in B
N
p2
−2

p2,r but only
in the larger space B−1

2,∞. This induces us to bound δa in L̃∞T
(
B

N
p1
−1

p1,∞

)
and

δu in L̃∞T

(
B

N
p2
−2

p2,∞

)
∩ L̃1

T

(
B

N
p2
p2,∞

)
. In fact, it is enough to study only the

case 2
N = 1

p1
+ 1
p2
. Indeed the other cases deduct from this case. If p2 = 2N

then p1 = 2N
3 as 1

p1
6 1

N + 1
p2

and 2
N 6

1
p1

+ 1
p2
. So it is a particular case

of 2
N = 1

p1
+ 1

p2
. For N = 2, we begin with p2 = 4 and p1 = 4

3 and by
embedding we get the result for 1 6 p1 6 4

3 , 1 6 p2 6 4 and for 1 6 p1 6 4,
1 6 p2 6 4

3 .
Moreover in your case, it exists two possibilities, one when 1 < p2 < 2

and when p2 > 2. The first case is resolved by embedding so we have just
to treat the case p2 > 2. We want show that (δa, δu,∇δΠ) ∈ GT where:

GT = C̃T

(
[0, T ], B

N
p1
−1+ ε

2
p1,∞

)
×
(
L̃1
T

(
B

N
p2
p2,∞

)
∩L̃∞T

(
B

N
p2
−2

p2,∞

))
×L̃1

T

(
B

N
p2
−2

p2,∞

)
.
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In fact we proceed exactly as in the previous proof but we take in account
that a is in C̃T

(
[0, T ], B

N
p1
−1+ ε

2
p1,∞

)
which gives sense to the product δa∆u.

It conclude the proof of uniqueness.

8. Global existence

In order to obtain global solution, we have to pay attention on the be-
havior in low frequencies of the velocity and of the density for two different
reasons. The first concerns the velocity, indeed it is necessary to work with
homogeneous Besov spaces because in other case the constant of estimates
of Proposition 4.1 in nonhomogeneous Besov spaces depend on the time T ,
so it does not allow to conclude when we want to deal with global solution.
The second reason is that the Proposition 5.1 is valid only for nonhomo-
geneous Besov spaces. Indeed the behavior in low frequencies is different,
that is why we assume that a0 belongs in Lp1 . It means that we are dif-
ferentiate the behavior between low frequencies and high frequencies as in
[19] in the context of compressible Navier-Stokes equations. By considering
the transport equation we easily obtain that a is in L∞(Lp1). If we split a
in low and high frequencies, we have:

a = aL + aH ,

where aL =
∑
l<0 ∆la and aH =

∑
l>0 ∆la. As a belongs in L∞T (Lp1) for

every T > 0, we then have that aL is in L̃∞
(
Ḃ0
p1,∞

)
which is embedded in

low frequencies in L∞
(
Ḃ

N
p1

+ ε
2

p1,∞

)
.

Combining this point with the fact that we can show by using Propo-
sition 5.1 that aH =

∑
l>0 ∆la is in L̃∞T

(
Ḃ

N
p1

+ ε
2

p1,∞

)
, we finally are able to

show that a is in L̃∞T
(
Ḃ

N
p1
p1,∞

)
. The rest of the proof follows the same lines

that in Section 6.
More precisely we are going to prove that the sequel (an, un) constructed

in the Section 6 exists on (0, T ) with T = +∞ when we assume the initial
data small enough. For the moment we just know that this solution exists
on (0, Tn). By using the Theorem 5.1 and the fact that a0 is in Lp1 we have:

‖an‖
L̃∞
Tn

(
Ḃ
N
p1
p1,∞

) 6 C(eC‖u
n‖

1
1−α

L̃1
Tn

(
Ḃ

N
p2
p2,r

)
‖aH0 ‖

Ḃ
N
p1

+ε
p1,r

+ ‖a0‖Lp1

)
,
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where α depends on r. By using the same estimations on un than in Sec-
tion 6, we have:

Un(Tn)) 6 C
(
‖u0‖

Ḃ
N
p2
−1

p2,r

+ ‖un‖
L̃

4
3
Tn

(
Ḃ
N
p2

+1
p2,r

)‖un‖
L̃4
Tn

(
Ḃ
N
p2
− 1

2
p2,r

)
+ ‖an‖

L̃∞
Tn

(
Ḃ
N
p1
p1,∞

)
∩L∞

×
(
‖un‖

L̃1
Tn

(
Ḃ
N
p2

+1
p2,r

) + ‖∇Πn‖
L̃1
Tn

(
Ḃ
N
p2
−1

p2,r

))),
with:

Un(Tn) = ‖un‖
L̃∞
Tn

(
Ḃ
N
p2
−1

p2,r

) + ‖un‖
L̃1
Tn

(
Ḃ
N
p2

+1
p2,r

) + ‖∇Πn‖
L̃1
Tn

(
Ḃ
N
p2
−1

p2,r

).
We have then for all 0 < T < Tn:

Un(T ) 6 C
(
‖u0‖

Ḃ
N
p2
−1

p2,∞

+ Un(T )2 +
(
C exp

(
CUn(T )

1
1−α

)
‖aH0 ‖

Ḃ
N
p1

+ε
p1,r

+ ‖a0‖Lp1

)
Un(T )

)
.

Let T1 < Tn such that:
Un(T1) 6Mθ,

with θ = ‖aH0 ‖
Ḃ
N
p1

+ε
p1,r

+ ‖a0‖Lp1 + ‖u0‖
Ḃ
N
p2
−1

p2,r

. We then have:

Un(T1) 6 C2eC(Mθ)
1

1−α (θ +M2θ2 + 2θMθ).

By choosing M = 4C2 and θ such that:

eC(Mθ)
1

1−α
6 2, M2θ 6

1
3 and 2Mθ 6

1
3 .

Then we have Un(T1) 6 5
6Mθ. By connectivity we can conclude easily that:

Un(Tn) 6Mθ.

By classical argument of blow up (as we control ∇un in L̃1
Tn

(
Ḃ

N
p2
−1

p2,r

)
) we

show that Tn is not maximal and then Tn = +∞. It is sufficient to conclude
by using the same type of argument than in the Section 6 and 7.

8.1. Proof of Theorem 1.7

The proof follows strictly the same lines than the proof of Theorem 1.1
except that we take into account that in the Proposition 4.1 we do not need
any condition of smallness on the initial density a0 when p2 = 2.
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9. Proof of Theorems 1.8 and 1.10

9.1. Proof of Theorem 1.8 – Existence in finite time

In this case by using the same type of estimates than in Section 6, we have
only a uniform control on un in L̃1

(
B

N
p2

+1
p2,∞

)
, that is why in order to estimate

the density via the transport equation, we need to use the Corollary 5.5.
We have then a loss of regularity depending on ‖un‖

L̃1
T

(
B
N
p2

+1
p2,∞

) at the

condition that ‖un‖
L̃1
T

(
B
N
p2

+1
p2,∞

) be small enough (it is the case for a time T

small enough).
We would like to point out that an verifies a transport equation without

remainder gn what is absolutely crucial in our proof. Indeed if we consider
the Corollary 5.5, we are not able to give a precise sense in term of Besov
space to the quantity:

sup
l>−1

∫ t

0
2ls−εl(τ)‖∆lg(τ)‖L2dτ.

But by chance, in your context there is no reminder term such that we are
able to obtain estimates on an ∈ L̃∞

(
B
σ(t)
p1,∞

)
with σ(t) > N

p1
for T small

enough (the situation would be delicate for some models like the Olroyd
model). It means in particular that we control an ∈ L̃∞

(
B

N
p1
p1,∞

)
∩L∞ what

is enough to use the same arguments than in Section 6. The rest of the
proof is exactly similar to proof of Theorem 1.1.

9.2. Proof of Theorem 1.8 – Uniqueness

In this situation the situation is more tricky than in Section 6, indeed
as mentionned previously it is difficult to estimate an when there is a
remainder term gn in the transport equation. Unfortunately it is exactly
the case when we are interested in dealing with the problem of uniqueness.
Indeed we recall that whit the same notation than in Section 7, we have:

(9.1)
{
∂tδa+ u2 · ∇δa = −δu · ∇a1,

∂tδu− (1 + a2)(µ∆δu−∇δΠ) = F (ai, ui,Πi),

with:

F (ai, ui,Πi) = u1 · ∇δu+ δu · ∇u2 + δa(µ∆u1 −∇Π1).
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We can observe than we have a remainder term in the transport equation
of the form −δu · ∇a1, it seems then difficult to conclude. However we
are going to use the fact that we have surcritical regularity on the initial
density in order to conclude. We set:

δφ(t) = ‖δa‖
L̃∞t

(
B
N
p1
−1

p1,∞

),
and:

δU(t) = ‖δu‖
L̃∞t

(
B
N
p2
−2

p2,∞

) + ‖δu‖
L̃1
t

(
B
N
p2
p2,∞

) + ‖∇δΠ‖
L̃1
t

(
B
N
p2
−2

p2,∞

).
We are going to use the same ideas than in the Section 7 except that we
are going to work with δθ and δU . We then have when 1 6 p2 < 2N ,
2
N < 1

p1
+ 1

p2
and N > 3 by applying Proposition 4.1:

δU(t) 6
(
‖u1‖

1
2

L̃∞t

(
B
N
p2
−1

p2,∞

)‖u1‖
1
2

L̃1
t

(
B
N
p2

+1
p2,∞

) + ‖u2‖
1
2

L̃∞t

(
B
N
p2
−1

p2,∞

)
‖u2‖

1
2

L̃1
t

(
B
N
p2

+1
p2,∞

))δU(t) + φ(t)
(
‖∆u2‖

L̃1
t

(
B
N
p2
−1

p2,∞

) + ‖∇Π2‖
L̃1
t

(
B
N
p2
−1

p2,∞

)).
We now have to estimate δφ(t), to do this we are using the Proposition 5.4
which tells us that:

δφ(t) 6 C sup
l>−1

∫
t02( Np1

−1+ε)l−εl(τ)‖∆l div(a2δu)‖Lp1 (τ)dτ.

For t small enough (such that
(
N
p1
− 1 + ε

4
)
l− εl(τ) >

(
N
p1
− 1
)
l with l > 0)

by using the Proposition 5.4 we have:

δφ(t) 6 C sup
l>−1

∫ t

0
2( Np1

−1+ ε
4 )l−εl(τ)‖∆l div(a2δu)‖Lp1 (τ)dτ.

And we have:

sup
l>−1

∫ t

0
2
(
N
p1
−1+ ε

4

)
l−εl(τ)‖∆ldiv(a2δu)‖Lp1 (τ)dτ 6 ‖δu · ∇a2‖

L̃1
t

(
B
N
p1
−1+ ε

4
p1,∞

)
6 ‖δu‖

L̃1
t

(
B
N
p2
− ε4

p2,∞

)‖∇a2‖
L̃1
t

(
B
N
p1
−1+ ε

2
p2,∞

) 6 ‖δu‖
L̃1
t

(
B
N
p2
− ε4

p2,∞

)‖a2‖
L̃1
t

(
B
N
p1

+ ε
2

p2,∞

),
6 ‖δu‖

L̃1
t

(
B
N
p2
− ε4

p2,∞

)‖a2‖

L̃1
t

(
B

N
p1

+ε−λ‖u2‖

L̃1
t

(
B

N
p2

+1
p2,∞

)
p1,∞

),
6 ‖δu‖

L̃1
t

(
B
N
p2
− ε4

p2,∞

)‖a2‖(
B
N
p1

+ε
p1,∞

).
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Here we have also assumed t small enough such that ε−λ‖u2‖
L̃1
t

(
B
N
p2

+1
p2,∞

) >
ε
2 . We can conclude by the same way than in Section 7. It means that
(δa, δu) = 0 on (0, t) and we show the property on (0, T ) by connexity.

9.3. Proof of Theorem 1.8 – global existence

It follows exactly the same lines than for the Theorem 1.1 except that
we are going to use the Corollary 5.5 in order to control the density. We
are giving some details for the comfort of the reader.

As we mentioned previously, we need to work with homogenous Besov
space and in particular to distinguish the behavior of the density in low
and high frequencies, the reason concerns the Corollary 5.5 which gives us
in some sense only information in high frequencies (it means for ∆la with
l > 0). As we assume that a0 belongs in Lp1 , we are able to control a in
L∞(Lp1)→ L̃∞(Ḃ0

p1,∞)). If we split a in low and high frequencies, we have:

a = aL + aH .

Combining the fact that aL∈ L̃∞(Ḃ0
p1,∞) which is embedded in L̃∞

(
Ḃ

N
p1
p1,∞

)
in low frequencies and that we can show by using Corollary 5.5 that aH =∑
l>0 ∆la is in L̃∞T

(
Ḃ

N
p1

+ε−λ‖u‖
L̃1
T

(
Ḃ

N
p2

+1
p2,∞

)
p1,∞

)
, we finally are able to show

that a is in L̃∞T
(
Ḃ

N
p1
p1,∞

)
(if along the time we can show that λ‖u‖

L̃1
T

(
Ḃ
N
p2

+1
p2,∞

)
remains small enough).
More precisely we are now going to prove that the sequel (an, un) con-

structed in the Section 6 exists on (0, T ) with T = +∞ when we assume
the initial data small enough. For the moment we just know that this so-
lution exists on (0, Tn). By using the Corollary 5.5 and the fact that a0 is
in Lp1 we have (when λ‖un‖

L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < ε and ‖un‖
L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < c, c is

the constant of Corollary 5.5):

‖an‖
L̃∞
T

(
Ḃ
N
p1
p1,∞

) 6 C(‖aH0 ‖
Ḃ
N
p1

+ε
p1,r

+ ‖a0‖Lp1

)
.

By using the same estimations on un than in Section 6, we have at least
for T < Tn such that λ‖un‖

L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < ε and ‖un‖
L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < c (c is
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the constant of Corollary 5.5):

Un(T )) 6 C
(
‖u0‖

Ḃ
N
p2
−1

p2,∞

+ ‖un‖
L̃

4
3
T

(
Ḃ
N
p2

+1
p2,∞

)‖un‖
L̃4
T

(
Ḃ
N
p2
− 1

2
p2,∞

)
+ ‖an‖

L̃∞
T

(
Ḃ
N
p1
p1,∞

)
∩L∞

×
(
‖un‖

L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) + ‖∇Πn‖
L̃1
T

(
Ḃ
N
p2
−1

p2,∞

))),
with:

Un(T ) = ‖un‖
L̃∞
T

(
Ḃ
N
p2
−1

p2,∞

) + ‖un‖
L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) + ‖∇Πn‖
L̃1
T

(
Ḃ
N
p2
−1

p2,∞

).
We have then for all 0 < T < Tn such that λ‖un‖

L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < ε and

‖un‖
L̃1
T

(
Ḃ
N
p2

+1
p2,∞

) < c :

Un(T ) 6 C
(
‖u0‖

Ḃ
N
p2
−1

p2,∞

+ Un(T )2 + C
(
‖a0‖

Ḃ
N
p1
p1,∞

+ ‖a0‖Lp1

)
Un(T )

)
.

Let T1 < Tn such that:
Un(T1) 6Mθ,

and with:
λMθ 6

ε

2 and Mθ 6
c

2 ,

with θ = ‖a0‖
Ḃ
N
p1

+ε
p1,∞

+ ‖a0‖Lp1 + ‖a0‖Lp1 + ‖u0‖
Ḃ
N
p2
−1

p2,∞

. We then have:

Un(T1) 6 C(θ +M2θ2 + CθMθ).

By choosing M = 4C and θ such that:

θ 6
ε

2λM , θ 6
c

2M , M2θ 6 1 and CMθ 6 1.

Then we have Un(T1) 6 3Cθ 6 3
4Mθ. By connexity we can then conclude

easily that:
Un(Tn) 6Mθ.

By classical argument of blow up (as we control ∇un in L̃1
Tn

(
Ḃ

N
p2
−1

p2,∞

)
) we

show that Tn is not maximal and then Tn = +∞. It is sufficient to conclude
by using the same type of argument than in the Section 6 and 7.

9.4. Proof of Theorem 1.10

The proof follows strictly the same lines than the proof of Theorem 1.8
except that we take into account that in the Proposition 4.1 we do not need
any condition of smallness on the initial density a0 when p2 = 2.

TOME 62 (2012), FASCICULE 5



1758 Boris HASPOT

10. Appendix

10.1. Elliptic estimates

This section is devoted to the study of the elliptic equation:

(10.1) div(b∇Π) = divF

with b = 1 + a.
Let us first study the stationary case where F and b are independent of

the time:

Proposition 10.1. — Let 0 < α < 1, (p, r) ∈ [1,+∞]2 and σ ∈ R
satisfy α 6 σ 6 α + N

p1
. Then the operator Hb : F → ∇Π is a linear

bounded operator in Bσp,r and the following estimate holds true:

(10.2) b‖∇Π‖Bσp,r . A
|σ|

min(1,α) ‖QF‖Bσp,r ,

with if α 6= 1:
A = 1 + b−1‖∇b‖

B
N
p1

+α−1
p1,r

.

Proof. — Let us first rewrite (10.1) as follows:

(10.3) div(bm∇Π) = divF − Em,

with Em = div((Id− Sm)a∇Π).
Apply ∆q to (10.3) we get:

(10.4) div(bm∇∆qΠ) = divFq −∆q(Em) +Rq,

with Rq=div(bm∇Πq)−∆q div(bm∇Π). Multiplying (10.4) by ∆qΠ|∆qΠ|p−2

and integrate, we gather:

∫
RN

bm|∇Πq|2|Πq|p−2dx+
∫
RN

bm|∇|Πq|2|pdx

6 (‖ divFq‖Lp + ‖Rq‖Lp)‖Πq‖p−1
Lp +

∫
RN
|(Id− Sm)a| |∇Πq|2|Πq|p−2dx

+
∫
RN
|(Id− Sm)a| |∇|Πq|2|pdx.

(10.5)

Assuming that m has been choose so large as to satisfy:

‖a− Sma‖
L∞
T

(
B
N
p1

+α
p1,∞

)
∩L∞

6
b

2 ,

an by using Lemma A5 in [8]:

22q‖Πq‖Lp . 2q‖Fq‖Lp + ‖Rq‖Lp .
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By multiplying by 2q(s−1) and by integrating on lr we get:

b‖∇Π‖Bsp,r . ‖Qf‖Bsp,r + ‖Rq‖Bsp,r .

The commutator may be bounded thanks to Lemma 10.2 with 0 < α < 1,
σ = s− 1. We have get:

b‖∇Π‖Bsp,r . ‖QF‖Bsp,r + ‖∇Sma‖
B
N
p1

+α
p1,r

‖∇Π‖Bs−αp,r
.

Therefore complex interpolation entails:

‖∇Π‖Bs−αp,r
6 ‖∇Π‖

s−α
s

Bsp,r
‖∇Π‖

α
s

B0
p,∞

.

Note that, owing to Bersntein inequality, we have:

‖∇Sma‖
B
N
p1

+α
p1,r

. 2m+α‖a‖
B
N
p1
p1,r

.

We have then:

b‖∇Π‖Bsp,r . ‖Qf‖Bsp,r + 2m+α‖a‖
B
N
p1
p1,∞

‖∇Π‖
s−α
s

Bsp,r
‖∇Π‖

α
s

B0
p,∞

.

And we conclude by Young’s inequality with p1 = s
s−α and p2 = s

α . And
we recall �

10.2. Commutator estimates

This section is devoted to the proof of commutator estimates which have
been used in Section 2 and 4. They are based on paradifferentiel calculus,
a tool introduced by J.-M. Bony in [5]. The basic idea of paradifferential
calculus is that any product of two distributions u and v can be formally
decomposed into:

uv = Tuv + Tvu+R(u, v) = Tuv + T
′

vu

where the paraproduct operator is defined by Tuv =
∑
q Sq−1u∆qv, the

remainder operator R, by R(u, v) =
∑
q ∆qu(∆q−1v + ∆qv + ∆q+1v) and

T
′

vu = Tvu + R(u, v). Inequality (4.15) is a consequence of the following
lemma:

Lemma 10.2. — Let p1 ∈ [1,+∞], p ∈ [1,+∞], α ∈ (1 − N
p , 1[, k ∈

{1, · · · , N} and Rq = ∆q(a∂kw) − ∂k(a∆qw). There exists c = c(α,N, σ)
such that:

(10.6) 2qσ‖R̃q‖Lp 6 Ccq‖a‖
B
N
p1

+α
p1,r

‖w‖Bσ+1−α
p,r

whenever −N
p1
< σ 6 N

p1
+ α and where cq ∈ Lr.
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In the limit case σ = −N
p1
, we have for some constant C = C(α,N):

(10.7) 2−q
N
p1 ‖R̃q‖Lp 6 C‖a‖

B
α+ N

p1
p,1

‖w‖
B
− N
p1

+1−α
p,∞

.

Proof. — The proof is based on Bony’s decomposition which enables us
to split Rq into:

Rq = ∂k[∆q, Ta]w︸ ︷︷ ︸
R1
q

−∆qT∂kaw︸ ︷︷ ︸
R2
q

+ ∆qT∂kwa︸ ︷︷ ︸
R3
q

+ ∆qR(∂kw, a)︸ ︷︷ ︸
R4
q

− ∂kT
′

∆qwa︸ ︷︷ ︸
R5
q

.

By using the fact that:

R1
q =

q+4∑
q′=q−4

∂k[∆q, Sq′−1a]∆q′w.

Using the definition of the operator ∆q leads to:

[∆q, Sq′−1a]∆q′w(x) = −
∫
h(y)

(
Sq′−1a(x)

− Sq′−1a(x− 2−qy)
)
∆q′w(x− 2−qy)dy

and:∣∣[∆q, Sq′−1a]∆q′w(x)
∣∣ 6 ‖∇Sq′−1a‖L∞2−q

∫
2qN|h(2qu)||2qu||∆q′w|(x−u)du,

6 2qN‖∇Sq′−1a‖L∞ |
(
h(2q·)| · | ∗∆q′w

)
|(x).

So we get:

‖[∆q, Sq′−1a]∆q′w‖Lp 6 ‖∇Sq′−1a‖L∞‖∆q′w‖Lp

we readily get under the hypothesis that α < 1,

(10.8) 2qσ‖R1
q‖Lp .

q+4∑
q′=q−4

2qσ‖∇Sq′−1a‖L∞‖∆q′w‖Lp .

We have then:

(10.9) 2qσ‖R1
q‖Lp . cq‖∇a‖Bα−1

∞,∞
‖w‖Bσ+1−α

p,r
.

In the case α = 1, we get:

(10.10) 2qσ‖R1
q‖Lp . cq‖∇a‖B0

∞,1
‖w‖Bσ+1−α

p,r
.

For bounding R2
q , standard continuity results for the paraproduct insure

that if α < 1, R2
q satisfies that:

2qσ‖R2
q‖Lp 6 cq‖∇a‖Bα−1

∞,∞
‖w‖Bσ+1−α

p,r
.
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and if α = 1
2qσ‖R2

q‖Lp 6 cq‖∇a‖Bα−1
∞,1
‖w‖Bσ+1−α

p,r
.

Standard continuity results for the paraproduct insure that R3
q satisfies:

(10.11) 2qσ‖R3
q‖Lp . cq‖∇w‖

B
σ−α−N

p
∞,∞

‖a‖
B
N
p

+α
p,r

.

provided σ − α− N
p < 0.

If σ − α− N
p = 0 then:

(10.12) 2qσ‖R3
q‖Lp . cq‖∇w‖B0

∞,1
‖a‖

B
N
p

+α
p,r

.

Next, standard continuity result for the remainder insure that under the
hypothesis σ > −Np , we have:

(10.13) 2qσ‖R4
q‖Lp . cq‖∇w‖Bσ−αp,r

‖a‖
B
N
p

+α
p,∞

.

For bounding R5
q we use the decomposition:

R5
q =

∑
q′>q−3

∂k(Sq′+2∆qw∆q′a),

which leads (after a suitable use of Bernstein and Hölder inequalities) to:

2qσ‖R5
q‖Lp .

∑
q′>q−3

2qσ2q
′

‖∆q′a‖L∞‖Sq′+2∆qw‖Lp

.
∑

q′>q−2

2(q−q
′
)
(
α+N

p −1
)
2q(σ+1−α)‖∆qw‖Lp2q

′(N
p +α

)
‖∆q′a‖Lp .

Hence, since α+ N
p − 1 > 0, we have:

2qσ‖R5
q‖Lp . cq‖∇w‖Bσ+1−α

p,r
‖a‖

B
N
p

+α
p,∞

.

Combining this latter inequality with (10.9), (10.11) and (10.13), and using
the embedding B

N
p
p,r ↪→ B

r−Np
∞,∞ for r = N

p +α−1, σ−α completes the proof
of (10.6).
The proof of (10.7) is almost the same: for bounding R1

q , R2
q , R3

q and
R5
q , it is just a matter of changing

∑
q into supq. We proceed similarly for

R4
q . �
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