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A NONLINEARIZABLE ACTION OF S3 on C4

by G. FREUDENBURG and L. MOSER-JAUSLIN

1. Introduction.

An important problem in the theory of algebraic group actions is to
understand how a finite group G can act algebraically on complex affine
space When G acts linearly, our understanding is fairly extensive; much
less is known when G acts by general polynomial automorphisms. Consider
the following question:

Given a finite group G, does there exist a non-linearizable action of
G on C’ ?

By a non-linearizable G-action, we mean an algebraic action of G
on C’ which is not conjugate to a linear action under any polynomial
automorphism of 

For n  2, the answer is no (see, for example, [Krl]), and for n = 3
the question is open for all finite groups. For n &#x3E; 4, the answer is yes. The
first such non-linearizable actions of finite groups were given by Masuda
and Petrie [MP]. Other examples were given in [MMP1], where the smallest
example is an action of D10, the dihedral group of 20 elements, acting on
C4 . Later, Mederer gave examples with D5 and D6 acting on (~4 [Med]. In
the present article we give an explicit example for G = ,S’3, the permutation
group of order 6. It is the smallest non-abelian group.

Keywords: Nonlinearizable actions - Equivariant vector bundles - Invariants.
Math. classification: 14R20 - 13A50.
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If one considers the analytic category, it has been shown by Derksen
and Kutschebauch that for any finite group G, there are analytic non-
linearizable actions of G on affine space [DK]. Their argument uses an idea
of Asunuma, who studied the non-linearizability question over other fields.
He showed in particular that there are non-linearizable actions of R* on
real affine space [A]. The actions given by Derksen and Kutschebauch are
not algebraic.

One of the difficulties in finding non-linearizable actions is to con-

struct candidates. For algebraic actions on complex space, the only method
that has led to such candidates at this point is that of finding non-trivial
equivariant vector bundles over representation spaces.

DEFINITION. - Given a reductive group G, and a G-variety V, an
equivariant G-vector bundle with base V is a vector bundle 7r : jE~ 2013~ V,
where E is a G-variety, 7r is equivariant, and G acts linearly on the fibers.
That is, for all g E G and all v E V, the morphism induced by g of 7r-, (v)
to 7r-1 (gv) is linear. For example, if V has a fixed point, then the fiber is
a G-module. An equivariant G-vector bundle over V is called trivial if it is

isomorphic, as a G-vector bundle, to one of the form V x W - V where
W is a G-module.

Bass and Haboush [BH2], Kraft [Kr2] and Masuda and Petrie [MP] all
gave relations between finding non-linearizable actions on affine space and
finding non-trivial equivariant vector bundles over representation spaces.
Note that if V is a G-module, then, if one disregards the action, the total
space is isomorphic to affine space by the result of Quillen and Suslin [Sus]
and [Q]. The idea is then to consider the action of G, or possibly a slightly
larger group, on the total space of a non-trivial equivariant vector bundle.
It is not true in general that if the G-action on the total space of a G-vector
bundle over a G-module is linearizable then the bundle is trivial. However,
under certain additional hypotheses, this result is true. For example, one of
the results of Masuda and Petrie states that if E ~ V is a G-vector bundle

over a G-module V, and if G contains a subgroup H whose fixed point set
in E is exactly the zero section, then the bundle is trivial if and only if the
action is linearizable [MP].

The present example, and some of the other examples of non-

linearizable actions of finite groups cited above, are obtained as a restriction
of a non-linearizable action of 0(2, C) = C* x Z/2Z on C4 given by Schwarz
[Sch]. Thus, the present example gives a new proof that the Schwarz action
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is non-linearizable. In his article, Schwarz gave the first non-linearizable ac-
tions of reductive groups on affine space. In [KS], the case of actions with
a one-dimensional quotient was studied.

The importance of this new example is twofold. First of all, it is

known that any equivariant vector bundle over a representation of a finite
abelian group is trivial (see [MMP2]), and therefore the action on the total
space is linearizable. Thus, S3 is the smallest group for which the method
of equivariant vector bundles can be used to construct non-linearizable
actions. Secondly, the proof is elementary and more transparent than in
the other cases. One reason for this is that the action has a line of fixed

points. Indeed, this is the first example of a non-linearizable action of any
reductive group on (C4 having a line of fixed points.

Acknowledgements. This work was initiated during a meeting at the
Mathematisches Forschungsinstitut in Oberwolfach on "Affine Algebraic
Geometry" , which took place in May, 2000.

We thank the referee for his careful reading and suggestions.

2. A non-linearizable action.

Let It has 6 elements, and it
is the smallest non-abelian group. Consider the action of 9s on E := (C4
given by

where w = e21ri/3, and

One verifies easily that it is an action of ,S’3. Note that the action of the
subgroup generated by a is linear. It is also known that the action of the
subgroup generated by T is conjugate to a linear action (see [MJ] and
[MMP2]), but we will show that the action of 6’s is not linearizable.

This action comes from Schwarz’s first example of a non-linearizable
O(2, (C)-action on C4 [Sch]. We restrict the action to ,S’3. Note that the
fixed point set of Schwarz’s original action was just the origin, but when
restricted to ,S’3, there is a line of fixed points.

The projection 7r : E - V given by (a, b, x, y) ~ (a, b) is equivariant
where V is the irreducible two-dimensional representation of ,S’3. This map
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defines the structure of an ,S‘3-vector bundle over V. Indeed, 7r is equivariant,
and 63 acts linearly on the fibers. Thus ,S’3 preserves a natural grading
on the coordinate ring R := C[E] == (C ~a, b, x, y~ of the total space. The
grading is given by the degree in x and y. If f E R, we can decompose f
as f =Ed 0 fi where fi is homogeneous of degree i in x and y. Also, f is
,S’3-invariant if and only if fi is invariant for each i.

LEMMA 1. - Let f E R be an S3-invariant function. Then there
exists a E C such that = 0 for all x and y.

Proof. - Since f is invariant, f 1 is also invariant. Let fi = p(a, b)x+
q(a, b)y. First consider invariance under the action of cr. Since x and y are
invariant under the action by ~, the polynomials p(a, b) and q(a, b) are in
C[V]~ _ C[a 3, b3, ab~ . In particular, p(a, a) and q(a, a) are in C [a2, a3].

Now invariance under the action of T means that

In particular, when a = b, one finds that p(a, a)(a3 + 1) = q(a, a)(1 - a2).
Dividing both sides of the equation by (1 + a), this yields

Now we put the two parts together to show that p(a, a) and q(a, a)
must have a common zero. The equation (1) implies that 1 - a divides
p(a, a). However, since p(a, a) a 3], it must have a root 1.

Then using again equation (1) we see that q(cx, a) - 0, and the lemma is
proven. 0

THEOREM 1. - The action of ,S’3 on E is algebraically non-
linearizable.

Proof. Let L c V be the line defined by a = b, and consider its
inverse image 7r’~(L) ~ C3. Note that (a - b) is a semi-invariant of T,
and thus T acts on 7r-1 (L). This action is linearizable. Indeed consider the
isomorphism cp : 7r - 1 (L) - C3 given by (a, a, x, y) ~--3 (a, s, t) where

and

The map p is an isomorphism since ( 1 _/i _ 2B ) = 20132. Ae map cp IS an isomorp Ism Since ( 1 + a (i +a+ a ) == - .

short calculation shows that p is equivariant with respect to the action of
T where r(a) = a, 7(S) = s and 7(t) = -t. Note that s and t can also be
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considered as elements of R, but they are only semi-invariants of T modulo

(a - b).
Now consider the fixed point sets ES3 C Er C 7r’~(L) ~ c3. One

sees easily that Es3 is a line isomorphic to C in ET , which is isomorphic
to c2. For a subset Z C E, denote by I(Z) the vanishing ideal in R of
polynomials which are identically zero on Z. We have that

and

Define R := C[E"] = R/ (a - b, t) = C[a, s~ , where for a polynomial h E R,
h denotes its class in R. The image I C R of the ideal is an ideal

generated by a.

Now suppose that the ,5’3-action on E were linearizable. Then it

would be isomorphic to the action on the tangent space at the origin.
Thus E would be equivariantly isomorphic to V EB C ® where C is

the one-dimensional trivial representation and Csign is the one-dimensional
signature representation. This means that R = C [a, b, x, y] = 
where Cu EB V as 53-representations, f is invariant and g is semi-
invariant. Therefore, we would have that

and

This means that the ideal I C l~ would be generated by u. Hence, we have
that u is a non-zero multiple of a. Therefore,

Thus f = q§ + r(a) where q is a non-zero constant and r is a

polynomial of one variable. Lifting back to R, we have

for some m, n E R. Then it follows that the linear part fi satisfies

because s and t are homogeneous of degree 1, and a - b and r(a) are
homogeneous of degree 0.

In particular, mo E C [a, b], and therefore

for q = C [a]. It follows from Lemma 1 that there exists a E C
with f1(a,a) = 0. But this is impossible, since s(a) and t (a) are linearly
independent functions in C[x, y] and -y 0.
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Thus the action is not linearizable, and the theorem is proven. D

Remark 1. - The first attempt to prove Theorem 1 was to show
that R has no invariant variable. A variable of R is a polynomial f such
that R = ~ ~ f , gl , g2, 93~ for some polynomials gi, and the 
is called a system of variables of R. What we showed was that there is no
invariant variable contained in any system of variables corresponding to
a linear action; it is still unclear whether the invariant ring of the above
action contains any other variable f. If so, then the action restricted to
the zero set of f is an action of ,S3 on C3 , and this action could be non-
linearizable. Thus, the question of whether there is an invariant variable is
of interest.

3. Equivariant vector bundles.

It is clear that Theorem 1 implies that the equivariant ,S3-vector
bundle E -~ V is non-trivial. But actually, Lemma 1 implies a stronger
result:

PROPOSITION 1. - Let Then

~r-1 (X ) -~ X is a non-trivial S3-vector bundle.

Proof. - Since X is invariant, the restriction of 7r to Tr~(~) 2013~ ~
is an equivariant ,S’3-vector bundle. If it were trivial, it would have to be

isomorphic to X x (C EB (Csign) because the fiber over 0 is the representation
C (B Csign* Thus it would have a subbundle isomorphic to X x Csign. This
subbundle would be defined by an invariant function of which is

linear on the fiber. In other words, it would be the restriction of a linear
function fi = p(a, b)x + q(a, b)y to ~(~r-1 (X )). But Lemma 1 implies that
there is a value a E C such that 0. Thus the entire fiber of

(0,0) E X would be in the zero set of f 1. This contradicts the assumption
that fi defines a rank one subbundle. 11

In fact, the idea of the proof of Theorem 1 is to show that non-

triviality of the bundle over X implies non-linearity of the action on
E. None of the arguments cited in the introduction which compare the

triviality of vector bundles and linearity of the action on the total space
can be used precisely as stated for the example given here. However, we use
an idea of the proof of a result of Masuda and Petrie (Lemma 5.1 of [MP]).
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We show that if cp were an equivariant isomorphism of E to V x i

then we can assume that Sp fixes X in the zero section of the two bundles. If

one knew that p preserved the bundle over X, one could then show that the
normal derivative of p gives an isomorphism to the trivial 63-vector bundle.
However, one cannot be sure that cp does in fact preserve the bundles over
X, and thus the argument in [MP] must be modified.

Using methods developed by Mederer in [Med], one can study the set
of all equivariant S3-vector bundles over V and over X whose fiber over
the fixed point is isomorphic to C EB Csign. In fact, one can show that this is
the only non-linearizable action of S3 on C4 coming from a vector bundle
over V with the given zero fiber, which is non-trivializable when restricted
to X.

Remark 2. - It has been shown that all analytic equivariant vector
bundles over a representation space of a reductive group are trivial [HK].
In particular, this means that the given action is analytically linearizable.
For the action of Section 2, this can be seen directly, and the difference
between the analytic and algebraic categories becomes clear. To see this,
note that Lemma 1 is not true in the analytic category, because one can
choose p(a, a) = (1 - a) ea and q(a,a) = ( 1 - a -+- CL2 ) ea . One can show
that this extends to a system of analytic generators. This gives an analytic
linearization of the action with u = a, v = b, and

where P = for

and d = ab. Note that the coefficients in the matrix P are all analytic on
(c2.

It is also known that any equivariant vector bundle over a representa-
tion space of a reductive group is stably trivial This means that there

exists a representation space W such that the Whitney sum of 8w and the
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given bundle is trivial, where 8w denotes the trivial bundle V x ~F 2013~ V.
In our case we have:

PROPOSITION 2. - The Whitney sum E EB 8v is a trivial ,S’3-vector
bundle. In particular, the S3-action on E x V is trivial.

This result was known by Schwarz [Sch], but we will give an explicit
isomorphism.

Proof. The isomorphism
by

is given

and its inverse is

This proves that the ,S’3-vector bundle E e Ov is trivial. D

However, as we shall show in the next section, E x C’ is

non-linearizable for all non-negative n and m.

4. Generalization to affine spaces of higher dimension.

THEOREM 2. - For any pair of non-negative integers n and m, the
S3-action on E x (Cn x is non-linearizable.

COROLLARY 1. - For any integer N &#x3E; 4 there exist non-linearizable
actions of ,S’3 on eN.

The fact that the statement of Theorem 2 holds for n = 0 can actually
be proven just as in Section 2, because the fixed point sets are identical.
This is enough to prove Corollary 1. However, the theorem implies more
than that. Since E is the total space of an equivariant vector bundle, we
know that there exists a G-module W such that E x W is linearizable. A

direct consequence of Theorem 2 and Proposition 2 is:



141

COROLLARY 2. - If W is a G-module, then E x W is linearizable
if and only if W contains V as a submodule.

The proof of Theorem 2 is similar to the proof of Theorem l, but the
notation is a bit more involved.

Proof of Theorem 2. - Let zl , ... , zn be the coordinates of C’~ and

w1, ... , wm be the coordinates of Denote by E’ the S3-variety E’ :=
E x C’~ x CsTlgn, and by R’ : = C[E’] = 
The projection 7r’ : E’ ~ V given by (a, b, x, y, ZI i ... zn, WI,... , 
(a, b) defines the structure of an S3-vector bundle. As before, ,5’3 preserves
the grading defined by the degree in x, y, zl , ... , zn and 1~1,..., Define

s and t as in equation (2), this time considering them as elements of R’.

The vanishing ideals of the fixed point sets of T and of ,S’3 are given
by

Denote by
of I in R’.

and by I the image

If the ,S’3-action on E’ were linearizable, then the ring .R’ could be ex-
pressed as R’ = C [u, v, fo , ... , f n , go , ... , gm ~ , where the f i’s are invariants,
the gi’s are semi-invariants whose weight is the signature character of S3,
and Cu e Cv ~ V as 53-representations. Thus we would have

J=(U-V,9o,.-.,9m) and I = J + (u) .
In particular, R’ would be Clu fo, ... , fn~, and ~c would be a non-zero

constant multiple of a. We would have that

This shows that the map 0 : (Cn+2 ~ cn+2 defined ~~i,..., Zn) -
(a, fo, ... , fn) is an automorphism. For i = 1, ... , n denote the linear part
of f by

with pi, qi, rij and fik polynomials in C[a, b]. Using equation (2), we find
that for i = 1,..., n, the linear part of fi is given by
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By calculating the Jacobian of 0 on the line ~(a, 0, ... , 0) 1 a E C}, one
finds that the deteminant of the matrix

is a non-zero constant 6.

As in the proof of Lemma 1, since fil is invariant for all i, we find
that pi (a, a), qi (a, a) and rij (a, a) a3] , for all i, j and 1~ and that

for all i.

By multiplying the first column of A(a) by 1-a and applying equation
(3), we find that (1 - a)6 is the determinant of

But since all of the coefficients of B(a) are in C[a 2,a3], this is impossible.
Thus the action of ,S’3 on E’ is non-linearizable. This finishes the proof of
the theorem. 0

Remark 3. - Note that we may replace the underlying field C with
any field k of characteristic 0 containing 3 cube roots of unity, thus

obtaining a non-linearizable ,S’3-action on A’ for any n &#x3E; 4.
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