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MULTIPLE POINT SESHADRI CONSTANTS AND
THE DIMENSION OF ADJOINT LINEAR SERIES

by Oliver KUCHLE

1. Introduction.

Starting with and motivated in part by the famous Fujita conjectures,
there has been a lot of activity recently concerning effectivity statements
for ample or adjoint line bundles on smooth complex projective varieties,
most prominently Siu's effective version of the big Matsusaka Theorem and
various effective numerical criteria for freeness or very ampleness of adjoint
linear systems due to Demailly, Ein-Lazarsfeld, Kollar, Siu and others (cf.
[De] and the references therein).

Here, less ambitiously, the concept of multiple point Seshadri cons-
tants is used to obtain "effective" Riemann-Roch type estimates on the
number of sections in adjoint linear series. Namely, for a nef and big
divisor L on an n-dimensional smooth projective variety Y with canonical
divisor Ky^ by Riemann-Roch and vanishing the number of sections
/z°(y,Oy(J^y + rL)) for r > 0 is a polynomial of degree n with leading
coefficient L71 jn\ in r. Our "effective" version here (cf. Corollary 3.4) is,
that for any r > n2 > 9, the estimate

^°(y,(M^y+rL))>J^-l

holds. This, together with some variants concerning spanned line bundles,
surfaces and minimal n-folds of general type, follows from universal lower
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bounds for multiple point Seshadri constants at very general points which
are defined as follows.

Let L be a big and nef line bundle on an n-dimensional (irreducible)
complex projective variety X, and m an integer. For pairwise distinct
^i? • • • jXm € X define the multiple point Seshadri constant at a ; i , . . . , Xm
by

( T ^ • r ^Ce(L,x^,...,Xm) :=mf———7—-^,c ^ multa;, C
i

where the infimum is taken over all integral curves C with C D { r r i , . . . ,
Xm} ̂  0.

Another way of saying this is that e(L, a ; i , . . . , Xm) is the maximum
of all real numbers e such that

m

H=rL-e^E,
i=l

considered as an R-divisor is nef on the blow up /:B^^_^j(X) —^ X
of X along a;i,... ,a;yyi, where Ei denote the exceptional divisors. Since
nef divisors have non-negative self-intersection, this immediately gives the
upper bound

^/T^
£(L,a;i,...,a^) < —n='ym

It turns out that for m ^> 0 and very general points this bound is asymp-
totically sharp.

Here by very general points we mean that (a;i , . . . , Xm) is outside the
union of countably many proper subvarieties of X x - - ' x X, and by general
that (a;i , . . . , Xm) is outside a Zariski closed subset.

Write for short e(L^n^m) for the multiple point Seshadri constant of
L at m very general points. Note that, by the open nature of ampleness,
the multiple point Seshadri constants at general and very general points
are related in the following way: for any 6 > 0 one has

e{L, rri,..., Xm) > e{L, n,m) -6

for general points x\,... ,Xm (cf. [EKL], Lemma 1.4 for the precise argu-
ment).

It is convenient to state our result in terms of the 1-point constant
£(L, n, 1) at a very general point of X. The main result of [EKL] was to
establish the lower bound ^(L, n, 1) > 1/n for arbitrary X. It is conjectured
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that even e{L, n, 1) > 1 might be true. Here we prove with an elementary
argument:

THEOREM 1.1. — Let L be a nef and big line bundle on an n-
dimensional complex-projective variety X and m > 2 an integer. Then

( T \^ • I ( T ^ ^Ln ^^(m-l)71-1}e(L,n,m) > mm< e{L,n, 1), ———, -v——v———/—— \.

Acknowledgements. — The idea of this paper grew out of the
authors joint work with Lawrence Ein and Robert Lazarsfeld on local
positivity of ample line bundles (cf. [EKL]). I would like to thank them and
Andreas Steffens for valuable conversation about the subject, and Geng Xu
for pointing out an inconsistency in an earlier version.

2. Proof of Theorem 1.1.

2.1. — The first part of the proof is along the lines of [EKL]. To
begin with we remark that there is no loss of generality in supposing that
X is in fact smooth. To see this choose a resolution

f : Y — — X

of singularities and consider the pullback L' = /*L instead of L. Finally
note that e(L, / (^ / i ) , . . . , f(y-m)) = e(V\ 2 /1 , . . . , ym) for any y\,...,ym such
that / is an isomorphism near the yi.

2.2. — Suppose the theorem is not true. Let X771 denote the m-fold
cartesian product ofX minus the diagonals. Then, as in [EKL], (3.3), (3.4),
the fact that, for any real number /3 > 0, the set of pairs

<1 (C, x) C C X an integral curve, x = (a - i , . . . , Xm) € X771,
m

/3-^mul t^G>(G-L)l
1=1

is parametrized by count ably many irreducible quasi-projective varieties
implies that there exist a 6 > 0 and a Zariski open U C X171 such that
for all x = (;TI, . . . ̂ Xm) € U there is an m-exceptional curve Cx based at
r c i , . . . , Xm, i.e. an integral curve satisfying

(1 - 6) Y^mult^ G, > max^ 1 . -2 m —— \(L' C^.
^ \£^n^)' ̂  ^(m-l^-ij' x )
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Fix such a 6 > 0. It then follows that there is an irreducible variety S
and an irreducible family C C X x S of integral curves together with a
dominant quasi-finite morphism g = (^ i , . . . ,^m) : S —^ X^ such that
the fibre Cs C X of C over s € S is an m-exceptional curve based at
9i(s),...,gm(s).

Such a family C will be called m-exceptional.

2.3. — Next we claim that there exists an integer m7, 2 < m' < m,
and an m'-exceptional family C' C X x S" of curves whose members C'g
pass through each of the gi(s), 1 < i < m', for every s G S".

To prove this start with the m-exceptional family C from (2.2). First
we can assume that, for sufficiently general s G 5, the curve Cg passes
at least through two of the gi(s)^ since otherwise we would obtain a
contradiction to the definition of ^(L,n, 1).

Observe that C and the graphs I\ of the gi are closed in X x S and
therefore also pr^I^ H C), where pr^ denotes the projection X x S —^ S.
Renumbering we then can assume that pr^(r^ D C) == S for j = 1,..., m',
in other words gj{s) e Cs for all s e S and such j, where 2 <, m' < m
by the above. Choosing an appropriate dense open subset S" C S we can
arrange gk{s) ^ Cs for k = m' + 1,.. . , m and all s e S " .

Now pick a subvariety S/ C 5"' such that g ' = (^i , . . . ,5w) : 5" —)>

X771 is quasi-finite. It remains to show that all curves of the resulting
family C' = C\xxS' are indeed m'-exceptional. But this follows from the
elementary observation that

(m'-l)71-1 f 1 (m-l)71-1!
——-———— > min s —, -———-—— >

(m') ~ \271' m71 J
for all positive integers n and all 2 < m' < m. The latter can be shown
by minimizing the real function f(a) = (a - l)71"1^71 in the real interval
[2,m].

2.4. — We proceed by proving that m-exceptional families C with
the property of (2.3) do not exist. The idea is to find an m-exceptional curve
of our family which intersects a given divisor in X having high multiplicity
at 771 — 1 points of the curve properly, and use the fact that in this case
the products of the multiplicities at the points of intersection give a lower
bound for the local intersection numbers.

To this end consider for i = 1,..., m the functions
s ̂  mult^(s)Cs.
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We claim that these have constant values TI on open dense subsets of S. This
can be proven e.g. by using the relative Samuel stratification (cf. [LeTe],
Theorem (4.15)) of the morphism C —^ S, which gives a finite partition of
C into locally closed subsets on which the relative Hilbert-Samuel functions
are constant. Restricting this stratification to the graphs 1̂  C C then gives
a partition of 1̂  into locally closed subsets on which the Hilbert-Samuel
functions of the local rings Oc^g^s) are constant, and this implies that the
multiplicities are also constant (cf. [Fu], §4.3). The arguments in [LeTe], §4
in fact show that s i—> mult^(s) Cs are Zariski upper-semicontinuous in 5'.

Therefore we can pick a general s' € S such that TI = mult^(s/) Cs' <
mult^(s) Cs for all i and s e S. Assume that 7*1 < r^ <, . . . < r^i.

2.5. — Recall that it is p71jn\ + o(p77') conditions to impose multi-
plicity at least p at a given point, and that different points impose inde-
pendent conditions; hence the theorem of Riemann-Roch shows that, for
k ^> 0, there exists a divisor D' € \kL\ having multiplicity at least

.. ^ k^L-{1-6)-

at p2(5 /),. . . ,^m(5 /)

2.6. — Finally put T := g-^^X.g^s'),... ,gm(s1)). Since g is quasi-
finite and the gi are dominant, T is of dimension dim(^i(T)) = dim(X).
Therefore the subfamily {Ct)teT consists of m-exceptional curves having at
least multiplicity TI at gi(t) = gz{s') for i = 2 , . . . ,m, and their first base
points gi(t),t € T are dense in X. In particular, we can find a t € T such
that Ct ^ D ' . But this gives a contradiction because of

k^/T^ rn

k^C,)=D^C,>{l-6)-———T,r,
^m^^

. .(m-l)A:^^
>. (1 - 6 p — — ) — — V mult̂ ,) Ct

m^/m — 1 ~^ ' '

which proves the theorem.

3. Applications.

We start with a supplementary result concerning surfaces. In case X
is a smooth projective surface Ein and Lazarsfeld proved that ^(A, x} >_\
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for an ample line bundle A off a countable subset of X (cf. [EL]). From this
one obtains easily:

LEMMA 3.1. — £(L,2,m) > 1 if and only if L2 > m.

Proof (Ein-Lazarsfeld). — Since we are only interested in very
general points the arguments given in [EL] in fact show that e(L, 2,1) ^ 1
holds for any nef and big line bundle L on a projective (possibly singular)
surface. Therefore, after blowing up X along a very general point via
the map fx : X' —> X with exceptional divisor E^ the line bundle
Lx = f^L - E^ is again nef with L2, = L2 - 1. Iterating this procedure
gives the desired result, n

One application of the concept of multiple point Seshadri constants
is to provide a fairly good estimate on the number of sections of adjoint
linear series.

PROPOSITION 3.2. — Let L be a nef and big line bundle on a
smooth projective variety X of dimension n > 2 and m > 2 an integer.
Then

h°{X^Ox(Kx+rL))^m

whenever

r > n • max< 1 2 m
e(L,n,lY ^/Zn'' ^/^(m-l)^

Proof. — Let / : Y —> X be the blowing up of X along m very
general points x^ , . . . , Xm with exceptional divisors E^ , . . . , Em- Since

m
H=f*L-s{L,n,m)^Ei

1=1
is nef and big if e{L, n, m)"- < L " ' / m , the same holds for

(r-—F"-——^}f^+—i-n——^(rL-e(L,n,m)YE-\\^ £(L,n,m)j" £(L,n,m)y v ' ' '^ ' j

if r >_ n/e(L, n, m). Then Kawamata-Viehweg vanishing gives

H\X,Ox(Kx + rL) ®I^ ® • • • ®I^)
m

=H\Y,OY(KY+rrL-n^Ei))=0
i=l
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if r > n/e(L, n, m), or r = n/e(L, n, m) and e{L, n, m)"' < 2/Vm. In other
words the linear series \Kx + rL| separates the points r r i , . . . ,Xm under
these conditions which are implied by Theorem 1.1 and our assumption. In
particular one obtains h°(X, Ox{Kx + rL)) > m. D

Remark 3.3. — Suppose L is a big line bundle on X which is
spanned. Since L is spanned, the complete linear series |L| induces a
morphism (p : X —^ Z c ^N which is generically finite because L is
big. Therefore any curve through a sufficiently general point is mapped
by (p onto a curve in Z. Fixing such a pair x € (7, we can choose a
hyperplane section H C Z through y(x) meeting (p(C) properly, and
this gives rise to x € D = ^H e \L\ meeting C properly. Therefore
L ' C > multr D- multr C > multa; G, and this shows e(L,n,l) > 1 for
spanned and big L.

COROLLARY 3.4. — Let X be a smooth complex protective variety
of dimension n > 2.

(1) Suppose L is nef, n > 3 and r > n2. Then

h^X^O^Kx+rL))^7^-^-!.

(2) Suppose L is spanned and L71 > (2n/(n + 1))". Then

h°(X^Ox(Kx + (n+ 1)L)) > L71 + 1.

(3) Suppose L is nef and X is a surface. Then

/i°(X,(9x(^x+2L))^L2-!.

Proof.

(1) This follows directly from Proposition 3.2 and the bound

^-^^
plus some elementary estimates. One has n" ^ (8n)"(8n— I)1"" for n ̂  3,
and therefore a first estimate h°(X, Ox^Kx+n^L)) >_ 8n. Then one proves

__m^__ / 1
(m-1)"-1 - V c-L^^^m

if m > en with a c > 8 by expanding (m/(m — I))71"1. Now given r > n2

we can determine the wanted m satisfying ^L71jn^ > ̂ /(m - I)72"1 as
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follows. We already know that m > 8n, so we can choose m to be the
largest integer satisfying

Tr71!/1
-——— > m.
8 n71 ~

(2) This follows from Proposition 3.2 and Remark 3.3.

(3) This follows in the same spirit from Lemma 3.1. D

Remark 3.5. — Let L be big and nef and X be smooth. According
to Corollary 3.4 the multiple point approach improves the estimate

h\X, Ox(Kx + n{n + s)L)) > (n + s}
\ n )

for the number of sections in adjoint linear series which was obtained in
[EKL] using the generation of s-jets at one very general point. However,
for L71 and r in a certain range it is possible to obtain better lower bounds
for h°{X,Ox(Kx + rL)) by interpolating between the two methods. For
example, if

1 2 mr > (n+ k) • max^
e(L,n,lY ^/Ln' ^/^(m-l)71-1 J 5

then as above one proves that \Kx +rL\ generates A-jets at m very general
points, in particular

^(X.Ox^x+rL^m.f71"^)
\ n /

for such r.

Finally we state a variant of Corollary 3.4 which gives estimates of
the dimension of some linear series on varieties with mild singularities.

PROPOSITION 3.6. — Let X be a n-dimensional normal projective
variety with at most log-terminal singularities, and r a positive integer such
that rKx is a nef and big C'artier-divisor (which is the case e.g. if X is a
minimal n-fold of general type and index r). Then, for all q> n2,

h°{X^Ox{qrKx)) ̂  ̂ ^^-[rKxT - 1.
o Ti

Sketch of proof (cf. also [EKL], (4.6)). — Let

f ' ' Y — > X
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be a resolution of singularities of X such that

^y+A=E/*JCx+P

with a fractional divisor A supported on a divisor with normal crossings
and P an integral effective /-exceptional divisor.

Now KY + A + {qr - l)f*Kx is numerically equivalent to an integral
divisor, and since

e((qr-l)rKx^^m)=qr-^e{r{rKx)^m)^

a variant of Proposition 3.2 using vanishing for Q-divisors implies that

/i°(y, OY(KY + A + (qr - l)/*^x)) = h\Y, Oy^rKx + P))
=h\X,Ox{qrKx))>m

whenever

. . f 1 2 m \qr — l > r n ' max< , __———-, —, — — — >.
[e{rKx,n,l) ^/(rKxV ^/(rKx^^m - I)71-1 J

Then the claim follows as in the proof of Corollary 3.4. D
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