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NOTE ON PULL-BACK AND

LELONG NUMBER OF CURRENTS

BY CHARLES FAVRE (*)

ABSTRACT. — We prove a uniform estimate of the Leiong number of the pull-back
of a plurisubharmonic function by a holomorphic map in term of the original Leiong
number of this function.

RESUME. — NOTE SUR LE NOMBRE DE LELONG DES PULL-BACK DE COURANTS.
Get article est consacre a Petude du nombre de Leiong ^(/*tt,0) du pull-back d'une
fonction plurisousharmonique u par une application holomorphe /: (C^O) —>• (C^O)
generiquement de rang maximal. Nous prouvons Pestimee ^(/*i<,,0) < Cf X ^(-u,0)
avec une constante Cf uniforme en u.

1. Statement of the main result
Fix /: (C^O) —^ (C^O) a holomorphic germ, and T a positive closed

current ofbidegree (1,1) defined in a neighborhood of the origin in (C^, 0).
Let u € PSH^C^ 0) be a plurisubharmonic (psh) potential for T such that
T = dd°u. One can set

/*T -dd^o/)

as soon as the psh function u o f is not identically —oo.

DEFINITION 1 (Leiong number, see [LG86]). — Let u e PSH^C^O).
The function r i-̂  sup u(z) is an increasing convex function of logr.
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446 C. FAVRE

• We can hence define the Leiong number of u at 0 by setting

v(u,ff) := max{c > 0; such that u(z) < clog \z\ + 0(1)}

which is a finite non-negative real number.
• For a positive closed (1,1) current T in (C^O), the Leiong number

of T at 0 is
<T,0) :=v(u,0)

for any psh potential T == dd°u.
For a given positive closed current T of bidegree (1,1) so that f*T

exists, we are interested in estimating the Leiong number of the pull-back
u(f*T, 0) in terms of v(T, 0). Our theorem can be stated as follows.

THEOREM 2. — Let f: (C^O) -^ (C^O) be a holomorphic map. Then
the following conditions are equivalent:

1) the map f has generic (maximal) rank equal to n\
2) for any positive closed current T of bidegree (1,1) /*T is well defined,

and the operator /* is continuous for the weak topology of currents',
3) the range of f is not pluripolar;
4) for any positive closed currentT of bidegree (1,1) /*T is well defined,

and there exists a constant C > 0 (depending only on f) such that
one has the inequality

^(r,o) ^(/*r,o) ^ c.^(r,o)
between Leiong numbers ofT and /*T at the origin.

REMARK 3. — The proof gives an estimate for the constant C above.
Assume n = m and 1) is satisfied. Then 4) holds with

C 7 = l + 2 ( ^ ( J / , 0 ) + n - l ) ,

where ^(Jf, 0) is the order of vanishing of the Jacobian determinant of /
at 0.

Using this remark, we also have a semi local version of Theorem 2.
COROLLARY 4. —Let X and Y be two connected complex manifolds, and

f: X —> Y be a holomorphic map whose generic rank is maximal equal to
dim(y). Then for any compact set K C X , there exists a constant CK > 0
such that for all positive closed current T of bidegree (1,1) and all p € K,
one has the inequality

u(T,p) < ̂ (rT.p) < CK • v[T,f(p}}

between Leiong numbers.
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PULL-BACK AND LELONG NUMBER OF CURRENTS 447

Before giving a proof of this theorem and of its corollary, we will make
some remarks about the stated results.

The main result of Theorem 2 is contained in the implication 1) =^ 4).
All the others are either obvious, or were known before.

The second assertion is contained in [M96]. We also refer the reader
to this article for more general problems concerning pull-back of positive
closed currents by holomorphic mappings.

The upper estimate given in 4) was already known in several different
cases (the other inequality is easy to prove).

PROPOSITION 5 (see [De93]). — Let f be a finite holomorphic germ
(C^O) —> (C^O) of local degree d and T a positive closed current (of any
bidegree). Then

^(/*^0) ^dx^ ( r .O) .

C. Kiselman also proved 1) =^ 4) for monomial morphisms.

PROPOSITION 6 (see [K87]). — Let M = [a^] e M(n,N) be an n x n
matrix with non-negative integer coefficients. We assume that del M -^ 0
If

^-(n^-iK-)j=i j=i
then for any positive closed (1,1) current T

^<rr,0)^max{^a^}^(r,0).

Diller in [D98] also proved the main estimate 4) for birational mappings
ofP2.

A warning concerning the implication 1) =^ 3). When / does not
have generic maximal rank, it is not true in general that the image of
/ is contained in a countable union of hypersurfaces. It is contained in a
countable union of poly disks of dimension strictly less than n.

EXAMPLE 7 (see [H73, 4.2]). — Define f: (C^O) -> (C^O) by

f(z,w,t) = (^e^e^).

Note that f is independent of the last variable t. Then the set /(C^O) is
pluripolar, but it is not included in a countable union of hypersurfaces.
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448 C. FAVRE

Proof. — We give a short proof of these facts. We begin proving that
/(C3,0) is pluripolar. Decompose the mapping / = TT o g o p with

p(z,w,t) = (z,w),
9(x,y) = (^e^e^),

7r(z,w,t) = (z,zw,zt).

The range of g is included in the hypersurface ^(C^O) C {e^ = t},
hence is pluripolar. The morphism TT is an isomorphism outside {z = 0}.'
As countable union of pluripolar sets remains pluripolar, we see that the
image

f(C3^)=7^ogop(C\0)=7^{g(C2^))

=W[J7^{g(C2^)^{\z\>l/k})
k>0

is also pluripolar.

For the second fact, we proceed as follows. Assume first that /(C3, 0) is
included in an hypersurface defined by a non identically zero holomorphic
map h. We thus have the identity

h(z,zew,zeew) ==0

for every z,w in a neighborhood of 0 € C. Expand h in power series
h = ̂  hk where hk is a homogeneous polynomial of degree k in three

k>0

variables. Take an index ko <E N such that h^ ^ 0. Then

h^ (^ ̂ w, ze^) = z^hk, (1, e", e6') = 0.

This would contradict the fact that the three functions (1, e^ e^) are
algebraically independent.

Now assume /(C^O) C UneN^n is included in a countable union
of hypersurfaces. For each n C N, the complex space f^Hn is also an
hypersurface by what proceeds. But we have

(c^crw^c |jr1^
nCN

which can not contain any open subset of (C3,0). Q
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PULL-BACK AND LELONG NUMBER OF CURRENTS 449

Finally, a word about the motivations of this article. The author came
to the problem of estimating Leiong numbers of pull-back of positive
closed (1,1) current while working on dynamics of rational maps of the
projective space /: P^ -^ P^ with maximal generic rank. Let us give a
simple application of Theorem 2 in this context. We first recall some well-
known facts which can be found for instance in [Si99].

We let TT : C^1 - {0} -^ P^ be the natural projection onto P^, and take
F = (Fo, • • • , Fk): C^1 -^ C^ a polynomial lift of / so that

F 0 71- = 7T 0 f.

We assume that the k + 1 polynomials {^}o^<A; do not contain any
common factors. The indeterminacy set of / is equal to

I(f) -Trd^-^O}).
1=0

Given any positive closed current T of bidegree (1,1) on P^, one can
find a psh function G on C^"^, called its potential, such that

1) there exists a constant c > 0 for which for all Z <E C^1 and for all
A e C ,

C7(AZ)=clog |A |+^(Z) ;

2) 7r*r = d^G.

Conversely, given a psh function G on C^1 satisfying the homogeneity
condition 1), one can find a unique positive closed current T of bi-
degree (1,1) on P^ such that 2) holds.

DEFINITION 8. — Let /: P^ -^ P^ be a rational map of maximal generic
rank k, and T be a positive current of bidegree (1,1) with potential G.
We define /*T to be the positive closed current of bidegree (1,1) whose
potential is G o F.

The study of the operator /* turns out to give many interesting infor-
mations on / and on its dynamics (see [Si99]). When / is not holomorphic,
for any positive closed current T of bidegree (1,1), the current /*T admits
singularity points even if T has a smooth potential. The computation of
Leiong numbers of /*T can be viewed as a quantitative measure of how
bad the singularities of this current are. The estimate 4) allows us to
extend a result of [D98].
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450 C. FAVRE

PROPOSITION 9. — Let f: P^ -^ P^ be a rational map with maximal
generic rank and T be a positive closed current of bidegree (1,1). Then
^(/*T,p) > 0 if and only if either p G I ( f ) or ^(TJ(p)) > 0.

Proof. — Assume that p ^ J(/). As / has generic maximal rank, we
can apply Theorem 2. This yields a constant Cf > 0 such that

^/(p)) < ̂ (/*r,p) ^ Cf • ̂ r,/(p)).

And it follows that ^(/*T,p) > 0 if and only if v(T, f(p)) > 0. It remains
to check that if p belongs to J(/), then ^(/*r,p) > 0. Choose a a local
section of TT around p , and G C PSI^C^) a potential for T. One can
find a constant A > 0 so that

\F{cj{z})\^A\z-p\

for points z near p. As the function G satisfies an homogeneity relation,
one can bound it by

G(Z)^Blog|Z|+0(l) ,

with B > 0. We thus have

G(F(a(z)) <:B\og\z-p\-^0(l) and u(fT,p) ̂  B > 0,

which concludes the proof. []

NOTE. —The main theorem has been proved independently by C.Kisel-
man (see [K99]) with a different method. His proof relies on volume
estimates of sublevel sets of psh functions.

ACKNOWLEDGEMENTS. — I would like to thank first J. Merker for
simplifying substantially the original proof, and C. Kiselman, N. Sibony
and B. Teissier for many valuable discussions I had with them. Many
thanks also for the referee who gave very constructive remarks on the
first version.
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2. Proof of the main theorem
We shall first prove the equivalence between the first three assertions.

We conclude by proving 4) =^3), and 1) =^ 4).

1) =^> 2). — We assume that / has generic maximal rank equal to n.
If u € PSH^C^O) is non degenerate, the psh function uo f can not be
identically —oo as the range of / contains some open ball. Hence /*T
is well-defined for any closed positive current T of bidegree (1,1). For
a sequence of positive closed (1,1) current Tj —^ T converging weakly
towards T, one can find a sequence Uj of psh potential of Tj converging
in L^ to u a. psh potential for T. It remains to check that Uj o f —> u o f
in ^oc-

As / has maximal generic rank, uj o f -^ uo f almost everywhere. Now
one can extract a subsequence u^ o f converging in L^ to a psh function
(see [Ho83] p.94). As any such limit should be equal to u o /, we infer
Uj o f —^ u o f in L{^ thus f^Tj —^ f*T in the weak topology.

2) =^> 3). — If the range /(C^O) is pluripolar, one can find u G
PSH^C^O) non-degenerate such that u o f = —oo. In that case, if
T := dd^, /*T is not defined.

We also give an example of a sequence of positive closed currents of
bidegree (1,1) so that Tn -> T, /*T^ and /*T are all well-defined, but for
which the sequence f*Tn fails to converge to f*T. For this, work in the
unit ball, and take f(z,w) = (0,w), Tn = dd^n, with

Un(z^w) = max{n~1 log |^|, —2 + |w|2}.

Then Tn -^ 0 but /*T^ = dd^w]2.

3) =^ 1). — We only sketch the proof. We proceed by induction on m.
Assume /: (C771, 0) —^ (C^ 0) is a holomorphic germ such that rkDfz the
rank of Djz is smaller than n — 1 for any z C (C771,0). Set

N := max{rk.D/4 < n - 1,

and define for each k < N ,

Vi, -{^(C^O); rkDf,<k}.

By assumption, VN contains an open neighborhood of the origin. Define

W :=VN-VN-I.

The set Vk is the set where all minors of Dfz of size k -\- 1 have zero
determinant, and hence defines a closed analytic subspace of (C^O).
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Hence W is a Zariski open set of VN. Now, on W the rank of the differential
of / is constant equal to N . We can thus apply locally the constant rank
theorem. Take any countable covering {Ui}z^i of W by open subsets such
that for each i € J, the set f(Ui) is a (non-closed) analytic subset of (C^, 0)
of dimension N < n. For any i G I f(Ui) is pluripolar. A countable union
ofpluripolar sets remains pluripolar, hence f(W) = |j f(Ui) is pluripolar.

i^I
As dim(l^v-i) < m, we can apply the induction hypothesis to conclude
that

f(Crn^)=f(W)Uf(VN-l)

is pluripolar too.
The implication 4) =^> 3) follows from 2) =^ 3).
In fact, we even have that when the range of / is pluripolar, the

supremum of (^(T,Q))~ly(f*T^Q) over all positive closed current T of
bidegree (1,1) for which /*T is well-defined, is not finite.

Take u € PSI^C^.O) non-degenerate such that u o f = -co. For any
a > 0, define

Va(z) := max{alog|^|,^) +log|z|}.

Then

u(fv^ 0) = a • y(\og |/|, 0), v(v^ 0) = min{a, v(u, 0) 4-1}.

Hence for a ^ z/(n, 0) + 1,

^(ddc^,0))-l^.(rddc^,0) = Ca

with C = (^(n, 0) + l)~Mlog 1/1.0)-
1) =^ 4). — Let us first prove the following general result.

LEMMA 10.—If f: (C^O) —^ (C^.O) is an arbitrary holomorphic germ^
and T is a positive closed current of bidegree (1,1) so that /*T is well-
defined^ one has the inequality

^(/*T,0) ^ ^(T,0)

between Leiong numbers.

Proof. — We fix u C PSH^.O) a local potential for T. We always
have |/(^)| ^ A \Z\ for some constant, so that the estimate

n(Z)<^(T,0)log|Z|+0(l)

implies
n(/(Z))$i/(r,0)log|Z|+0(l)

which gives us the stated inequality. Q
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We now proceed with the proof of the upper bound for ^(/*T, 0) given
in 4). As before, u will denote a local potential for T.

Let us show how to reduce the proof of this estimate to the equidimen-
sional case i.e. when n = m.

We assume the estimate has already been proved for n = m. By
assumption, the rank of the Jacobian derivative of / is generically equal
to n. We can therefore find a closed embedding

z:L=(C7^,0)—-.(Cm,0)

of a piece of n-plane into (C^O) such that the rank of the Jacobian
derivative of the restriction

f : = /oz

to ^€^,0) is also generically equal to n. We can now apply the estimate
to / and use Lemma 10. We get

^(/*r, o) < ̂ * o /*r, o) ^ z.(7*r, o) < Cj • ̂ (r, o).
Let us deal now with the equidimensional case. The assumption on /

can be rewritten as its Jacobian derivative does not vanish identically on
a neighborhood of the origin.

Take a line L passing through 0 intersecting Crit(/) the critical set of
/ only at 0, and not tangent to any irreducible component of Crit(/). We
can assume it is given in coordinates z = (zi, • • • , Zn) by

L : = { z - 2 = ' " = Z n = 0 } .

We can find an open cone around this line L

C := { z e U ' , dist(z.L) <e\z\}

such that C H Crit(/) = 0.
Instead of working in this cone, it is more convenient to work on an

open set. We thus consider the blow-up TT of the origin 0, and replace the
germ / by the composition g := f o 71-. In coordinates,

7r(» = (z^,ZtZ-2,...,Z-iZn).

We look at g in the open set Tr"1^}. Define

E=7^-l{0}={z,=0}.

Let us point out some special properties of the map g .
1) CTit(g) = E.
2)g-l{0}=E.
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We can thus write the Jacobian determinant of g under the form

J g ( z ) = z^^z)

for some integer N e N and some holomorphic function ^ which does not
vanish at any point of E. In a sufficiently small neighborhood V of the
origin, we can find a constant C > 0 such that for all z € V

W \Jg(z)\>c\z,\N.

For the proof of Remark 3 and Corollary 4, we will need the following
estimation on the integer TV. It gives precisely a control on the constant C
of assertion 4) of the theorem.

LEMMA 11. — The integer N introduced above can be chosen as

N=^(Jf,0)+n-l,

where ^(J/,0) is the order of vanishing of the holomorphic function Jf
at the point 0.

Proof. —Set No := p,(Jf, 0). We first check that for a (generic) suitable
choice of line L, one has in a small cone C around L as above

(2) \Jf(z}\ ̂ C^0.

Expand the holomorphic jacobian determinant Jf in power series

Jf = ̂  hk
k>No

where hj, is a homogeneous polynomial of degree k and h^ is not
identically zero. Let P71-1 be the set of complex lines in C71 passing through
the origin, and for a point z e C71 set L, = Cz. By homogeneity of h^,
one can define the continuous function H: P71-1 -^ IR+ by

H(L,)=\z\-^\h^(z)\.

Take a generic line L such that H(L) > 0. Then for all lines L' close to L
one has H{L') > ^H(L). Hence in a small cone C around L, one has
H(L,)^ ^H(L).
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We infer for all z € C,

\f(z)\>\h^(z)- ^ h,(z)
k>No+l

^|W^)|- ^ hk(z)
k>No+l

> 2-1^(L)|^|7VO - C'l^04-1 ^ C\z No,

for some constants C ^ C ' > 0.
Now a direct computation yields

det(DT^) ̂ r^-

Therefore, if we have chosen a line L so that equation (2) applies, we get
for all z C C,

\det(Dg,)\ = |det(P7r,) • det(Df^)\

^l^l '-^CIzil^W'0),

which concludes the proof of Lemma 11. []
E

Crit(/)

In the sequel, we will assume that V is a small ball in C72 endowed with
the usual euclidean metric. If r > 0 and K is a compact set, we set

B{K,r) :={z', dist(^)<r}.

The key lemma is:
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LEMMA 12. — There exists two integers NQ.N-^ e N*, and two positive
constants CQ^C\ > 0 such that for all z e V,

ff(£^,Co|^r°)) D B^Cil̂ ).

Moreover^ we can choose NQ = N + 1, ft^ A î = 27V + 1 (wz^ the above
notations).

Proof. — The idea is to approximate the range of g(B(z,r)) by
D g ^ ( B ( z ^ r ) ) and estimate the size of the latter.

We have |J^(^)| > C\z\ N for all z e V. In V, all eigenvalues of Dg^ are
uniformly bounded by some constant D > 0. Therefore for all z € V — E^

Dg^\~1 ̂  inf{|A| ; A G Spec(D^)} ^ ̂ ^| î|A^

And for all z G V, for all r > 0,

P^(J9(^r)) DB^^'l^^r),

for some constant C ' > 0. Now by Taylor^s formula, there exists another
constant C" > 0 such that for all z^w G V,

\g{w) - g(z) - D g ^ ( w - z ) \ < C^w - z\2.

If we choose M > N and take r = l^i^, we infer for z sufficiently small

g{B(z^\M)}^B{g^CI\^,\N+M-CI'\z^M),

which gives the desired result with N\ = N + M. \\

To conclude, we follow Diller [D98]. Define

A^ :=Ln [\z\ < r}.

We first apply Lemma 12 to each point of the set <9Ar. We obtain

(3) g(B(9A^CorNO)) D B{9g(^)^C,rNl).

We consider now translated of g(^r) by vectors z of norm \z < C^r^.
The estimate (3) tells us that 9(z + g(^r)) is still included in the range
of g . We have more precisely for all \z\ <, C^r1^1,

1) z ^ z ^ g ( A r ) ,
2) 9(z + ̂ (A,)) c g (B(0A,, Cor^)).
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We are now in position to prove the desired inequality. We start with

u{g(z)) <u^u^)\og\z +D

for some constant D € M. We want to prove an analog estimate for u. Fix
z <E V and r > 0 such that z\ < C^1. Then the maximum principle
applied to u on the analytic disk z + g{/^r) yields

u(z) < max u < max u
^+^(A,) 9(^+p(A,))

^ max ^
<7(B(<9A,,Cor^o))

^ max u(g(w))
wCB^A^Cor^o))

^ max i^(g*u,0)\og\w\-\-D
w^B{Q^r•,CQrNo))

^ ^*^0)logr+7y

for D' := D + ̂ *^ 0) log( j ) (by possibly reducing Co we can assume
that Cor^0"1 < j). As this is true for any r satisfying \z\ ^ C^ir^, we
obtain

u{z)^ -^y{g^u^\og\z\^D'f.

Thus y(u,ff) ^ N ^ l l / ( g * u , 0 ' ) . To conclude the proof we use the general
inequality in Lemma 10

^,0) > ̂ (^0) > ^^((/o7r)*^0) > ^^(/*^0).

The proof combined with Lemmas 11 and 12 gives more precisely (see
Remark 3):

LEMMA 13. —Iff: (C71^) -^ ((CyV^)) z5 a ^erm of holomorphic map
of maximal generic rank^ then for any positive closed current T of bidegree
(1,1), one has the inequality

^ ( r T ^ z ) < {2(n - 1 + /^(J/,0)) + 1) • ^(TJ(z))

between Leiong numbers.

Proof of Corollary 4' — We localize first the problem and assume that
X = 5^(0,1), Y = ̂ (0,1) are unit balls respectively in C^ and C^.
As before, it is sufficient to prove it in the equidimensional case i.e.
X =Y =Bn(0,l).
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458 C. FAVRE

As / has maximal generic rank, we can apply Lemma 13 at each point
z € K. Now on the compact set K^ the function z i—> /^(J/, z) is upper
semi continuous, hence bounded above by a constant CK- This yields
Corollary 4. D
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