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A STARK CONJECTURE "OVER Z" FOR ABELIAN
L-FUNCTIONS WITH MULTIPLE ZEROS

by Karl RUBIN

INTRODUCTION

In a series of papers [10], Stark developed a conjecture about the
values of Artin L- functions at s = 1, or equivalently (by the functional
equation) the first nonvanishing derivative at s = 0. In the final paper
Stark presented a refined conjecture ("over Z") for abelian L-functions
with simple zeros at s = 0, expressing the value of the derivative at s = 0
in terms of logarithms of global units.

In this paper we formulate an extension of this conjecture (in the
abelian case) which includes the case of L-functions with higher order zeros
at s = 0. The conjecture is stated in §2.1, and in §3 we prove several special
cases of it. In §4 we give examples to show that certain other seemingly
natural generalizations of Starts conjecture, including one given in [9], are
not true in general.

This work began as an attempt to understand the connection between
Stark-type conjectures and Euler systems of global units, in the sense of
Kolyvagin (see [8]). In §5 and §6 we develop this connection. For example,
we show that the conjecture of §2.1 is closely related to a Gras-type
conjecture equating the orders of the different eigenspaces of an ideal class
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group with the index of a special subgroup in an exterior power of a group
of global units (Corollary 5.4).

It is a pleasure to thank Adebisi Agboola, Ted Chinburg, Dick Gross,
Cristian Popescu, and John Tate for helpful conversations. The approach
we take in this paper is greatly influenced by Tate's book [11].

1. SETUP

1.1. General notation.

Fix a number field k and a finite abelian extension K of k. If w is a
place of K we write Kw for the completion of K at w and | \w '' K^j —>
R"^ U {0} for the absolute value normalized so that

( ±a (the usual absolute value) if Kw = R,
|aL = aa if K^ = C^

- ord(a)
Nw w if K^ is nonarchimedean

where Nw is the cardinality of the residue field of the finite place w.

Fix a finite set S of places of k containing all infinite places and all
places ramified in K / k , and a second finite set T of places of k, disjoint
from S. Define

• SK = {places of K lying above places in S}

• TK = {places of K lying above places in T}

• Os = {a C K : \a\^ < 1 for all w ^ SK}, the ^-integers of K

• US,T = {a € C^ : a = 1 (mod w) for all w C TK}

• AS,T is the '5j<-ray class group modulo TK\ the quotient of the group
of fractional ideals of Os prime to TK by the subgroup of principal
ideals with a generator congruent to 1 modulo all w € TK

• Ys = © Zw, the free abelian group on SK
weSK

• Xs = {]C a^ ^ YS '' S ̂  = 0}

• ^S,T '• US,T —^ X.5'0R is the map defined by A(a) == ^ — logdal-u^w
W(=.SK

• /Ay is the group of roots of unity in US,T

• Rs T is the absolute value of the determinant of \S,T with respect to
Z-bases of US,T/^T an^ ^ s '
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Note that these objects all depend on K, but except in §6, K will
generally remain fixed so we will suppress it from the notation. When
necessary we will refer to OK,S, UK,S,T, etc. If S is the set of infinite places
of k and T is empty, then Os, US,T, AS,T, and RS,T are the usual ring of
integers, unit group, ideal class group, and regulator of K^ respectively.

There is a natural exact sequence
(1) 0 - US,T - 0^ -> Q F^ AS,T - Pic(0s) - 0

W€TK
where F^ is the residue field of K at w. If we define

0?,r00 = n (1 - Np-5)-1 JJ (1 - Np1-5),
P^-SK P€TK

products over primes of K, then ordCs,T = #(Sj<) - 1 and

(2) hW-^)^) = -^^^

(see [4]).

Let G = Gal(J<7fc) and G = Hom(G, Cx). If v is a place of A; and w
is a place of K above v then we will write Gy or G-u; for the corresponding
decomposition group in G. If \ e G we define the modified Artin L-function
attached to \

LsA^X) = II(1 - x(^obp)Np-5)-1 {J(l - ̂ (Frobp)Npl-s)
^s per

where Frobp € G is the Frobenius of the (unramified) prime p.
For each \ e G there is an idempotent

ex=^)EX(7h-l

and following [11] we define the Stickelberger element
Qs,T(s) = QK/k,s,T{s) = ̂  e^Ls,T(s,x)

X^G
which we view as a C[G]-valued meromorphic function on C. If r > 0 and
^^Q^r^) is holomorphic at s = 0 we define

9^(0) = hm^-^rOO = ^e^hm^-^T^.x) C C[G].
X^G

If A; C ̂  C K ' and 5 C 5' then e^/^/,r is a C [Gal { K ' / k)}- valued mero-
morphic function and its image under the restriction map from Gol{K' / k )
to G satisfies
(3) @K'/^S^T{S)\K= Ft (l-F^obp-lNP-s)QK/^,^(5)

pes"-^
(see [11] Proposition IV. 1.8).
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1.2. Z[G]-modules.

Suppose M is a Z[G]-module. We will write QM, RM, and CM for
M (E) Q, M 0 R, and M 0 C, respectively. If r is a nonnegative integer
then /^M will denote the r-th exterior power of M in the category of
Z[G]-modules. In particular A°M = Z[G] and ^M = M.

If M' is another Z[G]-module then Hon^M^M') will mean the G-
equivariant homomorphisms from M to M'. We view Hom(M,M') as a
Z[G]-module by

(a</?)(m) = ip{am) = a^{m).

We will identify Hom(M,Z[G]) with a submodule of Hom(QM,Q[G]) in
the obvious way.

Every (p e Hom(M,Z[G]) induces a G-equivariant homomorphism
from ^M to ^-^M for all r > 1

r

m\ A • • • A my. \-> y^—l)^1^??^)??^! A • • • A m-^-i A m^-n • • • A mr
1=1

which we will also denote by </?. Iterating this construction gives a map

(4) ^k Hom(M, Z[G]) -> Hom(ArM, ^r~kM}

^l A • • • A (pk ̂  ^k ° ' • • ° ̂ l

for every k < r; when k = r this is the map

(<^i A • • • A <^r)(^i A • • • A rrir) = det(^(m^-)).

DEFINITION. — A Z[G]-lattice is a finitely-generated Z[G}-module
which is free as a Ti-module.

DEFINITION. — If M is a finitely generated Z[G}-module we define
its dual M* to be the Z[G]-lattice Hom(M,Z[G]) C Hom(QM,Q[G]).
Equivalently, M* is the orthogonal complement of M under the natural
pairing

QM x Hom(QM,Q[G]) -^ Q[G]/Z[G].

PROPOSITION 1.1.

(i) IfM is a Z[G] -lattice then there is a canonical isomorphism

M** = M.
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(ii) If

0 -> M1 -> M -^ M" -^ 0

is an exact sequence of Z[G] -lattices then so is

0 -^ (M")* -^ M* -^ (MQ* -. 0.

Proof. — If M is a Z[G]-lattice there is a canonical isomorphism of
abelian groups

Hom(M, Z[G]) ^ Homz(M, Z),

where Homz(M,Z) denotes the group of Z-homomorphisms from M to
Z (see for example [1] Proposition VI.3.4). Since a Z[G]-lattice is a free
Z-module, both assertions follow easily. D

DEFINITION . — Suppose M is a finitely generated Z [G] -module and
r is a nonnegative integer. Then using the natural map

(5) L : A^M*) -> (A^)*

coming from (4), we define

A^M = (^(A^M*)))* C QA'-M.

Equivalently,

A^M = {m € QAT'M : (( î A • • • A ^r){rn) € Z[G]

for every y?i,..., ̂  C Hom(M, Z[G])}.

PROPOSITION 1.2. — Suppose M is a Z[G}-lattice and r > 0. Let
T^M denote the image of /^M in Q^M and g = #(G).

(i) A^M D T^M and [A^M : ATM] is finite,

(ii) A5M=A7 'Mifr< 1,

(iii) Z[l/g]^M = Z[l/g\7^M.

Proof. — The first assertion follows easily from the definition of
A^M. If r = 0 then AgM = Z[G] = A°M and if r = 1 then A^M = M** =
M by Proposition 1.1 (i), which proves (ii).

For any Z[G]-module M

Z[l/g] Hom(M, Z[G]) = Hom(Z[l/^]M, Z[1/^][G]),
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so if L is as in (5),

Z[1/^]ASM = Z[l/g] Hom(i(A7' Hom(M, Z[G])), Z[G])
= Hom^A7' Hom(Z[l/^]M, Z[l/p][G])), Z[l/g}[G})
= A^Zll/^M
= Z[l/(7]7vX

the third equality because Z[l/g}M is a projective Z[l/^][G]-module. This
proves (iii). Q

-ExampJes.

(1) If M is a free Z[G]-module then A^M = T^M for every r.

(2) Suppose M == Z5 with trivial G-action, 5 > 0. Then for every
r > 0, ^rM = Z^) and it is ea^y to check that A^M = ^(G^T^M.
Thus if 1 < r < s, A^M is strictly larger than 77M.

(3) Suppose G is cyclic of odd prime power order j?71, I is the
augmentation ideal of Z[G], and M = I x • • • x I c ZIG]8. If a is a
generator of G then (o- — l^^M = pM. If k is the smallest integer greater
than or equal to (r — I)/(p — 1), one can show that

A^M D p-^a - ̂ -^^T^M D p^T^M.

COROLLARY 1.3. — Suppose M is a Z[G] -lattice and r > 1. If
^ e /\r~l Hom(M, Z[G]) then <1> induces a map

A^M -. M.

Proof. — The construction (4) shows that every <I>G A7'"1 Hom(M,
Z[G]) induces a map from Q^M to Q^M = QM, and it follows easily
from the definition of A^M and Proposition 1.2 (ii) that

^(A^M) C A^M = M. D

2. CONJECTURES

2.1. Statement of the conjectures.

Suppose S and T are as in §1.1 and r is a positive integer. Before
stating our conjectures we record some hypotheses on S, r, and r.
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HYPOTHESES 2.1. — S and T are disjoint finite sets of places ofk,
and r is a nonnegative integer, satisfying

2.1.1. S contains all the infinite places ofk,

2.1.2. S contains all places ramifying in K / k ,

2.1.3. S contains at least r places which split completely in K / k ,

2.1.4. # (5 )>r+ l ,

2.1.5. US,T is torsion-free.

Condition (2.1.5) means that there are no roots of unity in K con-
gruent to 1 modulo all primes in TK. In particular this will be satisfied if T
contains primes of two different residue characteristics or one prime of suf-
ficiently large norm. Conditions (2.1.3) and (2.1.4) ensure that s^Os^T^s)
is holomorphic at s == 0.

Write X^ : /^US.T -^ R^Xs for the map induced by A^r.

CONJECTURE A. — I f S , T, and r satisfy Hypotheses 2.1, then

eg^A^cQA^A^r) m R^XS.

CONJECTURE B. — I f S . T , and r satisfy Hypotheses 2.1, then

eg^A^CA^A^r) in R^Xs.

Recall V^ = Rom(Ys, Z[G]). There is a determinant pairing

^Xs x AT *̂ -^ Z[G]

and if 77 C ^Y^ we define a regulator map

Rrj : A^r ̂  R^Xs ^ R[G].

If w € SK define w* C V^ by

w*(w7) = y^ 7 for w' G SK-
'yw=W'

If 7 € Gw then 7w* = w*, so e^w* = 0 if \ is nontrivial on Gw-

LEMMA 2.2. — If u^,...,Ur G [/^T, wi,...,w^ G S'j< and 77 =
w^ A • • • A w,*!, then

^(m A • • . A Ur) = det(^ log \u]\^-^.
^G



40 KARL RUBIN

Proof. — By definition

R^ A • • • A Ur) = 77(A(ni) A — A \(ur)) = det(wJ(A(n,))),

and
^Wui))=w^( ̂  logH^w) = ̂  log 1^1 .̂7.

wes'K -YOG

This proves the assertion, since log |n^^. = log \zQ |^.. D

Write 1 for the trivial character of G. For every \ e G define a
nonnegative integer r(\) = r{\, S) by

(6) ^(x) = ̂ Ls^^^ X) = dime e^CX^ = dime e^C£/5,r

^ f # ( { ^ e 5 : x ( ^ ) = l } ) i f x ^ i
\#(S)-1 i f ^ = l

(see for example [11] Proposition 1.3.4). If 5', T, and r satisfy Hypotheses
2.1, then r(^) > r for every \ and we define a Z^-lattice AS,T =
^K,s,T,r C QA^t/^r by

A^,r = {^^US^T '' e^a == 0 in C^US.T for every ^e6
such that r(^) > r}.

CONJECTURE A'. — Suppose S, T, and r satisfy Hypotheses 2.1,
and v i , . . . , Vr C 6' split completely in K / k . For each i fix a place Wi of K
above Vi and let r] = w^ A • • • A w^.. Then there is a unique CST ^ QA^ r
such that

R^es^T) = 0^(0).

CONJECTURE B'. — With hypotheses as in Conjecture A7, there is
a unique es,T ^ ^S,T such that

R,{es,T) = 9^(0).

Remark. — Note that the CS,T of Conjectures A' and B' depends
(in a simple way) on the choice of rj, but the truth of the conjectures does
not.
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2.2. Relations among the various conjectures.

We first state the relations among Conjectures A, B, A', and B/ and
the conjectures of Stark and Tate in the literature. They will be proved in
the next section after some additional remarks.

PROPOSITION 2.3. — Conjecture A is equivalent to Stark's conjec-
ture "over Q" (Conjecture 1.5.1 of [11]) for the characters \ G G such that
r(x) = T.

PROPOSITION 2.4. — Conjecture A is equivalent to Conjecture A'
and Conjecture B is equivalent to Conjecture B'.

PROPOSITION 2.5. — Ifr =1 then Conjectures B and B' (for fixed
S and all appropriate T) are equivalent to the conjecture S t ( K / k , S) of [11]
§IV.2.

Remarks.

(1) A more obvious guess for Conjectures B and B' might be to replace
AS^S',T by the smaller lattice /^US.T- This turns out to be false; see §4.1.

(2) When r > 1, Conjecture B7 does not predict the existence of
particular units of K, as it does when r = 1. This is unfortunate but it
is to be expected, since all that the L-function gives in these cases is an
r x r regulator. However, one can use Conjecture B' to produce units in
the following way. If CS,T ^ A^r is the element predicted by Conjecture
B', then Corollary 1.3 and Hypothesis 2.1.5 give units <I>(^r) ^ US,T for
every $ e A7'-1 Hom(L^r, Z[G]). See §6.

2.3. Proofs of the relations.

Suppose S, r, and r satisfy Hypotheses 2.1. Fix ^i , . . . ,^ e S
splitting completely in K / k and for each % fix a place Wi of K above vi. Let

^K = {w e SK •' ^ does not lie above z » i , . . . , Vr}^

which is nonempty because of (2.1.4).

LEMMA 2.6. — Let w i , . . . , Wr be as above and let w € 6^.
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(i) Ifx ̂  1 or #(5) > r + 1, then e^9^(0)w = 0 in CY.

(ii) Let x = (wi - w) A • • • A (w^ - w) € A^. Then

e^^A-X = 9^(0)Z[G]x.

Proof. — If either \ ̂  1 or #(5) > r + 1, then by (6),

X(G^)=1^^9^(0)=0.

On the other hand, for every \

x(Gw) 7^ 1 ̂  e^w = 0.

This proves (i).

Clearly the left hand side of (i) contains the right hand side, so we
need only show the other inclusion. Any element of X can be written in
the form

r

(7) ^ai(wi-w)+ ^ /3^w'
i=l w'eS'^

where o't,^' £ Z[G1]. Thus any element y € f^X can be written

(8) y=ax+^/3ww
W

where a,/?w € Z[(7] and w runs over monomials w[ A • • • A w^ where at
least one of the w[ e S^. If \ ̂  1 or #(5') > r + 1 then by (i),

(9) e^Wy=e^(0)a^

Suppose now that \ = 1 and #(5) = r + 1. Then the second sum in (7) is
just a single term [3^w where e^f3^ = 0, and it follows that ei/^y = 0 for
each of the coefficients /3w m the sum in (8). Thus (9) holds in this case as
well, and (ii) follows. D

Proof of Proposition 2.3 (sketch). — Let 2 = {\ e G : r(^) = r}
and suppose that Conjecture 1.5.1 of [11] is true for the characters \ € 2.
Then there is a Q[G]-isomorphism / : QXs -2—^ QUs,T such that the
quantities

a(^, /) = hm̂  5-^^(0, x)l det(A^T o ̂ ),

where A^r ° f^ '• e^CXs —^ e^CXs is the restriction of \S,T ° /? satisfy

(10) a(x^f)-a^fr
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for every \ e 5 and every automorphism a of C. Define

P" ̂ ^^X./)-
xes

Since 2 is stable under Aut(C), (10) shows that p € Q[G]. From the
definition of the a(^, /) we see also that

^e^det(A^ro^)=e^(0).

Thus if x C f^Xs, and /(r) : Q^XS -^ QA^T denotes the map
induced by /,

e^(0)Arx = p ̂  e^ det(A.s,r o ./̂

= pE^ ° /^(^x) = pA(r)(/(r)(x)) e QA(r)(Ar^,T)

which proves Conjecture A. The converse is similar and (as we will not use
either direction) we omit it. D

LEMMA 2.7. — Suppose w i , . . . , W y are as above and set rj =
w ^ A ' - A w ^ € A^.

(i) 77 is mjectve on 0^0)0^ Xs = CA^A^r).

(ii) R^ is injective on CA^T.

(iii) J f u C C^US^T satisfies RrjW = 0 and e^u = 0 for every ^ € G
such that r(^) > r, then u = 0.

Proof. — Suppose \^G and r(^)=r. Then by (6), dimc{e^CXs)=r
andsodimc(e^Ar'CX5•) = l . I fw C S^ then 77(6^(^1— w)A- • •A(wy.-w)) =
e^, so 77 is injective on e^C/^Xs. This proves (i) and, since R^ = rj o A^
and X^ is an isomorphism from C/^US.T to CA^^X^, proves (ii) as well.

If u is as in (iii), then u G CA^r and so (ii) shows that u = 0. D

Proof of Proposition 2.4 (see Proposition IV.2.4 of [11]). — Fix 6',
T, and r satisfying Hypotheses 2.1, and let x be as in Lemma 2.6 (ii) for
some w € S^. Then

Q^W^Xs C A^(A^,T) ̂  e^(0)x € A^(A^,T)

^e^xeA^A^r)

^77(e^(0)x)e77oA^(A5,T)

^e^(0)e^(A^)
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where the equivalences come from Lemma 2.6 (ii), the injectivity of A^ on
Q^US^T, (1)5 and the relations R^ = r] o X^ and 7;(x) = 1, respectively.
This shows that Conjecture B is equivalent to Conjecture B', with the
uniqueness coming from Lemma 2.7 (iii). The proof that Conjectures A
and A7 are equivalent is the same, with A^jL^r replaced by QA^I/^T and
AS',T by QA^r. Q

Proof of Proposition 2.5. — Fix a set S satisfying Hypotheses (2.1.1)
through (2.1.4) with r == 1. By Lemma 1.2 (ii), Conjecture B' asserts that
Q^(0)Xs C \S,T{US,T) for all T satisfying (2.1.5). To get back and forth
between this statement and Conjecture IV.2.1 ofTate [II], use Proposition
IV. 1.2 of [11] and the relations

©&(o)=^(l-F^O^-lNC^)9£0(o)- Ti^-^o^^us^cus^T.D
qCT qCT

3. SPECIAL CASES

We will denote the equivalent Conjectures B and B' for a given S, T
and r by St(K/k^ S, T, r). In this section we prove St(K/k^ 5, T, r) in some
special cases.

3.1. S contains more than r places which split completely.

PROPOSITION 3.1. — Suppose S contains more than r places which
split completely in K / k . Then S t ( K / k , S, T, r) is true.

Proof (Compare [11] Proposition IV.3.1). — In this case (6) shows
that 6^6^(0) = 0 if \ + 1, so

9^(0) =^5-^,5,^1.

Write Ak = Afe,5,T and Rk = ^/c,5,r. If #(^) > r + 1 then 6^(0) = 0
and S t ( K / k ^ S ^ T , r ) is trivially true. Thus we may assume #{S) = r + 1,
and by (2)

Q%(0) = -#(A,)^ei == -^^R^G
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where NG? = ^7.
7GG

Fix a basis {u\,..., 14.} of the free Z-module Uk,s,T and define
#(Afc)^^G^iA-A^.

With 77 as in Conjecture B' (for any choice of { w i , . . . ,Wy.}) Lemma 2.2
shows that

^=±^^^^=±0^).

Also e e (QA^^^r)^ so e^e = 0 for ^ ̂  1.

To complete the proof we must verify that e € /\'oUK,s,T' In other
words, for every < ^ i , . . . , (pr € Hom(^^,r, Z[G]) we must show

(^i A ... A ̂ ) = ̂ (^ det(^(^.)) € Z[G].

For every % and j,
^(^^eZiGf^N^ZiG]

so det(^(^-)) e N^Z[G] = ^(^^^GZIG] and

(^iA...A^)(5)e^^Z[G].

Since #(5) = r+1, all places in S split completely in J^/A;. But S contains
all places ramifying in K / k , so K / k is everywhere unramified. Thus by
class field theory #(G) divides #(A/c), which completes the proof. D

Remarks.

(1) By Lemma 2.7 (iii), ±e is the unique element of Q^UK.S^T which
can satisfy Conjecture B'. It is not always true that e € /^UK.S.T (see §4.1),
which is why we state the conjectures with /^UK.S.T instead.

(2) By Proposition 3.1 we lose no generality in Conjectures B and B'
if we assume that 5' has exactly r places which split completely in K / k .

COROLLARY 3.2. — St(K/k, S, T, r) is true when K = k.

Proof. — Since we assume that #(S) > r + 1, this is immediate
from Proposition 3.1. D
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3.2. r == 0.
THEOREM 3.3. — St(K/k,S,T,0) is true.

Proof. — We have /\°Xs = Ag^r = Z[G], so Conjecture B is the
assertion that 9^r(0) G Z[G}.

If k is totally real, 65,7(0) € Z[G] by the theorem of Deligne and
Ribet [2]. If k is not totally real, then S has at least one (complex) place
which splits completely, and we are done by Proposition 3.1. D

3.3. Quadratic extensions.

Fix for this section 5, T, and r satisfying Hypotheses 2.1. We will
abbreviate Uk = Uk,s,T, UK = UK,S,T, Ak = Afc,5,r, AK = AK,S,T,
Rk = Rk,s,T, and RK = RK,S,T' Let HK = #(Aj<) and hj, = #(Afc).

LEMMA 3.4. — Suppose G is cyclic and S contains at least one
place v such that Gy = G. Then

(i) hk | hK,
(ii) #(H\G,UK))\hk,

(iii) if#(G) is a prime power and H°(G, UK) = H^G, UK) = 0 then
hK/hk is prime to #(G) if and only ifhk is prime to #(G).

Proof. — Write Hk and HK for the (5', T)-ray class fields of k and K,
respectively, so that class field theory give identifications Gal(Hk/k) = A^
and GQ].(HK/K) = AK' Since all primes in S split completely in Hk,
K D Hk = k. Thus the norm map AK —^ A^, which is the restriction map
GQI(HK/K) —> Gol^Hk/k)^ is surjective and (i) follows.

Comparing cohomology of units, ideals, principal ideals and ideal
classes of K gives an exact sequence (see for example [12] Corollary 2,
which must be adapted in our case to incorporate T)

(11) 0 ̂  H\G, UK) -^ Ak -. A^ ̂  7f°(G, UK).
This proves (ii).

Suppose now that H°(G,UK) = ̂ (G,^) = 0. Then (11) shows
that Afc ^ A^. If p divides both hk and #(G), then the cokernel of the
norm map A^ —^ A/c (which we can identify with multiplication by #(G)
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on Ak) also has order divisible by p. Since AK —^ Ak is surjective, it follows
t^p\(hK/hk)=#(AK/A^).

On the other hand, if hk is prime to #(G) then so is #(A^). But if
G is a p-group and p \ #(A^) then p \ HK- This completes the proof of
(iii). D

THEOREM 3.5. — I f K / k is a quadratic extension then St(K/k, S,
r, r) is true.

Proof (Compare [11] Theorem IV.5.4). — Let \ denote the nontriv-
ial character of G. If S contains more than r places which split completely
then the theorem is true by Proposition 3.1. Thus we can assume that S
contains exactly r places which split, and so ordL^r(s,^) = r.

s==0

Write S = {v^ , . . . , V r ' } where r ' > r and ^ i , . . . , Vr split completely in
K / k , and fix a Wi of K above each ̂ . Let Wi denote the conjugate of Wi for
1 < i < r. Fix a Z-basis { ^ i , . . . , Ur-^-r'-i} of UK such that { ^ i , . . . , Ur'-i}
is a basis of Uk- (This is possible because our hypothesis on T ensures that
UK, Uk, and UK/Uk are all torsion-free.) If H1^, UK) ^ 0 then we also
require that Nj</^/ = 1. With respect to this basis of UK and the places
{wr^-2,..., Wy./, ̂ i , . . . , Wy, w i , . . . , u>r} C 6^:, ^j< is the absolute value of
the determinant of the (r + r ' - 1) x (r + r' - 1) matrix (log \u\w) which
(since |̂ |̂ . = |̂ |̂ . for % < r ' - 1, j < r) has the form

( -Sl -̂ 2 ^2 \

\B^ B^ B ^ ) '
Thus

^ = =b del (Bi ^2) del (^5 - B^).

Because of the way we normalize our valuations, for 1 < i < r' — 1,
f loglu^ i f j ^ r

logKk.={2^|^ ^^^
so

del (^i ^2) = ±2r/-r'-l^.

Also, if e- = Ur' A • • • A Hy'+r-i e A7"^ and 77 = w^ A • • • A w^ as in
Conjecture B', then by Lemma 2.2

e^(£-)=det(B5-B4)e^.
Using the fact that C^,5,T(5) = Cfc,5,r(5)2.^r(5,^), using (2) for the two
zeta functions, and replacing u^ by u^1 if necessary to correct the sign, we
conclude that

exQSr(O) = 2r'-r-l(/^/^)e^„(£_).
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Case I: r ' > r + 1.
^)_<W _ , ..(r)In this case o^d^r > r, so ©^(0) = ̂ 9^(0). Define

^/ix/W'-7-1^-,

so R^(e) = 0^(0). Also e € ^UK by Lemma 3.4 (i), and clearly e^e = 0
so £ € A^T. Thus Conjecture B' is satisfied with 6:5^ = £ '

Case I I : r' = r + 1.

Choose zl i , . . . ,'Uy G L^< so that {N^/^n} is a basis for ^K/kUp C
£7fc. If H°{G,UK) 7^ 0 then we also require that ui belongs to Ujc. Let
£+ = ili A • • - A Ur € / ^ U K ' Then (replacing HI by n^1 if necessary)

ei^(£+) = -[£/fc : N^^]^ei

so by (2)
ei6^(0) = ̂ /#(^°(G,^))ei^(^).

In this case define

e = hk/#{H°(G, UK))e^ + ̂ /^e^- e QA^K.

Then ^(^) = 6^(0), and in this case AS,T = A^^. Thus we will be
done if we show that e is in the image of I^UK m Q^UK-

Since r ' = r + 1, UK has a submodule of finite index which is free of
rank r over Z[G]. Thus the Herbrand quotient shows that #(H°(G, UK)) =
^^(G,^)). Suppose first that H°{G,UK) + 0. Then our choice of
Ur' and u\ ensures that e\e^. = £+ and e^e- = e- in Q^UK' Thus by
Lemma 3.4

e = hk/#{H\G, UK))£^ + hK/hk£- € A"^.

Now suppose H°{G^UK) === 0. It follows that UK is a free, rank-r
Z[G]-module (see [13] Theorem 4.19), so {ur^... ,n^+r-i} is a Z[G]-basis
of UK and e\e- = rLei^. In this case we have

£ = (hK/hke^ ± hkez)e-,

which belongs to ^UK because hK/hk ±hk lies in 2Z[G] by Lemma 3.4. D

Remark. — Note that the proof of Theorem 3.5 shows that CS,T €
^UK, not just that CST ^ A^y.
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3.4. Changing S.
PROPOSITION 3.6. — Suppose (S, T, r) satisfies Hypotheses 2.1 and

6" D S is a finite set of places ofk disjoint from T. Then (5", T, r) satisfies
Hypotheses 2.1 and

St(K/k,S,T,r) ̂  St(^/fc,5',r,r).

Proof (Compare [11] Proposition IV.3.4). — That (6", T, r) satisfies
Hypotheses 2.1 is immediate. By (3),

Q^TW= II (l-Frob^e^O).
ves"-^

It is easy to check that f"[ (1 —Frob^A^r C A^r, and using Lemma
ve^-^

2.6 (ii) the proposition follows. D

4. (COUNTER)EXAMPLES

In this section we give examples showing that certain other plausible
extensions of Stark's conjecture are not true in general.

4.1. All places in S split completely.

We first construct K, k, 5', T, and r satisfying Hypotheses 2.1 such
that Q^W^XS (jL A^A^r). Write Aj, for the ideal class group of k
and for a prime p define

g? =dim^Ak/pAk.

Suppose that k and p are chosen so that g? > 3 and fJbp (Zt k. Let K be the
everywhere unramified extension of k such that G = Gal(K/k) is identified
with Ak/pAk by class field theory; since K / k is a p-extension ji (Zt K as
well.

Choose primes q i , . . . , q n of /c, n ^ 1, whose classes generate pA^.
Choose primes q^+i , . . . , q^ of K of degree 1 whose classes generate the
ideal class group of K^ and let q^ be the prime of k below q^ for n < i <^ m.
Define

5' = {infinite places of k} U { q i , . . . , q^}
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and let T be a finite set of places, disjoint from 6', satisfying Hypothesis
2.1.5, such that every q' G TK satisfies p \ Nq' - 1 (possible since p, ^ K).
Define r = #(S) - 1.

LEMMA 4.1.

(i) S, T, and r satisfy Hypotheses 2.1,

(ii) [0^ : UK^ [O^s •' Uk^r}, and #(A^T)/#(Pic(C^)) are
all prime to p,

(iii) ord(#(A^r)) = 9p,

(iv) ord([Uk,s,T : 'NK/kUK,s,T}) = 9p(9p - 1)/2.

Proof. — The first assertion is immediate, and the second follows
from (1) by our assumption on T. All places in S split completely in K / k ,
so the subgroup of A^ generated by the classes of the q^ is contained in,
and hence equal to, pAj,. Therefore Pic(0k,s) = Ak/pAk, so (iii) follows
from (ii).

By our choice of S, PIC(OK,S) = 0. It follows from a theorem of Tate
([11] Theorem 11.5.1) that for every integer z,

^(G.O^^^-^G,^).

Since all places in S split completely in K / k , Ys is free of rank r + 1 over
Z[<7] so the exact sequence

O-^XS-^YS-^Z^O

shows that H^G.Xs) ̂  H^^G, Z) for every i. Thus

^s/^K/kO^s = H\G^) = H-^G^Xs)
= H-3^^) ̂  (Z/pZ)^^-1)/2,

the last equality because .H^^G, Z) ^ A^ (exterior power as a Z-module;
see [1] Theorem V.6.4) and G ̂  (Z/pZ)^. Now (iv) follows from (ii). D

PROPOSITION 4.2. — With k, K, S, T, and r as above,

9^(0)ArX5^A^(Ar£/^,^).

Proof. — Write S = [vo,..., Vr} and rj = w^ A • • • A w^ C V^, where
for each z, Wi is a place of K above Vi. Then rf^Xs) = Z[G], so by (2)

em^W^Xs) = ei6^(0)Z[G] = -W^Rk^T^.
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On the other hand, if HI, . . . , Ur 6 UK,S,T then by Lemma 2.2

ei^A^ni A — A Ur)) = ei det(log |Nn^.)

so
ei^A^A^^r)) C [^^,r : N^/^,5,r]^,5,rZei.

Thus by Lemma 4.1, since gp > 3, eiG^^A^ (Z; ClA^A^^r). 0

4.2. Sands9 conjecture.

The example of §4.1 is also a counterexample to Conjecture 2.0 of
Sands [9]. There are also counterexamples of a different sort to Sands5

conjecture, coming from the fact that when #(5) > r + 1 that conjecture
requires S^-units rather than S'-units, where 6" C S is the subset of primes
which split completely. The following example shows this is not always
possible.

Let k = Q(V2) and K = k^)^, the real subfield of A-(^). Then K
is a degree 2 subfield of Q^gg)4", G = Gol^K/k) is cyclic of order 3, and
K / k ramifies only at the two primes p7,p7 above 7. Let S = {w,w,py ,p7}
where w, w are the two infinite places of A;, and define rj = w* Aw* e A2!^.
For notational convenience we will take T to be the empty set. Write OK
for the maximal order of K^ so 0^ is the group of global units, not the
S- units.

Fix \ € G,\ -^ 1. In this situation, Conjecture 2.0 of Sands in [9]
predicts that there are units ^1,^2 C 0^ such that

(12) L's^X)e^ € Z[l/2][G]e^(m A^).

We will show that this cannot be the case.

Define
^56 = NQ(^)/^(1-<56),

£7 = NQ(^)/Q(^)+(I - €7),

^8=NQ(^)/fe(l-C8)

where C,n is a primitive n-th root of unity, and the group of cyclotomic units
ofK

CK = Z[G]e^ + Z[G]% + Z(l - r)es C C^.

Here Z[G]° denotes the augmentation ideal (the ideal of elements of degree
0) of Z[G] and T the nontrivial automorphism of fc/Q. For convenience we
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write the action of Z[G] on 0^ additively. The class number of QO^)+ is
1 (see [6]), so the analytic class number formula (see §2 of [3]) shows that
[O^K '• °K\ is a power of 2.

Classical formulas for Dirichlet L-iunctions (see for example [11]
§111.5), together with the factorization of L{\,s) into a product of two
Dirichlet L-functions shows that

e^R^ A £56) = 42^1/^(0, x)

with z = ±7 for some 7 C G (by choosing ^7 and ^e and ordering wi,W2
carefully we could have ensured that z = 1).

Suppose ^1,^2 € 0^. Then ni,^ C Z[1/2]C^ so for z = 1,2 we can
write

Ui = 0^56 + (3i£7 + 7^8

with a, € Z[1/2][G], ft e Z[1/2][G]°, and 7, e Z[l/2](l - r). Then

e^(m AH2) = ^det (^ ^ ̂ (^A^e) e ^Z[l/2][G]°L^(0,x).

Since [e^Z[G] : e^Z[G]°] = 3, it is impossible for (12) to be satisfied.

Remark. — Notice that this problem disappears if we allow u\,u^ e
0^. In fact one can show that St(K/k, S, T, 2) is true for appropriate sets
r.

5. CONNECTIONS WITH IDEAL CLASS GROUPS

In this section K and T will be fixed but S will vary, so we will
abbreviate Us = US,T, As = A^r, and es = es,T, the element of Q^Us
predicted by Conjecture A'.

5.1. Changing S.

Suppose S, T, and r satisfy Hypotheses 2.1, and vi , . . . ,^ e S
split completely in K / k . Suppose further that z^+i, • • . ,'^r' ^ S U T
also split completely in K / k and define 5" = S U {z^+i , . . . ,z^/}. For
1 <, i <, r' fix a place u>i of K above ^ and let rj = w^ A • • • A w^ € A"^,
^' = '<+i A • • • A w^ A 77 C A^Y^,. (Hopefully without confusion we will
view y^ c y^/ in the obvious way.)
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There is an exact sequence
T'

(13) 0 -^ Us -^ Us' -^ (9 Z[G]wi -. A^/ -^ 0
z=r+l

where the center map sends an element of Us' to its O^-ideal and As.s' is
the subgroup of As generated by the primes above z^+i, • • • 5 V r ' - We have
the Z [(^-lattices As = A^r,r C Q^Us and A^ = A^^r7 C Q^Us'
defined as in §2.1.

For w € S^ nonarchimedean define w : Us' —^ Z[G] by

(14) w(u) = ̂ ord^"1^,
-yCG

i.e. w = \og('Nw)~lw* o \S,T' Let <I> == Wr-\-\ A • • • A Wy./ € A7'7"7' Hom(£/^/,
Z[G]). Then

r'

(15) ^/ = JJ log(N^)^ o ̂ .
z=r+l

If M is a finitely-generated Z[G']-module then Fitt(M) will denote its
Fitting ideal in Z[G] (everything we need about Fitting ideals, including
the definition, can be found in the Appendix of [7]). Write g = ^(G).

LEMMA 5.1. — If we identify Q^Us with its image in Q^US' via
the inclusion of Us in U s ' , the map <I> : Q^'US' —^ Q^US' satisfies

(i) <I> is injective on A s ' ,

(ii) Z[l/g]<S>(As') = Z[l/^]Fitt(A^/)A^

(iii) WAs') = QAs,

(iv) Fitt(A5,5')A5 C <S>(As') C As.

Proof. — Assertion (i) follows from Lemma 2.7 (ii) and (15).
r'

Let M denote the image of Us' in @ 7i[G]wi under (13) and
z=r+l

$' = w^i A • . • A w;/ € ^ ' - r Hom(M, Z[G]).
By definition of the Fitting ideal,

^'(A^M) = Fitt(A^5/) C Z[G].
Tensoring (13) with Z[l/^] gives a short exact sequence

0 -. Z[l/g}Us -^ Z[l/g}Us' -^ Z[1/^]M -^ 0
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which splits because Z[1/^][G] is semisimple, so we can find M C Us'
such that Z[l/g]M maps isomorphically to Z[l/g]M and Z[l/g\Us' =
^/9\Us e Z[l/g\M. Then

r'
Z[l/g}^Us' = (3) Z[l/p]A^ ̂  A^-M.

z=0

If z > r then (E>(A^ (g) A^-'M) == 0, and if i < r then Z[l/p] /\rf~i M = 0,
so

^(Zll/pJA^^) = Ztl/^A^-^A^

= Zll/^^A^-^A^
^Z[\/g\V^{As^)^Us.

Thus by Lemma 1.2 (hi), ^^[l/g^Us') = Z[l/^]Fitt(A^)A^. By
(13) and (6) we also have

r(x^f)=r{x^)+rf-r
for every \ G G, so this proves (ii). Since #(A^/) is finite, [Z[G] :
Fitt(A5'^/)] is finite and (iii) follows as well.

Now to prove ^(A^/) C As it is enough to show that if a € /^Us'
and <^i , . . . ,^ C Hom(£/.s,Z[G]) then (y?i A • • • A ^)(^(a)) G Z[G].
By Proposition 1.1 (ii) and (13), each (p is the restriction of a y/ e
Hom(£/^, Z[G]), and then

((^i A • . • A ^r)(^(o0) = (w^+i A • • • A Wr' A (/)[ A • • • A ^)(a) € Z[G]
by definition of A^ U s ' '

Suppose A € Fitt(A^5'/)A^, i.e.

A=^^(m,)A,
i

with mi €. A7' "^M and \i € A^-. For each i lift m^ to an element u^ of
/\r'-rjj^^ under (13). Then $(^u^ A A^) = A, and it is not difficult to see
that each u^ A \i € A^/, so A 6 <I>(A^/). This completes the proof of (iv). D

PROPOSITION 5.2. — Conjecture A' is true for (S'.r.r,^) if and
only if it is true for (5", T, r', 77'). If these both hold then

£5 = ̂ (^/).

Proof. — By (3)
r

©SrW = Ft log(N^)6^(0).
i=r+l
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Thus lies' € QA^ and R n ' ( e s ' ) = ©^(O), then ^ ( e s ' ) € QA^ by Lemma
5.1 (iii) and R^(es')) = 6^(0) by (15).

Conversely suppose es € QA^ and Rn(es) = Q^O). By Lemma
5.1 (iii) there is an element e s ' e QAs' satisfying ^ ( e s ' ) = £5, and we see
again that R^ ( e s ' ) = Q^T (°) • D

THEOREM 5.3. — Suppose Conjecture A' holds for S, T, r, and rj
(or equivalently for S^ T, r', and rf), so we have es C QA^ and e s ' € QAs'.
Then

(i) e s ' € A^ =^> £5 € A^,

(ii) e s ' C Z[1/^]A^ ̂  £5 e Z[l/p]Fitt(A5,^)A^,

(iii) £5 C Fitt(A^5-/)A5' => e s ' C A^/.

Proof. — These assertions are all immediate from Proposition 5.2
and Lemma 5.1. D

COROLLARY 5.4. — Suppose Conjecture A' holds for S, T, r, and
rj. Then the following are equivalent:

(i) For every 5" = S U {^r+i? • • • 5 V r ' } where ^r+i? . - " , V r ' ^ S UT
split completely in K / k ,

es' CZ[l/g}As'.

(ii) es e Z[l/g}Fitt(As)As.

(iii) Z[l/g][G]es = Z[l/^]Fitt(A^.

Proof.

(i) =^ (ii) Choose primes 1^+15 • • - ? ̂ r' ^ S'UT, splitting completely
in -^/fc, so that the classes of the primes of K above them generate As
(they can be chosen to split completely because every ideal class contains
infinitely many primes of degree 1). Set S" = S U { z ^ r + i , . . . , Vr'}- Then in
particular As,s' = As. Applying Theorem 5.3 (ii) shows that (i) implies (ii).

(ii) => (i) Suppose 5" is as in (i). Since As,s' C As and Z[1/^][G]
is a direct sum of Dedekind domains, Z[l/^]Fitt(A^) c Z[l/g]Fitt(As,s')-
Thus Theorem 5.3 (ii) shows (ii) implies (i).
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(ii) => (hi) Define

er= ^ e^€Z[lMG]
rW=r

and D = ey.Z[l/^][G]. Then Z[l/g]As = DAs, D = CD, with Dedekind
domains J9^ and DiAs is a torsion-free rank-one -D^-module for every i.
Therefore

[Z[l/g}As : Z[l/g]¥itt{As)As} = [D : D¥itt(As)] = #(erZ[l/g]As).

On the other hand, a standard combinatorial argument using formula (2)
for the zeta functions of all fields between k and K (see §5 of [8]) yields an
"analytic class number formula"

#{erZ[l/g}As) = [Z[l/g}e^Us : Z[l/g][G}es}

which is equal to [Z[l/^]A,s : Z[I/^][G]£^] by Proposition 1.2 (hi). Thus
(ii) implies (iii). Since (iii) clearly implies (ii) this completes the proof of
the corollary. D

COROLLARY 5.5. — Suppose k = Q. Then Conjecture B is true
"up to primes dividing #(G)77, i.e. es € Z[l/g]As for every S.

Proof. — First suppose K is real. By Proposition 3.1 and Corollary
3.2 we may assume that K ^ Q and that S contains exactly r places
{^i = oo, ̂ 2 , . . . , Vr} which split completely. Let So = S — { ^ 2 , . . . , Vr}.

By §5, Chapter III of [II], St(K/Q, So, T, 1) is true with a cyclotomic
unit^o-ByTheoremlof§1.10of[7],^o ^ Z[l/g}Fitt{As,)As, (the "Gras
conjecture"). Thus St(K/k, 5, T, r) follows from Corollary 5.4 in this case.

If K is imaginary, the proof is similar, beginning with So = S — {v €
S : v splits completely in K/Q} and using St(^/Q, So, T, 0) and Theorem
2, §1.10 of [7]. D

Remark. — Corollary 5.4 says that the "prime-to- #(G) part" of
Conjecture B is essentially equivalent to a Gras-type conjecture. For primes
dividing #(G) the situation is more subtle. For example, it is not at all
obvious that the full Conjecture B is true when K = Q.
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6. EULER SYSTEMS

6.1. Notation.

Fix for this section a totally real field k and let r = [k : Q]. Fix also
a finite set T of primes of k containing at least one prime not dividing 2.

We will compare the elements £K,S,T € A^j^r predicted by
Conjecture B' as K varies through totally real abelian extensions of k and
S through suitable sets of places of k.

Let /Coo denote the set of pairs {K, S) where K is a totally real, finite
abelian extension of k and S is a set of places of k such that 5, r, r, and K
satisfy Hypotheses 2.1. We will write {K1', S") C {K, S) if both K' C K and
S" C S. We will keep T fixed and we write UK,S = UK,S,TI ^K,S = ̂ K,S,T-

Remark. — If K is a totally real abelian extension of A;, the r infinite
places of k split completely and the only roots of unity in K are ±1, so 5,
T, r, and K satisfy Hypotheses 2.1 if and only if S is disjoint from T and S
contains the infinite places, the places ramifying in K / k , and at least one
finite place.

For every totally real, finite abelian extension K of k define

• GK = Gal(^/fc),

• ^ K / F = E 7eZ[G^] if k c F c K ^
7CGal(X/^)

• Frobq is the Frobenius of q in GK if q is a prime of k unramified in K.

For each infinite place Vi of A;, 1 < i < r, fix an extension Wz of Vi to k
and write w^j< for the restriction of Wi to K. Suppose for this section that
the conjecture S t ( K / k , S , T ^ r ) is true for every ( K ^ S ) 6 /Coo, and write
SK,S ^ ^K,S fo1' the corresponding element satisfying the conjecture with
the choice {WI,K, ... ,Wy,K}- If ^ 6 /\r~l Hom(L^.s-, Z[Gj<]) then we will
write £K,S,<S> = ^(^,5) € ̂ ^ for the 5-unit given by Corollary 1.3 (see
remark (2) at the end of §2.2).

If {K^S) C {K,S) e /Coo then the norm element N^/^/ € Z[Gj<]
induces a map

N^, : ^UK,S -^ ^UK^S-
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6.2. Relations.

PROPOSITION 6.1. — Suppose (JT, S ' ) c (K, S) e ^oo. Then

^ K / K ^ K , S = fl (1 ~ Frobq-1)^^ in QA^/^.
qes-s'

Proof. — Write 77 = w^ A — A w^ and r ] ' = u^, A • • • A w^,.
Then the following diagram commutes:

^UK,S AJ^ RA^^^ ^ R[G^]
^ K / K ' I I res ^ res

^(r-)

A^^/^ ^ RA^^/^ ^ R[^/]

inci T ^ inci f
^(r)

A^^/,^ ^/ R^XK'^ ^ R[G^]

where 'res' and 'inci5 denote the maps induced by restriction and inclusion,
respectively. Thus by (3)

^(^K/K^K,S) = R^e^s)\K' = e^^(0)|^

= n (l-Fro^-l)Q^(o)
qes-s'

=R^( IJ (1-FYob,-1)^,^).
q^S-S'

Further, if ^ e GK' C G^ and r(^, 5") > r, then r(^, 5) > r so
^NX/X^^^ = 0. The proposition now follows from Lemma 2.7 (ii). D

Suppose (JT, S") C {K, S) e /Coo. Then there is a map

N K / K ' : Hom(^,Z[G^]) ̂  Hom(£7^^/,Z[G^])

induced by the inclusion map UK^S' ̂  ^^(X/K/) and the isomorphism
yr^ iGaHJC/J^) _^ yr^ i ,,.
^[^K\ ——> L[GK'\, ^ K / K 1 ̂  1.

If S = S" one checks easily that for (p e Hom([/j<^, Z[G^]) the following
diagram commutes:

UK,S -^ Z[GK}
(16) NK/K / i i restriction

^-,5 N '̂ Z[G^].



A GENERALIZED STARK CONJECTURE "OVER Z" 59

If w is a finite place of K let w : UK,S —^ ^[GK\ be the map defined
by (14). Let Z[C?]° denote the augmentation ideal of Z[C?] and 5oo the set
of infinite places of k.

PROPOSITION 6.2. — Suppose ( K , S ) e /Coo and

^CA^Hom^^ZtGx]).

(i) If #{S) > r + 1 then CK^ e ̂ ^.

(ii) If #(S) = r + 1 and a e Z[G]° then o^,^ C ^x,^.

(iii) Suppose further that (K^ S ' ) € /Coo, (JT,^) C (^,6'), and let
^ ' = ̂ K^ e Ar-l Hom(£7^.^, Z[G^]). Then

N^/K^^,5,$ = f][ (1 - Frob^^^^,^,^.
qes-s'

Proof (Compare [11] IV.2.2, IV.2.4, and IV.3.5). — By Corollary
1-3, £K,S,<S> ^ UK,S- Suppose v € S — 600 and w is a place of K above v.
If r(^, S) > r then e^w(^5^) = w{e^eK,s^) = 0 since eK,s,<s> € Aj^. If
r(^, S) = r and ^ 7^ 1 then by (6), \ is nontrivial on Gy and so e^w = 0.
Thus e^w(eK,s,^) = 0 unless \ = 1 and r(l, 5) = r, which proves (i) and
(ii).

By (16) and Proposition 6.1,

JJ (1 - FYob,-1)^^) = ^ ( ^ K / K ^ K , S ) = ̂ (N^^^,5)
qeS-S'

which is (iii). D

COROLLARY 6.3. — Suppose /C C /Coo and
e>e lim A^Hom^^ZiG^]),

(K,s)eK;

inverse Jimit wi'tA respect to the maps N^/^,. Then for every (K'^S') C
(^5)e/C,

N^/j<^j<,5,$ = F[ (1 - Frobq"1)^^^.
qe^-s"

Proof. — This is immediate from Proposition 6.2. D

Remark. — Corollary 6.3 says that for each
^e lim A^Hom^^Z^]),

(K,S)EIC
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the elements eK,s,<s> predicted by Conjecture B' form an Euler system in
the sense of Kolyvagin (see [8]). Of course, this says nothing unless one can
find a $ such that these units are nontrivial.

6.3. Example.

Fix k, r, and T as above, and fix also an odd rational prime p. Define
/C C /Coo by

/C = {{K, S) € /Coo '' K / k is unramified above p,
S contains no primes above p}.

For each finite extension K of k let VK denote the units congruent to 1
modulo the primes above p in K<S)Qp. The following result is due to Krasner
[5] (note that if K is totally real then K contains no p-th roots of unity
since p > 2).

THEOREM 6.4 (Krasner). — I f K / k is a finite extension, unramified
at primes above p, and K is totally real, then VK is a free Zp[GK} -module
of rank r.

COROLLARY 6.5. — With notation as above,

(i) Inn Hom(y^ Zp[GK]) is free of rank r over Inn Zp[Gj<],
(K,S)C)C (K,S)€IC

(ii) for every K/ the projection map

Inn Hom(Y^, Zp[Gj<]) ̂  Hom(V^, Zp[G^/])
(K,S)GK:

is surjective.

Proof. — Immediate from Theorem 6.4. D

For (K, S) C 1C define

UK,S = {u e UK,S '' e^u = 0 for all \ e GK such that r{\, S) > r}.

Since S contains no primes above p, UK,S ^ Zp maps canonically to VK so
there is a natural map

Inn Hom(y^Zp[G^])^ lim Hom(^,Zp[G^]).
(K,S)6K: (K,S)€)C
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Thus for every ^ e lim A7'"1 Hom(yK,Zp[Gj<]) and every (K,S) e K,
(K,s)e)c

we get, as in the previous section,

^K,S^ ^ ZpUK,s'

(In fact EK,S,<S> ^ UK,S ^ Zp since CK,S € ^ K , S ' ) The following proposition
says that for such a <I> these CK,S,<S> form an Euler system (see [8]).

PROPOSITION 6.6.

(i) If

^ € lim A^Hon^.Z^G^]) and (^1,^1) C (K^S^) € /C
(K,5)€K:

then

^K^/K^K^s^^ = 11 (1 - Frobq"1)^^^
qe5'2-5'i

in ZpUK^s^

(ii) If (J^7,5') e /C and the map L ,̂̂  ̂  Zp ̂  Vj</ is injective, then

{CK^S'^ : ̂  € lim A7'-1 Hom(V^ Zp[G^])}
(J<-,S)GAC

js a subgroup of finite index in Z p U K ^ s ' '

Proof. — The first assertion is just Corollary 6.3 with Z[Gj<]
replaced by Zp[C?j<], and the proof is the same.

Fix (K^ 5") e JC. It follows from Theorem 6.4 and Corollary 6.5 that

{^(v) : v C A^/,^ e lim A^Hom^Z^G^])}^^.
(K,S)€K:

Define
er= Y, ^eQ[G^].

^(X,^)^

Then by (6), ^UK^S' is free of rank r over CrQ[G^]. If ZpUK^s' -^ VK'
is injective, then comparing ranks it follows that QpUjK^s' ^ GrQpVK^ so
finally

{^(u) : u e ^ZpUK'^^ € lim A^^om^.ZpiG^])}
(X,S)(=/C

has finite index in ZpUK^s'- Also Q^UK^S' is free of rank 1 over CyQ[G^/],
and since C^CK'S' ¥• 0 for every \ with r(^,S') = r, QA^^^/ =
Q[Gj</]^j</^/. Combining these facts proves (ii). D
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Remark. — The argument of the proof of Proposition 6.2 shows
that UK,S C UK,S^ (the global units) if #(S) > r + 1 and otherwise
'Zi[G}°U'K,s C UK,SOO- Thus the injectivity hypothesis of Proposition 6.6 (ii)
follows from a form of Leopoldt's conjecture.
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