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ON CONTINUOUS FUNCTIONS WITH
NO UNILATERAL DERIVATIVES

by Masayoshi HATA

1. Introduction.

It is known that A. S. Besicovitch in 1925 gave the first example of
a continuous function B(x) which has nowhere a unilateral derivative
finite or infinite by geometrical process. E. D. Pepper[9] has examined
this same function B(x), giving a different exposition. The graph of his
function is illustrated in Figure 1. Later, A. N. Singh [12, 13] gave the
arithmetical definition of B(x) and constructed an infinite class of such
non-differentiable functions. On the other hand, A. P. Morse [8] gave
an example of a continuous function f(x) satisfying
lim inf y—(si:’; ) < fim sup [/

s xE soxt S—X

respectively, for every x € (0,1), by arithmetical process.

It seems, however, that their methods are somewhat complicated
and inappropriate to the study concerning further properties of such
functions. In the present paper we shall develop a simple but powerful
method to construct and analyze such singular functions by using
certain one-dimensional dynamical systems.

The difficulties of finding such functions may be explained by the
fact that the set of functions which have nowhere a unilateral derivative
finite or infinite is of only the first category in the space of continuous
functions (S. Saks [11]), while the set of functions which have nowhere
a finite unilateral derivative is of the second category (S. Banach [1],
S. Mazurkiewicz [7] and V. Jarnik [5]).

Key-words : Non-differentiable functions - Knot points - Functional equations.



44 MASAYOSHI HATA

-

Fig. 1.

2. Main Result.

To state our main theorem, we need some definitions and notations.
We denote, as usual, the upper and lower derivatives at x of a real-
valued function f(x) on the right by D*f(x), D.f(x) respectively.
Similarly the upper and lower derivatives, on the left, are denoted by
D~f(x), D_f(x) respectively. A point x is said to be a knot point of
f(x) provided that

D*f(x) = D f(x) = and D,f(x) =D_f(x)= — .

The set of knot points of f(x) is denoted by Knot (f). For a measurable
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set E, we denote by |E| the Lebesgue measure of E. Our theorem can
now be stated as follows :

THEOREM 2.1. — For any a€([0,1) and €€ (0,1), there exists a
continuous function V,.(x) defined on the unit interval I sayisfying the
following properties :

(1) Wy (x) has nowhere a unilateral derivative finite or infinite ;
(2) 1Knot (Vo) = o;
(3) Vo,c(x) satisfies Holder’s condition of order 1 — e.

Remark. — K. M. Garg [3] has shown that the set of knot points
of Besicovitch’s function is of measure zero. He also showed that, for
every continuous function defined on 7 which has nowhere a unilateral
derivative finite or infinite, the set of points at which the upper
derivative on one side is + oo, the lower derivative on the other side
is — oo, and the other two derivatives are finite and equal has a
positive measure in every subinterval of 7; therefore the constant a in
our theorem can not be taken to be 1. Note that the set Knot (f) is
of the second category if f(x) is a continuous function which has
nowhere a finite or infinite derivative (W.H. Young [14]).

As a corollary, we have immediately

CoOROLLARY 2.2. — For any a€[0,2n) and € €(0,1), there exists an
absolutely convergent cosine Fourier series

0

Wool¥) = Y ay.ncCO8 nx

n=0
satisfying the following properties :

(1) W,.(x) has nowhere a unilateral derivative finite or infinite;
(2) IKHOt (\Pu,sI[O,ZR])[ =,

(3) Y lageq*n** < .

n=1

For the proof of Theorem 2.1, we shall introduce a symbol space
in section 3 and certain functional equations in section 4. The fundamental
properties of the solution are investigated in sections 5 and 6. We then
prove Theorem 2.1 in section 7 using Cantor sets of positive measure.
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3. Preliminaries.
We first divide the unit interval I into m subintervals

11 = [co’clla 12 = [61"32], ’Im = [cm—lacm]

where 0 = ¢y < ¢; < ¢y < -+ < ¢, =1, m > 2 and define the address
A(x) of a point x € I by setting A(x) = jforc;_; < x <¢;,1<j<m
and A(c,) = m. Let g;(x) be a strictly monotone, either increasing or
decreasing, continuous function defined on the subinterval ; such that
gi(I;) = Ifor 1 <j < m. Define the sign ¢; to be either + 1 or — 1
according as g; is monotone increasing or monotone decreasing on I;.
We assume, in addition, that g,(x) and g,(x) are monotone increasing ;
so g =g, = + 1. '

Let £ = {1,2,...,m}N be the one-sided symbol space endowed with
the metric

dw,2) = ¥ 27"w,—z,] for w=(w,), z=()€eX.
=1

It is known that ¥ is a totally disconnected compact metric space. Let
G(x) = gqm(x) for brevity. Note that the function G:I — I is not
necessarily continuous. We then define the itinerary v(x) of a point
x € I by setting

v(x) = (Ap(x),A;(x),...,4,(x),...)

where 4,(x) = A(G"(x)) for n > 0. Put e, = {0,1} and define the set

e,+1 inductively by setting e,., = {0<x<1;G(x)ee,} for n>0.

Obviously # e, = m" " '(m—1) for n > 1. Let e = U e,. Then it is
n=0

easily verified that the set of discontinuity points of v is precisely equal

to the set e — ¢,.

Put Ay = {v(x);x €ey}. For N > 1, let Ay be the set of words
w = (w,) € L such that either w, =1 for n > N, wy # 1 or w, = m
for n > N, wy # m. Let A= () A,. Then it is easily seen that for

n=0

Xx € e — e, there exist the limits

lim v(x+¢g) = (Ady(x£),4;(x%),...)

e-0%
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in A — A, respectively. Note that v(x) is equal to either v(x+) or
v(x—). Thus the set A, consists of the following 2m"~!(m—1) distinct
words :

{vixt+);x €e,} + {v(x—);x €e,}
for n 2 1. Therefore we have A = A, + £, + X_, where
T, ={v(x+)x€ee—ey} and Z_ = {v(x—);x € e—ey}.

We assume further that each function h; =g;':I1 -1, is a
contraction ; namely the Lipschitz constant

hj(x)" hj(y)

Lip (h)) = sup =y

x#y el

satisfies Lip (h;) < 1. Let y = max Lip (h;) € [1/m,1). We then define

1<j<m

the mapping p: X — I by setting

p(w) = lim h,, oh,, o0 ---oh, (] for w= (w,)eZX.
Clearly p is continuous. Then it follows that X = p(X) is a compact
subset of I and satisfies the following equality :

X=h@X)0hX)u - Lh(X).

It is known that the above equation possesses a unique non-empty
compact solution [4, p.384]; thus we have u(X) = X = I, since
hi() = I; for 1 <j < m. It also follows that the set e is a dense
subset of I; therefore the mapping v is one to one.

Let S,= () e for n>1 and let
o<j<n

H,.(y) = hAo(x) o hAl(x) ©---0 hA,,_l(x)(y)

for n>1 and x, yel. Obviously H,, is a contraction satisfying
Lip (H,,) < Y". We first consider an arbitrary point x € ] — e. Put
K,.= M(I”) for n > 1. Since K, , is the connected component of
I — S, containing x and |K, .| < y", we have

lim K, , = x;

n—oo

that is, pov(x) = x. Thus v maps I — e homeomorphically onto
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v(I—e). We next consider an arbitrary point xeey, N> 1. Put
Ki, = H,,.() for n> N, respectively. Since KX, are the two
consecutive connected components of I — S, such that the left end
point of K, , is x and the right end point of K, is also x, we have
limK;,=1lmK,,=x;

n—oo n—o

sO pov(x) =pov(xx) = x. Similarly we can define K, and K,
for n > 1; thus pov(0) = 0 and pov(l) = 1. Then we have

LemMmA 3.1. — v(I—e) = X — A; namely, w = (w,) e v(I—e) if and
only if

#{n=lw,#1} = 0o = # {(n=1;w,#m}.

Proof. — Suppose that w = v(x) e A for some x €l — e. Since v
is one to one, we have v(I—e) nv(e) = ¢ ; thus we X, + X_. Hence
there exists yee — e, such that either w = v(y+) or w= v(y—).
Therefore x = pov(x) = p(w) = pov(y=x) = y. This contradiction im-
plies that Anv(I—e) = ¢; that is, v(I—e) ¢ £ — A. Thus it suffices
to show that X — A < v(I—e).

Suppose now that there exists a word w = (w,) € X — A such that
wé¢v(l—e). Put z = (z,) = vou(w). Then it follows that w # z. For
otherwise, we have p(w) € e ; thus, we v(e) = A, contrarytowe X — A.
Let N > 1 be the smallest integer such that wy # zy. Since
u(w) = povopw) = u(z), it follows that

hyy o hyy, © -+ =hy0h, 0---, sayp.
Then we have pee; and w, zeAy, contrary to weX — A. This

completes the proof. O

4. Functional Equations.

Let f;: I > I be a contraction for 1 <j < m. We assume that
¢o = 0 and c,, = 1 are unique fixed points of f; (x) and f,,(x) respectively.
The following lemma is a special case of the general theorem obtained
by the author [4, p. 397], but we include the proof for completeness.
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LemMA 4.1. — The functional equations

@1 Vv = f(¥(Ex)) for xel,1<j<m

possess a unique continuous solution Y (x) if and only if

Mﬁ~%uﬁ)=&<kﬂ”> for  1<j<m-—1.

2 2
Remark. — This is a generalization of the theorem obtained by
G. de Rham [10]; indeed he has shown that the equations
x 1+x
M(§> = Fo(M(x)), M(T) = F,(M(x)) for xel

possess a unique continuous solution M(x) if and only if F,(py) = Fo(p,)
where p,, p; are unique fixed points of the contractions F,, F,
respectively. Lebesgue’s singular functions and Polya’s space-filling curves
satisfy the above equations for certain affine contractions F, and F,.

Proof. — The conditions (4.2) are obviously necessary; thus it
suffices to show the sufficiency. Let # be the set of continuous functions
u(x) defined on I satisfying u(0) = 0 and u(1) = 1; obviously & is a
closed subset of the Banach space C([0,1]) with the usual uniform
norm. We now consider the following operator :

Tu(x) = fu@(G(x)).

Then it is easily seen that the conditions (4.2) imply that T(¥#) < & ;
moreover T is a contraction, since

| Tu—To|l < A max [u(G(x))—v(G(x))| < Mlu—vll,
xel

where A = max Lip (f})) €[1/m,1), for any u, ve #. Hence T has a

1<jsm
unique fixed point ¥ in & ; namely
V@) = e )  for gy <x<g, 1<j<m.

Obviously this equality holds also true for x = c;. This completes the
proof. O

For n > 1 and x, y € I, we define

Fox(y) = fagm © fagm©o - - © fA,,_l(x)()’)-
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The function F,, is a contraction satisfying Lip (F,,) <A". Put
B = max Lip (g;) € [m,c0]. Then we have

1<jsm

LemMma 4.2. — Suppose that {f;} satisfy the conditions (4.2). If
B < oo, then the continuous solution \s(x) satisfies Holder’s condition of
order log (1/\)/log B.

Proof. — Consider arbitrary two points x < y in I. Let N > 0 be
the smallest integer satisfying # {Sy.1n(x,y)} = 2. We now distinguish
two cases: (@) Sy n (x,y) = ¢; (b) Sy (x,y) consists of a single
point, say p. In case (a), it follows that

W)=Yyl = aligi Wx+e) =y (y—e)l
= Eljfﬂ | Fy,x+ (WG (x+€)) = Fy o (WG (y—€))| < AV.

Similarly we have |y (x)—V(y)| < 2A¥ in case (b), since
x,p) N Sy = (p,y) 0 Sy = ¢. Now let s <t be any two consecutive
points of ey,,; contained in (x,y). Then it follows that
|x—=y| > |s—t| = B~ thus

2 2
W)=Y < 20N = XB*‘"“’ <3 Ix—yl®

where & = log (1/0\)/log B, which obviously completes the proof. O

5. Some Properties.

The continuous solution Y(x) of the equations (4.1) is not necessarily
singular in general ; for example, if we take

. X _1
gj(x)=mx—]+1 and fj(x)=;+1m

for 1 <j < m, then obviously y(x) = x is a smooth solution of (4.1).
In this paper, to discuss the singularities of Y(x), we shall restrict
ourselves to the following case :

_ Jl_,|itl
(5.1) ej—1+2|:4] 2[4]
and
= e {2
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for 1 <j < m = 4k, where k is a positive integer ; so A = 1/2k. Then
it is easily seen that the functions {f;} satisfy the conditions (4.2);
therefore the equations (4.1) possess a unique continuous solution Y(x),
which depends only on the functions {g;} satisfying the conditions (5.1).
Let n; be the sign of the function f;; namely n; = (—1)U/% for
1 <j < 4k. For brevity, put

n—1 n—1
Sn,x = ]__l SAJ-(x) and nn,x = H nAj(x)
j=0 j=0

for n >1, xel.
Consider now an arbitrary point x € I — e. We define

Pinx = H,.(c)) for n>1, 0<j<4k.

Obviously p;, . # x. Since p;,, € G "(cj)) < e,4; for 1 <j <4k -1,
we have

G"(pjm) = ¢ for 1<j<4k-1.

The points p,,, and pg , . are two end points of K, . and do not
satisfy the above equality in general ; however,

lim G"(y) = ¢; for j=0, 4k.
Y=Pj,n,x
yeK,,’x

Note that 0 < [x—p;, .| <y" for any n > 1. Then we have

LemMMA 5.1. — Suppose that x € I — e. Then the points {p; , .} satisfy
the following properties :

1
(1) sign (x—pjnx) = &, sign {A,.(x)—j—i}’

@ V) = V(Pine) = 32 {WG"("))‘M"{J;]}

(2ky"
forn>1and 0 <j < 4k.
Proof. — Since p;, . = H,.(c;), we have

sign (X = pj,p,x) = sign {H, (G"(x))~ H, x(c))} = &, sign {G"(x)—¢;};
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thus the property (1) follows immediately. Since K, ., n S, = ¢,

Vi) = lim Q)= lim FL WG 0) = Fral¥()
vekus  veka

for 0 <j < 4k; hence

V(x) = V(@jnx) = Fas(W(G"(x)) — F, . (U(c)) ("2"7’;,,{\11(0"(@)—\1!(0,-)},

which obviously completes the proof. O

We now consider an arbitrary point x € ey, N = 1. Then it is
easily seen that, for 1 <j < 4k — 1, each of the sets K, contains
exactly one point of G7"(c;) < €,+1, Sy Gjpnx respectively. Obviously
ginx # x. Similarly we can define {q;,,} and {qj,} for n >0,
1 <j < 4k — 1. Note that 0 < [x—g}, .| < y" for any n > N. It also
follows that

1
lim G"(x+¢€) = = (1Fey )
0% 2 ’

for every n > N, respectively. We, of course, adopt the rule:
= Mo,o0+

€0,0+ = €g,1- = Mo,;- = 1. Then we have

LemmAa 5.2. — Suppose that xeey, N = 0. Then the points
{qji,n,x} Satisfy the following N

L1 -1y _1fj
V() = V(g = ?g'k’; {5(”8"'**)'_(_—)1—1[1]}

for n 2 N and 1 < j < 4k — 1, respectively.
Proof. — Since K;, n S, = ¢, we have

VG = V(@fna) = lim (Yt =g} =

B By (WG (+ ) = Fresa(W(e))) = 52 {%(lm,n)—w(c»}

for every n > N, respectively. This completes the proof. v O
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6. Singularities.

For any x # y e I, we define Ay (x,y) = (Y (x) — VU (»))/(x—y). Let
W be the set of points x € I at which A4,(x) =2 or 3 (mod4) for
infinitely many n ’s. Obviously W < I — e. First of all, we have

THEOREM 6.1. — Suppose that v < 1/2k. Then we have
D*Y(x) 20 > D.y(x) and  D*Y(x) — D.y(x) > 1/4k

respectively, for every x e W.

Proof. — We distinguish two cases (not exclusive) as follows :
Case A. A,(x) = 3 (mod 4) for infinitely many n’s.

Let 0 <n, < n, < .--- be the subsequence of integers such that
A,,(x) = 4N; + 3, where 0 < N; < k. From the functional equations
4. 1) we have
2N, + 1

SYG () S —— x

therefore {Y(x)—VY(P; )HY(X)—Y(P;,)} <0 by (2) of Lemma5.1,
where p;; = Pan;+jm.x for 0 <j<4. On the order hand, we have
sign (x— P; ;) = sign (x— P, ;) = &, , by (1) of LemmaS5.1. Since &, ,
changes the sign infinitely many times as i increases, it follows that
D*y(x) = 0 = D,y(x). It also follows that

@k) "

1 mo 1.
AV P+ AV P > 2 > 5 QD) >

2k

i, 1 ‘
therefore D*\y(x) — D, \(x) = 1/4k respectively, as required.

Case B. A,(x) = 2 (mod 4) for infinitely many n’s.

Let 0 <n; < n, < --- be the subsequence of integers such that
A,,i(x) = 4N; + 2, where 0 < N; < k. Since

M@y <FE,

it is easily seen that {y(x) — VY (P; o)} {V(x) — ¥(P; )} <0 and
W(x) = Y(P )} {V(x) — Y¥(P; 1)} <0. On the other hand, we have
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sign (x— P; o) = sign (x—P; ;) = sign (P; ,—x) = sign (P; 3—x) ; there-
fore D*Y(x) = 0 = D.V¥(x). Moreover,

Q™! 1 o 1
— > — > —
x—Prol 2k ZV > 5

AV (x, P; o)l + |AY(x, P; y)| >
The same estimate holds true if we replace P;,, P;; by P;,, P,
respectively ; thus D*{y(x) — D, V(x) = 1/4k respectively. This completes
the proof. O

Let W, « W be the set of points x € I at which A4,(x) =2 or 3
(mod 4) and A4,.,(x) =2 or 3 (mod4) for infinitely many n’s. Then
we have

THEOREM 6.2. — Suppose that vy < 1/2k. Then W, is contained in the
set Knot (/) except for a set of measure zero.

Proof. — We consider an arbitrary point x of W,. Let
0<n, <ny<-..- be the subsequence of integers such that
A, (x) = 4N; + &, and 4,,,,(x) = 4L; + ®;, where 0 < N;, L; < k and
2 <9§;, o; <3. Then it is easily seen that

2N, + 1 2L, + 2N+1 L;
% (2k)2 < Y(G"(x) < %2

therefore by (2) of Lemma 5.1,

n _ _ " N1 2L+ 1 _
xR~ W (PO} = WG W) = 71 > 50 = = > k2.
Similarly we have

" B _N+1 n L, 1
M 2O (P ¥ () = T = WG > +h>o

Therefore, since sign (x—P; o) = sign (P; 4 —x), it follows that

sign (A (x, P; o)) = sign (AV(x, P; 4))
and

BV P > CRE, AV Pl > o

Hence the set [D, y(x), D*y(x)] N [D_Y(x), D~ Y(x)] contains an interval
of length (2k)~2 by Theorem 6.1. Thus it follows from Denjoy’s theorem
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[2, p. 105] that except for a set of measure zero, every point of W, is
a knot point of Y(x). This completes the proof. O

For N > 0, let Yy be the set of points x € I at which A4,(x) =0
or 1 (mod4) for all n > N and A4y_,(x) = 2 or 3 (mod 4). Obviously
I— W= ) Y,. For brevity, put Y¥ = Y, n (I—e) for n > 0. Then

n=z0

the unit interval I is decomposed as follows :

I=W+e+ | Tr.

nz0

For n > 1, let 5, be the set of finite words (w,,...w,) of length n
such that 1 < w; < 4k and w; = 0 or 1 (mod4) for 1 <j < n. Then
we have

THEOREM 6.3. — Suppose that there exists a positive constant C,,
independent of n, satisfying

min |k, 0...0h, (D = Co(2k)™"

(wy...wp) €E,

for all n > 1. Suppose further that p < co. Then we have

1
+ — >
D*y(x) — D Y(x) = %
respectively, for every xe I — W.

Proof. — We distinguish two cases as follows :
Case A. x € Y} for some N > 0.

By Lemma 3.1, we have A4,(x) # 1 for infinitely many n’s. Let
N < ny < ny < .- be the subsequence of integers such that 4, (x) > 4.
Put Q; ; = pj .. for 0 <j < 2. Since

YEW) > o
and sign (x—Q;,,) = sign (x—Q; ;) = sign (Q; , —Qi,1) = &y,., We have
[AY(x, Qi 1) — AV(x, Qi) =

@)™ Y (G™(x)) {

1 } 1o |J@™ 1

— + > > .
x=Qi2 x— Qi Zk(?"Qi.l)I IX—Qi1l 2k
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On the other hand, it follows that

Ix=Qi0l > 1Q:1—Qiol =B

hape© - OhAni_l(x)ohl(I)| P

CoB™M(2k) ™™™ 71
therefore
\I'(G"‘ (X))

B N
Ql 0 <2k)

Since sign (x—Q; o) = &y, We conclude that either [D,{(x), D*{(x)]
or [D_VY(x), D™V¥(x)] contains an interval of length 1/2k according as
ey, = —lor +1.

|AY(x, ,0)| = (2k) ™™

It also follows from Lemma 3.1 that 4,(x) # 4k for infinitely many
n’s. Let N < n; < n, < ... be the subsequence of integers such that
An(x) < 4k — 3. Put R, ; = pgy—jn.x for 0 <j < 3. Since

2k -1
2k

V(G"(x) <

and sign (x—R; ;) = sign (x— R, 3) = sign (R; 3~ R; ;) = — &y, We have

AV (x, R; ;) — AV(x, R; 3)| =

2%—1 " 11 1|
@) { "’(G(»H ~Ri x—Ri,z}+2k(x—Ri,2)|2
(2k)~ni—1 i_
Ix—R; .1 2k

-nj+N-1

On the other hand, |[x—R;o| > R, ;— R ol = Cop~N(2k)

\v(G"'(x)) 1 _2k/B\"
- Rl 0 CO 2k
Since sign (x—R; o) = — €y, it follows that either [D.\y(x),D " (x)]

or [D_Y(x),D "Y(x)] contains an interval of length 1/2k according as
evx = t+ 1 or — 1. Hence D*y(x) — D,V(x) > 1/2k respectively.

; thus

|AY(x, Ry 0)| = (2k) ™

Case B. x € ey for some N > 0.

FOI' n > N’ let Q: = max {qr,n,x9 q;,n,x}’ Q; = min {ql—,n,:w q;,n,x}
and let R} = g5, . respectively. Then Q; < R, <x < RS < Q..
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Since sign (x— Q) = sign (@ — R}) = £ 1 respectively, it follows
from Lemma 5.2 that

‘A\V(X,R:) —A\II(X,Q:)! =

J @0t

o™ > x-08 7 W

gyt L 1,1
20T R X072k 0D
respectively. On the other hand, we have

[x—RX|> lK:+1vxl>B_N|hAN(xi) 0 0hy ey >CoB~N(2k) N1

N k)~ 2k (B
AR < S < E—(ﬁ) |

therefore

Hence D*VY(x) — D,Y(x) > 1/2k respectively. This completes the
proof. O

Let Y* = () Y* for brevity. Then we have
n=0

THEOREM 6.4. — Knot (Y)n Y* = ¢.

Proof. — We consider an arbitrary point x of Y% for some N > 0.
Let s, = ponx for n > N. Since sign (x—s,) = ey , is independent of
n > N, the sequence {s,} is monotone, either increasing or decreasing,
and converges to x. Note that s, = s,., if and only if 4,(x) = 1. Put
J, = [s4,8,+1] © K, for n > N. Then it is easily seen that

x5l = U Ja-

n=N

Since the function G"(x) maps K, , homeomorphically onto (0,1), we
have A,(x) > A,(y) for all y e J,. Therefore

V(G (X)) 2 f4,0(0) = jg;a)((x)llf,-ll Z V(@ () ;
thus "
T, Sigh (W0 =W (3)} = Ty, sign { Fy o (W(G" ()~ Fr o (W(G" (1))} =
sign {Y(G"(x))—VW(G"(y)} = 0.

By the continuity of {, we conclude that
Mw,xsign {Y(x)—Y(y)} =0  for every  ye[x,sy].

This means that x is not a knot point of Y(x). d
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7. Proof of Theorem 2.1.

First of all, for any integer k > 1 and positive numbers o, T, p
satisfying

(7.1) 2k(c+1) < 1 and cz=p,

we shall construct two Cantor sets E, = E,(k,0,7) and E, = E,(k,0,p).
The set Ey(k,0,7) is obtained from the unit interval I by a sequence
of deletions of open intervals known as middle thirds, as follows : First
divide I into k equal parts, say

1 12 k—1
11’1 = [O,E]s 11‘2 = I:E,E:Is ey Il.k = [ k ,1],

and remove from each closed interval I, ; the open interval U, ; centered
at (2j—1)/2k and of length 2o. We subdivide each of the 2k remaining
closed intervals into k equal parts, say I, ;, 1 < j < 2k?, ordered from
left to right, each of length (1—2kc)/(2k?). Then remove from each
closed interval 7, ; the middle open interval U, ; of length 2o71, leaving
the 4k? closed intervals, each of length (1—2kc—4k%ot)/(4k?). This
process is permitted to continue indefinitely. At the nth stage of
deletion, each length of the 2"~ 'k" open intervals U, ; is 201" !, and
therefore the measure of the union of the open intervals removed in
the entire sequence of removal operations is 2k /(1 —2kt). The set E,
is defined to be the closed set remaining ; thus

1 - 2k(c+1:).
1 — 2kt

We next define the set E,(k,c,p), which is slightly different from
E, defined above, as follows : First divide the unit interval 7 into k
equal parts, say

1 12 k—1
A R R

Then remove from each closed interval J, ; the two intervals

_ j—1 2j—1-2ko 2j—1+2ko j
vis= [ ). vy - (e 1],

|Eol =

k 2k 2k k

each of length (1—2ko)/2k. We subdivide each of the k remaining
closed intervals into 2k equal parts, say J,;, 1 <j < 2k*, ordered
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from left to right, each of length o/k. Then delete from each closed
interval J, ; the two intervals V3 ; of length p(1—2ko)/2k, leaving the
2k? middle closed intervals, each of length (c—p+2kop)/k. At the
nth stage of deletion, we have |V, ;| = p"~'(1—2ko)/2k ; therefore the
measure of the union of the removed intervals in the entire sequence
of removal operations is (1—2ko)/(1—2kp). The set E, is defined to
be the closed set remaining; thus

2k(c—p).

|Ey| = 1— 2kp

1-2k 1-2k
Note that the set E, is contained in [ il i ]

%k(1—p)’ 2k(1-p)

We now define the continuous function {,(x) = {y(k,0,T; x) by setting
Co(x) = .rdO(S) ds for 0<x<1,
0

where dy(s) = 1/2k if s € Ey(k,0,17) and dy(s) = T otherwise. We also
define the continuous function {,(x) = {,(k,0,p;x) by setting

Cl(x)=i—0'+ d,(s) ds for 0<x<1,
2k o

where d,(s) = 1/2k if s € E,(k,0,p) and d,(s) = p otherwise. Then it
is easily seen that (y(I) = [0,(1—2ko)/2k],(, (D) = [(1—2ko)/2k,1/2K]
and ((E) = E,nC() for i=0,1.

We next define, for 0 <i < k,

; (i 2i+1
g4i+1(x)=§61<x_i) for xel,,, = i’lz—k——o']a

i [2i+1  2i+1
8ai+2(x) = CII(X_E> for xely,, = 2k “0‘,7‘],

_fitl [2i+1 2i+1

ai+3(%) = C; 1<—k—*X) for xely.;= BT +0-:|,

2it1 [2i+1 | i+l
Gai+a(X) = Cc?l(x— 12k —O'> for xelyqa = le +O',l—7(—:|§

thus the unit interval / is divided into m = 4k subintervals I; = [c;-; c]].
We have [Ipiql = [Lyi4al = (1—-2ko)/2k and |lyo] = [l443] = ©.
Obviously the functions g;(x) satisfy the conditions (5.1) and we denote
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by V(k,o,7,p;x) the corresponding continuous solution of the equa-
tions (4.1).

It follows from Theorems 6.1 and 6.3 that y(k,o,7,p; x) has nowhere
a unilateral derivative finite or infinite for any integer k and positive
numbers o, T, p satisfying (7.1), since we have

and

— 1 — c p— ot —_— eee— -1 |E0|
Py @m0 b (D= G = =1~ @y T

for every finite word (w; ...w,) €E,.

Since the Cantor set E, is a unique compact subset of I satisfying
Ey = hi(Eg) U ha(Eg) U hs(Ep) L - -+ U hayu(Ey)

and since the mapping v maps Y¥ homeomorphically onto v(Y*)
follows that Y¥ = E,. On the other hand, for every xe W+ (] Y,

n>1

there exist n = n(x) and j = j(x) such that xeU, ;; thus E, = Y§ + e.
Therefore |Y3| = | E,|, since e is countable. Let Q, be the set of finite
words (w; ...w,) of length n such that 1 <w; <4k for 1 <j < n.

Then for any n > 0, the set Y. is decomposed as follows :

Y*, = U hy o+ oh, ohy(Y}).
Wy o) € Oy
jeQ1—Eq

On each interval Vi ;, for any (w,...w,)€eQ, and jeQ, — &,, the

function h,, o --- oh, oh;(x) is a linear contraction; more precisely
we have
d n+1-r(w).riw) J+
—(h, o---0h, oh)(x)|=0p T for xe Vi,
dx ™1 Wn o ¥
1< .
where r(w) = r(wy,...,w,) E Z (1+n,). Since Y§ AU, ;= ¢ for

all j, we have

(Vi =2kIYE] Y prtiTrIre) = ok | Eo|k(p+ D))"

(Wy...wy)€Q,
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Therefore it follows that

z d 1 - 2k(c+1)
¥ = *| = + +1)y'=—
| Y*| EOIY,,I | Eol 2kp|li‘o|n§0 (2k(p+1)) 1= 2k(p+7)
For N> 0, let Zy be the set of points x € I at which 4,(x) =2
or 3 (mod4) for all n > N and Ay_;(x) =0 or 1 (mod4). Put
Z=1|) 2Z,. Obviously Z < W, cI—e. Then it is easily seen

n=0

that the set Z, is a compact subset of I satisfying
Zy = hy(Zo) U h3(Zo) L he(Zo) U -+ U hy—1(Zy) ;

therefore Z, = E,. For any n > 0, the set Z,,, is decomposed as
follows :
Zpiy = U hy 0 ---0h, ohi(Zy).

(Wl.”wn)Eﬂn
JjeEq

On each open interval U, ;, for any (w,...w,)eQ, and jeZE,, the
function h, o ---oh, ohj(x)is a linear contraction such that

%(hw1 ©---0h, oh)(x)| = p" ™™ for xeU,;.

Since Z, N Vi ;= ¢ for all j, we have

| Zyr 1] = 2k|Z,| Z prrMgltrW = okt | E, |2k (p+ )" ;
Wy ... wp) €Q,

therefore

1ZI = Y 1Z,| = |E;| + 2kt|E{| Y, Qk(p+D)" =
n=0 n=0 2k(0-_p)
1 —2k(p+1)

Then it follows from Theorems 6.2 and 6.4 that
1Z| < |Wol < [Knot(W)| <1 = |Y*| = |Z];

=1 —|Y*.

hence we obtain
2k(c—p)

|Knot (V)| = = 2k(p+1)

Thus if we take, for a fixed number a€[0,1),

Goolta 1 1
0T Tk~ 0T M PoeT g
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then the function Yo(x) = Y(k,04, 7o, Po; X) satisfies |[Knot (y)| = o and
Hoélder’s condition of order log (2k)/log (8k) by Lemma 4.2, which
obviously converges to 1 as k tends to infinity. This completes the
proof of Theorem 2.1. O

Remark. — Besicovitch’s function B(x) illustrated in Figure 1 is
precisely equal to the function (1,1/8,1/4,1/8;x); thus B(x) satisfies
Holder’s condition of order 1/3.
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