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WHEN IS A RIESZ DISTRIBUTION A COMPLEX MEASURE?

by Alan D. Sokal

Abstract. — Let Rα be the Riesz distribution on a simple Euclidean Jordan algebra,
parametrized by α ∈ C. I give an elementary proof of the necessary and sufficient
condition for Rα to be a locally finite complex measure (= complex Radon measure).

Résumé (Une distribution de Riesz, quand est-elle mesure complexe ?)
Soit Rα la distribution de Riesz sur une algèbre de Jordan euclidienne simple,

paramétrisée par α ∈ C. Je donne une démonstration élémentaire de la condition
nécessaire et suffisante pour que Rα soit une mesure complexe localement finie (=
mesure de Radon complexe).

1. Introduction

In the theory of harmonic analysis on Euclidean Jordan algebras (or equiv-
alently on symmetric cones) [12], a central role is played by the Riesz distri-
butions Rα, which are tempered distributions that depend analytically on a
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520 A. D. SOKAL

parameter α ∈ C. One important fact about the Riesz distributions is the
necessary and sufficient condition for positivity, due to Gindikin [13]:

Theorem 1.1. — [12, Theorem VII.3.1] Let V be a simple Euclidean Jordan
algebra of dimension n and rank r, with n = r + d

2r(r − 1). Then the Riesz
distribution Rα on V is a positive measure if and only if α = 0, d2 , . . . , (r− 1)d2
or α > (r − 1)d2 .

The “if” part is fairly easy, but the “only if” part is reputed to be deep [13, 12,
20].(1)

The purpose of this note is to give a completely elementary proof of the
“only if” part of Theorem 1.1, and indeed of the following strengthening:

Theorem 1.2. — Let V be a simple Euclidean Jordan algebra of dimension
n and rank r, with n = r + d

2r(r − 1). Then the Riesz distribution Rα on V

is a locally finite complex measure [= complex Radon measure] if and only if
α = 0, d2 , . . . , (r − 1)d2 or Reα > (r − 1)d2 .

This latter result is also essentially known [18, Lemma 3.3], but the proof given
there requires some nontrivial group theory.

The idea of the proof of Theorem 1.2 is very simple: A distribution defined
on an open subset Ω ⊂ Rn by a function f ∈ L1

loc(Ω) can be extended to
all of Rn as a locally finite complex measure only if the function f is locally
integrable also at the boundary of Ω (Lemma 2.1); furthermore, this fact sur-
vives analytic continuation in a parameter (Proposition 2.3). In the case of
the Riesz distribution Rα, a simple computation using its Laplace transform
(Lemma 3.4) plus a bit of extra work (Lemma 3.5) allows us to determine the
allowed set of α, thereby proving Theorem 1.2.

Theorem 1.2 thus states a necessary and sufficient condition for Rα to be a
distribution of order 0. It would be interesting, more generally, to determine
the order of the Riesz distribution Rα for each α ∈ C.

It would also be interesting to know whether this approach is pow-
erful enough to handle the multiparameter Riesz distributions Rα with
α = (α1, . . . , αr) ∈ Cr [12, Theorem VII.3.2] and/or the Riesz distributions on
homogeneous cones that are not symmetric (i.e. not self-dual) and hence do
not arise from a Euclidean Jordan algebra [13, 20].

In an Appendix I comment on a beautiful but little-known elementary proof
of Theorem 1.1 — which does not extend, however, to Theorem 1.2 — due to
Shanbhag [27] and Casalis and Letac [9].

(1) The set of values of α described in Theorem 1.1 is the so-called Wallach set [29, 30, 21,
10, 11, 12].
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2. A general theorem on distributions

We assume a basic familiarity with the theory of distributions [26, 19] and
recall some key notations and facts.

For each open set Ω ⊆ Rn, we define the space D(Ω) of C∞ functions having
compact support in Ω, the corresponding space D′(Ω) of distributions, and the
space D′k(Ω) of distributions of order ≤ k. In particular, the space D′0(Ω)

consists of the distributions that are given locally (i.e. on every compact subset
of Ω) by a finite complex measure.

Let f : Ω→ C be a measurable function, and extend it to all of Rn by setting
f ≡ 0 outside Ω. We say that f ∈ L1

loc(Ω) if, for every x ∈ Ω, f is (absolutely)
integrable on some neighborhood of x. Any f ∈ L1

loc(Ω) defines a distribution
Tf ∈ D′0(Ω) by

(1) Tf (ϕ) =

∫
ϕ(x) f(x) dx for all ϕ ∈ D(Ω) .

We are interested in knowing under what circumstances the distribution Tf ∈
D′0(Ω) can be extended to a distribution T̃f ∈ D′0(Rn), i.e. one that is locally
everywhere on Rn a finite complex measure.

Lemma 2.1. — Let f : Ω → C be in L1
loc(Ω), and let Tf ∈ D′0(Ω) be the

corresponding distribution. Then the following are equivalent:

(a) f ∈ L1
loc(Ω), i.e. for every x ∈ Ω, f is integrable on some neighborhood

of x.(2)

(b) There exists a distribution T̃f ∈ D′0(Rn) that extends Tf and is supported
on Ω.

(c) There exists a distribution T̃f ∈ D′0(Rn) that extends Tf .

Proof. — (a) =⇒ (b): It suffices to define T̃f (ϕ) =
∫

Ω
ϕ(x) f(x) dx for all

ϕ ∈ D(Rn).
(b) =⇒ (c) is trivial.
(c) =⇒ (a): By hypothesis, for every x ∈ ∂Ω and every compact neighbor-

hood K 3 x, there exists a finite complex measure µK supported on K such
that T̃f (ϕ) =

∫
ϕdµK for every ϕ ∈ D(Rn) with support in K. But since

T̃f extends Tf , the restriction of µK to every compact subset of K ∩ Ω must
coincide with the measure f(x) dx. Since K ∩Ω is σ-compact, this implies that∫
K∩Ω

|f(x)| dx = |µK |(K ∩ Ω) < ∞, so that f is integrable in a neighborhood

of x.

(2) Since this has already been assumed for x ∈ Ω, the content of hypothesis (a) is that it
should hold also for x ∈ ∂Ω.
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522 A. D. SOKAL

We now extend this idea to allow for analytic dependence on a parameter.
Let Ω be an open set in Rn, let D be a connected open set in Cm, and let
F : Ω×D → C be a continuous function such that F (x, · ) is analytic on D for
each x ∈ Ω. Then, for each λ ∈ D, define

(2) Tλ(ϕ) =

∫
ϕ(x)F (x, λ) dx for all ϕ ∈ D(Ω) .

Lemma 2.2. — With F as above, the map λ 7→ Tλ is analytic from D into
D′(Ω) in the sense that λ 7→ Tλ(ϕ) is analytic for all ϕ ∈ D(Ω).

Proof. — This is an immediate consequence of the hypotheses on F together
with standard facts about scalar-valued analytic functions in C (either Morera’s
theorem or the Cauchy integral formula) and Cm (e.g. the weak form of Hartogs’
theorem).

Remark. — Weak analyticity in the sense used here is actually equivalent to
strong analyticity: see e.g. [15, pp. 37–39, Théorème 1 and Remarque 1] [5,
Theorems 3.1 and 3.2] [14, Theorem 1]. Indeed, our hypothesis on F is equiva-
lent to the even stronger statement that the map λ 7→ F ( · , λ) is analytic from
D into the space C0(Ω) of continuous functions on Ω, equipped with the topol-
ogy of uniform convergence on compact subsets [15, p. 41, example (a)]. But
we do not need any of these facts; weak analyticity is enough for our purposes.

Putting together these two lemmas, we obtain:

Proposition 2.3. — Let F be as above, let D0 ⊆ D be a nonempty open set,
and let λ 7→ T̃λ be a (weakly) analytic map of D into D′(Rn) such that T̃λ
extends Tλ for each λ ∈ D0. Then, for each λ ∈ D, we have:

(a) T̃λ extends Tλ.
(b) If T̃λ ∈ D′0(Rn), then F ( · , λ) ∈ L1

loc(Ω).

Proof. — (a) This is immediate by analytic continuation: for each ϕ ∈ D(Ω),
both T̃λ(ϕ) and Tλ(ϕ) are (by hypothesis and Lemma 2.2, respectively) analytic
functions of λ on D that coincide on D0, therefore they must coincide on all
of D.

(b) This is immediate from (a) together with Lemma 2.1.

We shall apply this setup with F (x, λ) = f(x)λ where f : Ω → (0,∞) is a
continuous function; in fact, we shall take f to be a polynomial.
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Remark. — Let P be a polynomial that is strictly positive on Ω and vanishes
on ∂Ω, and define for Reλ > 0 a tempered distribution PλΩ ∈ S′(Rn) by the
formula

(3) PλΩ(ϕ) =

∫
Ω

P (x)λ ϕ(x) dx for ϕ ∈ S(Rn) .

Then PλΩ is a tempered-distribution-valued analytic function of λ on the right
half-plane, and it is a deep result of Atiyah, Bernstein and S.I. Gelfand [3,
1, 2, 4] that PλΩ can be analytically continued to the whole complex plane
as a meromorphic function of λ with poles on a finite number of arithmetic
progressions. It is important to note that our Proposition 2.3 does not rely on
this deep result; rather, it says that whenever such an analytic continuation
exists (however it may be constructed), the analytically-continued distribution
PλΩ can be a complex measure only if Pλ ∈ L1

loc(Ω).

3. Application to Riesz distributions

We refer to the book of Faraut and Korányi [12] for basic facts about sym-
metric cones and Jordan algebras. Let V be a simple Euclidean (real) Jordan
algebra of dimension n and rank r, with Peirce subspaces Vij of dimension d;
recall that n = r + d

2r(r − 1). We denote by (x|y) = tr(xy) the inner product
on V , where tr is the Jordan trace and xy is the Jordan product. Let Ω ⊂ V

be the positive cone (i.e. the interior of the set of squares in V , or equivalently
the set of invertible squares in V ); it is self-dual, i.e. Ω∗ = Ω. We denote by
∆(x) = det(x) the Jordan determinant on V : it is a homogeneous polynomial
of degree r on V , which is strictly positive on Ω and vanishes on ∂Ω, and which
satisfies [12, Proposition III.4.3]

(4) ∆(gx) = Det(g)r/n ∆(x) for g ∈ G, x ∈ V ,

where G denotes the identity component of the linear automorphism group of
Ω [it is a subgroup of GL(V )] and Det denotes the determinant of an endomor-
phism. We then have the following fundamental Laplace-transform formula:

Theorem 3.1. — [12, Corollary VII.1.3] For y ∈ Ω and Reα > (r − 1)d2 =
n
r − 1, we have

(5)
∫
Ω

e−(x|y) ∆(x)α−
n
r dx = ΓΩ(α) ∆(y)−α
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where

(6) ΓΩ(α) = (2π)(n−r)/2
r−1∏
j=0

Γ
(
α− j d

2

)
.

Thus, for Reα > (r−1)d2 , the function ∆(x)α−
n
r /ΓΩ(α) is locally integrable

on Ω and polynomially bounded, and so defines a tempered distribution Rα
on V by the usual formula

(7) Rα(ϕ) =
1

ΓΩ(α)

∫
Ω

ϕ(x) ∆(x)α−
n
r dx for ϕ ∈ S(V ) .

Using (5), a beautiful argument — which is a special case of Bernstein’s general
method for analytically continuing distributions of the form PλΩ [2, 4] — shows
that the Riesz distributions Rα can be analytically continued to the whole
complex α-plane:

Theorem 3.2. — [12, Theorem VII.2.2 et seq.] The distributions Rα can be
analytically continued to the whole complex α-plane as a tempered-distribution-
valued entire function of α. Furthermore, the distributions Rα have the follow-
ing properties:

R0 = δ(8a)

Rα ∗ Rβ = Rα+β(8b)

∆(∂/∂x) Rα = Rα−1(8c)

∆(x) Rα =

(
r−1∏
j=0

(
α− j d

2

))
Rα+1(8d)

(here δ denotes the Dirac measure at 0) and

(9) Rα(ϕ ◦ g−1) = Det(g)αr/n Rα(ϕ) for g ∈ G, ϕ ∈ S(V )

(in particular, Rα is homogeneous of degree αr − n). Finally, the Laplace
transform of Rα is

(10) ( L Rα)(y) = ∆(y)−α

for y in the complex tube Ω + iV .

The property (8d) is not explicitly stated in [12], but for Reα > (r − 1)d2 it is
an immediate consequence of (6)/(7), and then for other values of α it follows
by analytic continuation (see also [18, Proposition 3.1(iii) and Remark 3.2]).
Likewise, the property (9) is not explicitly stated in [12], but for Reα > (r−1)d2
it is an immediate consequence of (4)/(7), and then for other values of α it
follows by analytic continuation (see also [18, Proposition 3.1(i)]). It follows
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from (8a,b) that the distributions Rα are all nonzero; and it follows from this
and (9) that Rα 6= Rβ whenever α 6= β.

It is fairly easy to find a sufficient condition for the Riesz distributions to
be a positive measure:

Proposition 3.3 ([12, Proposition VII.2.3], see also [18, Section 3.2], [21, 6])

(a) For α = k d2 with k = 0, 1, . . . , r−1, the Riesz distribution Rα is a positive
measure that is supported on the set of elements of Ω of rank exactly k
(which is a subset of ∂Ω).

(b) For α > (r − 1)d2 , the Riesz distribution Rα is a positive measure that
is supported on Ω and given there by a density (with respect to Lebesgue
measure) that lies in L1

loc(Ω).

The interesting and nontrivial fact (Theorem 1.1 above) is that the converse
of Proposition 3.3 is also true: the foregoing values of α are the only ones for
which Rα is a positive measure. Here I shall use Proposition 2.3 together with
the Laplace-transform formula (5)/(10) to provide an alternate and extremely
elementary proof of the stronger converse result stated in Theorem 1.2.

Lemma 3.4. — ∆λ ∈ L1
loc(Ω) if and only if Reλ > −1; or in other words,

∆α−nr ∈ L1
loc(Ω) if and only if Reα > (r − 1)d2 = n

r − 1.

Proof. — Since |∆(x)|λ = ∆(x)Reλ, it suffices to consider real values of λ.
For λ > −1 [i.e. α > (r−1)d2 ], fix any y ∈ Ω: the fact that the integral (5) is

convergent, together with the fact that x 7→ e+(x|y) is locally bounded, implies
that ∆λ ∈ L1

loc(Ω).
Now consider λ = −1: again fix any y ∈ Ω, and let µ = inf

x ∈ C
‖x‖ = 1

(x|y) > 0

where ‖ · ‖ is any norm on V . Choose R > 0 such that |∆(x)| ≤ 1 whenever
‖x‖ ≤ R. Then

(11)
∫

x ∈ Ω
‖x‖ ≤ R

e−(x|y) ∆(x)−1 dx = lim
λ↓−1

∫
x ∈ Ω
‖x‖ ≤ R

e−(x|y) ∆(x)λ dx

by the monotone convergence theorem. We now proceed to obtain a lower
bound on

(12) Mλ :=

∫
x ∈ Ω
‖x‖ ≤ R

e−(x|y) ∆(x)λ dx .
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For any β ≥ 1, we have∫
x ∈ Ω

β
2R ≤ ‖x‖ ≤ βR

e−(x|y) ∆(x)λ dx = βn+rλ

∫
x ∈ Ω

R
2 ≤ ‖x‖ ≤ R

e−β(x|y) ∆(x)λ dx(13a)

≤ βn+rλe−(β−1)R2 µ

∫
x ∈ Ω

R
2 ≤ ‖x‖ ≤ R

e−(x|y) ∆(x)λ dx(13b)

≤ βn+rλe−(β−1)R2 µMλ(13c)

where the first equality used the homogeneity of ∆. Now sum this over β = 2k

(k = 1, 2, 3, . . . ); the sum is convergent, and we conclude that

(14)
∫
x∈Ω

e−(x|y) ∆(x)λ dx ≤ CMλ

for a universal constant C <∞ that is independent of λ for −1 < λ ≤ 0. Since
(5) tells us that

(15) lim
λ↓−1

∫
x∈Ω

e−(x|y) ∆(x)λ dx = +∞

due to the pole of the gamma function at α = (r − 1)d2 , we conclude that
lim
λ↓−1

Mλ = +∞ as well. Therefore

(16)
∫

x ∈ Ω

‖x‖ ≤ R

e−(x|y) ∆(x)−1 dx = +∞ ,

which proves that ∆−1 /∈ L1
loc(Ω).

Since ∆ is locally bounded, it also follows that ∆λ /∈ L1
loc(Ω) for λ < −1.

We shall also need a uniqueness result related to Proposition 3.3(a). If µ is
a locally finite complex measure on V , we say that µ is G-relatively invariant
with exponent κ in case

(17) µ(gA) = Det(g)κ µ(A) for g ∈ G, A compact ⊆ V .

In particular, every such µ is G ∩ SL(V )-invariant , i.e.

(18) µ(gA) = µ(A) for g ∈ G ∩ SL(V ), A compact ⊆ V .
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Now define Ωk = {x ∈ Ω: rank(x) = k}, so that ∂Ω =
r−1⋃
k=0

Ωk and Ω = Ωr. We

then have the following result, which seems to be of some interest in its own
right:

Lemma 3.5. — (a) The group G ∩ SL(V ) acts transitively on each set Ωk
(0 ≤ k ≤ r − 1).

(b) Let µ be a locally finite complex measure that is supported on Ωk (0 ≤
k ≤ r − 1) and is G ∩ SL(V )-invariant. Then µ is a multiple of Rkd/2.

(c) Let µ be a locally finite complex measure that is supported on ∂Ω and
is G-relatively invariant with some exponent κ. Then there exists k ∈
{0, 1, . . . , r−1} such that µ is a multiple of Rkd/2 (and hence κ = kdr/2n

if µ 6= 0).

Proof. — (a) Fix a Jordan frame c1, . . . , cr, and let V =
⊕

1≤i≤j≤r
Vij be the

corresponding orthogonal Peirce decomposition [12, Theorem IV.2.1]. Then,
for λ > 0, letMλ = P (c1 + · · ·+cr−1 +λcr) ∈ GL(V ), where P is the quadratic
representation [12, p. 32]. From [12, p. 32 and Theorem IV.2.1(ii)] we see that
Mλ acts as multiplication by λ2 on the space Vrr, as multiplication by λ on the
spaces Vir with 1 ≤ i ≤ r − 1, and as the identity on the other subspaces.(3)

We have Mλ ∈ G [12, Proposition III.2.2] and Det(Mλ) = λ(r−1)d+2 = λ2n/r.
Now write ek = c1 + · · · + ck. By construction we have Mλek = ek for

0 ≤ k ≤ r − 1. Now, we know [12, Proposition IV.3.1] that Ωk = Gek, so that
for any x ∈ Ωk there exists g ∈ G such that x = gek. Therefore, if we set
λ = Det(g)−r/2n, we have x = gMλek with gMλ ∈ G ∩ SL(V ).

(b) follows from (a) and Proposition 3.3(a) together with a standard result
about the uniqueness of invariant measures: see e.g. [7, Chapitre 7, sec. 2.6,
Théorème 3], [24, p. 138, Theorem 1] or [31, Theorem 7.4.1 and Corollary 7.4.2].

(c) is now an easy consequence, as we can write (uniquely) µ =
∑r−1
k=0 µk

with µk supported on Ωk, and each µk is G-relatively invariant with exponent
κ [since each set Ωk is a separate G-orbit]. But in at most one case can κ take
the correct value kdr/2n; so all but one of the measures µk must be zero.

Remarks. — 1. Assertions (a) and (b) are false when k = r: the determinant
∆(x) is invariant under the action of G∩SL(V ) [cf. (4)], so G∩SL(V ) cannot
act transitively on Ωr; and all the measures Rα with Reα > (r − 1)d2 are
G-relatively invariant [hence G ∩ SL(V )-invariant] and supported on Ωr.

2. A slight weakening of Lemma 3.5(b) — in which “G∩SL(V )-invariant” is
replaced by “G-relatively invariant with some exponent κ” — is asserted in [21,
p. 391, Remarque 3], but the proof given there is insufficient (if it were valid, it

(3) More generally, we see that P (
∑

λici) acts as multiplication by λiλj on Vij .
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would apply also to k = r). However, Michel Lassalle has kindly communicated
to me a simple alternative proof of this result, based on [21, Théorème 3 and
Proposition 11(b)].

3. Further information on the Riesz measures Rkd/2 for 0 ≤ k ≤ r − 1 can
be found in [21, 6].

Proof of Theorem 1.2. — We already know from Proposition 3.3(b) that Rα
is a locally finite complex measure for Reα > (r− 1)d2 . On the other hand, by
applying Proposition 2.3 to F (x, α) = ∆(x)α−

n
r /ΓΩ(α) and using Lemma 3.4,

we deduce that Rα is not a locally finite complex measure whenever Reα ≤
(r−1)d2 and ΓΩ(α) 6=∞. So it remains only to study the values of α for which
ΓΩ(α) = ∞, namely α ∈ {0, d2 , . . . , (r − 1)d2} − N. For α ∈ {0, d2 , . . . , (r −
1)d2} we know from Proposition 3.3(a) that Rα is a positive measure. For
α ∈

(
{0, d2 , . . . , (r − 1)d2} − N

)
\ {0, d2 , . . . , (r − 1)d2}, we know from Proposi-

tion 3.3(a) and (8c) that Rα is a distribution supported on ∂Ω; and by (9) and
Lemma 3.5(b) we conclude that it cannot be a locally finite complex measure
(here we use the fact that Rα 6= Rβ when α 6= β).

Remark. — For Reα < 0, an alternate proof that Rα is not a complex measure
can be based on the following fact, which is a special case of the N = 0 case
of [19, Theorem 7.4.3] (compare [19, Theorem 7.3.1]) but can also easily be
proven by direct computation:

Lemma 3.6. — Let Ω be a proper open convex cone in a real vector space V ,
and let Ω∗ ⊂ V ∗ be the open dual cone. Let T ∈ S′(V )∩ D′0(V ) be a tempered
distribution of order 0 (i.e. a polynomially bounded complex measure) that is
supported in Ω. Then the Laplace transform LT is analytic in the complex tube
Ω∗+iV ∗ and is bounded in every set K+Ω∗+iV ∗ where K is a compact subset
of Ω∗.

It then follows from (10) that Rα cannot be a locally finite complex measure
when Reα < 0, because ∆(y)−α is unbounded at infinity. This argument
handles (without the need for Lemma 3.5) the cases d = 1 (real symmetric
matrices) and d = 2 (complex hermitian matrices) in Theorem 1.2.

Appendix A
Remarks on an elementary proof of Theorem 1.1

Casalis and Letac [9, Proposition 5.1] have given an elementary proof of
Theorem 1.1 that deserves to be more widely known than it apparently is.(4)

(4) Science Citation Index shows only ten publications citing [9], and six of these have an
author in common with [9].
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They employ a method due to Shanbhag [27, p. 279, Remark 3] — who proved
Theorem 1.1 for the cases of real symmetric and complex hermitian matrices —
which they abstract as a general “Shanbhag principle” [9, Proposition 3.1]. Here
I would like to abstract their method even further, with the aim of revealing
its utter simplicity and beauty.

Let V be a finite-dimensional real vector space, and let V ∗ be its dual space.
We then make the following trivial observations:

(a) If µ is a positive (i.e. nonnegative) measure on V , then its Laplace
transform

(19) L(µ)(y) =

∫
e−〈y,x〉 dµ(x)

is nonnegative on any subset of V ∗ where it is well-defined (i.e. where the
integral is convergent).

(b) If µ is a positive measure on V , then so is fµ for every continuous (or
even bounded measurable) function f on V that is nonnegative on suppµ.

(c) If µ is a (positive or signed) measure on V whose Laplace transform is
well-defined (and finite) on a nonempty open set Θ ⊆ V ∗, then the same is true
for Pµ, where P is any polynomial on V ; furthermore, L(Pµ) = P (−∂) L(µ).(5)

Putting together these observations, we conclude:

Proposition A.1 (Shanbhag–Casalis–Letac principle)
If µ is a positive measure on V whose Laplace transform is well-defined (and

finite) on a nonempty open set Θ ⊆ V ∗, and P is a polynomial on V that is
nonnegative on suppµ, then P (−∂) L(µ) ≥ 0 everywhere on Θ.

Remark. — Proposition A.1 also has a strong converse, which we shall state
and prove at the end of this appendix.

Using Proposition A.1, we can give the following slightly simplified version
of the Shanbhag–Casalis–Letac argument:

Proof of Theorem 1.1. — (Based on [9, Proposition 5.1].) In view of Proposi-
tion 3.3, it suffices to prove the converse statement. So let α ∈ R and suppose
that Rα is a positive measure. Using Proposition A.1 with P = ∆ together
with the Laplace-transform formula (10), we conclude that

(20) ∆(−∂/∂y) ∆(y)−α ≥ 0 for all y ∈ Ω .

(5) Indeed, the same holds if the measure µ is replaced by a distribution T ∈ D′(V ). See
[26, Chapitre VIII] or [19, Section 7.4] for the theory of the Laplace transform on D′(V ).
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But the “Cayley” identity [12, Proposition VII.1.4] tells us that

(21) ∆(∂/∂y) ∆(y)λ = ∆(y)λ−1
r−1∏
j=0

(
λ+ j

d

2

)
,

hence (since ∆ is homogeneous of degree r)

(22) ∆(−∂/∂y) ∆(y)−α = ∆(y)−α−1
r−1∏
j=0

(
α− j d

2

)
.

It follows from (20) and (22) that Rα is not a positive measure when (r−2)d2 <

α < (r − 1)d2 . But using the convolution equation (8b) with β = d/2 together
with the fact that Rd/2 is a positive measure [Proposition 3.3(a)], we conclude
successively that Rα is not a positive measure when (k − 1)d2 < α < k d2 for
any integer k ≤ r − 1. This leaves only negative multiples of d/2; and the
argument given after Lemma 3.6 shows that Rα is not a positive measure
whenever α < 0.(6)

Remarks. — 1. This method has been used recently by Letac and Massam
[22, proof of Proposition 2.3] to determine the set of acceptable powers p for
the noncentral Wishart distribution, generalizing the earlier proof of Shanbhag
[27] and Casalis and Letac [9] for the ordinary Wishart distribution (which is
essentially Theorem 1.1).

2. A very different proof of Theorem 1.1 for the cases d = 1, 2, using zonal
polynomials, was given by Peddada and Richards [25, Theorems 1 and 3].

But this is not yet the end of the story; the proof can be further simpli-
fied. The use of the Laplace transform in the foregoing proof is in reality a red
herring, as it is used twice in opposite directions: once in the proof of Proposi-
tion A.1, and once again in the proof of (21).(7) We can therefore give a direct
proof that makes almost no reference to the Laplace transform:

Second proof of Theorem 1.1. — Consider first (r − 2)d2 < α < (r − 1)d2 . If
Rα is a positive measure, then so is ∆(x) Rα, which by (8d) equals Cα Rα+1,

(6) Alternate argument: For k = 1, 2, 3, . . . we know from Proposition 3.3(a,b) and (9) that
Rkd/2 is a positive measure that is not supported on a single point. If R−kd/2 were a positive
measure (recall that we know it is nonzero), then Rkd/2 ∗ R−kd/2 could not be supported on
a single point, contrary to the fact that Rkd/2 ∗ R−kd/2 = δ [cf. (8a,b)].
(7) The simplest proof of (21) is probably the one given in [12, Proposition VII.1.4], using
Laplace transforms. However, direct combinatorial proofs are also possible: see [8] for a
detailed discussion in the cases of real symmetric and complex hermitian matrices.
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where

(23) Cα =
r−1∏
j=0

(
α− j d

2

)
< 0 .

It follows that Rα+1 must be a negative (i.e. nonpositive) measure. But this is
surely not the case, as the Laplace-transform formula (10) immediately implies
that no Rβ can be a negative measure.(8) This shows that Rα is not a positive
measure when (r − 2)d2 < α < (r − 1)d2 . The proof is then completed as
before.(9)

It would be interesting to know whether this approach is powerful enough to
handle the multiparameter Riesz distributions [12, Theorem VII.3.2] and/or the
Riesz distributions on homogeneous cones that are not symmetric and hence
do not arise from a Euclidean Jordan algebra [13, 20].

To conclude, let us give the promised strong converse to Proposition A.1:

Proposition A.2. — Let T ∈ D′(V ) be a distribution whose Laplace trans-
form is well-defined on a nonempty open set Θ ⊆ V ∗. Let S ⊆ V be a closed
set, and suppose that there exists y0 ∈ Θ such that [P (−∂) L(T )](y0) ≥ 0 for
all polynomials P on V that are nonnegative on S. Then T is in fact a positive
measure that is supported on S.

Proof. — By replacing T (x) by e−〈y0,x〉T (x), we can assume without loss of
generality that y0 = 0. Then the derivatives of L(T ) at the origin give us the
moments of T ; and the hypothesis [P (−∂) L(T )](y0) ≥ 0 implies, by Haviland’s
theorem [16, 17] [23, Theorem 3.1.2], that there exists a positive measure µ
supported on S that has these moments. Furthermore, the analyticity of L(T )

in the open set Θ + iV ∗ implies that these moments satisfy a bound of the
form |cn| ≤ AB|n|n!, so that

∫
eε|x| dµ(x) <∞ for some ε > 0. It follows that

the Laplace transform L(µ) is well-defined and analytic in a neighborhood of
the origin; and since its derivatives at the origin agree with those of L(T ), we
must have L(µ) = L(T ). But by the injectivity of the distributional Laplace
transform [26, p. 306, Proposition 6], it follows that µ = T .

(8) It would be interesting to know whether this residual use of the Laplace transform can
be avoided. For d ≤ 2 it can definitely be avoided, as α + 1 > (r − 1) d

2
, so that Rα+1 is a

nonzero positive measure by Proposition 3.3(b); but for d > 2 I do not know.
(9) The argument given after Lemma 3.6 explicitly uses the Laplace transform. But the
alternate argument given in footnote 6 does not.
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In Proposition A.2 it is essential that the Laplace transform of T be well-
defined on a nonempty open set Θ 3 y0, or in other words (when y0 = 0) that T
have some exponential decay at infinity [in the sense that cosh(ε|x|)T ∈ S′(V )

for some ε > 0]. It is not sufficient for T to have finite moments of all orders
satisfying T (P ) ≥ 0 for all polynomials P on V that are nonnegative on S.
Indeed, Stieltjes’ [28] famous example

(24) f(x) =

{
e− log2 x sin(2π log x) for x > 0

0 for x ≤ 0

belongs to S(R) and has zero moments of all orders [i.e. T (P ) = 0 for all
polynomials P ] but is not nonnegative.
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