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Abstract. — We provide a lower bound for the number of distinct zeros of a sum
1 + u + v for two rational functions u, v, in term of the degree of u, v, which is sharp
whenever u, v have few distinct zeros and poles compared to their degree. This sharp-
ens the “abcd-theorem” of Brownawell-Masser and Voloch in some cases which are suf-
ficient to obtain new finiteness results on diophantine equations over function fields.
For instance, we show that the Fermat-type surface xa + ya + zc = 1 contains only
finitely many rational or elliptic curves, provided a ≥ 104 and c ≥ 2; this provides
special cases of a known conjecture of Bogomolov.

Résumé (Un théorème abcd sur les corps de fonctions et applications)
Nous démontrons une minoration pour le nombre de zéros distincts d’une somme

1 + u + v, u, v étant deux fonctions rationnelles, en fonction du degré de u et v; cette
minoration est forte si le nombre de zéros et poles de u, v est suffisament petit par
rapport à leur degré. Dans certains cas, on obtient une amélioration de l’inégalité de
Voloch et Brownawell-Masser, qui entraîne des nouveaux résultats de finitude sur les
équations diophantiennes sur les corps de fonctions.

Par exemple, nous démontrons que la surface de type Fermat définie par l’équation
xa+ya+zc = 1 ne contient qu’un nombre fini de courbes rationnelles ou elliptiques, dès
que a ≥ 104 et c ≥ 2. Ce résultat constitue un cas particulier d’une célèbre conjecture
de Bogomolov.
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438 P. CORVAJA & U. ZANNIER

1. Introduction

We shall be interested in diophantine equations over function fields, involving
S-units. We start by recalling a few definitions. Let κ be an algebraically closed
field of characteristic zero, C a smooth complete curve of genus g defined over
κ and S be a finite set of points of C . By S-unit we mean a rational function
u ∈ κ( C) having all its poles and zeros on S. The group of S-units will be
denoted by O∗S . Let χ be the Euler characteristic of C \ S, i.e.

χ = 2g − 2 + ](S).

In the sequel we shall suppose ](S) ≥ 2, otherwise there would be no noncon-
stant S-units; note that this yields χ ≥ 0. We shall use the following notion of
height relative to the function field κ( C): if (x0 : · · · : xn) ∈ Pn(κ( C)), we put

H(x0 : · · · : xn) = −
∑
ν∈ C

min{ν(x0), . . . , ν(xn)},

where, for each ν ∈ C(κ), we denote by the same letter ν : κ( C)∗ → Z the
order function corresponding to such point. So H(1 : x) is the degree of the
function x, which will also be written as H(x).

Let u, v be S-units. We shall put

z := u+ v + 1. (1.1)

Whenever z is assumed to be an S-unit, (1.1) is the S-unit equation in three
variables; the case of two variables gives rise to the so called abc theorem of
Mason and Stothers, stating that if z = 0 in (1.1) and u, v are not both constant,
we have H(1 : u : v) ≤ χ. This is best possible.

In (1.1), to avoid consideration of “trivial” cases, we shall assume that no
subsum on the right vanishes. Under this condition, we have the inequalities of
Brownawell-Masser, generalising the abc theorem; the case of four terms a, b, c, d
implies for (1.1) that H(1 : u : v : z) ≤ 3χ, where the coefficient 3 replaces
the previous coefficient 1. The constant 3 is sharp, in view of an example of
Browkin-Brzezinski: κ( C) = κ(t), u = −t3, v = (t−1)3, z = 3t(t−1). However,
one expects improvements on the coefficient 3 under supplementary conditions;
in fact a conjecture of Vojta predicts an estimate H(1 : u : v : z) ≤ (1 + ε)χ

for every ε > 0, provided the point (1 : u : v) does not lie on a curve on P2,
depending only on ε. See the discussion at §14.5.26 of [4].

Any improvement on the coefficient 3 may be crucial for applications to
diophantine equations over function fields: for instance the equation y2 =

1 + u+ v in S-units u, v and S-integer y escapes from the Brownawell-Masser
estimates (which cover e.g. y3 = 1+u+v), but could be treated by the analogue
inequality with any coefficient < 2.

tome 139 – 2011 – no 4



AN abcd THEOREM OVER FUNCTION FIELDS AND APPLICATIONS 439

To improve on the methods of the paper [5] seems to lead to delicate prob-
lems. In the paper [6], by means of different methods, among other things
we succeded to treat completely the said equation y2 = 1 + u + v. A crucial
ingredient was a bound for the gcd of u − 1, v − 1, for S-units u, v, which we
recall below as Theorem CZ.

In the present paper, we develop certain applications of those results and
methods especially to present a kind of general “abcd theorem” and some corol-
laries. Roughly speaking, we obtain the coefficient 1 + ε, whenever two of
the S-units are multiplicatively independent modulo constants and the set of
their zeros and poles has cardinality < δ](S), for a suitably small function
δ = δ(ε, g) (see the Corollary to Theorem 1.1). One can easily show that in
fact the same estimate holds also if, say, u, v are multiplicatively dependent
modulo constants, unless they satisfy a multiplicative dependence relation of
degree bounded in terms of ε. In other words, we obtain the estimate of Vojta’s
conjecture, although under a further condition, on the number of zeros of u, v.

This will be done in Theorem 1.1. Then we shall present some other ap-
plications, where we preferred simplicity to generality, to better illustrate the
methods.

A first application concerns Fermat-type equations of the shape xa+yb+1 =

zc, to be solved in non constant polynomials or rational functions x, y, z ∈ κ(t).
The quoted inequalities of Brownawell-Masser for instance imply that there are
no non trivial polynomial solutions if 1/a+ 1/b+ 1/c < 1/3. This condition in
particular requires min(a, b, c) ≥ 4. Our methods also cover the cases when the
minimal exponent is 2 or 3, supposing the remaining two are large enough. The
conclusion is that the solutions fall within certain explicitly described families,
of which the typical example comes from an identity (1 +xa)2 = 1 + 2xa +x2a.
This will be done in Theorem 1.2. We remark that the method also works for
rational functions x, y, z on higher genus curves; in that case one can obtain
bounds for the degrees of the solutions in terms of the genus.

This application can be viewed as a non-existence or finiteness statement for
rational curves on a fixed surface. In Theorem 1.2 bis we also consider genus
one curves with a finiteness statement.

A natural extension concerns the study of sections of a fibration whose fibers
are surfaces. For instance we can consider the case of a fibration of the form
X → C , for a threefold X and a curve C , where the generic fiber is a Fermat-
like surface. This amounts for instance to an equation of the form f(t)xa +

g(t)yb+h(t) = zc, for coefficients f(t), g(t), h(t) ∈ κ(t). We can obtain a bound
for the degree of the solutions; again, we do not state it explicitly, and leave it
to the interested reader.
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440 P. CORVAJA & U. ZANNIER

Going back to (1.1), we shall assume that

z 6= 0, 1, u, v (1.2)

and let Sz be the minimal set containing S such that z is an Sz-unit: it is the
union

Sz := S ∪ z−1(0).

We also put

H̃ := H(1 : u : v) = H(1 : u : v : z), H∗ := H̃ + χ+ ]S.

Since we are assuming ](S) ≥ 2, we have

H∗ > H̃ = H(1 : u : v : z) ≥ max{H(u), H(v), H(z)}.

Our first result is a lower bound for the number of zeros of z; this is sharp
when χ is fixed, or small compared to H̃:

Theorem 1.1. — Let u, v be S-units, not both constant, let z = u+v+1 satisfy
(1.2). Then if u, v are multiplicatively independent modulo κ∗ the number of
zeros of z outside S satisfies the lower bound

](Sz \ S) =
∑

ν 6∈S; ν(z)>0

1 ≥ H̃ − 15χ− 6 ·H∗2/3χ1/3.

If instead u, v are multiplicatively dependent modulo constants, there is a rela-
tion ur = λvs with λ ∈ κ∗, r, s coprime integers, and∑

ν 6∈S; ν(z)>0

1 ≥ H̃
Å

1− 1

max(|r|, |s|)

ã
− 15χ.

Remark. — Since H̃ ≥ deg(z), the above estimates can also be viewed as
upper bounds for the number of multiple zeros of z. Note that when z is a
square, the left-hand side above is ≤ H(z)/2. In this case we obtain a bound for
its height in term only of χ, unless u, v are multiplicatively dependent modulo
κ∗, satisfying a relation with exponents ≤ 2. In that case, however, z can be a
square as follows from the identity: z = (w+w−1/2)2 = w2+w−2/4+1. We also
note that qualitative estimates for the number of multiple zeros of polynomial
expressions P (u, v) for S-units u, v appear in [C-Z, Theorem 1.3]. The above
result provides a completely explicit estimate in the case P (u, v) = 1 + u + v;
this may also be seen as a special case of an abcd theorem.

It will be convenient also to give an alternative statement, of the first case,
in terms of an upper bound for H∗:
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Theorem 1.1*. — In the above notation, when u, v are multiplicatively inde-
pendent modulo κ∗ the following inequality holds

H∗ ≤
(
214/3χ1/3 +

(
](Sz) + 16χ

)1/3)3
;

in particular

H̃1/3 < H∗1/3 ≤
(
](Sz) + 16χ

)1/3
+ (214χ)1/3.

As a consequence of any of the above theorems one can immediately obtain
a result in the direction of Vojta’s conjecture (which we give without proof):

Corollary. — For every positive ε there exists a number δ = δ(ε, g) > 0 such
that if ](S) ≤ δH∗ and u, v are multiplicatively independent modulo κ∗,

H∗ < (1 + ε)](Sz).

The second part of Theorem 1.1 allows to add further precision in this corol-
lary: the conclusion holds also in case u, v are multiplicatively dependent mod-
ulo κ∗, but with minimal relation ur = λvs, λ ∈ κ∗ and r, s coprime inte-
gers sufficiently large with respect to ε. (For the remaining u, v, the relation
ur = λvs has bounded exponents; it leads to u = ts, v = µtr, for a certain
µ ∈ κ∗, t ∈ κ( C). At his point, on factoring the polynomial 1 + ts + µtr, by
means of the abc inequality one can easily prove the same conclusion, unless
µ lies in a finite set depending on ε. This provides the finitely many curves
predicted by Vojta’s conjecture.)

A natural application of Theorem 1.1 concerns diophantine equations in
rational functions; for instance we can deduce

Theorem 1.2. — Let a, b be positive integers with
1

a
+

1

b
< 2.5 · 10−4. (∗)

Let x(t), y(t) ∈ κ(t) be non constant rational functions. If the function x(t)a +

y(t)b + 1 is a perfect power in κ(t) \ κ then it is a square. Also, in this case,
either a = 2b and y2b = 4xa, or b = 2a and 4yb = x2a.

This result can be stated geometrically by saying that certain surfaces of
Fermat type, namely zc = 1−xa−yb, contain only finitely many rational curves.
This last fact can be extended to genus one curves; our general statement is:

Theorem 1.2 bis. — Let a, c be positive integers with c ≥ 2 and a ≥ 104. Let
S ⊂ A3 be the surface defined by the equation

S : xa + ya + zc = 1.

Then S contains only finitely many (affine) curves of geometric genus ≤ 1.
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This confirms a conjecture of Bogomolov for the surface in question. (This
conjecture predicts the finiteness of curves of geometric genus ≤ 1 on every
surface of general type. By means of a different approach, Bogomolov himself
settled a weaker form of the conjecture in [3], covering remarkably general cases
of it).

Instead of a finiteness conclusion, under the same assumptions one can
bound, by the same method of proof, the degree (in P3) of the curves on
S of any fixed genus. The proof below, especially inequality (5), implies the
bound 104(2g − 1) for curves of genus g.

We conclude by a further simple application of Theorem CZ below to the
so-called ‘diophantine k-tuples’; there are many variants of this notion; here
we deal with the k-tuples of distinct polynomials a1, . . . , ak such that all the
expressions 1 + aiaj , i 6= j, are perfect powers. Recently this polynomial case
has been studied, for instance in the paper [8]; Theorem 2 therein states:

There do not exist five distinct polynomials a1, . . . , a5 ∈ K[t] not all constant
and such that for 1 ≤ i < j ≤ 5, 1 + aiaj = x

nij

ij , with polynomials xij and
integers nij ≥ 7.

The authors’ method relies on the abc-theorem for polynomials and does not
yield any conclusion for a similar question for three or even four polynomials, no
matter how large the lower bound imposed on the exponents nij , unless further
conditions are imposed. Here we show that Theorem CZ yields in a very simple
way an impossibility conclusion for diophantine triples of polynomials, up to
a well-described exception, provided the nij are sufficiently large. Namely, we
have the following

Theorem 1.3. — Let a, b, c be three distinct nonzero complex polynomials
a, b, c, not all constant and such that 1 + ab = xp, 1 + ac = yq, 1 + bc = zr for
complex polynomials x, y, z and integers p, q, r ≥ 864. Then, after permuting
a, b, c, we have c2 + 1 = 0 and a+ b = 2c.

Note that the case c2 + 1 = 0, b = 2c− a gives rise to solutions, on putting
a := −c(W e − 1) for an arbitrary polynomial W and integer e: in this case
in fact we have 1 + ab = 1 + 2ca − a2 = (1 + ac)2 = W 2e, and 1 + ac = W e,
1 + bc = 1− 2− ac = (θW )e where θe = −1.

2. Proofs

We start with some lemmas on S-units:
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Lemma 2.1. — With the above notation and if z = 1 + u + v 6= u, v, 1, the
height of z satisfies

H(z) ≥ H̃ − 3χ.

Also ∑
ν∈S

max(0, ν(z)) ≤ 3χ.

Proof. — The present assumptions on z, u, v allow us to apply Theorem 1 in
[9], with σ = z, u1 = 1, u2 = u, u3 = v; this gives∑

ν∈S
(ν(z)−min{0, ν(u), ν(v)}) ≤ 3χ.

Now, to obtain the first inequality, it suffices to note that
∑
ν∈S ν(z) ≥ −H(z),

while, by definition, −
∑
ν∈S min{0, ν(u), ν(v)} = H̃. As to the second

one, note that every term in the last displayed sum is non negative and
that min{0, ν(u), ν(v)} ≤ 0. Hence, for every subset S′ ⊂ S, we have∑
ν∈S′ ν(z) ≤ 3χ; in particular this holds when S′ is the complement of the

set of poles of z in S.

Lemma 2.2. — Let w be a non constant R-unit for a certain finite set R. The
number of zeros with multiplicity of the differential dw outside R is at most
2g − 2 + ]R.

Proof. — We can clearly suppose that R is exactly the set of zeros and poles
of w. Let A = w−1(0), B = w−1(∞) so R = A ∪B. Then the number of poles
with multiplicity of the differential dw is H(w) + ](B). The number of zeros
(with multiplicity) in R is H(w) − ](A), because every zero of dw in R must
be a zero of w (since it cannot be a pole). Since the difference between the
total number of zeros and of poles is 2g − 2, and since there is no pole outside
R, there are ](A) + ](B) + 2g − 2 zeros with multiplicity outside R. Since
](A) + ](B) = ](R) we obtain the upper bound ](R) + 2g − 2 for the number
of zeros with multiplicity.

Our main tool will be the following result drawn from [6], Corollary 2.3,
where by “generating relation” we mean a multiplicative dependence relation
modulo κ∗ with coprime exponents:

Theorem CZ. — Let u, v ∈ O∗S be S-units, not both constant.
(i) If u, v are multiplicatively independent, we have∑

ν 6∈S

min{ν(1− u), ν(1− v)} ≤ 3
3
√

2(H(u)H(v)χ)
1
3 ≤ 3

3
√

2(H̃2χ)
1
3 .
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(ii) If u, v are multiplicatively dependent, let ur = λvs be a generating re-
lation. Then either λ 6= 1 and

∑
ν 6∈S min{ν(1 − u), ν(1 − v)} = 0, or λ = 1

and ∑
ν 6∈S

min{ν(1− u), ν(1− v)} ≤ min

ß
H(u)

|s|
,
H(v)

|r|

™
≤ H̃

max{|r|, |s|}
.

Proof of Theorem 1.1. — If either of u, v or u/v is constant, there is a multi-
plicative relation ur = λvs, with r, s ∈ Z, λ ∈ κ∗ and max(|r|, |s|) = 1. We fall
in the second case, and the relevant inequality is trivial. So we shall suppose
that u, v, u/v are non-constant. Let us denote by δ the additive operator on
κ( C)∗

δ(f) =
df

f
.

Letting z = u + v + 1, for non costant S-units u, v as above, and putting
φ := δu/δv (note that φ is well-defined and nonzero), and is a constant if u, v
are multiplicatively dependent modulo constants. We have the easily proved
identities {

vdz−zdv
dv = u (φ− 1)− 1

udz−zdu
du = v

(
φ−1 − 1

)
− 1

We are going to apply Theorem CZ to the functions

u1 := u(φ− 1), v1 = v(φ−1 − 1).

We let then S1 be the minimal set containing S and the zeros of du, dv, d(u/v).
We note that

](S1) ≤ ](S) + 3χ (2.1)

To justify this formula, it suffices to apply three times Lemma 2.2, with w =

u, v, u/v and R = S. From the identities φ = (du)v
(dv)u and φ − 1 = v2d(u/v)

(dv)u it
follows immediately that φ, φ− 1, hence u1, v1, are S1-units.

Next, observe that if a point P ∈ C does not lie in S1 and is a zero of z of
order l, then it is a zero of both u1− 1, v1− 1 of order at least l− 1. Therefore∑

ν 6∈S1, ν(z)>0

(ν(z)− 1) ≤
∑
ν 6∈S1

min(ν(u1 − 1), ν(v1 − 1)). (2.2)

To go on, we distinguish two cases:

First case. — u1, v1 are multiplicatively independent modulo constants. This
implies that u, v too are multiplicatively independent modulo constant. In this
case, part (i) of Theorem CZ, applied with S1 instead of S and u1, v1 instead
of u, v, gives the bound∑

ν 6∈S1

min(ν(u1 − 1), ν(v1 − 1)) ≤ 3
3
√

2(H(u1)H(v1)χ1)1/3,
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where χ1 = 2g − 2 + ](S1). To estimate H(u1), H(v1) we note that
max(H(u1), H(v1)) ≤ H̃ + deg φ. Moreover, looking at the poles, we see
that deg φ is at most the sum of number of poles of δu and the number
of zeros of δv, both counted with multiplicity. But δu has only simple
poles, contained in S, while the number of zeros of δv is bounded by χ in
view of Lemma 2.2 (applied with R= set of zeroes and poles of v). Hence
max(H(u1), H(v1)) ≤ H̃ + ](S) + χ = H∗. We have reached the following
inequality ∑

ν 6∈S1:ν(z)>0

(ν(z)− 1) ≤ 3 · 21/3H∗2/3χ
1/3
1 .

As to χ1 we have, taking into account (2.1), the upper bound χ1 ≤ 4χ, so∑
ν 6∈S1:ν(z)>0

(ν(z)− 1) ≤ 6H∗2/3χ1/3.

To estimate the number of zeros of z inside S1 we just use the second part of
Lemma 2.1, with S1 in place of S (which is legitimate). This yields∑

ν∈S1

max(0, ν(z)) ≤ 3χ1 ≤ 12χ.

We express H(z) as
∑
ν max(0, ν(z)); this sum can be decomposed into three

parts:∑
ν

max(0, ν(z)) =
∑
ν∈S1

max(0, ν(z))+
∑

ν 6∈S1:ν(z)>0

1+
∑

ν 6∈S1:ν(z)>0

(ν(z)−1). (4)

Taking into account the previous result we obtain

H(z) ≤ 12χ+
∑

ν 6∈S1:ν(z)>0

1 + 6H∗2/3χ1/3,

whence by the first part of Lemma 2.1

H̃ ≤
∑

ν 6∈S1:ν(z)>0

1 + 15χ+ 6H∗2/3χ1/3.

whence the inequality of Theorem 1.1, taking into account that
∑
ν 6∈S1:ν(z)>0 1 =

](Sz \ S1) ≤ ](Sz \ S).

Second case. — u1, v1 are multiplicatively dependent modulo constants. We
show that the same holds for u, v, by following [6, Lemma 3.14]. We first note
that the multiplicative dependence of u1, v1 modulo constants amounts to the
linear dependence of δu1, δv1 over the rationals. We now recall that, putting
φ = δu/δv, we have

α =
1

φ− 1
, β =

−φ
ϕ− 1

, φ =
δu

δv
,
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so α+ β + 1 = 0. By taking differentials,

αδα+ βδβ = 0.

On the other hand, from the definition of ϕ,

αδu+ βδv = 0.

From the last two displayed identities it follows that the matrix(
δα δβ

δu δv

)
has rank ≤ 1. From the definitions of u1, v1, namely u1 = u/α, v1 = v/β we
obtain

δu = δα+ δu1

δv = δβ + δv1.

Replacing in the above matrix δα, δβ by their expressions in term of
δu, δu1, δv, δv1 we obtain

rank

(
δα δβ

δu δv

)
= rank

(
δu1 − δu δv1 − δv

δu δv

)
= rank

(
δu1 δv1

δu δv

)
≤ 1

Then the ratio δu/δv must be equal to the ratio δu1/δv1, which is a rational
number by the multiplicative dependence of u1, v1. Hence u, v are also mul-
tiplicatively dependent modulo constants and satisfy the same multiplicative
relation modulo κ∗ as u1, v1. By taking a suitable root, we can obtain a rela-
tion of the kind ur = λvs with λ ∈ κ∗, r, s coprime integers, and an analogous
relation ur1 = λ1v

s
1.

We use again (4) and the same estimates as above for all terms but the last
one, for which we now apply (ii) of Theorem CZ, obtaining∑

ν 6∈S1; ν(z)>0

(ν(z)− 1) ≤ H̃

max(|r|, |s|)
.

Arguing exactly as before, and using the above estimate, we arrive at the second
inequality of Theorem 1.1.

Proof of Theorem 1.2. — In the first part of the proof we shall argue, more
generally, with non-constant rational functions x, y ∈ κ( C), on an arbitrary
curve C of genus g. This shall be useful also in the proof of Theorem 1.2 bis.
At the end of this proof, we shall specialize to C = P1, g = 0.

We the suppose that xa + yb + 1 is a perfect power in κ( C) \ κ. We apply
Theorem 1.1 with u = xa, v = yb, z = 1 + u + v and S the set consisting of
the zeros and poles of u, v. The assumptions z 6= 0, 1, u, v are plainly satisfied
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by the present hypotheses that xa, yb, xa + yb + 1 are non-constant. We have
χ = ](S)− 2 + 2g and

H̃ ≥ max(adeg x, bdeg y), H∗ = H̃ + 2](S)− 2 + 2g

We are supposing that z is a perfect power, so we write z = wm with m ≥ 2

an integer and a rational function w ∈ κ( C); then z has at most H(z)/m ≤
H(z)/2 ≤ H̃/2 distinct zeros, therefore

](Sz \ S) ≤ H̃

2
.

Suppose first u, v are multiplicatively independent modulo constants, which
amounts to the same condition on x, y. Then, taking into account the last
displayed inequality, the first inequality of Theorem 1.1 gives

H̃

2
≤ 15(](S)− 2 + 2g) + 6(H̃ + 2](S)− 2 + 2g)2/3(](S)− 2 + 2g)1/3.

Let us put ξ := (](S) + 2g − 1)/H̃; then the last displayed formula yields:
1

2
≤ 15ξ + 6(1 + 2ξ)2/3ξ1/3

one may check that this inequality entails ξ > 5 · 10−4. On the other hand the
definition of S yields

](S) ≤ 2H̃

Å
1

a
+

1

b

ã
.

Comparing with the bound for ξ we haveÅ
5 · 10−4 − 2

a
− 2

b

ã
H̃ ≤ 2g − 1. (5)

Note that if we assume that a, b are large enough, this inequality gives a bound
for the height in terms of the genus.

In the case g = 0 of Theorem 1.2 the assumption on a, b gives a contradiction.
Let us now treat the case where u, v, hence x, y, are multiplicatively depen-

dent modulo constants, again for arbitrary genus. In this case we may write
ur = λvs, with λ ∈ κ∗ and r, s coprime integers. This time we apply the second
part of Theorem 1.1 obtaining

H̃

m
≥ H̃

Å
1− 1

max(|r|, |s|)

ã
− 15(](S)− 2 + 2g).

Using that ](S)− 2 < 2H̃(1/a+ 1/b), we obtain after dividing both sides by H̃
1

m
+

30

a
+

30

b
+

1

max(|r|, |s|)
+

30g

H̃
> 1. (6)

Back again to the case g = 0 of Theorem 1.2, if m ≥ 3, this forces |r| = |s| = 1,
so xa is a constant multiple of yb. Then xa + yb would be a perfect a-th power,
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non zero by hypothesis. Since the curve γXa + 1 = Zm has positive genus, we
have a contradiction. Then m = 2 and max(r, s) ≤ 2, which forces as before
max(|r|, |s|) = 2, so {r, s} = {±1,±2}.

The multiplicative dependence relation ur = λvs leads to the existence of a
rational function w and a constant γ such that x = wα, y = γwβ , for integers
α, β with rαa = sβb. Then, putting A = αa, B = βb, the curve

1 +WA + γbWB = Z2

has a component of genus zero. Note that the ratio A/B is ±2 or ±1/2, and
by symmetry it is easy to reduce to the case A = 2B. If the polynomial
1 + γbWB +W 2B is not a square it must have only simple zeros, but then the
above curve would be irreducible of positive genus. Then the polynomial is a
square, and this leads to the listed cases.

Proof of Theorem 1.2 bis. — We start by noting that a curve on the surface
S corresponds to a morphism C → S from an abstract smooth curve C . This,
in turn, corresponds to a solution in κ( C) to the equation of the surface S.
Theorem 1.2 immediately provides the finiteness of the set of curves of geo-
metric genus zero on S. Concerning curves of any fixed genus g, inequality (5)
or inequality (6) (depending on whether x, y are multiplicatively dependent or
not) provides the bound for the degree depending on g; by degree we mean the
degree in the projective completion.

The existence of infinitely many curves of bounded degree implies the exis-
tence of an algebraic family of such curves; for large genus such families exist
and in some cases even having the same function field: namely our surface
may contain a Zariski dense set of rational points over certain function fields
of curves. This last fact can be seen for instance by cutting with the plane
z = const. In the case of genus one, however, we can prove finiteness. As
already noted, we may first obtain a bound on the degree; now, if we had in-
finitely many pairs (E, φ) for an elliptic curve E and a rational map φ : E → S,
of bounded degree, with a Zariski dense union of images, by looking at the j-
invariants we would obtain a dominant morphism π : E → S from an (affine)
elliptic surface E to S. This is excluded by the fact that S is a surface of
general type; see the Appendix, Proposition A and its corollary.

Proof of Theorem 1.3. — Suppose a, b, c be as above and let, without loss of
generality, δ := deg a ≥ deg b ≥ deg c. We shall apply Theorem CZ with the
following data:

We choose the curve C = P1, and we set u := 1 + ab, v := 1 + ac, so u, v
are rational functions on C , not both constant. We let S be the union of the
infinite point of C with the set of zeros of u and of v. By assumption we have
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u = xp, v = yq with polynomials u, v and integers p, q ≥ 864. We also have
deg u,deg v ≤ 2δ, so deg x, deg y ≤ δ/432, whence

#S ≤ 1 +
δ

216
.

Suppose first that u, v are multiplicatively dependent, so 1 + ab = wm, 1 +

ac = wn for a suitable polynomial w and coprime integers n,m ≥ 0, where
necessarily m ≥ n > 0. Plainly the gcd of the polynomials wm − 1, wn − 1 is
w − 1, and also a multiple of a, whence

δ ≤ degw.

But m degw = deg a+ deg b ≤ 2δ ≤ 2 degw. So m ≤ 2 and this implies n = 1

and 1 + ab = 1 + 2ac + a2c2, i.e. b = 2c + ac2, forcing c to be constant and
deg b = deg a = δ.

Now, the equation zr = c2yq + c2 + 1 implies c2 + 1 = 0, because otherwise
the curve Zr = c2Y q + c2 + 1 has positive genus. In this case we fall in the
final possibility in the statement.

Hence in the sequel we may assume that u, v are multiplicatively independent
complex polynomials, not both constant. Observe that a is a common divisor
of u − 1, v − 1 and a has no zeros in S, hence an application of Theorem CZ
yields

δ ≤ 3
3
√

2(deg udeg v(#S − 2))1/3 ≤ 3
3
√

2(4δ2(
δ

216
− 1))1/3 < 3

3
√

2(4δ2 δ

216
)1/3 = δ.

This contradiction proves the theorem.

Appendix

Our aim is to complete the proof of Theorem 1.2 bis, by proving that the
surface S appearing in the statement of Theorem 1.2 is of general type, which
in turn implies via Theorem 1.2 the finiteness of curves of genus one on S.

We recall some facts from classical theory of algebraic surfaces.
Let S̃ be a smooth projective surface. A divisor D on S̃ is said to be big if

lim sup
n→∞

(h0(nD)/n2) > 0.

Equivalently (see [7], chap I, Corollary 1.30 and ex. 8), a divisor is big if it
admits a positive multiple nD ∼ A+B, which is linearly equivalent to the sum
of an ample divisor A and an effective divisor B. Another equivalent condition
is that the linear system |nD|, for (all) sufficiently large integers n, provides a
dominant rational map to a surface. Using this third condition for bigness, we
obtain the following:
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Fact 1. — Let π : X̃ → S̃ be a dominant morphism of smooth projective
surfaces. For every big divisor D on S̃, the pull-back π∗(D) is a big divisor on
X̃ .

A smooth projective surface S̃ is said to be of general type if its Kodaira
dimension is maximal, i.e. equal to 2. Equivalently, it is of general type if one
(hence every) canonical divisor K S̃ is big.

If π : X̃ → S̃ is a dominant morphism of smooth projective surfaces, and
K S̃ denotes a canonical divisor for S̃, then a canonical divisor for X̃ is

K X̃ = π∗(K S̃) + Ram(π),

where Ram(π) denotes the ramification divisor (see [7], formula (1.11)). The
latter is an effective divisor and its support contains in particular all the curves
which are contracted by π to a point (note that we do not suppose that π is a
finite morphism).

From the above relation, Fact 1 and the fact that the sum of a big and an
effective divisor is big, we obtain the well-known

Fact 2. — If π : X̃ → S̃ is a dominant morphism of smooth projective sur-
faces, and S̃ is of general type, then X̃ is also of general type.

We say that a smooth affine surface is of general type if it admits a smooth
compactification which is of general type. Then it is known that every com-
pactification will be a surface of general type.

Proposition A. — Let a, c be positive integers with c ≥ 2 and

a >
3c

c− 1
. (A1)

Then the surface S ⊂ A3 of equation

S : xa + ya + zc = 1

is of general type.

Remark. — Whenever c divides a, it can be proved that the converse impli-
cation also holds, so S is of general type if and only if (A1) holds. Take e.g.
a = 6, c = 2, where we would have an equality in (A1): it is known (see [2,
remarque VIII.16]) that a degree two cover ramified over a smooth sextic is a
K-3 surface, so its canonical divisor vanishes.

Corollary. — Let E be either an elliptic or a ruled surface. Then no rational
map E→ S is dominant.
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Proof of the corollary. — Applying Fact 1, we can replace the surface E by
a smooth projective surface Ẽ birational to E, and reduce to the case of a
morphism π : Ẽ → S̃, for some smooth compactification S̃ of S. By Fact 2,
if π were dominant, Ẽ would also be of general type. Now, if E is ruled, its
Kodaira dimension is −∞ (see [2, Chap. VII]), so it is not of general type. If it
is elliptic (in the sense of [2, IX.2 b]), and not ruled, then its Kodaira dimension
is zero or one [2, IX.3].

Before proving the Proposition, let us recall some facts about surface singu-
larities. We are interested in surfaces locally (i.e. analytically) isomorphic to
a surface of equation

zc = f(x, y),

for a polynomial f(x, y) ∈ C[x, y], without multiple factors, and an integer
c ≥ 2. More generally, x, y can be taken to be local parameters at a given point
on an affine smooth surface U . We shall identify the relevant points with their
x, y coordinates (remembering that every smooth surface is analytically locally
isomorphic to the plane).

It is easy to check that such a surface is smooth over the points (x0, y0) ∈ U
on which f does not vanish, or (x0, y0) is a simple point of the plane curve
of equation f(x, y) = 0. If, on the contrary, (x0, y0) is a singular point of the
curve f(x, y) = 0, then the equation zc = f(x, y) defines a surface singular at
(x0, y0, 0). In this case a minimal desingularisation is obtained by repeatedly
blowing up a point over the singular point (x0, y0) of the curve f(x, y) = 0;
a single blow-up suffices if c = 2 and (x0, y0) is a simple node for the curve
f(x, y) = 0. In our case, all we need to keep in mind is that the smooth surface
S obtained in this way is endowed with a projection S → U such that: 1)
each point of U outside the curve f(x, y) = 0 has c distinct pre-images; 2) each
smooth point of the curve f(x, y) = 0 has a single pre-image; 3) the pre-image
of the singular points of the curve f(x, y) = 0 form a finite union of divisors
with negative self-intersection (a single divisor E with E2 = −2 if c = 2). In
the proof of Proposition A, the regular function f will be either the polynomial
xa+ya−1 or a local equation for the union of the line at infinity and the curve
xa + ya = 1. In any case, the singularities of the curve f(x, y) = 0, if any, are
of normal crossing type.

Proof of Proposition A. — Consider the projection π : S → A2 sending
(x, y, z) → (x, y): this is a cyclic cover of the affine plane, ramified over the
(Fermat) curve C ⊂ A2 given by the equation

C : xa + ya = 1.

We want to construct a surface S̃ and a degree c map π : S̃ → P2, where S̃ is
projective, smooth and birational to S. Denote by C̄ the projective closure of
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C in P2 and let H ⊂ P2 be the line at infinity. It will turn out that the cover
π : S̃ → P2 will be ramified over the curve C̄ and, in case the integer c does
not divide a, also over the line H.

Let us first consider the case c|a, so the only branched curve will be C̄ .
The surface will be constructed by covering P2 by open sets Ui, taking local
equations fi = 0 for C̄ ∩Ui, taking Si to be the surface zc = fi and gluing them
together. We obtain a smooth surface, as remarked, endowed with a morphism
π : S̃ → P2 which is totally ramified over the curve C̄ . Let us denote by L
any line on P2, so that a canonical divisor on P2 is −3L. Then the mentioned
formula for the canonical divisor on S̃ gives

K S̃ = −3π∗(L) + (c− 1) C̄
∗
,

where C̄
∗

= π−1( C̄) is the set theoretic pre-image of C̄ . Since aL ∼ C̄ and the
morphism π is totally ramified on C̄

∗
, we have c · C̄∗ = π∗( C̄) ∼ aπ∗(L); then

the canonical divisor satisfies

cK S̃ ∼ (−3c+ a(c− 1))π∗(L),

so is big (actually ample, but we don’t need it) as soon as a > 3c/(c−1), which
is our hypothesis.

Let us now consider the case when c does not divide a, so the branched locus
will be the reducible curve C̄ ∪H, which has normal crossing singularities (at
the a distinct points at infinity of C).

The smooth surface S̃, which is birationally defined as the normalization of
P2 in the field κ(P2)( c

√
xa + ya − 1) (where x = X/Z, y = Y/Z and (X : Y : Z)

are homogeneous coordinates in P2), can be constructed via the desingulariza-
tion procedure described above. Locally the normalization has an equation of
the form zc = f(x, y), where f is an equation for C̄ ∪H, so it is a curve with
normal-crossing singularities; on the open set A2 (which contains no singular
point of C̄ ∪H) one can take for f the regular function f(x, y) = 1− xa − ya;
on any neighborhood of a singular point p of C̄ ∪ H (i.e. a point at infinity
of C̄), the regular function f will be of the form f = ξη, where ξ, η are local
parameters at p. Then the morphism π : S̃ → P2 will have the following prop-
erty: 1) each point of A2 \ C has exactly c pre-images; 2) each point of C has
one pre-image; 3) the pre-image of each singular point pi of C̄ ∪H is a curve
Ei (for i = 1, . . . , a), which has c− 1 components, forming a tree of type Ac−1

as described in [1, Ch. III, Sect. 5 & Sect. 7].
The ramification divisor of π contains the closure of the pre-image of the

curve C ⊂ A2, i.e. the strict transform C̄
∗
of C̄ and of the strict transform

H∗ of the line at infinity, counted with the appropriate multiplicity. Such
multiplicity turns out to be c−1 for the component C̄

∗
, since the cover is totally

ramified over C . Over the line at infinity H, it is d− 1, where d = c/ gcd(a, c)
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is the denominator in the reduced fraction of a/c (so there is no ramification if
c divides a). So, it is of the form

Ram(π) = (c− 1) C̄
∗

+ (d− 1)H∗ + ERam,

for a suitable effective divisor ERam, whose support is contained in E1∪· · ·∪Ea.
Let L denote any line on P2 not passing through any singular point of C̄∪H.

Let L∗ = π∗(L) be its pull-back, which coincides with its strict transform.
Let us now compute the equivalence class of a canonical divisor K S̃ on S̃.

We have
K S̃ = −3L∗ + (c− 1) C̄

∗
+ (d− 1)H∗ + ERam (A2)

Since C̄ ∼ aL, we have π∗( C̄) ∼ aL∗; taking into account that the map π is
totally ramified over C̄ , we have π∗( C̄) = c C̄

∗
+ E C̄ , for an effective divisor

E C̄ whose support is contained in E1 ∪ · · · ∪ Ea. Then

c C̄
∗

= π∗( C̄)− E C̄ ∼ aL
∗ − E C̄ .

Multiplying by c in (A2) and using the above relation, we obtain

cK S̃ ∼ −3cL∗ + c(c− 1) C̄
∗

+ cERam + c(d− 1)H∗

∼ −3cL∗ + (c− 1)(aL∗ − E C̄ ) + cERam + c(d− 1)H∗

= ((c− 1)a− 3c)L∗ + c(ERam − E C̄ ) + E C̄ + c(d− 1)H∗

= ((c− 1)a− 3c)L∗ + EK + c(d− 1)H∗.

Here EK := c(ERam − E C̄ ) + E C̄ has its support contained in E1 ∪ · · · ∪ Ea.
Clearly, the first term is a big divisor, since it is a positive multiple of the
pull-back of an ample divisor. The last term c(d− 1)H∗ is effective. We claim
(next lemma) that the term EK is also effective, after which the proof will be
complete.

Lemma. — Each component of EK in the above decomposition appears with
non-negative weight.

Proof. — Let us recall that the curve Ei (for i = 1, . . . , a) is the fiber of
the i-th singular point of the curve C̄ ∪ H. Also, each Ei is of the form
Ei = Ei,1 ∪ · · · ∪ Ei,c−1, where each Ei,j is smooth of genus zero, and the
corresponding intersection matrix is of type Ac−1 (see [1, Chap. III, Sect. 7]).
This means that for j = 1, . . . , c− 1, E2

i,j = −2; for |j − l| = 1, Ei,j · Ei,l = 1;
for |j − l| ≥ 2, Ei,j · Ei,l = 0.

From the fact that E2
i,j = −2 and Ei,j ' P1 it follows, using the adjunction

formula [2, I.15], that K S̃ · Ei,j = 0.
Let us fix an index i ∈ {1, . . . , a} and let l1Ei,1 + · · · + lc−1Ei,c−1 be the

decomposition of the part of EK having its support in Ei. We want to prove
that lj ≥ 0 for all j = 1, . . . , c− 1. For simplicity let us put lj = 0 for all j ≥ c
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and for j = −1. Let us suppose by contradiction that some lj is negative and
let j̄ the minimum j ∈ {1, . . . , c − 1} with this property. We shall prove by
induction that the sequence {0, 1, . . .} 3 h 7→ lj̄+h is a decreasing sequence of
negative numbers, contradicting the fact that it is eventually zero. Let then
h ≥ 0 be a non-negative integer, and suppose lj̄+h−1 > lj̄+h (note that this is
true for h = 0, even when j̄ = 0, by our convention that l−1 = 0); we show
that lj̄+h+1 < lj̄+h. We have

0 = cK S̃ · Ei,j̄+h ≥

(
c−1∑
j=1

ljEi,j

)
· Ei,j̄+h

= (lj̄+h−1Ei,j̄+h−1 + lj̄+hEi,j̄+h + lj̄+h+1Ei,j̄+h+1) · Ei,j̄+h
= lj̄+h−1 − 2lj̄+h + lj̄+h+1.

By the inductive assumption, lj̄+h < lj̄+h−1, so 0 = cK S̃ · Ei,j̄+h > −lj̄+h +

lj̄+h+1, completing the proof.

Acknowledgements. — The authors are very grateful to an anonymous referee
who read very carefully the present paper and detected several inaccuracies
appearing in previous versions. In particular, he pointed out some gaps in a
previous proof of Proposition A, and helped us to better present the Appendix.

BIBLIOGRAPHY

[1] W. Barth, C. Peters & A. Van de Ven – Compact complex surfaces, Ergebn.
Math. Grenzg., vol. 4, Springer, 1984.

[2] A. Beauville – “Surfaces algébriques complexes”, Astérisque 54 (1978).
[3] F. A. Bogomolov – “Holomorphic tensors and vector bundles on projective

manifolds”, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), p. 1227–1287, 1439.
[4] E. Bombieri & W. Gubler – Heights in Diophantine geometry, New Mathe-

matical Monographs, vol. 4, Cambridge Univ. Press, 2006.
[5] W. D. Brownawell & D. W. Masser – “Vanishing sums in function fields”,

Math. Proc. Cambridge Philos. Soc. 100 (1986), p. 427–434.
[6] P. Corvaja & U. Zannier – “Some cases of Vojta’s conjecture on integral points

over function fields”, J. Algebraic Geom. 17 (2008), p. 295–333. Addendum in
Asian Journal of Math., 14 (2010), p. 581–584.

[7] O. Debarre – Higher-dimensional algebraic geometry, Universitext, Springer,
2001.

[8] A. Dujella, C. Fuchs & F. Luca – “A polynomial variant of a problem of
Diophantus for pure powers”, Int. J. Number Theory 4 (2008), p. 57–71.

[9] U. Zannier – “Some remarks on the S-unit equation in function fields”, Acta
Arith. 64 (1993), p. 87–98.

tome 139 – 2011 – no 4

http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#1
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#2
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#3
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#4
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#5
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#6
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#7
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#8
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_437-454.html#9

	1. Introduction
	2. Proofs
	Appendix
	Bibliography

