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SPECTRAL PROJECTION, RESIDUE OF THE
SCATTERING AMPLITUDE AND SCHRÖDINGER

GROUP EXPANSION FOR BARRIER-TOP
RESONANCES

by Jean-François BONY, Setsuro FUJIIÉ,
Thierry RAMOND & Maher ZERZERI

Abstract. — We study the spectral projection associated to a barrier-top res-
onance for the semiclassical Schrödinger operator. First, we prove a resolvent esti-
mate for complex energies close to such a resonance. Using that estimate and an
explicit representation of the resonant states, we show that the spectral projection
has a semiclassical expansion in integer powers of h, and compute its leading term.
We use this result to compute the residue of the scattering amplitude at such a res-
onance. Eventually, we give an expansion for large times of the Schrödinger group
in terms of these resonances.
Résumé. — On étudie le projecteur spectral associé aux résonances engendrées

par le sommet du potentiel d’un opérateur de Schrödinger semiclassique. On dé-
montre d’abord une estimation de la résolvante pour les énergies complexes proches
de ces résonances. À l’aide de cette estimation et d’une représentation explicite des
états résonants, on prouve que le projecteur spectral admet un développement
asymptotique en puissances entières de h, dont on donne le terme principal. Ce
résultat nous permet alors de calculer le résidu de l’amplitude de diffusion en ces
résonances. Finalement, on décrit le comportement en temps grand du groupe de
Schrödinger en fonction des résonances.

1. Introduction

In this paper, we study the behavior of different physical quantities at
the resonances generated by the maximum of the potential of a semiclas-
sical Schrödinger operator P = −h2∆ + V on Rn. In particular, we show

Keywords: Schrödinger operator, quantum resonances, semiclassical analysis, resolvent
estimate.
Math. classification: 35B34, 35B38, 35C20, 35P25, 81Q20, 81U20.
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quantitatively to what extent the presence of these resonances drives the
behavior of the scattering amplitude and of the Schrödinger group.
The resonances generated by the maximum point, supposed to be non-

degenerate, of the potential (usually called barrier-top resonances) have
been studied by Briet, Combes and Duclos [5, 6] and Sjöstrand [37]. These
authors have given a precise description of the set Res(P ) = {zα ≈ E0 −
ih
∑n
j=1

(
αj + 1

2
)
λj , α ∈ Nn} of resonances in any disc of size h centered

at the maximum value E0 of the potential. Here, the λj ’s are the square
roots of the eigenvalues of the Hessian of −2V at the maximum point.
In particular the resonances lie at distance of order h from the real axis,
which is in very strong contrast to the case of shape resonances (the well
in the island case), with exponentially small imaginary part (see Helffer
and Sjöstrand [22]). The description of resonances in larger discs of size hδ,
δ ∈]0, 1] has been obtained by Kaidi and Kerdelhué [27] under a diophantine
condition. For small discs of size one, this question has been treated in the
one dimensional case by the third author [36] by means of the complex
WKB method. In the two dimensional case, the resonances in discs of size
one have also been considered by Hitrik, Sjöstrand and Vũ Ngo.c [23] (see
also the references in this paper). Here, we consider only the resonances
at distance h of the maximum of the potential and we recall their precise
localization in Section 2.

Resonances can be defined as the poles of the meromorphic continuation
of the cut-off resolvent (see e.g. Hunziker [24]). The generalized spectral
projection associated to a resonance is defined as the residue of the resolvent
at this pole:

Πz = − 1
2iπ

∮
γz

(P − ζ)−1dζ,

as an operator from L2
comp to L2

loc. The multiplicity of a resonance is the
rank of this associated spectral projection. In the case of shape resonances,
their semiclassical expansion has been computed by Helffer and Sjöstrand
in [22]. In Section 4 below, we obtain the semiclassical expansion of the
generalized spectral projection for barrier-top resonances. Since the reso-
nances in the present case have a much larger imaginary part, our result
is very different from that of the shape resonance case. Using some of the
results of [2], we show that, for a simple resonance zα,

(A) Πzα = cαh
−|α|−n2 ( · , fα)fα,

where the resonant state fα is a Lagrangian distribution, with a WKB
expansion near the maximum point of V (that we may suppose to be 0) of
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RESIDUES FOR BARRIER-TOP RESONANCES 1353

the form

fα(x) ≈ eiϕ+(x)/hxα with ϕ+(x) ≈
n∑
j=1

λj
4 x

2
j .

We send the reader to Theorem 4.1 for a more precise statement and the
value of cα.
Resonances appear also in scattering theory (they are called scattering

poles in this context). In [30], Lax and Phillips have shown that they coin-
cide with the poles of the meromorphic extension of the scattering ampli-
tude. This result, proved for the wave equation in the exterior of a compact
obstacle, was extended by Gérard and Martinez [15] to the long range case
for the Schrödinger equation (see also the references in that paper for ear-
lier works). For shape resonances, the residue of the scattering amplitude
was calculated in the semiclassical limit by Nakamura [33, 34], Lahmar-
Benbernou [28] and Lahmar-Benbernou and Martinez [29]. More generally,
upper bounds on the residues of the scattering amplitude have been ob-
tained by Stefanov [40] (in the compact support case) and Michel [32] (in
the long range case) for resonances very close to the real axis. In Section 5,
we prove a semiclassical expansion of the residues of the scattering ampli-
tude for barrier-top resonances, and we will see in particular that Stefanov’s
and Michel’s upper bounds do not hold in the present setting. Indeed, for
long range potentials and under some natural geometric assumptions, we
obtain an expansion for the scattering amplitude A(ω, ω′, z, h) for the in-
coming direction ω′ and the outgoing direction ω, of the form

(B) Residue
(
A(ω, ω′, z, h), z = zα

)
≈ h−|α|+ 1

2 ei(S
−(ω′)+S+(ω))/ha(ω, ω′, h),

where S−(ω′), S+(ω) are classical actions along trajectories tending to the
maximum point, and a is a classical symbol in h of order 0. Again, we refer
to Theorem 5.1 below for the precise setting and results.
It is commonly believed that resonances play also a crucial role in quan-

tum dynamics. Indeed, it is sometimes possible to describe the long time
evolution of the cut-off propagator (for example, the Schrödinger or wave
group) in terms of the resonances. Such formulas should generalize the
Poisson formula, valid for operators with discrete spectrum. The resonance
expansion of the wave group was first obtained by Lax and Phillips [30]
in the exterior of a star-shaped obstacle. This result has been general-
ized, using various techniques, to different non trapping situations (see e.g.
Văınberg [43] and the references of the second edition of the book [30]).
The trapping situations have been treated by Tang and Zworski [42] and
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Burq and Zworski [7] for very large times. On the other hand, the time evo-
lution of the quasiresonant states (sorts of quasimodes) has been studied
by Gérard and Sigal [16]. A specific study of the Schrödinger group for the
shape resonances created by a well in an island has been made by Naka-
mura, Stefanov and Zworski [35]. There are also some works concerning
the situation of a hyperbolic trapped set. We refer to the work of Chris-
tiansen and Zworski [9] for the wave equation on the modular surface and
on the hyperbolic cylinder, to the work of Häfner and the first author [3]
for the wave equation on the de Sitter-Schwarzschild metric, and to the
work of Guillarmou and Naud [18] for the wave equation on convex co-
compact hyperbolic manifolds. Section 6 is devoted to the computation of
the asymptotic behavior for large time of the Schrödinger group localized
in energies close to the maximum of the potential. Provided all the reso-
nances taken into account are simple, we obtain in Theorem 6.1 below the
expansion, valid for h > 0 small enough and all t > 0,

(C)
χe−itP/hχψ(P ) =

∑
zα∈Res(P )∩D(E0,µh)

e−itzα/hχΠzαχψ(P )

+O(h∞) +O(e−µth−C(µ)),

where µ > 0, χ is any function in C∞0 (Rn) and ψ ∈ C∞0 (R) is a cut-off
function near the critical energy level E0. Note that the Πzα’s appearing in
the previous expansion are those given by (A).
For the proof of these different results, we use an estimate on the distorted

resolvent (Pθ−z)−1 around the resonances, polynomial with respect to h−1,
of the form

(D)
∥∥(Pθ − z)−1∥∥ . h−C(µ)

∏
zα∈Res(P )∩D(E0,2µh)

|z − zα|−1,

for all z ∈ [E0 − ε, E0 + ε] + i[−µh, µh]. Indeed, such a bound allows to
apply the semiclassical microlocal calculus. This estimate is established in
Section 3. To prove it, we proceed as in [2] and use the method developed by
Martinez [31], Sjöstrand [38] and Tang and Zworski [41]. Similar bounds
around the resonances are already known in various situations (see e.g.
Gérard [14] for two strictly convex obstacles, Michel and the first author [4]
in the one dimensional case). Note that, in our setting, a limiting absorption
principle has been proved in [1].

ANNALES DE L’INSTITUT FOURIER
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2. Settings and resonances

We consider the semiclassical Schrödinger operator on Rn, n > 1,

(2.1) P = −h2∆ + V (x),

where V is a smooth real-valued function. We denote by p(x, ξ) = ξ2+V (x)
the associated classical Hamiltonian. The vector field

Hp = ∂ξp · ∂x − ∂xp · ∂ξ = 2ξ · ∂x −∇V (x) · ∂ξ,

is the Hamiltonian vector field associated to p. Integral curves t 7→
exp(tHp)(x, ξ) of Hp are called classical trajectories or bicharacteristic
curves, and p is constant along such curves. The trapped set at energy
E for P is defined as

K(E) =
{

(x, ξ) ∈ p−1(E); exp(tHp)(x, ξ) 6→ ∞ as t→ ±∞
}
,

We shall suppose that V satisfies the following assumptions
(H1) V ∈ C∞(Rn;R) extends holomorphically in the sector

S =
{
x ∈ Cn; | Im x| 6 δ〈x〉

}
,

for some δ > 0. Moreover V (x)→ 0 as x→∞ in S.
(H2) V has a non-degenerate maximum at x = 0 and

V (x) = E0 −
n∑
j=1

λ2
j

4 x2
j +O(x3),

with E0 > 0 and 0 < λ1 6 λ2 6 · · · 6 λn.
(H3) The trapped set at energy E0 is K(E0) = {(0, 0)}.

Notice that (H3) ensures that x = 0 is the unique global maximum for V .
Moreover, there exists a pointed neighborhood of E0 in which all the energy
levels are non trapping. In the following, (µk)k>0 denotes the strictly in-
creasing sequence of linear combinations over N = {0, 1, 2, . . .} of the λj ’s.
In particular, µ0 = 0 and µ1 = λ1.
The linearization Fp at (0, 0) of the Hamilton vector field Hp is given by

Fp =
(

0 2 Id
1
2 diag(λ2

1, . . . , λ
2
n) 0

)
,

and has eigenvalues −λn, . . . ,−λ1, λ1, . . . , λn. Thus (0, 0) is a hyperbolic
fixed point for Hp and the stable/unstable manifold theorem gives the ex-
istence of a stable incoming Lagrangian manifold Λ− and a stable outgoing
Lagrangian manifold Λ+ characterized by

Λ± =
{

(x, ξ) ∈ T ∗Rn; exp(tHp)(x, ξ)→ (0, 0) as t→ ∓∞
}
⊂ p−1(E0).

TOME 61 (2011), FASCICULE 4
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Moreover, there exist two smooth functions ϕ±, defined in a vicinity of 0,
satisfying

ϕ±(x) = ±
n∑
j=1

λj
4 x

2
j +O(x3),

and such that Λ± = Λϕ± := {(x, ξ); ξ = ∇ϕ±(x)} near (0, 0). Since P is a
Schrödinger operator, we have ϕ− = −ϕ+.
Under the previous assumptions, the operator P is self-adjoint with do-

main H2(Rn), and we define the set Res(P ) of resonances for P as follows
(see [24] or [39] for an alternative approach). Let R0 > 0 be a large con-
stant, and let F : Rn → Rn be a smooth vector field, such that F (x) = 0
for |x| 6 R0 and F (x) = x for |x| > R0 + 1. For µ ∈ R small enough, we
denote Uµ : L2(Rn)→ L2(Rn) the unitary operator defined by

(2.2) Uµϕ(x) =
∣∣det(1 + µdF (x))

∣∣1/2ϕ(x+ µF (x)),

for ϕ ∈ C∞0 (Rn). Then the operator UµP (Uµ)−1 is a differential operator
with analytic coefficients with respect to µ, and can be analytically con-
tinued to small enough complex values of µ. For θ ∈ R small enough, we
denote

(2.3) Pθ = UiθP (Uiθ)−1.

The spectrum of Pθ is discrete in Eθ = {z ∈ C; −2θ < arg z 6 0}, and the
resonances of P are by definition the eigenvalues of Pθ in Eθ. We denote
their set by Res(P ). The multiplicity of a resonance is the rank of the
spectral projection

Πz,θ = − 1
2iπ

∮
γ

(Pθ − ζ)−1dζ,

where γ is a small enough closed path around the resonance z. The reso-
nances, as well as their multiplicity, do not depend on θ and F . As a matter
of fact, the resonances are also the poles of the meromorphic extension from
the upper complex half-plane of the resolvent (P − z)−1 : L2

comp(Rn) →
L2

loc(Rn) (see e.g. [20]).
In the present setting, Sjöstrand [37] has given a precise description of the

set of resonances in any disc D(E0, Ch) of center E0 and radius Ch. This
result has also been proved simultaneously by Briet, Combes and Duclos [6]
under a slightly stronger hypothesis (a virial assumption).

Theorem 2.1 (Sjöstrand). — Assume (H1)–(H3). Let C > 0 be differ-
ent from

∑n
j=1(αj + 1

2 )λj for all α ∈ Nn. Then, for h > 0 small enough,

ANNALES DE L’INSTITUT FOURIER
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there exists a bijection bh between the sets Res0(P ) ∩ D(E0, Ch) and
Res(P ) ∩D(E0, Ch) counted with their multiplicity, where

Res0(P ) =
{
z0
α = E0 − ih

n∑
j=1

(
αj + 1

2

)
λj ; α ∈ Nn

}
,

such that bh(z)− z = o(h).

In particular, the number of resonances in any disk D(E0, Ch) is uni-
formly bounded with respect to h. For z0

α ∈ Res0(P ), we denote zα =
bh(z0

α).

Definition 2.2. — We shall say that z0
α ∈ Res0(P ) is simple if z0

α = z0
β

implies α = β.

Remark 2.3. — If z0
α ∈ Res0(P ) is simple, the corresponding resonance

zα is simple for h small enough and Proposition 0.3 of [37] proves that zα
has a complete asymptotic expansion in powers of h.

Remark 2.4. — The analyticity of V in a full neighborhood of Rn is
used only for the localization of the resonances. Indeed, if the conclusions
of Theorem 2.1 and Remark 2.3 hold for V smooth and analytic outside of
a compact set, then the results of this paper still apply under this weaker
assumption.

The semiclassical pseudodifferential calculus is a tool used throughout
this paper, and we fix here some notations. We refer to [13] for more details.
For m(x, ξ, h) > 0 an order function and δ > 0, we say that a function
a(x, ξ, h) ∈ C∞(T ∗Rn) is a symbol of class Sδh(m) when, for all α ∈ N2n,∣∣∂αx,ξa(x, ξ, h)

∣∣ . h−δ|α|m(x, ξ, h).

If a ∈ Sδh(m), the semiclassical pseudodifferential operator Op(a) with sym-
bol a is defined by(

Op(a)ϕ
)
(x) = 1

(2πh)n

∫∫
ei(x−y)·ξ/ha

(x+ y

2 , ξ, h
)
ϕ(y) dy dξ,

for all ϕ ∈C∞0 (Rn). We denote by Ψδ
h(m) the space of operators Op(Sδh(m)).

The rest of this paper is organized as follows. In Section 3, we prove
a resolvent estimate in the complex plane that we use in all the paper.
Then, in Section 4, we compute the spectral projection associated to a res-
onance. In section 5, we give the asymptotic expansion of the residue of the
scattering amplitude at a simple resonance for long range potentials. Sec-
tion 6 is devoted to the computation of the asymptotic behavior for large
t of the Schrödinger group e−itP/h, where the spectral projection appears

TOME 61 (2011), FASCICULE 4
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naturally. At last, we have placed in Appendix A some geometrical con-
siderations about Hamiltonian curves in a neighborhood of the hyperbolic
fixed point, that we need in Section 4.

3. Resolvent estimate

In this section, we prove a polynomial estimate for the resolvent of the
distorted operator Pθ around the resonances. This estimate is used through-
out the paper to control remainder terms. More precisely, we prove the
following result.

Theorem 3.1 (Resolvent estimate). — Assume (H1)–(H3). There ex-
ists ε > 0 such that, for all C > 0 and h small enough,

i) The operator P has no resonances in

[E0 − ε, E0 + ε] + i[−Ch, 0] rD(E0, 2Ch).

ii) Assume θ = νh| ln h| with ν > 0. Then, there exists K > 0 such that

(3.1)
∥∥(Pθ − z)−1∥∥ . h−K ∏

zα∈Res(P )∩D(E0,2Ch)

|z − zα|−1,

for all z ∈ [E0 − ε, E0 + ε] + i[−Ch,Ch].

In particular, the previous theorem states that all the resonances in
[E0−ε, E0 +ε]+ i[−Ch, 0] are those given by Theorem 2.1. The rest of this
section is devoted to the proof of Theorem 3.1. We follow the approach of
Tang and Zworski [41] and we use the constructions of [2, Section 4] (see
also Christianson [10] for hyperbolic orbits), where the propagation of sin-
gularities through a hyperbolic fixed point is studied, and of [1, Section 3],
where a sharp estimate for the weighted resolvent for real energies is given.

3.1. Definition of a weighted operator Qz

The distorted operator Pθ defined in (2.3) is a differential operator of
order 2 whose symbol pθ ∈ S0

h(1) satisfies

(3.2) pθ(x, ξ, h) = pθ,0(x, ξ) + hpθ,1(x, ξ) + h2pθ,2(x, ξ),

with pθ,• ∈ S0
h(〈ξ〉2) and

pθ,0(x, ξ) = p
(
x+ iθF (x), (1 + iθ t(dF (x)))−1ξ

)
.

ANNALES DE L’INSTITUT FOURIER
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We write the Taylor expansion of pθ,0(x, ξ) with respect to θ as

pθ,0(x, ξ) = p(x, ξ)− iθq(x, ξ) + θ2r(x, ξ, θ),
q(x, ξ) =

{
p(x, ξ), F (x) · ξ

}
,

(3.3)

for some r ∈ S0
h(〈ξ〉2) which vanishes in |x| 6 R0. Notice that

q(x, ξ) = 2dF (x)ξ · ξ −∇V (x) · F (x),

so that for ε > 0 small enough, there exists R1 > R0 + 1 such that

(3.4) q(x, ξ) > E0,

for all (x, ξ) ∈ p−1([E0 − 2ε, E0 + 2ε]) with |x| > R1.
We want to gain as much ellipticity as we can near (0, 0). As in [2, Sec-

tion 4], we shall work with a weighted operator, and we start by defining the
weights. Let p̃(x, ξ) = p(x, ξ)−E0 and p̃θ(x, ξ, h) = pθ(x, ξ, h)−E0. There
exists a symplectic map κ defined near B(0, ε2) = {(x, ξ) ∈ T ∗Rn; |(x, ξ)| 6
ε2}, with 0 < ε2 � ε, such that, setting (y, η) = κ(x, ξ),

(3.5) p̃(x, ξ) = B(y, η)y · η.

Here (y, η) 7→ B(y, η) is a C∞ map from κ(B(0, ε2)) to the space Mn(R)
of n× n matrices with real entries such that

B(0, 0) = diag(λ1, . . . , λn).

Let U be a unitary Fourier integral operator microlocally defined near
B(0, ε2) and associated to the canonical transformation κ. Then

(3.6) P̂ = U(P − E0)U−1,

is a pseudodifferential operator in Ψ0
h(1) with a real (modulo S0

h(h∞))
symbol p̂(y, η) =

∑
j>0 p̂j(y, η)hj , such that

p̂0(y, η) = B(y, η)y · η.

Let 0 < ε1 < ε2. Since the trapped set at energy E0 for p is {0}, we recall
from [17, Appendix] that, for the compact set K = B(0, 2R1) r B(0, ε1) ∩
p−1([E0 − 4ε, E0 + 4ε]) ⊂ T ∗Rn, there exist 0 < ε0 < ε1 and a bounded
function g ∈ C∞(T ∗Rn) such that Hpg has compact support and

(3.7)


g(x, ξ) = 0, if (x, ξ) ∈ B(0, ε0),
Hpg(x, ξ) > 0, if (x, ξ) ∈ T ∗Rn,
Hpg(x, ξ) > 1, if (x, ξ) ∈ K.

As in [31], we set, for R� R1 to be chosen later,

(3.8) g0(x, ξ) = χ0

( x
R

)
ψ0(p(x, ξ))g(x, ξ)| ln h|,

TOME 61 (2011), FASCICULE 4
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where χ0 ∈ C∞0 (Rn; [0, 1]) with χ0 = 1 on B(0, 1) and ψ0 ∈ C∞0 (R; [0, 1])
with suppψ0 ⊂ [E0−4ε, E0 +4ε] and ψ0 = 1 in a neighborhood of [E0−3ε,
E0 + 3ε].

We also define functions on the (y, η) side. We set
ĝ1(y, η) = (y2 − η2)φ̂1(y, η)| ln h|,

ĝ2(y, η) =
(

ln
〈 y√

hM

〉
− ln

〈 η√
hM

〉)
φ̂2(y, η).

Here M > 1 is a parameter that will be chosen later on. Since we consider
the semiclassical regime, we will assume that hM < 1. Moreover, φ̂• =
φ• ◦ κ−1, where φ1 ∈ C∞0 (B(0, ε2)) is such that φ1 = 1 near B(0, ε1) and
φ2 ∈ C∞0 (B(0, ε0)) is such that φ2 = 1 near 0 in T ∗Rn. At last, we choose
four cut-off functions χ1, χ2, χ3, χ4 ∈ C∞0 (B(0, ε2)) such that, setting again
χ̂• = χ• ◦ κ−1, we have

1{0} ≺ φ̂2 ≺ φ̂1 ≺ χ̂1 ≺ χ̂2 ≺ χ̂3 ≺ χ̂4.

The notation f ≺ g means that g = 1 near the support of f . We define the
operators

G±0 = Op
(
e±t0g0

)
, G±j = Op

(
e±tj ĝj

)
and G̃±j = Op

(
χ̂je
±tj ĝj

)
,

for j = 1, 2. Notice that G±0 is acting on functions of (x, ξ), whereas the
other operators are acting on functions of (y, η). The t•’s are real constants
that will be fixed below. Then,

G±0 ∈ Ψ0
h

(
h−N0

)
, G±1 ∈ Ψ0

h

(
h−N1

)
, G±2 ∈ Ψ1/2

h

(
h−N2

)
,

G̃±1 ∈ Ψ0
h

(
h−N1〈η〉−∞

)
and G̃±2 ∈ Ψ1/2

h

(
h−N2〈η〉−∞

)
,(3.9)

for some N• ∈ R.
We define the operator

Qz =
(
U−1(G̃−2G̃−1 −Op(χ̂1)

)
U + Id

)
G−0(Pθ − z)

G+0

(
U−1(G̃+1G̃+2 −Op(χ̂1)

)
U + Id

)
.(3.10)

Splitting Pθ − z = Op(p̃θχ4) + Op(p̃θ(1− χ4))− (z − E0), we write

Qz = Q1 +Q2 − (z − E0)Q3,

and we compute the symbols of the operators Q• separately.
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3.2. Computation of Qz

The goal of this part is to prove the following identity.

Lemma 3.2. — Let Qz be the operator defined in (3.10). Then,

Qz = Op(pθ) + Op(iht0{g0, pθ}) + U−1 Op
(
iht1{ĝ1, p̂0}

+ iht2{ĝ2, p̂0}
)
U − z +O(hM−1)

+O(h 3
2M−

1
2 | ln h|2) +O(|z − E0|M−2).(3.11)

Remark 3.3. — We will show in the proof of Lemma 3.2 (more precisely
in (3.28)) that the operators (U−1(G̃−2G̃−1 − Op(χ̂1))U + Id)G−0 and
G+0(U−1(G̃+1G̃+2−Op(χ̂1))U + Id) are invertible on L2(Rn) and H2(Rn)
for M−1 and h small enough. Moreover, their inverses are polynomially
bounded in h−1. In particular, the resonances of P are the poles of Q−1

z

and to estimate (Pθ − z)−1, it is enough to estimate Q−1
z .

The rest of this section is devoted to the proof of Lemma 3.2. In fact,
(3.11) is close to the equation (4.44) of [2] and we will use some identities
from [2] when possible.

Proof.
• First we consider Q1. Since we can assume that R0 > ε2, we have

Op(p̃θχ4)G+0 = Op(p̃χ4)G+0 = Op(a1),

with a1 ∈ S0
h(h−N0) given, for any k0 ∈ N, by

a1(x, ξ) =
k0∑
k=0

1
k!

(( ih
2 σ(Dx, Dξ;Dy, Dη)

)k
p̃χ4(x, ξ)et0g0(y,η)

)∣∣∣
y=x,η=ξ

+ hk0−N0S0
h(1).(3.12)

Then again

(3.13) G−0 Op(p̃θχ4)G+0 = G−0 Op(a1) = Op(a2),

with a2 ∈ S0
h(h−N0) given, for any k1 ∈ N, by

a2(x, ξ) =
k1∑
k=0

1
k!

(( ih
2 σ(Dx, Dξ;Dy, Dη)

)k
e−t0g0(x,ξ)a1(y, η)

)∣∣∣
y=x,η=ξ

+ hk1−N0S0
h(1).(3.14)

The k-th term in (3.14) is easily seen to be O(hk), so that choosing k1 large
enough, we conclude that a2 ∈ S0

h(1). Moreover supp a2 ⊂ suppχ4 modulo
S0
h(h∞), and

(3.15) a2 = p̃χ4 + iht0{g0, p̃χ4}+ S0
h(h2| ln h|2) = p̃χ4 + a3,
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for some a3 ∈ S0
h(h| ln h|) with supp a3 ⊂ suppχ4∩supp g0 modulo S0

h(h∞).
By Egorov’s theorem,

(3.16) U Op(p̃χ4)U−1 = Op(â4) and U Op(a2)U−1 = Op(â5),

where â4, â5 ∈ S0
h(1) verify supp â4, supp â5 ⊂ supp χ̂4 modulo S0

h(h∞).
Moreover, from (3.15), we have

(3.17) â5 = â4 + iht0{ĝ0, p̂χ̂4}+ S0
h(h2| ln h|2) = â4 + â6,

with ĝ0 = g0 ◦ κ−1 and a symbol â6 ∈ S0
h(h| ln h|) satisfying supp â6 ⊂

supp χ̂4∩supp ĝ0 modulo S0
h(h∞). Since φ1, φ2 ≺ χ1 ≺ χ2, we have ĝ1, ĝ2 ≺

χ̂1 and we get by pseudodifferential calculus

(3.18) G̃±2G̃±1 −Op(χ̂1) + Id = G±2G±1 +O(h∞).

Then, using (3.13), (3.16), (3.17) and (3.18), we obtain

Q1 = U−1(G̃−2G̃−1 −Op(χ̂1) + Id
)
U Op(a2)

U−1(G̃+1G̃+2 −Op(χ̂1) + Id
)
U +O(h∞)

= U−1G−2G−1 Op(â4)G+1G+2U + U−1G−2G−1 Op(â6)
G+1G+2U +O(h∞).(3.19)

The first term in the right hand side of (3.19) has already been computed
in the equations (4.15)–(4.41) of [2] (the reader should notice however that
the symbol p there has to be replaced by pχ4 here). We have

G−2G−1 Op(â4)G+1G+2 = Op
(
â4 + iht1{ĝ1, p̂0χ̂4}+ iht2{ĝ2, p̂0χ̂4}

)
+O(hM−1) +O(h 3

2M−
1
2 | ln h|2).(3.20)

On the other hand, since suppφ2 ⊂ B(0, ε0), ĝ2 = 0 near the support of
ĝ0 and â6. Thus,

G−2G−1 Op(â6)G+1G+2 = G−1 Op(â6)G+1 +O(h∞).

And then, working as in (3.12)–(3.15), we obtain

(3.21) G−2G−1 Op(â6)G+1G+2 = Op
(
iht0{ĝ0, p̂χ̂4}

)
+O(h2| ln h|2).

Using (3.16) and collecting (3.20) and (3.21), the identity (3.19) gives

Q1 = Op(p̃χ4) + Op(iht0{g0, p̃χ4}) + U−1 Op
(
iht1{ĝ1, p̂0}

+ iht2{ĝ2, p̂0}
)
U +O(hM−1) +O(h 3

2M−
1
2 | ln h|2).(3.22)

• Now we consider Q2. As in (3.12)–(3.15), we have

G−0 Op(p̃θ(1− χ4))G+0 = Op(b1),
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for some b1 ∈ S0
h(h−N0〈ξ〉2). Moreover supp b1 ⊂ supp(1 − χ4) modulo

S0
h(h∞) and

(3.23) b1 = p̃θ(1− χ4) + iht0{g0, p̃θ(1− χ4)}+ S0
h(h2| ln h|2).

Since χ̂1 ≺ χ̂3, the pseudodifferential calculus gives G̃−1 = G̃−1 Op(χ̂3) +
Ψ0
h(h∞〈η〉−∞). Furthermore, using Egorov’s theorem, we obtain

U−1(G̃−2G̃−1 −Op(χ̂1)
)
U

= U−1(G̃−2G̃−1 −Op(χ̂1)
)

Op(χ̂3)U + Ψ0
h(h∞〈ξ〉−∞)

= U−1(G̃−2G̃−1 −Op(χ̂1)
)
U Op(b2) + Ψ0

h(h∞〈ξ〉−∞),(3.24)

where b2 ∈ S0
h(〈ξ〉−∞) and supp b2 ⊂ suppχ3 modulo S0

h(h∞〈ξ〉−∞). Using
χ3 ≺ χ4, the supports of b1 and b2 are disjoint and

(3.25) Q2 = Op(b1) +O(h∞).

• It remains to study Q3. Working as in (3.12)–(3.15), we get G−0G+0 =
Id + Op(c1) with c1 ∈ S0

h(h2| ln h|2) and supp c1 ⊂ supp g0 modulo S0
h(h∞).

As in (3.16), we have

U Op((1 + c1)χ4)U−1 = Op(ĉ2),

where ĉ2 ∈ S0
h(1). Now (3.18) and (3.24) yield

Q3 =
(
U−1(G̃−2G̃−1 −Op(χ̂1)

)
U + Id

)(
Op((1 + c1)χ4)

+ Op((1 + c1)(1− χ4))
)(
U−1(G̃+1G̃+2 −Op(χ̂1)

)
U + Id

)
= U−1G−2G−1 Op(ĉ2)G+1G+2U+ Op((1 + c1)(1− χ4))+O(h∞),(3.26)

Working as in the equation (4.43) of [2], we get

G−2G−1 Op(ĉ2)G+1G+2 = Op(ĉ2) +O(M−2) +O(h2| ln h|2).

Combining (3.26) with the last identity, we finally obtain

Q3 = U−1 Op(ĉ2)U+ Op((1+c1)(1−χ4))+O(M−2)+O(h2| ln h|2)

= Id +O(M−2) +O(h2| ln h|2).(3.27)

• The same way, one can prove(
U−1(G̃−2G̃−1 −Op(χ̂1)

)
U + Id

)(
U−1(G̃+1G̃+2 −Op(χ̂1)

)
U + Id

)
= Id +O(M−2) +O(h2| ln h|2),
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and the same kind of estimate holds for the product the other way round.
On the other hand,

G−0G+0 = Id +O(h2| ln h|2) and G+0G−0 = Id +O(h2| ln h|2).

Then the two operators (U−1(G̃−2G̃−1 − Op(χ̂1))U + Id)G−0 and
G+0(U−1(G̃+1G̃+2 − Op(χ̂1))U + Id) are invertible on L2(Rn) for M−1

and h small enough and they satisfy

(3.28)

∥∥∥((U−1(G̃−2G̃−1 −Op(χ̂1)
)
U + Id

)
G−0

)−1∥∥∥ = O(h−C),∥∥∥(G+0

(
U−1(G̃+1G̃+2 −Op(χ̂1)

)
U + Id

))−1∥∥∥ = O(h−C),

for some C > 0. The same thing can be done on H2(Rn) since the opera-
tors we consider differ from Id by compactly supported pseudodifferential
operators. This shows Remark 3.3.

• Adding (3.22), (3.25) and (3.27), we get Lemma 3.2 �

3.3. Estimates on the inverse of Qz

Let ϕ̂ ∈ C∞0 (T ∗Rn; [0, 1]) be such that ϕ̂ = 1 near 0. We define

(3.29) K̃ = U−1K̂U with K̂ = C1 Op
(
ϕ̂
( y√

hM
,

η√
hM

))
,

for some large constant C1 > 1 fixed in the following.

Lemma 3.4. — Assume that δ > 0, C0 > 1 and θ = νh| ln h| with ν > 0.
Denote r = max(|z − E0|, h). Choose M = µ

√
r
h and fix t2, C1, t1, t0, R, µ

large enough in this order. Then, we have, for h small enough,
i) For z ∈ [E0−ε, E0+ε]+i[−2C0h, 2C0h] and Im z > δh, the operator
Qz : H2(Rn)→ L2(Rn) is invertible and

(3.30)
∥∥Q−1

z

∥∥ = O(h−1).

ii) For z ∈ [E0 − ε, E0 + ε] + i[−2C0h, 2C0h], the operator Qz − ihK̃ :
H2(Rn)→ L2(Rn) is invertible and

(3.31)
∥∥(Qz − ihK̃)−1∥∥ = O(h−1).

This lemma is similar to Proposition 4.1 of [2]. We will only give the proof
of part ii) since the first part can be proved the same way (using (3.34)
instead of (3.35)).
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Proof. — Let ω1, . . . , ω5 ∈ C∞0 (T ∗Rn; [0, 1]) be such that

(3.32) 1{0} ≺ ω1 ≺ ω2 ≺ φ2 ≺ 1B(0,ε1) ≺ ω3 ≺ ω4 ≺ φ1 ≺ ω5 ≺ 1B(0,ε2).

As usual, we denote ω̂• = ω•◦κ−1. We now recall some ellipticity estimates
proved in [2] by means of Gårding’s inequality and Calderòn-Vaillancourt’s
theorem. From the equations (4.50), (4.51), (4.54), (4.55) and (4.64) of [2],
we have (

Op
(
−h{ĝ2, p̂0}(1−ω̂2

2)
)
u, u

)
> −Ch| ln h|

∥∥Op(ω̂4−ω̂1)u
∥∥2

+O(h∞)‖u‖2,(3.33) (
Op
(
−h{ĝ2, p̂0}ω̂2

2
)
u, u

)
> −ChM−1‖u‖2,(3.34) (

Op
(
−ht2{ĝ2, p̂0}ω̂2

2 + C1hϕ̂
)
u, u

)
> δmin(t2, C1)h

∥∥Op(ω̂2)u
∥∥2

+O(hM−1)‖u‖2,(3.35) (
Op
(
−h{ĝ1, p̂0}(1−ω̂2

4)
)
u, u

)
> −Ch| ln h|

∥∥Op(ω̂5−ω̂3)u
∥∥2

+O(h∞)‖u‖2,(3.36) (
Op
(
−h{ĝ1, p̂0}ω̂2

4
)
u, u

)
> δh| ln h|

∥∥Op(ω̂4 − ω̂1)u
∥∥2

+O(h2| ln h|)‖u‖2,(3.37)

for some δ, C > 0 which do not depend on h, M and the t•’s.
From (3.3) and since θ = νh| ln h|,

Op(pθ) + Op
(
iht0{g0, pθ}

)
= Op(p− iθq + iht0{g0, p})

+ Ψ0
h(h2| ln h|2〈ξ〉2).(3.38)

Let ω6 ∈ C∞0 (T ∗Rn; [0, 1]) be such that

(3.39) 1B(0,R1)∩p−1([E0−2ε,E0+2ε]) ≺ ω6 ≺ 1B(0,2R1)∩p−1([E0−3ε,E0+3ε]).

From the definition (3.8) of g0, we have

−{g0, p} = χ0

( x
R

)
ψ0(p)Hpg| ln h|+

2
R
ξ · (∂xχ0)

( x
R

)
ψ0(p(x, ξ))g| ln h|.

Using Gårding’s inequality, (3.7) implies(
Op(−ht0{g0, p}ω2

6)u, u
)
> t0h| ln h|

∥∥Op(ω6 − ω3)u
∥∥2

− C t0
R
h| ln h|

∥∥Op(1− ω2)u
∥∥2 +O(h2| ln h|)‖u‖2.(3.40)
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Let ψ ∈ C∞0 ([E0 − 2ε, E0 + 2ε]; [0, 1]) with ψ = 1 near [E0 − ε, E0 + ε].
Using the functional calculus for pseudodifferential operators, we can write(

Op(q)u, u
)

=
(

Op(q)ψ(P )u, u
)

+
(

Op(q)(1− ψ(P ))u, u
)

=
(

Op(qψ(p))u, u
)

+
(

Op(q)(P + i)−1(P + i)(1− ψ(P ))u, u
)

+O(h)‖u‖2.

Note that the operator Op(q)(P + i)−1 is uniformly bounded on L2(Rn).
Gårding’s inequality together with (3.4) give(

Op(q)u, u
)
> δ
∥∥Op(ψ(p)(1− ω6))u

∥∥2 − C
∥∥(P + i)(1− ψ(P ))u

∥∥‖u‖
− C

∥∥Op(ω6 − ω4)u
∥∥2 +O(h)‖u‖2.(3.41)

Adding (3.33), (3.35), (3.36) and (3.37) and using Gårding’s inequality,
we obtain

− Im
((
U−1 Op

(
iht1{ĝ1, p̂0}+ iht2{ĝ2, p̂0}

)
U − ihK̃

)
u, u

)
> δt1h| ln h|

∥∥Op(ω4 − ω1)u
∥∥2 + δmin(t2, C1)h

∥∥Op(ω2)u
∥∥2

− Ct1h| ln h|
∥∥Op(ω5 − ω3)u

∥∥2 − Ct2h| ln h|
∥∥Op(ω4 − ω1)u

∥∥2

+O(hM−1)‖u‖2 +O
(
h2| ln h|

)
‖u‖2.(3.42)

Combining the formulas (3.11) and (3.38) and the estimates (3.40), (3.41)
and (3.42), we get

− Im
(
(Qz−ihK̃)u, u

)
> δmin(t2, C1)h

∥∥Op(ω2)u
∥∥2 + δt1h| ln h|

∥∥Op(ω4−ω1)u
∥∥2

+ t0h| ln h|
∥∥Op(ω6−ω3)u

∥∥2 + δνh| ln h|
∥∥Op(ψ(p)(1−ω6))u

∥∥2

− Ct2h| ln h|
∥∥Op(ω4−ω1)u

∥∥2−Ct1h| ln h|
∥∥Op(ω5−ω3)u

∥∥2

− C t0
R
h| ln h|

∥∥Op(1−ω2)u
∥∥2−Cνh| ln h|

∥∥Op(ω6−ω4)u
∥∥2

− Cνh| ln h|
∥∥(P + i)(1−ψ(P ))u

∥∥‖u‖+ Im z‖u‖2

+O(h 3
2M−

1
2 | ln h|2)‖u‖2+O(hM−1)‖u‖2+O(|z−E0|M−2)‖u‖2.(3.43)

Now, assume that Im z ∈ [−2C0h, 2C0h] and Re z−E0 is small. We choose
the parameters, in this order, min(t2, C1) � C0, t1 � t2, t0 � max(t1, ν)
then R� 1 and finally M = µ

√
r
h with µ� 1. Then, for h small enough,

Gårding’s inequality implies∥∥(Qz − ihK̃)u
∥∥‖u‖ > − Im

(
(Qz − ihK̃)u, u

)
> h‖ψ(P )u‖2 +O(h| ln h|)

∥∥(P + i)(1− ψ(P ))u
∥∥2
.(3.44)
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On the other hand, from (3.11), we have

Qz − ihK̃ = P − z + Ψ0
h

(
h| ln h|〈ξ〉2

)
+O(h| ln h|).

Then,∥∥(Qz − ihK̃)u
∥∥ > ∥∥(1− ψ(P ))(Qz − ihK̃)u

∥∥
>
∥∥(1− ψ(P ))(P − z)u

∥∥+O(h| ln h|)
∥∥(P + i)u

∥∥
&
∥∥(P + i)(1− ψ(P ))u

∥∥+O(h| ln h|)
∥∥(P + i)u

∥∥
&
∥∥(P + i)(1− ψ(P ))u

∥∥+O(h| ln h|)
∥∥ψ(P )u

∥∥,(3.45)

for all h small enough.
Adding (3.44) and C2h| ln h| times the square of (3.45), we obtain∥∥(Qz − ihK̃)u

∥∥‖u‖+ C2h| ln h|
∥∥(Qz − ihK̃)u

∥∥2
& h‖(P + i)u‖2,

for C2 fixed large enough. Then, using ‖(Qz − ihK̃)u‖‖u‖ 6 δh‖u‖2 +
1
δh‖(Qz − ihK̃)u‖2 with 0 < δ � 1, we finally obtain

(3.46)
∥∥(Qz − ihK̃)u

∥∥ & h‖(P + i)u‖.

Since we can obtain the same way the same estimate for the adjoint (Qz −
ihK̃)∗, we get the lemma. �

To prove the part i) of Theorem 3.1 (the resonance free zone), we will
use in addition the following lemma.

Lemma 3.5. — Assume |z − E0| > h. Under the assumptions of Lem-
ma 3.4, we have∥∥K̃Qzu∥∥ = |z − E0|

∥∥K̃u∥∥+O(h 1
2 |z − E0|

1
2 )‖u‖.

Proof. — Since ‖K̃‖ . 1, (3.11) gives

K̃Qz = K̃ Op(p̃θ) + K̃ Op(iht0{g0, pθ}) + K̃U−1 Op
(
iht1{ĝ1, p̂0}

+ iht2{ĝ2, p̂0}
)
U − (z − E0)K̃ +O(hM−1)

+O(h 3
2M−

1
2 | ln h|2) +O(|z − E0|M−2).(3.47)

Since the support of ĝ0 does not intersect the support of the symbol of K̂,
we obtain

(3.48) K̃ Op(iht0{g0, pθ}) = O(h∞).

Moreover, working as in (3.24),

K̃ Op(p̃θ) = U−1K̂U Op(p̃χ4) +O(h∞)

= U−1K̂ Op(p̂)U +O(h∞).
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We now rescale the variables as in [8] and in the equation (4.18) of [2]. We
define a unitary transformation V on L2(Rn) by

(V f)(y) = (hM)−n4 f
(
(hM)− 1

2 y
)
.

If a(y, η) is a symbol, then

V −1 Oph(a(y, η))V = Op 1
M

(
a
(
(hM) 1

2Y, (hM) 1
2H
))
.

If possible, we will identify in the following an operator with its conjugation
by V . As in [2, (4.24)], we define the class of symbols a ∈ S̃ 1

M
(m), for an

order function m(Y,H), by∣∣∂αx ∂βHa(Y,H)
∣∣ . 〈Y 〉− |α|2 〈H〉− |β|2 m(Y,H).

We refer to the appendix of [2] for the pseudodifferential calculus in S̃ 1
M
.

From [2, (4.23)], we have that p̂ ∈ S̃ 1
M

(hM〈(Y,H)〉2). Since ϕ ∈ C∞0 (T ∗Rn),
we also have ϕ(Y,H) ∈ S̃ 1

M
(〈(Y,H)〉−∞). Then, the pseudodifferential cal-

culus in S̃ 1
M

implies

(3.49) K̃ Op(p̃θ) = O(hM).

The same way, [2, Equation (4.38)] gives

iht1{ĝ1, p̂0} ∈ S̃ 1
M

(h 3
2M

1
2 | ln h|〈(Y,H)〉).

So,

K̃U−1 Op(iht1{ĝ1, p̂0})U = U−1K̂ Op(iht1{ĝ1, p̂0})U +O(h∞)

= O(h 3
2M

1
2 | ln h|).(3.50)

Working in S1/2
h , we get

K̃U−1 Op(iht2{ĝ2, p̂0})U = U−1K̂ Op(iht2{ĝ2, p̂0}ω̂2)U +O(h∞).

Since ω̂2 ≺ φ̂2, [2, Equation (4.48)] yields that iht2{ĝ2, p̂0}ω̂2 ∈ S0
1
M

(h).
Using Calderòn-Vaillancourt’s theorem for this operator, we finally obtain

(3.51) K̃U−1 Op(iht2{ĝ2, p̂0})U = O(h).

The lemma follows from (3.47), the choice of M in Lemma 3.4 and the
estimates (3.48), (3.49), (3.50) and (3.51). �
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3.4. Proof of Theorem 3.1

We first prove that (3.1) holds for

z ∈ [E0 −Ah,E0 +Ah] + i[−C0h,C0h].

Here, A > 0 is any fixed constant. We use a method due to Tang and
Zworski [41]. For z ∈ [E0 − 2Ah,E0 + 2Ah] + i[−2C0h, 2C0h], the quantity
M can always be replaced by µ � 1 in Lemma 3.4 (see (3.43)–(3.44)).
Then, z 7→ Qz is holomorphic in this set and ‖K̃‖tr = O(1). As usual
(see Section 4 of [2] for instance), we can find an operator K such that
‖K‖ . 1, rankK = O(1) and such that (3.31) holds with K̃ replaced by K.
Furthermore, thanks to Remark 3.3, the resonances coincide with the poles
of Q−1

z (with the same multiplicity). Mimicking the proof of Proposition
4.2 of [2] or Lemma 6.5 of [4] (which are adaptations of Lemma 1 of [41]),
the estimates (3.30) and (3.31) imply∥∥Q−1

z

∥∥ . h−K1
∏

zα∈Res(P )∩D(E0,2C0h)

|z − zα|−1,

for some K1 > 0 and any z ∈ [E0 − Ah,E0 + Ah] + i[−C0h,C0h]. On the
other hand, Remark 3.3 gives∥∥(Pθ − z)−1∥∥ . h−K2

∥∥Q−1
z

∥∥,
for someK2 > 0. This proves (3.1) for z ∈ [E0−Ah,E0+Ah]+i[−C0h,C0h].
Thanks to Theorem 2.1 which describes all the resonances in any neigh-

borhood of size h of E0, it remains to prove that P has no resonance in

(3.52)
(
[E0 − ε, E0 + ε] r [E0 −Ah,E0 +Ah]

)
+ i[−C0h,C0h],

for one A > 0 and that the resolvent satisfies in this region an upper
bound polynomial with respect to h−1. In particular, we can assume that
|z−E0| > h. Using Lemma 3.4, Lemma 3.5 and ‖K̃Qzu‖ . ‖Qzu‖, we get

‖Qzu‖ > δh‖(P + i)u‖ − h
∥∥K̃u∥∥,

‖Qzu‖ > δ|z − E0|
∥∥K̃u∥∥+O(h 1

2 |z − E0|
1
2 )‖u‖,

for some δ > 0. Then, summing the first identity with hδ−1|z−E0|−1 times
the second one, we obtain

‖Qzu‖ & h‖(P + i)u‖+O(h 3
2 |z − E0|−

1
2 )‖u‖,

since hδ−1|z − E0|−1 . 1. If now we assume that |z − E0| > Ah, we get

‖Qzu‖ & h‖(P + i)u‖+O(hA− 1
2 )‖u‖ & h‖(P + i)u‖,

for A large enough. Thanks to Remark 3.3, this implies that P has no
resonance in the region given in (3.52) and that (3.1) holds in this set.
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4. Spectral projection

The purpose of this part is to give the asymptotic expansion of the
generalized spectral projection Πzα associated to an isolated resonance zα
in some D(E0, Ch). We recall that Πzα is the operator from L2

comp(Rn) to
L2

loc(Rn) defined by

Πzα = − 1
2iπ

∮
γ

(P − z)−1dz,

where γ is a simple loop in the complex plane, oriented counterclockwise,
such that zα is the only resonance in the bounded domain delimited by γ.

Theorem 4.1 (Asymptotic expansion for the spectral projection). —
Assume (H1)–(H3). Let α ∈ Nn be such that z0

α is simple. Then, as opera-
tors from L2

comp(Rn) to L2
loc(Rn),

(4.1) Πzα = c( · , f)f,

where

(4.2) c(h) = h−|α|−
n
2
e−i

π
2 (|α|+n

2 )

α!(2π)n2

n∏
j=1

λ
αj+ 1

2
j ,

and the function f(x, h) satisfies the following properties:
i) It is locally uniformly in L2(Rn): for all ϕ ∈ C∞0 (Rn),

‖ϕf‖L2(Rn) . 1.

ii) It satisfies the Schrödinger equation:

(P − zα)f = 0.

iii) It is outgoing: there exists R > 0 such that

f = 0 microlocally near each (x, ξ) with |x| > R, cos(x, ξ) < −1/2.

iv) Finally, locally near 0, we have

f = d(x, h)eiϕ+(x)/h,

where d(x, h) ∈ S0
h(1) is a classical symbol satisfying

d(x, h) ∼
+∞∑
j=0

dj(x)hj and d0(x) = xα +O(x|α|+1).
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We prove this result the following way. Using [2], we compute (P −
z)−1v for some well prepared WKB function v and z on a loop around
the resonance zα. Integrating with respect to z, we get Πzαv and thus the
resonant state f . To finish the proof, we obtain the constant c computing
(v, f) by a stationary phase argument.

Remark 4.2.
i) Since f is not necessarily in S ′(Rn), saying “f = 0 microlocally near

ρ0” means that there exists φ ∈ C∞0 (R2n) with φ(ρ0) 6= 0 such that, for
every χ ∈ C∞0 (Rn), Op(φ)(χf) = O(h∞) in L2(Rn).

ii) The properties i)–iv) of Theorem 4.1 characterize uniquely the reso-
nant state f(x, h) modulo O(h∞). In particular, the usual propagation of
singularities implies that this function is a classical Lagrangian distribution
of order 0 with Lagrangian manifold Λ+.

For the punctual well in the island situation, the generalized spectral
projection has been computed by Helffer and Sjöstrand [22]. In particular,
they have proved that this operator is almost orthogonal. Indeed, if the
resonance z is isolated and the cut-off χ ∈ C∞0 (Rn) is equal to 1 near the
well, then χΠzχ is exponentially close to the spectral projection associated
to the Dirichlet problem in the well and ‖χΠzχ‖ = 1 +O(e−δ/h) for some
δ > 0. The situation is very different in the present setting since, for χ 6= 0,
‖χΠzαχ‖ is of order h−|α|−

n
2 .

From the previous discussion, the polynomial upper bound on the resol-
vent proved in Theorem 3.1 occurs effectively. More precisely, in every disc
D(zα, εh), with ε > 0, the cut-off resolvent can not be bounded by anything
smaller than h−Cα

|z−zα| for some Cα > 0. Moreover, since Cα > |α| + n
2 , this

constant can not be taken uniformly with respect to zα.
One may perhaps prove Theorem 4.1 with other methods than the one

we use here. In the one dimensional case, the resolvent can be written in
term of a basis of solutions of (P − z)u = 0 and of their Wronskian. Thus,
it must be possible to use the results of [36] in which the scattering ampli-
tude, which can be expressed through the Wronskians of the Jost solutions,
has been computed. In any dimension, another approach is perhaps also
possible. One may first try to calculate the resonant state f with various
methods (using, for example, the works of Briet, Combes and Duclos [5],
Sjöstrand [37] or Hassell, Melrose and Vasy [19]). It then remains to cal-
culate the constant c. This question is equivalent to the calculation of the
scalar product (f, f) =

∫
f2. If we neglect the problems of integration at

infinity, this calculation is reduced to a problem of stationary phase at
point 0. But, since f2 vanishes to order 2|α|, the knowledge of d0 is not
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enough and we must explicitly know the |α| first terms in the expansion of
f in powers of h. In this computation, the situation becomes, in a sense,
similar to that of the eigenvectors of the harmonic oscillator for which the
“good variable” is x√

h
. However, this is not the case in Theorem 4.1 since

the factor eiϕ+(x)/h in f has modulus 1.
It may be possible to obtain some results when z0

α is not simple. In
that case, various situations may occur: several resonances can be very
close to each other, the resonances can have a non-trivial multiplicity and
they can be multiple poles of the resolvent. We refer to [37, Section 4]
where such phenomena are shown. In the remainder of this discussion, we
consider the simplest case where a double resonance can appear. We assume
that λ1 = λ2 < λ3 and that z̃ = bh(z(1,0,...)) = bh(z(0,1,0,...)) is a double
resonance. Then, near z̃, the resolvent can be written

(z − P )−1 = Π2

(z − z̃)2 + Π1

z − z̃
+H(z),

where H is holomorphic near z̃. In that case, rank Π2 6 1 and rank Π1 = 2.
It seems possible to calculate Π1 with a proof similar to that of Theorem 4.1.
Using Proposition A.3, we can construct two initial data v1, v2 such that the
microsupport of vj and Λ− intersect along a Hamiltonian curve which goes
to 0 along the j-th vector basis. Then, computing the residue of (z−P )−1vj ,
we obtain that Π1(vj+(P−z̃)∂zvj) is of the form fj = xje

iϕ+(x)/h modulo a
constant. In the following, we can neglect (P− z̃)∂zvj as it gives lower order
terms. Since f1 and f2 can not be collinear, {f1, f2} (resp. {f1, f2}) forms a
basis of Im Π1 (resp. Im Π∗1). To finish the computation of Π1, it is sufficient
to calculate (vj , fk). The scalar products (vj , fj) can be calculated as in
the proof of Theorem 4.1. But, according to the choice of the vj ’s and to
the form of the fk’s, (vj , fk) appears to be smaller when j 6= k. Eventually,
in the {f1, f2} and {f1, f2} bases, the operator Π1 seems to be a 2 × 2-
matrix whose diagonal coefficients are given by (4.2) at the first order and
whose off-diagonal coefficients are of lower order. One can probably also say
something about Π2. But, one may need to calculate several lower order
terms in the semiclassical expansions (for the resonance for example). This
operator seems to have a smaller norm.

4.1. Construction of “test functions”

To prove the theorem, it is enough to show that

(4.3) χΠzαχ = c( · , χf)χf,
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for χ ∈ C∞0 (Rn). Let Πzα,θ be the spectral projection of Pθ at the resonance
zα. It is the operator on L2(Rn) defined by

(4.4) Πzα,θ = − 1
2iπ

∮
γ

(Pθ − z)−1dz,

We now assume that the distortion occurs outside of the support of χ. In
particular, χΠzαχ = χΠzα,θχ. Let J be the anti-linear operator on L2(Rn)
defined by

J :
{
L2(Rn) −→ L2(Rn)
u u.

Since P is a Schrödinger operator with a real potential, JP = PJ and a
direct calculation gives (Pθ − z)−1 = J

(
(Pθ − z)−1)∗J . Thus, Πzα,θ can be

written Πzα,θ = ( · , gθ)gθ with gθ ∈ L2(Rn). The same way, Πzα = ( · , g)g
for some g ∈ L2

loc(Rn). Moreover, from [39, Proof of Lemma 3.5], we can
always assume that gθ = Uθg. In particular, χgθ = χg.
Since z0

α is simple, for all j ∈ {1}∪suppα (where suppα = {j ∈ N; αj 6=
0}), λj = λ · β with β ∈ Nn implies |β| = 1. Then, from Lemma A.1 and
Proposition A.3, there exists a Hamiltonian curve γ− = (x(t), ξ(t)) ⊂ Λ−
such that, for all j ∈ {1} ∪ suppα, we have γ−λj = γ−λj ,0 6= 0.

We now construct the “test functions”, supported microlocally near the
“test curve” γ−, on which we will evaluate the spectral projection. Let
u(x, z, h) be a function defined in a vicinity of 0 but not at 0. We assume
that u is a WKB solution of (P − z)u = 0. More precisely, near the x-
projection of γ− r {0}, we have

(4.5) u(x, z, h) = b(x, z, h)eiψ(x)/h.

Here ψ is a C∞ function solving the eikonal equation |∇ψ|2 + V (x) = E0.
We assume that Λψ = {(x,∇ψ(x))} intersects transversely Λ− along γ−.
Note that the construction of such a phase, whose associated Lagrangian
manifold projects nicely on the x-space in a vicinity of γ−, can always be
done thanks to [1, Proposition C.1]. The symbol b(x, z, h) is classical: for
all N ∈ N,

b(x, z, h) =
N∑
j=0

bj(x, z)hj + S0
h(hN+1),

uniformly for z ∈ D(E0, C0h). Moreover, b and the bj ’s are C∞ with respect
to x and analytic with respect to z ∈ D(E0, C0h). Finally, we assume that
u satisfies

(P − z)u = O(h∞),

TOME 61 (2011), FASCICULE 4



1374 Jean-François BONY, Setsuro FUJIIÉ, Thierry RAMOND & Maher ZERZERI

and b0(x, z) 6= 0 near the x-projection of γ−. For that, it is enough to solve
the usual transport equations. Finally, we suppose that u = 0 outside a
neighborhood of the spacial projection of γ−. Then, we set

(4.6) v = [P, τ ]u,

where τ ∈ C∞0 (Rn) with supp τ close to 0 and τ = 1 near 0. We consider

(4.7) w = (Pθ − z)−1v.

In all the proof of Theorem 4.1, we will work with z in a ring Rh =
D(z0

α, C2h) r D(z0
α, C1h) such that z0

α is the unique element of Res0(P )
in D(z0

α, C2h). Note that Theorem 3.1 implies that ‖w‖H2(Rn) . h−C uni-
formly for z ∈ Rh, for some C > 0.

4.2. Calculation of w before the critical point

We begin the proof by showing that w is 0 in the incoming region. More
precisely, we have

Lemma 4.3. — Let ρ ∈ R2n be such that ρ /∈ Λ+ and exp(]−∞, 0]Hp)(ρ)
does not meet the microsupport of v. Then, w = 0 microlocally near ρ,
uniformly in z ∈ Rh.

Proof. — This lemma can be proved as Theorem 2 of [4]. First, assume
ρ /∈ p−1(E0). Using the elliptic equation (Pθ−z)w = v, the norm estimates
‖v‖, ‖w‖ . h−C and the condition ρ /∈ MS(v), the standard pseudodiffer-
ential calculus implies that ρ /∈ MS(w). More precisely, for all f ∈ C∞0 (R)
with f = 1 near E0, we have

(4.8) (1− f(P ))w = O(h∞),

uniformly in z ∈ Rh.
Assume now that ρ ∈ p−1(E0). From the hypotheses, the half-curve

exp(tHp)(ρ), t 6 0, does not meet MS(v) and goes to ∞ as t → −∞.
Then, one can find a symbol ω ∈ S0

h(1) such that ω = 1 near ρ, Hpω 6 0,
exp(]−∞, 0]Hp)(suppω) does not meet MS(v) and exp(−THp)(suppω) ⊂
Γ−(R, d, σ) for some T,R � 1, d > 0 and σ < 0. Here, Γ−(R, d, σ) =
{(x, ξ) ∈ T ∗Rn; |x| > R, d−1 < |ξ| < d and cos(x, ξ) 6 σ}. Then,
mimicking the proof of [4, Theorem 2], we get Op(ω)w = O(h∞), uni-
formly in z ∈ Rh. The unique difference with its proof is that the 0 in
the left hand side of [4, (3.4)] is replaced by O(h∞) (here, we use that
suppω ∩MS(v) = ∅). �
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We will now calculate w on Λ− near 0. First, using MS(v) ∩ Λ− ⊂ γ−,
the previous lemma implies the following consequence.

Remark 4.4. — We have w = 0 microlocally near each point of Λ−rγ−.

On the other hand, near γ−, we have the following lemma. Note that the
results of this lemma and of Remark 4.4 are uniform for z ∈ Rh.

Lemma 4.5. — Let ρ ∈ γ− be a point close enough to 0. Then, w = u

microlocally near ρ.

w = 0 MS(v)

exp(THp)

w = u

ρ

MS(exp(THp)(v))

γ−

0

Figure 4.1. The geometrical setting of Lemma 4.5.

Proof. — We define

(4.9) w̃ = i

h

∫ T

0
e−it(P−z)/h[P, τ ]u dt,

where T > 0 is chosen such that exp(THp)(MS(v))∩exp(]−∞, 0]Hp)(ρ) = ∅
(see Figure 4.1). Then, microlocally near each point of γ−, we have

(Pθ − z)w̃ = (P − z)w̃

= [P, τ ]u− e−iT (P−z)/h[P, τ ]u.

For the first equality, we have used that P = Pθ near the spacial projection
of MS(w̃)∩ γ− ⊂ exp([0,+∞[Hp)(MS(v)). Thus, microlocally near γ−, we
have

(Pθ − z)(w − w̃) = e−iT (P−z)/h[P, τ ]u.
In particular, the choice of T and the Egorov theorem imply (Pθ − z)(w−
w̃) = 0 microlocally near exp(]−∞, 0]Hp)(ρ). On the other hand, combining
Lemma 4.3 (for w) and the Egorov theorem (for w̃), we obtain w − w̃ = 0
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microlocally near exp(−SHp)(ρ), for all S large enough. Using moreover
that ‖w − w̃‖ 6 h−C , the propagation of singularities implies that

(4.10) w = w̃ microlocally near ρ.

Then, microlocally near ρ, we have

w̃ = i

h

∫ T

0
e−it(P−z)/h[P, τ ]u dt

= i

h

∫ T

0
e−it(P−z)/h

(
(P − z)τu− τ(P − z)u

)
dt

= i

h

∫ T

0
e−it(P−z)/h(P − z)τu dt = −e−iT (P−z)/hτu+ τu = u,(4.11)

which proves the lemma. �

In fact, one can prove more directly Lemma 4.3 and Lemma 4.5 by ap-
plying the proof of Theorem 2 of [4] to the function w − w̃.

4.3. Representation of w at the critical point

We will use the variable σ = (z −E0)/h, the notation σ0
α = (z0

α −E0)/h
and the set R = D(σ0

α, C2) r D(σ0
α, C1). Note that σ0

α and R does not
depend on h and Rh = E0 + hR. Since τ = 1 near 0, we have

(4.12) (P − z)w = (Pθ − z)w = [P, τ ]u = 0,

in a neighborhood of 0. On the other hand, let ρ ∈ Λ− ∩ {|x| = δ} with
δ > 0 small enough. From Remark 4.4 and Lemma 4.5, we have

(4.13) w =
{
beiψ/h if ρ ∈ γ−

0 if ρ /∈ γ−,

microlocally near ρ. Moreover ‖w‖ . h−C . Then, we are in position to
apply Theorem 2.1 and Theorem 2.5 of [2] which give a representation of
w microlocally near (0, 0). More precisely, Theorem 5.1 of [2] states that,
microlocally near (0, 0),

w = 1
(2πh) 1

2
eiϕ+(x)/heiψ(0)/hA−(x, σ, h)

+ 1
(2πh) 1

2

∫ +∞

−1
eiϕ(t,x)/hA+(t, x, σ, h) dt.(4.14)
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Concerning the symbol A+, we will only use that σ 7→ A+ is a holomorphic
function of σ ∈ D(0, C0) which decays uniformly exponentially in t (see [2,
Proposition 5.11]). The constant ψ(0) is defined by

(4.15) ψ(0) := lim
t→+∞

ψ(x(t)) = ψ(x(s))− ϕ−(x(s)),

for all s > 0.
The symbol A−(x, σ, h) ∈ S0

h(h−C), holomorphic for σ ∈ R, is con-
structed the following way. There exists an expandible symbol a(t, x, σ, h) ∈
S0
h(1) of the form

a(t, x, σ, h) ∼
+∞∑
j=0

aj(t, x, σ)hj ,

where the aj ’s satisfy

aj(t, x, σ) ∼
+∞∑
k=0

aj,µk(t, x, σ)e−(S+µk)t

and

aj,µk(t, x, σ) =
Mj,µk∑
`=0

aj,µk,`(x, σ)t`.

We refer to Helffer and Sjöstrand [21] for the definition of expandible func-
tions. Here, S is defined by

S = S(σ) :=
n∑
j=1

λj
2 − iσ.

The symbols aj , aj,µk , aj,µk,` are holomorphic for σ ∈ D(0, C0). Moreover,
as in [2, (6.26)], a0,0 does not depend on t (and σ) and

(4.16) a0,0(0) = |g−λ1
|λ

3
2
1 e
−iπ4 e

−
∫ +∞

0
∆ψ(x(s))−(

∑
λj/2−λ1) ds

b0(x(0)),

with g−λj = πx(γ−λj ), πx being the spatial projection. Let ϕ?(t, x) = ϕ(t, x)−
(ϕ+(x) + ψ(0)) be the expandible function

ϕ?(t, x) ∼
+∞∑
k=1

ϕµk(t, x)e−µkt and ϕµk(t, x) =
Nµk∑
`=0

ϕµk,`(x)t`,

constructed in [2, Section 5]. Recall that ϕ(t, x) satisfies the eikonal equa-
tion

(4.17) ∂tϕ+ (∂xϕ)2 + V (x) = E0.

We consider the expandible symbol (see (5.77) of [2])

(4.18) ã =
∑
q<Q1

a

q!

(
iϕ?
h

)q
∼

+∞∑
j=1−Q1

ãj(t, x, σ)hj ,
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for some Q1 ∈ N fixed large enough,

ãj(t, x, σ) ∼
+∞∑
k=0

ãj,µk(t, x, σ)e−(S+µk)t

and

ãj,µk(t, x, σ) =
M̃j,µk∑
`=0

ãj,µk,`(x, σ)t`.

Then, A−(x, σ, h) is a symbol, holomorphic with respect to σ ∈ R, such
that

(4.19) A−(x, σ, h) ∼
+∞∑

j=1−Q1

hj
K1∑
k=0

M̃j,µk∑
`=0

`!
(S + µk)`+1 ãj,µk,`(x, σ),

for some K1 ∈ N large enough.
In the following, we will need some informations on the ϕµk . Let j ∈

{1, . . . , n} be such that αj 6= 0 or j = 1. Since z0
α is simple, λj can not

be written as a non-trivial combination of the λk’s (i.e. λj = λ · β implies
βk = δj,k). Therefore, calculating the term in e−λjt of (4.17), we obtain

−λjϕλj + ∂tϕλj + 2∂xϕ+ · ∂xϕλj = 0.

Working as in Section 6.1 of [1] (see also (5.59) of [2] for j = 1), one can
prove that ϕλj does not depend on t (i.e. Nλj = 0), that

(4.20) 2∂xϕ+ · ∂xϕλj − λjϕλj = 0,

and that

(4.21) ϕλj (x) = −λjg−λjxj +O(x2).

Since g−λj is collinear to the j-th vector of basis, we also denote this j-th
component of the vector g−λj by g−λj .

4.4. Integration with respect to z

Let γ be a fixed simple loop in R around 0 oriented counterclockwise
and γh = E0 + hγ ⊂ Rh. We integrate w on the loop γh. First, since zα is
a simple resonance for h small and since v is a holomorphic function with
respect to z ∈ D(E0, C0h), the equations (4.4) and (4.7) give

(4.22) Πzα,θv(x, zα) = − 1
2iπ

∮
γh

w(x, z) dz = − h

2iπ

∮
γ

w(x, σ) dσ.

On the other hand, we can also calculate this quantity microlocally near
(0, 0) with the help of (4.14). Since σ 7→ A+(σ) is holomorphic in D(0, C0),
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the second term in the right hand side of (4.14) gives no contribution to this
integral. Moreover, for µk 6= λ · α, the function (S + µk)−1 is holomorphic
for σ ∈ D(σ0

α, C2). This implies that only the terms of (4.19) with µk = λ·α
give a non-zero contribution to the integral over σ.
We now look for the terms with µk = λ ·α in (4.18). Among these terms,

the one which gives the higher possible power of h−1, is given by q = |α|
and is equal to

a0,0(x)
|α|!

(
i

h

)|α| |α|!
α!

n∏
j=1

(
ϕλj (x)

)αj
.

Here, we have used the fact that z0
α is simple. Note that, since a0,0 and

ϕλj , with αj 6= 0, does not depend on t (see the discussion before (4.20)),
this term does not depend on t. Then, A− satisfies, as h→ 0,

A−(x, σ, h) ∼
+∞∑
j=0

a−j (x, σ)h−|α|+j +H(x, σ, h),

where the a−j ’s are holomorphic with respect to σ ∈ R and C∞ with respect
to x near 0. The function σ 7→ H is holomorphic in D(σ0

α, C2). Moreover,

a−0 (x, σ) = i|α|a0,0(x)
(
∑
λj/2 + λ · α− iσ)α!

n∏
j=1

(
ϕλj (x)

)αj
.

Using the previous discussion, together with (4.14) and (4.22), we obtain
that

Πzα,θv(x, zα) = − 1
2iπ

∮
γ

w(x, z) dz

∼ eiϕ+(x)/heiψ(0)/h
+∞∑
j=0

âj(x)h 1
2−|α|+j ,(4.23)

microlocally near (0, 0). Moreover,

(4.24) â0(x) = − i|α|+1

(2π) 1
2α!

a0,0(x)
n∏
j=1

(
ϕλj (x)

)αj
.

To be more precise, in the C∞ case, Theorem 2.1 of [2] gives only
uniqueness for z outside of a set Γ(h), which is finite uniformly with
respect to h. Then, to prove (4.22), we integrate first on a loop γ̃h ∈
Rh r (Γ(h) + D(0, εh)) of length of order h and which may depend on
h in a non trivial way. But, since the function w is holomorphic in Rh, we
can deform the contour γ̃h to γh and thus justify (4.22).
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4.5. Construction and properties of f̃

We define the functions f̃ and f̃θ by

(4.25) f̃(x, h) := ĉ−1Πzαv(x, zα) and f̃θ(x, h) := ĉ−1Πzα,θv(x, zα),

where, using the notation (g−)α =
∏n
j=1(g−λj )

αj ,

(4.26) ĉ(h) := − i|α|+1

(2π) 1
2α!

a0,0(0)(−λg−)αh 1
2−|α|eiψ(0)/h.

As usual, we have χf̃ = χf̃θ if the distortion holds outside of the support
of χ ∈ C∞0 . From (4.25), f̃ (resp. f̃θ) is in the image of Πzα (resp. Πzα,θ).
Moreover, using (4.16) (which gives that a0,0(0) 6= 0), (4.21), (4.23), (4.24),
(4.25) and (4.26), we have, microlocally near (0, 0),

f̃ = d̃(x, h)eiϕ+(x)/h,

where d̃(x, h) ∈ S0
h(1) is a classical symbol satisfying

(4.27) d̃(x, h) ∼
+∞∑
j=0

d̃j(x)hj and d̃0(x) = xα +O(x|α|+1).

In particular, f̃ is not identically zero. Then, Πzα can be written as

(4.28) Πzα = c̃
(
· , f̃

)
f̃ ,

and f̃ satisfies iv) of Theorem 4.1. Furthermore, using Lemma 4.3, in-
tegrating over z and coming back to the definition of f̃ (see (4.25)), we
immediately obtain the point iii) of Theorem 4.1. Since f̃ is in the image of
Πzα which is the spectral projection at a simple resonance, the point ii) of
Theorem 4.1 is clear. Combining iii), iv), (4.8), which gives a uniform bound
outside of the energy level, together with “the transport equation” ii), we
get the point i) by a standard argument of propagation of singularities.

4.6. Calculation of
(
v(zα), f̃

)
Here we calculate the scalar product between v(x, zα) and f̃ (x). From

(4.5) and (4.6), the function v is supported near supp ∂xτ and micro-
supported near {(x, ξ) ∈ R2n; x ∈ supp ∂xτ and (x, ξ) ∈ Λψ}. Then, if
supp τ is close enough to 0, the previous section and (4.5) imply that(

v(zα), f̃
)

=
(
[P, τ ]beiψ/h, d̃eiϕ+/h

)
+O(h∞).
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A direct calculus gives

(4.29) [P, τ ]
(
beiψ/h

)
= b̃(x, h)eiψ(x)/h,

with

(4.30) b̃(x, h) ∼
+∞∑
j=0

b̃j(x)h1+j and b̃0(x) = −2i∂xτ · ∂xψb0(x).

Then, using that ϕ+ = −ϕ−, we get

(4.31)
(
v(zα), f̃

)
=
∫
b̃(x, h)d̃(x, h)ei(ψ(x)−ϕ−(x))/hdx+O(h∞).

The critical points of the phase ψ − ϕ− (i.e. the points x such that
∇ψ(x) = ∇ϕ−(x)) are the points in the spatial projection of Λψ∩Λ− = γ−.
Moreover, since this intersection is transversal, the phase function ψ − ϕ−
is non degenerate in the directions that are transverse to πxγ− (πx being
the spatial projection). Then, applying the method of the stationary phase
in the orthogonal directions of πxγ− (written (πxγ−)⊥) and parameterizing
the curve πxγ− by x(t), (4.31) gives

(4.32) (v(zα), f̃ ) =
∫
r(t, h)ei(ψ(x(t))−ϕ−(x(t)))/hdt+O(h∞),

with r(t, h) ∼
∑+∞
j=0 rj(t)h

n+1
2 +j and

(4.33) r0(t) = (2π)
n−1

2
e
iπ4 sgn(ψ−ϕ−)′′|(πxγ−)⊥∣∣det(ψ − ϕ−)′′|(πxγ−)⊥

∣∣ 1
2
|∂tx(t)|̃b0(x(t))d̃0(x(t)).

From (4.15), we have ψ(x(t)) − ϕ−(x(t)) = ψ(0) for all t ∈ R. In particu-
lar, (4.32) can be written

(4.34)
(
v(zα), f̃

)
= eiψ(0)/hs(h),

with

(4.35) s(h) ∼
+∞∑
j=0

sjh
n+1

2 +j and s0 =
∫
r0(t) dt.

From (4.24) and (4.26), we have

(4.36) d̃0(x) = a0,0(x)
a0,0(0)

n∏
j=1

( ϕλj (x)
−λjg−λj

)αj
.

Using (4.20), we have the transport equation

∂tϕλj (x(t)) = ∂tx(t) · ∂xϕλj (x(t)) = 2ξ(t) · ∂xϕλj (x(t))
= −2∂xϕ+(x(t)) · ϕλj (x(t)) = −λjϕλj (x(t)),
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which gives

(4.37) ϕλj (x(t)) = e−λjtϕλj (x(0)).

On the other hand, since ϕλj (x) is C∞ and x(t) is expandible, the function
t 7→ ϕλj (x(t)) is expandible. Moreover, since λj can not be written as a non-
trivial combination of the λk’s, the Taylor expansion (4.21) of ϕλj shows
that the term in e−λjt in the expansion of ϕλj (x(t)) is −λj(g−λj )

2e−λjt.
Since (4.37) gives another asymptotic expansion, the uniqueness of the
expansion implies that

ϕλj (x(t)) = −λj(g−λj )
2e−λjt.

Then, combining with (4.36), we obtain

(4.38) d̃0(x(t)) = (g−)αe−λ·αt
(
1 +O(e−εt)

)
.

Note here that the curve γ− has been chosen in Section 4.1 such that
(g−)α 6= 0.
From the construction of u in (4.5) and since zα is a classical symbol (see

Remark 2.3) with zα = z0
α +O(h2) = E0− ih(λ ·α+

∑
λj/2) +O(h2), the

function b0 satisfies the usual transport equation

2∂xψ · ∂xb0 +
(

∆ψ − λ · α−
∑

λj/2
)
b0 = 0.

Mimicking the proof of (4.37), we get

(4.39) b0(x(t)) = e
−
∫ t

0
∆ψ(x(s))−

(∑
λj/2+λ·α

)
ds
b0(x(0)).

Therefore, (4.30) gives

b̃0(x(t)) = −ib0(x(t))∂tτ(x(t))

= −ie−
∫ t

0
∆ψ(x(s))−(

∑
λj/2+λ·α) ds

b0(x(0))∂tτ(x(t)).(4.40)

From Proposition C.1 of [1] and since g−1 6= 0, we have

(ψ − ϕ−)′′(x(t)) =


0

λ2
. . .

λn

+O(e−εt),

Using x(t) = g−1 e
−λ1t +O(e−(λ1+ε)t), we get

(4.41)
∣∣det(ψ − ϕ−)′′|(πxγ−)⊥

(x(t))
∣∣ 1

2 =
( n∏
j=2

λj

) 1
2

+O(e−εt).
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and

(4.42) sgn(ψ − ϕ−)′′|(πxγ−)⊥
(x(t)) = n− 1,

for t large enough.
Finally, using the expansion of x(t), we have

(4.43) |∂tx(t)| = |g−λ1
|λ1e

−λ1t
(
1 +O(e−εt)

)
.

Combining the definitions of s0 (4.35) and of r0 (4.33) with the rela-
tions (4.38), (4.40), (4.41), (4.42) and (4.43), the constant s0 does not
vanish if ∂tτ(x(t)) > 0 and the support of ∂tτ(x(t)) is sufficiently small
near T large enough.

4.7. End of the proof of Theorem 4.1

From (4.25) and (4.28), we have

ĉf̃ = c̃
(
v(zα), f̃

)
f̃ .

In particular, using (4.26) and (4.34), we get

c̃ = ĉ(
v(zα), f̃

) = − i|α|+1

(2π) 1
2α!s(h)

a0,0(0)(−λg−)αh 1
2−|α|

∼
+∞∑
j=0

c̃jh
−n2−|α|+j ,(4.44)

with

(4.45) c̃0 = − i
|α|+1a0,0(0)(−λg−)α

(2π) 1
2α!s0

.

At this point, the function f̃ and the constant c̃ may depend on v. Nev-
ertheless, since Πzα = c̃( · , f̃ )f̃ and d̃0 (the first term in the expansion of f̃
given in (4.27)) do not depend on v, the constant c̃0 also does not depend
on v.
We choose a sequence of functions τ (say τN ), with ∂tτN (x(t)) > 0, such

that ∂tτN (x(t)) converges to the Dirac mass δt for some fixed t > 0. Then,
from the definition of s0 (4.35) and of b̃0 (4.40), we get

c̃0 = i|α|+1a0,0(0)(−λg−)α

i(2π)n2 |∂tx(t)|b0(x(t))d̃0(x(t))α!

∣∣ det(ψ − ϕ−)′′|(πxγ−)⊥

∣∣ 1
2

e
iπ4 sgn(ψ−ϕ−)′′|(πxγ−)⊥

.
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Combining (4.16), (4.38), (4.39), (4.41), (4.42) and (4.43), we obtain

c̃0 = i|α|e−i
π
4 e
−
∫ +∞

0
∆ψ(x(s))−(

∑
λj/2−λ1) ds(−λ)α

(2π)n2 e−
∫ t

0
∆ψ(x(s))−(

∑
λj/2−λ1) ds

α!

×
(∏n

j=1 λj
) 1

2

ei(n−1)π4

(
1 +O(e−εt)

)
.

Then, letting t going to +∞ and using that c̃0 does not depend on t, it
follows

(4.46) c̃0 =
i|α|(−λ)α

(∏n
j=1 λj

) 1
2

(2π)n2 einπ4 α!
.

We now consider a fixed v as in the beginning of this subsection. With
c(h) as in (4.2), (4.46) gives that c̃ = cc̆ where

c̆ ∼
+∞∑
j=0

c̆jh
j and c̆0 = 1.

Now, we define f := c̆
1
2 f̃ . Then, (4.28) gives (4.1) and the properties of f

given in Theorem 4.1 follow from the properties of f̃ given in Section 4.5
and c̆0 = 1.

5. Residue of the scattering amplitude

In this section, we give the semiclassical expansion of the residue of
the scattering amplitude at an isolated resonance. To define the scattering
matrix, we assume that the potential is long range:

(H4) For some ρ > 0, we have |V (x)| . 〈x〉−ρ for all x ∈ S.

Using the constructions of Isozaki and Kitada (see [25] and [26]), the as-
sumption (H4) allows to define the scattering matrix S(z, h), z ∈]0,+∞[
related to the pair P0 = −h2∆ and P as a unitary operator

S(z, h) : L2(Sn−1) −→ L2(Sn−1).

In the short range case (i.e. ρ > 1), this operator coincides with the usual
scattering matrix. Next, introduce the operator T (z, h) defined by

S(z, h) = Id−2iπT (z, h).
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Its kernel T (ω, ω′, z, h) is smooth away from the diagonal of Sn−1 × Sn−1

(see [26]). Here, ω (resp. ω′) is called the outgoing (resp. incoming) direc-
tion. Finally, the scattering amplitude is defined for ω 6= ω′ by

A(ω, ω′, z, h) = c(z, h)T (ω, ω′, z, h),

with
c(z, h) = −(2π)z−

n−1
4 (2πh)

n−1
2 e−i

(n−3)π
4 .

In [15], Gérard and Martinez have shown that for ω 6= ω′ fixed, the scat-
tering amplitude has a meromorphic continuation to a neighborhood of
]0,+∞[, whose poles are the resonances of P . Moreover, the multiplicity of
each pole is less or equal to the multiplicity of the resonance. Notice that,
since the kernel of the residue of the scattering matrix is not singular at
ω = ω′ (see Theorem 1.1 (iii) of [15]), we drop the assumption ω 6= ω′ in
the sequel.
We will now make some hypotheses on the behavior of the classical

curves. Let (x(t), ξ(t)) = exp(tHp)(x, ξ) be a Hamiltonian curve in p−1(E0).
Under the hypotheses (H1)–(H4), there are only two possible behaviors for
x(t) as t→ ±∞: either it escapes to∞, or it goes to 0. From the long range
assumption (H4), if x(t) escapes to ∞, then ξ(t) has a limit in

√
E0Sn−1.

Moreover the set of points with asymptotic direction ω and ω′,

Λ−ω′ =
{

(x, ξ) ∈ p−1(E0); ξ(t) −→
√
E0ω

′ as t→ −∞
}
,

Λ+
ω =

{
(x, ξ) ∈ p−1(E0); ξ(t) −→

√
E0ω as t→ +∞

}
,

are Lagrangian submanifolds of T ∗Rn (see [12]). We suppose that

(H5) Λ−ω′ and Λ− (resp. Λ+
ω and Λ+) intersect in a finite numberN− (resp.

N+) of bicharacteristic curves, with each intersection transverse.

We denote these curves, respectively,

γ−k : t 7→ γ−k (t) = (x−k (t), ξ−k (t)), 1 6 k 6 N−,

and
γ+
` : t 7→ γ+

` (t) = (x+
` (t), ξ+

` (t)), 1 6 ` 6 N+.

Note that, from Proposition 2.5 of [1], the intersections Λ−ω′ ∩Λ− and Λ+
ω ∩

Λ+ are never empty (i.e. N− > 1 and N+ > 1). From [21, Equation (2.7)],
the curve γ±? with ? = k, ` satisfies

x±? (t) ∼
+∞∑
j=1

g?,±µj (t)e±µjt with g?,±µj (t) =
M?,±
µj∑

m=0
g?,±µj ,mt

m as t→ ∓∞.
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From Lemma A.1, if λj satisfies λ · α = λj =⇒ |α| = 1, then M?,±
λj

= 0.
Moreover, there always exists a µj such that g?,±µj 6= 0. We define

λ±? = min{µj ; g?,±µj 6= 0}.

We know that λ±? is one of the λj ’s and that M?,±
λj

= 0 (see [1, (2.18)]).
We shall denote

S−k =
∫ +∞

−T−
k

x−k (s)∂xV (x−k (s)) ds and S+
` =

∫ T+
`

−∞
x+
` (s)∂xV (x+

` (s)) ds,

for some T±? large enough which is equal to +∞ in the short range case
ρ > 1.
Moreover, in the short range case, the bicharacteristic curves in Λ±α ,

α ∈ Sn−1, are the bicharacteristic curves

γ±(t, z, α) =
(
x±(t, z, α), ξ±(t, z, α)

)
for which there exists a z ∈ α⊥ ∼ Rn−1 such that

lim
t→±∞

∣∣x±(t, z, α)− 2
√
E0αt− z

∣∣ = 0,

lim
t→±∞

∣∣ξ±(t, z, α)−
√
E0α

∣∣ = 0.

These trajectories are smooth with respect to t, z, α. We denote by z±? the
impact parameter of the curve γ±? . Let

D−k = lim
t→+∞

∣∣∣det ∂x−(t, z, ω′)
∂(t, z) |z=z−

k

∣∣∣ e−(Σjλj−2λ−
k

)t,

D+
` = lim

t→−∞

∣∣∣ det ∂x+(t, z, ω)
∂(t, z) |z=z+

`

∣∣∣ e(Σjλj−2λ+
`

)t,

be the Maslov determinants for γ±? which exist and satisfy 0 < D±? < +∞
(see [1]). We shall also denote by ν±? the Maslov index of the curve γ±? .

Theorem 5.1 (Residue of the scattering amplitude). — Assume (H1)–
(H5). Let α ∈ Nn be such that z0

α is simple. Then, the residue of the
scattering amplitude satisfies

Residue
(
A(ω, ω′, z, h), z = zα

)
=

N−∑
k=1

N+∑
`=1

ak,`h
−|α|+ 1

2 ei(S
−
k

+S+
`

)/h+O(h∞),

where

ak,`(h) = b−k (h)b+` (h) and b±? (h) ∼
+∞∑
j=0

b±?,jh
j .
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Moreover, b±?,0 = 0 if and only if (g?,±)α = 0. Finally, in the short range
case ρ > 1, we have

b−k,0b
+
`,0 =e−i

π
2 (|α|− 1

2 )
√

2πα!
E
n−1

4
0 (λ−k λ

+
` ) 3

2

n∏
j=1

λ
αj− 1

2
j

× e−iν
−
k
π/2e−iν

+
`
π/2(D−k D

+
` )− 1

2 (gk,−)α(g`,+)α|gk,−
λ−
k

||g`,+
λ+
`

|.

In the last formula (g?,±)α is a shorthand for
∏n
j=1(g?,±λj )αj where g?,±λj is

identified with its j-th coordinate. To prove the theorem, we first obtain a
representation formula for the scattering amplitude involving the resolvent.
Then we apply Theorem 4.1 to express the residue of the scattering ampli-
tude with the help of the resonant state f . Finally, the result follows from
the computation of two scalar products which are done with the stationary
phase method.

Remark 5.2. — Stefanov [40] (in the compact support case) and
Michel [32] (in the long range case) have given a priori estimates for the
residue of the scattering amplitude. For the resonances z0 very close to the
real axis (more precisely | Im z0| . h

3n+5
2 ) and under a separation condition,

they have proved that the residue satisfies∣∣Residue
(
A(ω, ω′, z, h), z = z0

)∣∣ . h−n−1
2 | Im z0|.

In the present situation, these results do not apply since the resonances are
“too far” from the real axis. Furthermore, the previous estimate does not
hold. Indeed, the imaginary part of zα behaves like −|α|h but the residue
is typically of order h−|α|+ 1

2 .

In the one dimensional case, Theorem 5.1 can probably be deduced from
the computation of the scattering amplitude obtained by the third author
in [36].

For a point-well in the island case and under some geometrical assump-
tions, the asymptotic of the residue of the scattering amplitude has been
computed by Nakamura [33, 34], Lahmar-Benbernou [28] and Lahmar-
Benbernou and Martinez [29].

It is possible to compare Theorem 5.1 with the semiclassical expansion of
the scattering amplitude for real energy obtained in [1]. Assume for simplic-
ity that the λj ’s are non-resonant (Z-independent for example), λn < 2λ1,
N− = N+ = 1, N∞ = 0 and g1,−

λj
6= 0 for all j ∈ {1, . . . , n}. In particular,

we have k = ` = 1. Let J ∈ {1, . . . , n} be the first j with g1,+
λj
6= 0 (thus,
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λJ = λ+
1 ). In that case, Theorem 2.6 (a) of [1] gives

(5.1) A(ω, ω′, E, h) =
(
f(E)Γ

(Σ(E)
λJ

)
+ o(1)

)
h

Σ(E)
λJ
− 1

2 ei(S
−
1 +S+

1 )/h,

for E real with E − E0 = O(h). Here,

Σ(E) =
n∑
j=1

λj
2 − i

E − E0

h
,

and f(E) is an explicit function, analytic near E0. Thus, the main term
in (5.1), defined in [1] for E real, has a meromorphic extension in a fix neigh-
borhood of E0. Moreover, its poles are exactly the pseudo-resonances z0

α ∈
Res0(P ) with α = (0, . . . , 0, αJ , 0, . . . , 0) and the corresponding residue co-
incides with that given in Theorem 5.1. In particular, this principal term
does not contribute to the residue at the other (pseudo)-resonances. The
cases (b) and (c) in Theorem 2.6 of [1] only appear for resonant λj ’s and the
corresponding main terms in the semiclassical expansion of the scattering
amplitude have poles at some z0

α ∈ Res0(P ) which are not simple.

5.1. Representation formula for the scattering amplitude

In this section, we recall a representation formula of the scattering ampli-
tude for complex energies due to Gérard and Martinez [15]. Their approach
consists in extending the formula of Isozaki and Kitada [26] to complex
energies. For this purpose, they show that the phases and the symbols in-
volved in that formula can be chosen to be analytic in a suitable complex
neighborhood of R2n. We only recall what will be useful in the following
and refer to [15] for the details.
For R > 0 large enough, d > 0, ε > 0 and σ ∈]0, 1[, we denote

Γ±C (R, d, ε, σ) =
{

(x, ξ) ∈ C2n; |Rex| > R, d−1 < |Re ξ| < d,

| Im x| 6 ε〈Rex〉, | Im ξ| 6 ε〈Re ξ〉

and ± cos(Rex,Re ξ) > ±σ
}
,

Γ±(R, d, σ) = Γ±C (R, d, ε, σ) ∩ R2n.

Let ε > 0, d � 1, −1 < σ−1 < σ+
1 < 0 < σ−2 < σ+

2 < 1 and R1 >

0 be sufficiently large. For k = 1, 2, we denote Γk = Γ+
C (R1, d, ε, σ

+
k ) ∪

Γ−C (R1, d, ε, σ
−
k ). In [15], Gérard and Martinez construct some phases ϕk ∈

C∞(R2n;R) and some symbols tk ∈ C∞(R2n)∩S0
h(1) satisfying the general

assumptions of Isozaki and Kitada [25] and the following properties.
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The phases ϕk have a holomorphic extension to Γk and satisfy

(5.2)
{

(∇xϕk(x, ξ))2 + V (x) = ξ2,

∂αx ∂
β
ξ

(
ϕk(x, ξ)− x · ξ

)
= O

(
〈x〉1−ρ−|α|

)
,

uniformly in Γk. Moreover, Λϕk(·,
√
E0ω) = {(x, ∂xϕk(x,

√
E0ω))} ⊂ Λ−ω ∪

Λ+
ω .
There exist two symbols ak(x, ξ, h) ∈ C∞(R2n,C) supported inside Γk ∩

R2n, with

ak(x, ξ, h) ∼
+∞∑
j=0

ak,j(x, ξ)hj ,

such that∣∣∂αx ∂βξ ak(x, ξ, h)
∣∣ . 〈x〉−|α| and

∣∣∂αx ∂βξ ak,j(x, ξ)∣∣ . 〈x〉−j−|α|.
Moreover, for some δ > 0 with −1 < σ−k − δ < σ+

k + δ < 1, we have

(5.3)
∣∣∂αx ∂βξ (ak,0(x, ξ)− 1)

∣∣ . 〈x〉−ρ−|α|,
for (x, ξ) ∈ Γ+(2R1, d/2, σ+

k + δ) ∪ Γ−(2R1, d/2, σ−k − δ). Finally, they
extend holomorphically with respect to X = |x| and Ξ = |ξ| for X in
{ReX > 3R1, | ImX| < ε〈ReX〉} and Ξ in a complex neighborhood of√
E0. Furthermore, their extensions continue to satisfy estimates analogous

to the previous ones.
The symbols tk are then defined by

(5.4) tk(x, ξ, h) = e−iϕk(x,ξ)/h(P − ξ2)
(
ak(·, ξ, h)eiϕk(·,ξ)/h),

and satisfy, for some ε̃ > 0,

(5.5)
∣∣∂αx ∂βξ tk(x, ξ, h)

∣∣ = O
(
e−ε̃〈x〉/h

)
,

uniformly with respect to h and

(x, ξ) ∈ Γ+
C
(
2R1, d/2, ε, σ+

k + δ
)
∪ Γ−C

(
2R1, d/2, ε, σ−k − δ

)
.

Under the assumption (H4), Gérard and Martinez [15] have proved that
the scattering amplitude can be written

(5.6) A(ω, ω′, z, h) = c̃(z, h)g(ω, ω′, z, h) + f(ω, ω′, z, h),

where f(ω, ω′, z, h) has a holomorphic extension in a (fixed) neighborhood
of E0,

g(ω, ω′, z, h) =
(

(Pθ − z)−1Uiθ
(
eiϕ2(x,

√
zω′)/ht2(x,

√
zω′, h)

)
,

Uiθ
(
eiϕ1(x,

√
zω)/ht1(x,

√
zω, h)

))
,
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and

(5.7) c̃(z, h) = π(2πh)−
n+1

2 z
n−3

4 e−i
(n−3)π

4 .

By assumption, the resonance zα is simple for h small enough. Moreover,
Theorem 3.1 implies that Πzα,θ = O(h−M ) for θ = νh| ln h| and some
M > 0. Then Lemma 5.4 of [4] (see also Proposition 5.1 of [28] in the case
of a well in the island) states that

R := Residue
(
A(ω, ω′, z, h), z = zα

)
=− c̃(zα, h)

(
Πzα,θχUiθ

(
eiϕ2(x,√zαω′)/ht2(x,

√
zαω

′, h)
)
,

χUiθ
(
eiϕ1(x,

√
zαω)/ht1(x,

√
zαω, h)

))
+O(h∞),

where χ ∈ C∞0 (Rn) satisfies 1|x|62R1 ≺ χ ≺ 1|x|63R1 with R0 � R1. In
particular, there is no distortion (i.e. F = 0) on the support of χ and
Theorem 4.1 implies

R = ĉ
(
f, eiϕ1(x,

√
zαω)/hχt1(x,

√
zαω, h)

)
×
(
eiϕ2(x,√zαω′)/hχt2(x,

√
zαω

′, h), f
)

+O(h∞),(5.8)

where ĉ = −c̃(zα, h)c(h) with c(h) given by (4.2).

5.2. Computation of (f, eiϕ1/hχt1)

We will calculate the scalar product (f, eiϕ1/hχt1) by the stationary
phase method. First, we will prove that this quantity has an asymptotic
expansion in power of h and then calculate the first term using a limit at
the origin. We will use arguments close to the ones developed in Section 4.6
or [1, Section 7].
Denote

u = eiϕ1(x,
√
zαω)/ha1(x,

√
zαω, h) and v = eiϕ1(x,

√
zαω)/ht1(x,

√
zαω, h).

From Theorem 4.1 ii) and (5.4), we have

(f, χv) =
(
f, χ(P − zα)u

)
=
(
(P − zα)f, χu

)
+
(
f, [χ, P ]u

)
= −

(
f, [P, χ]u

)
.(5.9)

From (5.5) and the choice of χ, (P − zα)u = 0 microlocally near Γ+(2R1,

d/2, σ+
1 + δ). Moreover, since zα has an asymptotic expansion in power of

h, we can write, microlocally near Γ+(2R1, d/2, σ+
1 + δ),

u = ã(x, h)eiϕ1(x,
√
E0ω)/h,

ANNALES DE L’INSTITUT FOURIER



RESIDUES FOR BARRIER-TOP RESONANCES 1391

γ+
ℓ

0

Ω

χ = 0

supp(∇χ)

χ = 1

γ+
ℓ

0

χ̃ = 0

supp(∇χ̃)

χ̃ = 1
Ω

Figure 5.1. The functions χ and χ̃.

where ã has an asymptotic expansion in power of h. Note that (supp∇χ×
Rn)∩

⋃
` γ

+
` ⊂ Γ+(2R1, d/2, σ+

1 + δ). Using Maslov’s theory, we can extend
the function u near Ω, a small neighborhood of

⋃
` γ

+
` ∩ (B(0, 3R0)×Rn),

such that u is still a solution of (P − zα)u = 0 microlocally in Ω. Let
χ̃(x, ξ) ∈ C∞(T ∗Rn) be such that χ̃(x, ξ) = χ(x) out of Ω (see Figure 5.1).
In particular, (P − zα)u = 0 microlocally near the support of χ− χ̃. So, we
have

(f, χv) =−
(
f, [P,Op(χ̃)]u

)
−
(
(P − zα)f,Op(χ− χ̃)u

)
+
(
f,Op(χ− χ̃)(P − zα)u

)
=−

(
f, [P,Op(χ̃)]u

)
+O(h∞).(5.10)

On the other hand, since zα = E0+O(h), the microsupport of [P,Op(χ̃)]u
satisfies

MS
(
[P,Op(χ̃)]u

)
⊂ Λϕ1(·,

√
E0ω) ∩ supp∇χ̃

⊂
(
Λ−ω ∩ Γ−(R1, d, σ

−
1 /2)

)
∪
(
Λ+
ω ∩ Ω

)
.

Moreover, Theorem 4.1 gives MS(f) ⊂ Λ+. Then, modulo O(h∞), the non-
zero contributions to (f, [P,Op(χ̃)]u) comes from the values of the functions
f and [P,Op(χ̃)]u microlocally on the set

⋃
` γ

+
` (which is the intersection

of the two microsupports). Let g+
` be C∞0 (T ∗Rn) functions with support

in a small enough neighborhood of γ+
` ∩ (B(0, 3R0)×Rn) such that g+

` = 1
in a similar neighborhood. Then, (5.10) becomes

(5.11) (f, χv) = −
N+∑
`=1

(
f,Op(g+

` )[P,Op(χ̃)]u
)

+O(h∞).
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We now compute Op(g+
` )[P,Op(χ̃)]u. From Proposition C.1 of [1], the

Lagrangian manifold Λ+
ω has a nice projection with respect to x in a neigh-

borhood of any point of γ+
` close to (0, 0). Then, Maslov’s theory implies

that u can be written as

u(x) = a+
` (x, h)eiψ

+
`

(x)/h,

microlocally in such a neighborhood. From the construction of [25] and [15],
we see that

(5.12) ψ+
` (x+

` (t)) = x+
` (t)ξ+

` (t)−
∫ T+

`

t

x+
` (s)∂xV (x+

` (s)) ds,

for some T+
` > 0 large enough (equal to +∞ in the short range case).

The symbol a+
` has an asymptotic expansion a+

` (x, h) ∼
∑
j a

+
`,j(x)hj with

a+
`,0(x+

` (t)) 6= 0. Moreover, in the short range case, Equation (7.12) of [1]
gives

(5.13) a+
`,0(x+

` (t)) = eiν
+
`
π/22 1

2E
1
4
0 (D+

` (t))− 1
2 e−t(

∑
λk/2+λ·α),

where ν+
` is the Maslov index of the curve γ+

` and D+
` (t) is the Maslov’s

determinant
D+
` (t) =

∣∣∣∣det ∂x+(t, z, ω)
∂(t, z) |z=z+

`

∣∣∣∣.
Moreover, from Section 6 of [1], we know that

(5.14) D+
` = lim

t→−∞
D+
` (t)et

(∑
λk−2λ+

`

)
,

exists and satisfies 0 < D+
` < +∞. So,

(5.15) Op(g+
` )[P,Op(χ̃)]u = ã+

` (x, h)eiψ
+
`

(x)/h,

with

ã+
` (x, h) ∼

+∞∑
j=0

ã+
`,j(x)h1+j ,

and

(5.16) ã+
`,0(x) = −i({p, χ̃}g+

` )(x, ∂xψ+
` (x))a+

`,0(x).

Since the support of g+
` (x, ξ)∂x,ξχ̃(x, ξ) is close enough to (0, 0), Theo-

rem 4.1 iv) and (5.11) imply that

(5.17) (f, χv) = −
N+∑
`=1

∫
d(x, h)ã+

` (x, h)ei(ϕ+(x)−ψ+
`

(x))/hdx+O(h∞).

We proceed now as in (4.32). In the support of the symbol ã+
` , the crit-

ical points of the phase function ϕ+ − ψ+
` (i.e. the points x such that
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∂xϕ+(x) = ∂xψ
+
` (x)) are the points in the spacial projection of γ+

` . Since
this intersection Λ+ ∩ Λ+

ω = γ+
` is transverse from the assumption (H5),

the phase ϕ+ −ψ+
` is non degenerate in the directions transverse to πxγ+

` .
Therefore, performing the method of the stationary phase in the orthog-
onal directions of πxγ+

` (as in (4.32)) and parameterizing the curve πxγ+
`

by x+
` (t), (5.17) gives

(5.18) (f, χv) = −
N+∑
`=1

∫
b+` (t, h)ei(ϕ+(x+

`
(t))−ψ+

`
(x+
`

(t)))/hdt+O(h∞).

with b+` (t, h) ∼
∑
j>0 b

+
`,j(t)h

n+1
2 +j and

b+`,0(t) = (2π)
n−1

2
e
iπ4 sgn(ϕ+−ψ+

`
)′′|

(πxγ
+
`

)⊥∣∣det(ϕ+ − ψ+
` )|(πxγ+

`
)⊥

∣∣ 1
2
|∂tx+

` (t)|d0(x+
` (t))ã+

`,0(x+
` (t)).

Since γ+
` ∈ Λ+∩Λ+

ω , ϕ+(x+
` (t)) and ψ+

` (x+
` (t)) have the same derivative

(with respect to t), and (5.12) gives

ϕ+(x+
` (t))− ψ+

` (x+
` (t)) =

∫ T

−∞
x+
` (s)∂xV (x+

` (s)) ds = S+
` ,

for all t > 0. Then, combining with (5.16), we get

(5.19) (f, χv) =
N+∑
`=1

eiS
+
`
/hh

n+1
2 b̃+` (h),

with b̃+` (h) ∼
∑
j>0 b̃

+
`,jh

j and

b̃+`,0 = −i(2π)
n−1

2

∫
e
iπ4 sgn(ϕ+−ψ+

`
)′′|

(πxγ
+
`

)⊥∣∣ det(ϕ+ − ψ+
` )|(πxγ+

`
)⊥

∣∣ 1
2
|∂tx+

` (t)|d0(x+
` (t))

× a+
`,0(x+

` (t))∂tχ̃(x+
` (t), ξ+

` (t)) dt.(5.20)

From (5.10), (f, χv) does not depend on χ̃, modulo O(h∞). In particular,
changing χ̃ in a neighborhood of a fixed curve γ+

` , we obtain that each b+`,0
does not depend on χ̃. From Proposition C.1 of [1], we have, up to a linear
change of variables in Rn,

(ϕ+ − ψ+
` )′′(x(t)) = diag

(
λ1, . . . , λj(`)−1, 0, λj(`)+1, . . . , λn

)
+O(e−εt),
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where j(`) is such that λj(`) = λ+
` . Since x

+
` (t) = g`,+

λ+
`

eλ
+
`
t + O(e(λ+

`
+ε)t)

as expandible symbol (see [2, Definition 5.2]), this implies

∣∣det(ϕ+ − ψ+
` )|(πxγ+

`
)⊥

∣∣ 1
2 (x+

` (t)) =
( ∏
j 6=j(`)

λj

) 1
2

+O(eεt),(5.21)

sgn(ϕ+ − ψ+
` )′′|(πxγ+

`
)⊥

(x+
` (t)) = n− 1,(5.22)

|∂tx+
` (t)| = |g`,+

λ+
`

|λ+
` e

λ+
`
t
(
1 +O(eεt)

)
,(5.23)

as t→ −∞. On the other hand, (4.38) gives

(5.24) d0(x+
` (t)) = (g`,+)αeλ·αt

(
1 +O(eεt)

)
.

We first consider the long range case (ρ > 0). If (g`,+)α = 0, then (5.20)
and (5.24) imply that b+`,0 = 0. We will now prove that b+`,0 6= 0 if (g`,+)α 6=0.
Let T > 0 be sufficiently large such that the quantities in (5.21), (5.22)
and (5.24) do not vanish and (5.23) holds at t = −T . Then, if χ̃(x+

` (t))
satisfies ∂tχ̃(x+

` (t)) 6 0 and has its support close enough to T , the previous
discussion, a+

`,0(x+
` (T )) 6= 0 and (5.20) imply that b+`,0 6= 0.

Let us now consider the short range case (ρ > 1). Assume that the
support of ∂tχ̃(x+

` (t)) is sufficiently negative. Then, the formula (5.20) and
the estimates (5.13), (5.14), (5.21), (5.22), (5.23) and (5.24) give

b̃+`,0 = −i(2π)
n−1

2
2 1

2 ei(n−1)π4(∏
j 6=j(`) λj

) 1
2
|g`,+
λ+
`

|λ+
` (g`,+)αe−iν

+
`
π/2E

1
4
0 (D+

` )− 1
2

×
∫
∂tχ̃(x+

` (t))(1 + o(1)) dt,

where the o(1) does not depend on χ̃. Now, we take a sequence of functions
χ̃ such that the support of ∂tχ̃(x+

` (t)) goes to −∞ and ∂tχ̃(x+
` (t)) 6 0 (see

Figure 5.1). Since b+`,0 does not depend on χ̃, the previous expression gives

(5.25) b̃+`,0 = i(2π)
n−1

2
2 1

2 ei(n−1)π4(∏
j 6=j(`) λj

) 1
2
|g`,+
λ+
`

|λ+
` (g`,+)αe−iν

+
`
π/2E

1
4
0 (D+

` )− 1
2 .

5.3. End of the proof of Theorem 5.1

Following the approach of Section 5.2, one can prove that

(5.26)
(
eiϕ2(x,√zαω′)/hχt2(x,

√
zαω

′, h), f
)

=
N−∑
k=1

eiS
−
k
/hh

n+1
2 d̃−k (h),
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with d̃−k (h) ∼
∑
j>0 d̃

−
k,jh

j and d̃−k,j = 0 if and only if (gk,−)α = 0. More-
over, in the short range case, we have

(5.27) d̃−k,0 = i(2π)
n−1

2
2 1

2 ei(n−1)π4(∏
j 6=j(k) λj

) 1
2
|gk,−
λ−
k

|λ−k (gk,−)αe−iν
−
k
π/2E

1
4
0 (D−k )− 1

2 .

Then, combining the representation of the residue given in (5.8) with the
constants given in (4.2) and (5.7), and the scalar products (5.19) and (5.26),
we obtain

Residue
(
A(ω, ω′, z, h), z = zα

)
= h−|α|+

1
2

N−∑
k=1

N+∑
`=1

ak,`(h)ei(S
−
k

+S+
`

)/h,

with ak,`(h) ∼
∑
j>0 a

j
k,`h

j and a0
k,` = 0 if and only if (gk,−)α(g`,+)α = 0.

Moreover, in the short range case, (5.25) and (5.27) imply

a0
k,` =e−i

π
2 (|α|− 1

2 )
√

2πα!
E
n−1

4
0 (λ−k λ

+
` ) 3

2

n∏
j=1

λ
αj− 1

2
j

× e−iν
−
k
π/2e−iν

+
`
π/2(D−k D

+
` )− 1

2 (gk,−)α(g`,+)α|gk,−
λ−
k

||g`,+
λ+
`

|.(5.28)

6. Large time behavior of the Schrödinger group

In this section, we prove a resonance expansion for the cut-off Schrödinger
propagator. The proof relies on the resolvent estimate in Theorem 3.1 and
on standard arguments.

Theorem 6.1 (Schrödinger group expansion). — Assume (H1)–(H3).
Let µ > 0 be different from

∑n
j=1(αj+ 1

2 )λj for all α ∈ Nn. Let χ ∈ C∞0 (Rn)
and ψ ∈ C∞0 ([E0 − ε, E0 + ε]) for some ε > 0 small enough. Then, there
exists K = K(µ) > 0 such that

χe−itP/hχψ(P )

=
∑

zα∈Res(P )∩D(E0,µh)

−χResidue
(
e−itz/h(P − z)−1, z = zα

)
χψ(P )

+O(h∞) +O(e−µth−K),

for all t > 0. In particular, if all the z0
α in D(E0, µh) are simple, we have

χe−itP/hχψ(P ) =
∑

zα∈Res(P )∩D(E0,µh)

e−itzα/hχΠzαχψ(P )

+O(h∞) +O(e−µth−K),

for all t > 0. Here, Πzα is the generalized spectral projection associated to
zα and described in Theorem 4.1.
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Remark 6.2. — Note that the previous expansions make sense only for
t > K

µ | ln h|.
One might think that the resonance expansion holds for shorter times.

But, in fact, it is not possible to do much better. This follows from the
paper of De Bièvre and Robert [11] which is stated with slightly different
hypotheses. In the one dimensional case, they have proved that the coherent
states propagate through a maximum of the potential for times of order
1
λ1
| ln h| and that they stay at (0, 0) before. On the other hand, the sum

of the generalized spectral projections over the resonances appearing in
Theorem 6.1 can not be microlocalized only at (0, 0) thanks to Theorem 4.1.
Thus, if the resonance expansion with a small error holds at time t > 0,
we have necessarily t > 1

λ1
| ln h| in the one dimensional case. If we only

want to prove that t → +∞ as h → 0, we can more simply apply the
standard propagation of singularities with an initial data microlocalized in
Λ− r {(0, 0)}.

There is also a simplest way to justify this phenomena. Let µ be such that∑
λj/2 < µ < λ1 +

∑
λj/2. Then, z0 is the unique resonance in D(E0, µh)

for h small enough and z0
0 is always simple. Assume that, for some t > 0,

we can write

(6.1) χe−itP/hχψ(P ) = e−itz0/hχΠz0χψ(P ) +R,

where R is small. The left hand side is of order 1 since the propagator is
unitary. On the other hand, from Theorem 2.1 and Theorem 4.1, the right
hand side is of order e−t

∑
λj/2h−

n
2 . Then, (6.1) implies t > n∑

λj
| ln h|.

Remark that this critical time coincides with the one obtained by De Bièvre
and Robert in the one dimensional case.
The situation is different for the well in the island case which was treated

by Nakamura, Stefanov and Zworski [35]. In that setting, the cut-off
Schrödinger group is well approximated by the resonance expansion af-
ter a fix time. This is in agreement with the geometrical interpretation
since a fixed amount of time is enough to dispel the part of the initial data
which is not localized in the well.

Nevertheless, Gérard and Sigal [16] have proved that the Schrödinger
group when acting on a quasiresonant state (sort of a quasimode) associated
to a quasiresonance zh is well approximated by e−itzh/h for all time t > 0.
Remark 6.3. — When t/| ln h| → +∞ as h→ 0, the sum over the reson-

ances is negligible and Theorem 6.1 simply yields χe−itP/hχψ(P ) = O(h∞).
The remainder terms O(h∞) in Theorem 6.1 come from the C∞ pseudo-

differential calculus. Thus, if the cut-off functions χ, ψ are in some Gevrey
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class, it is perhaps possible to replace these remainder terms by O(e−h−δ)
for some δ > 0. In that case, the sum over the resonances will dominate
the remainders until t is of order h−δ.
Burq and Zworski [7] (see also Tang and Zworski [42]) have obtained

a long time expansion of semiclassical propagators in terms of resonances
close to the real axis. Their result in the present situation gives
χe−itP/hχψ(P ) = O(h∞) for all t > h−L for some L > 0.

Proof. — Let f ∈ C∞0 ([E0 − 3ε, E0 + 3ε]) be such that f = 1 near
[E0 − 2ε, E0 + 2ε]. Then, from the pseudodifferential calculus, we get

I :=χe−itP/hχψ(P ) = χe−itP/hf(P )χψ(P ) +O(h∞)

=
∫
R
e−itz/hf(z)χdEzχψ(P ) +O(h∞),

where dEz, the spectral projection, is given by the Stone formula

dEz = 1
2πi
(
R+(z)−R−(z)

)
dz,

and R±(z) = (P − z)−1 is analytic for ± Im z > 0. Then,

I = 1
2πi

∫
R
e−itz/hf(z)χ

(
R+(z)−R−(z)

)
χψ(P ) dz +O(h∞),

Making a change of contour, we obtain

I =
∑

zα∈Res(P )∩D(E0,µh)

−χResidue
(
e−itz/hR+(z), z = zα

)
χψ(P )

+ I1 + I2 + I3 + I4 + I5 +O(h∞),(6.2)

where

(6.3)
Ij = 1

2πi

∫
Γj
e−itz/hf(z)χ

(
R+(z)−R−(z)

)
χψ(P ) dz for j = 1, 5,

Ij = 1
2πi

∫
Γj
e−itz/hχ

(
R+(z)−R−(z)

)
χψ(P ) dz for j = 2, 3, 4,

and Γ1 =]−∞, E0−2ε], Γ2 = E0−2ε+ i[0,−µh], Γ3 = [E0−2ε, E0 +2ε]−
iµh, Γ4 = E0 +2ε+ i[−µh, 0] and Γ5 = [E0 +2ε,+∞[ (see Figure 6.1). The
theorem will follow from the estimates on the Ij ’s given below.
• Estimates on I1 and I5. Using that Γ1 ∩ suppψ = ∅, there exists g ∈

C∞0 (R) such that g = 1 near supp f ∩ Γ1 and g = 0 near suppψ. Then, by
pseudodifferential calculus, g(P )χψ(P ) = O(h∞). Therefore, (6.3) yields

I1 = χe−itP/h1Γ1(P )f(P )χψ(P )

= χe−itP/h1Γ1(P )f(P )g(P )χψ(P )
= O(h∞).(6.4)
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µh

Γ1 Γ5

Γ3

2ε

Γ2 Γ4

E0

Figure 6.1. The contours Γj .

The same way, we get I5 = O(h∞).
• Estimates on I3. Using Theorem 3.1 for R±, we obtain

(6.5) ‖I3‖ .
∫

Γ3

∣∣e−itz/h∣∣∥∥χ(R+(z)−R−(z)
)
χ
∥∥ dz = O(e−µth−K).

• Estimates on I2 and I4. Let θ = νh| ln h| be as in Theorem 3.1
and assume that the distortion occurs outside of the support of χ. Then,
χR+(z)χ = χ(Pθ − z)−1χ and χR−(z)χ = χ(P−θ − z)−1χ. In particular,
we can write

(6.6) I2 = 1
2πi

∫
Γ2

e−itz/hχ
(
(Pθ − z)−1 − (P−θ − z)−1)χψ(P ) dz.

Let k ∈ C∞0 (R) be such that k = 1 near E0 − 2ε and k = 0 near suppψ
(see Figure 6.2). Then, for z ∈ Γ2,

(P±θ − z)−1 = (P±θ − z)−1k(P ) + (P±θ − z)−1(1− k)(P )

= (P±θ − z)−1k(P ) + (P − z)−1(1− k)(P )

+ (P±θ − z)−1(P − P±θ)(P − z)−1(1− k)(P ).

Therefore (6.6) becomes

(6.7) I2 = J+
1 − J

−
1 + J+

2 − J
−
2 ,

where

J±1 = 1
2πi

∫
Γ2

e−itz/hχ(P±θ − z)−1k(P )χψ(P ) dz

J±2 = 1
2πi

∫
Γ2

e−itz/hχ(P±θ − z)−1(P − P±θ)

(P − z)−1(1− k)(P )χψ(P ) dz.
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f(z)

E0 − 2ε E0 − ε E0E0 − 3ε

ψ(z)k(z)

Figure 6.2. The cut-off functions f , k and ψ.

Since k and ψ have disjoint supports, the pseudodifferential calculus gives
k(P )χψ(P ) = O(h∞). Thus, Theorem 3.1 implies

(6.8) ‖J±1 ‖ .
∫

Γ2

∥∥(P±θ − z)−1∥∥∥∥k(P )χψ(P )
∥∥ |dz| = O(h∞),

since Im z 6 0 for z ∈ Γ2.
On the other hand, P − P±θ ∈ Ψ0

h(θ〈ξ〉2) and (P − z)−1(1 − k)(P ) ∈
Ψ0
h(〈ξ〉−2) uniformly in z ∈ Γ2. Moreover, P −P±θ is a differential operator

whose coefficients are supported outside of the support of χ. Then, the
microlocal analysis gives∥∥(P − P±θ)(P − z)−1(1− k)(P )χ

∥∥ = O(h∞),

uniformly in z ∈ Γ2. Combining this estimate with Theorem 3.1, we get

(6.9) J±2 = O(h∞).

Using (6.8) and (6.9) to estimate (6.7), we conclude I2 = O(h∞). The
same way, we have I4 = O(h∞). �

Appendix A. Construction of test curves

In this section, we construct Hamiltonian curves in Λ− with a prescribed
asymptotic expansion at infinity. They are used in Section 4, where test
functions for the projection are built in a microlocal neighborhood of these
curves. We will work on Λ−, but the same work can be done in Λ+.

Let γ−(t) be a Hamiltonian curve in Λ−. From [21, Section 3], the curve
γ− satisfies, in the sense of expandible functions,

(A.1) γ−(t) ∼
+∞∑
k=1

γ−µk(t)e−µkt with γ−µk(t) =
Mµk∑
m=0

γ−µk,mt
m.
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The spectrum of Fp is σ(Fp) = {−λn, . . . ,−λ1, λ1, . . . , λn}. We denote
by Πµ the spectral projection on the eigenspace of Fp associated to −µ.
Remark that

(A.2) Ker(Fp + µ)⊕ Im(Fp + µ) = R2n.

Lemma A.1. — Let γ−(t) be a Hamiltonian curve in Λ−. Assume that
λj is such that λj = α · λ, α ∈ Nn, implies |α| = 1. Then, Mλj = 0 and
γ−λj ,0 ∈ Ker(Fp + λj).

Proof. — We have ∂tγ−(t) = Hp(γ−(t)). Taking the Taylor expansion of
Hp at 0, we get

(A.3) ∂tγ−(t) = Fp(γ−(t))+G2(γ−(t))+ · · ·+GK(γ−(t))+O(e−(λj+ε)t),

where Gk is a polynomial of order k and K > λj/λ1. Since λj can not be
written as the sum of at least two terms µ`, the cross products Gk in the
previous formula provide no term of the form e−λjt. Then,

(A.4)
Mλj∑
m=0
−λjγ−λj ,mt

m +mγ−λj ,mt
m−1 =

Mλj∑
m=0

Fp(γ−λj ,m)tm,

which can be written

(A.5)
{

(Fp + λj)γ−λj ,m = 0 for m = Mλj

(Fp + λj)γ−λj ,m = (m+ 1)γ−λj ,m+1 for 0 6 m < Mλj .

If Mλj > 1, the previous equation, together with (A.2), gives a contradic-
tion. Thus, Mλj = 0 and γ−λj ,0 ∈ Ker(Fp + λj) from (A.5). �

We begin the construction with the following formal result.

Lemma A.2. — If γ̃−λj ,0 ∈ Ker(Fp+λj) for all j ∈ {1, . . . , n}, then there
exists a formal Hamiltonian curve γ− of the form (A.1) such that

(A.6) ∀j ∈ {1, . . . , n}, Πλj (γ−λj ,0) = γ̃−λj ,0.

Proof. — We construct the coefficients γ−µk inductively. Using the Taylor
expansion of Hp at 0 as in (A.3), one can see that it is enough to find γ−µk ,
k > 0, such that

(A.7)
Mµk∑
m=0
−µkγ−µk,mt

m +mγ−µk,mt
m−1 =

Mµk∑
m=0

Fp(γ−µk,m)tm +
Nµk∑
m=0

Rµk,mt
m,

where the Rµk,m depend only on the γ−µ` for ` < k. Assume that the γ−µ`
have been chosen to satisfy (A.7) for all µ` < µk and (A.6) for all λj < µk.
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If µk /∈ {λ1, . . . , λn}, then it is enough to take Mµk = Nµk ,

γ−µk,Mµk
= −(Fp + µk)−1Rµk,Mµk

,

and, for 0 6 m < Mµk ,

γ−µk,m = (Fp + µk)−1((m+ 1)γ−µk,m+1 −Rµk,m
)
.

If µk = λj for some j, then we take Mµk = Nµk + 1 and

γ−µk,Mµk
= M−1

µk
ΠλjRµk,Mµk

−1

γ−µk,Mµk
−1 = (Mµk − 1)−1ΠλjRµk,Mµk

−2 −Kλj (1−Πλj )Rµk,Mµk
−1

... =
...

γ−µk,0 = γ̃−λj ,0 −Kλj (1−Πλj )Rµk,0.

Here, Kλj is the inverse of the map Fp +λj : Im(Fp +λj) −→ Im(Fp +λj).
With these choices, (A.6) and (A.7) are always verified. �

Proposition A.3. — If γ̃−λj ,0 ∈ Ker(Fp+λj) for all j ∈ {1, . . . , n}, then
there exists a Hamiltonian curve γ− ∈ Λ− such that

∀j ∈ {1, . . . , n}, Πλj (γ−λj ,0) = γ̃−λj ,0.

Proof. — Let

ρ(t) =
∑
µk6N

Mµk∑
m=0

γ−µk,mt
me−µkt,

where the γ−µk,m are given by Lemma A.2 and N will be fixed below.
Since (A.7) is verified for all µk 6 N , we have

∂tρ(t) = Hp(ρ(t)) +R(t),

with R(t) = O(e−(N+ε)t). We seek a solution of the form γ−(t) = ρ(t)+r(t).
Then, r must satisfies

(A.8) ∂tr = Hp(ρ+ r)−Hp(ρ)−R.

Let TN > 0 be such that |R(t)| 6 e−Nt and |ρ(t)| 6 1 for all t > TN . We
define rj(t) by induction as

(A.9)


r0(t) = 0

rj+1(t) = −
∫ +∞

t

(
Hp(ρ+ rj)−Hp(ρ)−R

)
(s) ds.
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Lemma A.4. — For N large enough, the functions (rj)j>0 exist on
[TN ,+∞[ and

(A.10) |rj(t)| 6 e−Nt,

for all t > TN .

Proof of Lemma A.4. — Define

(A.11) C1 = sup
|u|62

|dHp(u)|.

We will prove the lemma inductively. First, r0 satisfies (A.10). Assume now
that rj−1 exists on [TN ,+∞[ and verifies (A.10). In particular, |rj−1(t)| 6 1
for t > TN . Then, (A.9) gives

|rj(t)| 6
∫ +∞

t

(∣∣Hp(ρ+ rj−1)−Hp(ρ)
∣∣+ |R|

)
ds

6
∫ +∞

t

(
C1|rj−1|+ |R|

)
ds 6

∫ +∞

t

(C1 + 1)e−Nsds

6
C1 + 1
N

e−Nt,(A.12)

for t > TN . Therefore, if N > C1 + 1, rj satisfies (A.10) and the lemma
follows. �

Lemma A.5. — For N large enough, we have

(A.13)
∣∣rj+1(t)− rj(t)

∣∣ 6 e−Nt

2j ,

for j > 0 and t > TN .

Proof of Lemma A.5. — For j = 0 and N large enough, Lemma A.4
gives |r1(t) − r0(t)| = |r1(t)| 6 e−Nt. Assume that (A.13) holds for some
j − 1 > 0. Using (A.9), we get

|rj+1(t)− rj(t)| 6
∫ +∞

t

∣∣Hp(ρ+ rj)−Hp(ρ+ rj−1)
∣∣ ds

6 C1

∫ +∞

t

∣∣rj − rj−1
∣∣ ds 6 C1

∫ +∞

t

e−Ns

2j−1 ds

6
2C1

N

e−Nt

2j .(A.14)

Then, for N > 2C1, (A.13) holds and the lemma follows. �

Lemma A.6. — For N large enough, there exists r ∈ C∞([TN ,+∞[)
such that

i) for t > TN , we have |r(t)| 6 e−Nt,
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ii) for all j > 0, ∥∥eNt(rj − r)∥∥L∞([TN ,+∞[) 6 21−j ,

iii) the curve γ− = ρ+ r satisfies ∂tγ− = Hp(γ−).

Proof of Lemma A.6. — Using standard arguments, Lemma A.5 pro-
vides us with a function r ∈ C0([TN ,+∞[) satisfying ii). Then, part i)
follows directly from Lemma A.4. On the other hand,∣∣∣∫ +∞

t

(
Hp(ρ+ rj)−Hp(ρ)−R

)
−
(
Hp(ρ+ r)−Hp(ρ)−R

)
ds
∣∣∣

6
∫ +∞

t

∣∣Hp(ρ+ rj)−Hp(ρ+ r)
∣∣ds

6
∫ +∞

t

C1|rj − r|ds

6 C121−j
∫ +∞

t

e−Nsds 6
C1

N
21−j −→ 0,

as j → +∞. Then, taking the limit j → +∞ in (A.9), we obtain

r(t) = −
∫ +∞

t

(
Hp(ρ+ r)−Hp(ρ)−R

)
(s) ds.

Thus, r ∈ C∞([TN ,+∞[) and γ− = ρ+ r satisfies ∂tγ− = Hp(γ−). �

To finish the proof of Proposition A.3, we impose in addition that λn<N .
Then, the function γ− of Lemma A.6 is a Hamiltonian curve in Λ− and,
since r(t) = o(e−λnt), Lemma A.2 assures that Πλj (γ−λj ,0) = γ̃−λj ,0 for all
j ∈ {1, . . . , n}. �
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