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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN

MANIFOLDS OF NONNEGATIVE CURVATURE

BY

GEORGIOS ALEXOPOULOS and NOEL LOHOUE

RESUME. — Dans cet article, on demontre des estimations pour les sommes
de Riesz associees aux sous-laplaciens invariants a gauche sur les groupes de Lie
a croissance polynomiale du volume et a Poperateur de Laplace-Beltrami sur les
varietes Riemanniennes a courbure positive. On demontre aussi des estimations pour
les operateurs maximaux associes et on en deduit la convergence presque partout des
sommes de Riesz.

ABSTRACT. — In this article we prove certain L^ estimates for the Riesz means
associated to left invariant sub-Laplaceans on Lie groups of polynomial growth and
the Laplace Beltrami operator on Riemannian manifolds of nonnegative curvature. We
also prove L^ estimates for the associated maximal operators and deduce the almost
everywhere convergence of the Riesz means.

0. Introduction and statement of the results
The Riesz means have already been extensively studied in the case

of M" (cf. [7], [8], [27], [29] as well as the book [13]) and in the case
of elliptic differential operators on compact manifolds (cf. [2], [9], [16],
[18], [25], [26]). Some of these results have been generalised to the case
of dilation invariant sub-Laplacians on stratified nilpotent Lie groups
(cf. [19], [21], [22] ), to the case of compact semisimple Lie groups (cf. [10])
and more recently to the case of noncompact symmetric spaces (cf. [16]).

The goal of this aricle is to study the Riesz means associated to left
invariant sub-Laplacians on connected Lie groups of polynomial volume
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210 G. ALEXOPOULOS AND N. LOHOUE

growth (connected nilpotent Lie groups are examples of such groups) and
to the Laplace Beltrami operator on Riemannian manifolds of nonnegative
curvature :

a) Lie groups of polynomial growth.
We consider a connected Lie group G and we fix a left invariant Haar

measure dg on G. If A is a Borel measurable subset of G, then we denote
by | A | its d^-measure.

We assume that G has polynomial volume growth, that is, for every
compact neighborhood U of its identity element e of (5, there is a
constant c > 0 such that \Un < en0, for n C N.

It is easy to see that this assumption makes G unimodular. Further-
more, it can be proved (cf. [17]) that there is an integer D > 0, such
that :

1^ -n^, (n-^oo).

By f{t) ~ h(t), as t -^ to we mean that there is a constant c > 0 such
that :

c~1 • h(t) < f(t) < c • h{t) as t -^ to.

Notice that every connected nilpotent Lie group has polynomial volume
growth.

We consider left invariant vector fields X^,..., Xn on G that satisfy
Hormander's condition, i.e. they generate together with their successive
Lie brackets [X^, [X^, [...,X^ ]...], at every point of G, the tangent space
of G. To those vector fields is associated, in a canonical way, the control
distance d{-, •). This distance is left invariant and compatible with the
topology of G. We put :

x\ = d(e, x) and Br{x) == ^y e G : d(x, y) < r}, x e G, r > 0.

Then, we know that there is d € N, not depending on x (cf. [24], [30]
and [33]), such that :

(1) Br(x) ~ r^ (r -^ 0), \Br{x)\ ~ r^ (r -> oo)

We call d the local dimension and D the dimension at infinity of G.

b) Riemannian manifolds of nonnegative curvature.
We consider a complete non-compact n-dimensionnal Riemannian man-

ifold M with non-negative R/icci curvature. We denote by L the Laplace-
Beltrami operator on M. Let d ( - , •) be the Riemannian distance on M
and denote by

Br(x) = { y ^ M :di,x,y) < r}
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 211

the geodesic ball of radius r > 0 and centered at x G M.
Let also Br(x)\ denote the volume of Br(x). Then there is a constant

Cx > 0 (depending on x 6 M) such that

Br{x)\ ̂ c^, 0 < r < 1.

Although we have, by the Bishop comparison theorem (cf. [3]), that
there is a constant c > 0 independent of x e M and r > 0 such that
\Br{x)\ < cr71, it may happen that |5y.(a;)| grows much slower as r —^ oo.
For example if M is a complete noncompact homogeneous space with
nonnegative sectional curvature then M = R^ x M, where M is a compact
homogeneous space and k ^ 1 (cf. [4]). So in that case we have that
\Br{x)\ ~ rk (r —» oo). In general all we can say (cf. [5]) is that there is
a constant c^ > 0 depending on x e M such that \Br{x}\ > c^r, where
r > 1. In this article we shall only use the following inequality, which also
follows from the Bishop comparison theorem (cf. [3], [5]) :

i^^fT, r> t .(2) i-̂ i < nv / \B,(x}\ -\t)\Bt{x)\ -\t.
We shall also put d = D = n.

In both of the above cases the operator L admits a spectral resolution
(cf. [34]), which we denote by :

/*00

L = / Ad^A.
Jo

For a > 0, the Riesz means of order a are defined to be the operators

m^(L)= Ffl-^YdE^ J?>0,
JQ \ H/-^-

and the corresponding maximal operators by :

m^(L)f(x) = sup m^R(L)f(x)[
R>0

That m^(L)f(x) is well defined will be shown in the proof of THEOREM 3
below.

We denote by K^^R^X^ y) the Schwartz kernel of the operator mo/^(-L).

THEOREM 1. — There is a constant c > 0 such that
(a) if a > \D then \\K^p{x, .)||i < c, 0 < R < 1;
(b) ifa> jmax(d.D) then \\K^R(x,-)\^ < c, R > 1;
(c) ifa= j d > \D then ||^^(^.)||i <c(l+logJ?), R > 1;
(d) if^d>a> JD^en l l^^^OHi^c^ / 4 —/ 2 , R > 1.
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212 G. ALEXOPOULOS AND N. LOHOUE

THEOREM 2.

a) If a > -D then rria,R(L) is bounded on LP(G) for 1 < p <, oo.

b) IfO < a < ^D then ma^(L) is bounded on LP(G) for

a>D1--1-.
P 2

c) J/0 < a < ^D then the operators ma,R(L)^R > 0 are uniformly

bounded on LP{G) for a > - — . max(d, D).

THEOREM 3.
a) If a > ̂  max(d, D) then m^{L) is bounded on LP, for 1 < p < oo.
b) If 0 < a < I, max(d, D) then m^(L) is bounded on LP, for

a > - — - max(d, D).

THEOREM 4. — If a and p are as in theorem 3 above and f G LP^ then :

\\ma,R{L)f - f\ ^ -^ 0 as R —^ oo,

ma^{L)f(x) —> f(x) a.e. as R —^ oo.

We point out that for the Laplace operator on M^, n = d = D and the
critical power in the above results is - (n—1) rather than -n (cf. [13], [29]).

The proof of the above results relies on the following two ideas : assume
to simplify things that / G (^^(K"^) and that we want to obtain estimates
of the kernel of the operator f(L) = f°° f(\)dE\. Then the first idea
which is due to M. TAYLOR (see for example [5]), consists of writing
f(L) = h(VL) (with h(t) = f(t2}, t € M). Then, using the fact that h(f}
is an even function, we have that :

h(^/L) = (27T)-172 fh^costv^Ldt

This expression allows us to take advantage of the fact that cos t\/~L is an
operator bounded on L2 as well as the fact that its kernel Gt(x^y) being
a fundamental solution for the wave equation

^)2 r^

(^+L)^)=0, u(^x)=f{x\ (^n)(0^)=0

propagates with finite speed, that is

(3) supp(Gt)c{(x^y):d(x^)<\t\}

a result proved, in the case of subelliptic operators by MELROSE [23].
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 213

The second idea, which is due to HULANICKI and STEIN (cf. [14,
p. 208-215]), and which has also been exploited by CHRIST [6] is to exploit
the existence of very good estimates for the heat kernel pt[x^y\ i.e. the
fundamental solution of the associated heat equation

( _ , + L)u(t,x) = 0, ^(0, x) = f{x}.

To do this we observe first that pt(x^ y) the Schwartz kernel of the operator
e"^, t > 0. So, if / € Cfo50(]R+) and we put h(t) = /(^e^, with to > 0
appropriately chosen we get f(L) = h(L)e~toL. This in turn implies that
the Schwartz kernel of f{L) is equal to h(L)pto(x^y). This last remark is
one of the basic ingredients of the proofs.

The estimate for p t ( x ^ y ) ^ we shall use in this article, is the following
(cf. [12], [20], [30], [33]) :

<4) ^<^^(-''^}•t>o-
1. Proof of theorems 1 and 2

We have that

^ffl»(l-l)>(l-^:e-.-

Hence if we put r = VR and

'-(^('-W^''
then

(5) m^(L) = /^(^e-1^

The function ^(A) = e"^ is C°° and supported in [0, oo). Hence the
function ^i(A) = ^(A)^! — A) is also C°° and supported in [0,1]. We
put :

^ ( A ) = ^ ( A + | ) , ^(A)=^(|A|-1).

Then ^j(A) is a C00 function with support contained in Jj = Ij U —7^,
where Ij = [1 - 5/2^2,1 - 1/2^'+2]. We put

^•A and ^'^((^)-
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



214 G. ALEXOPOULOS AND N. LOHOUE

We also put :
^J,r(A) = ha^WXj,rW-

Notice that there is c > 0 such that

(6) svipph^r\ < cr2 3

Also, for all A; G N there is Ck > 0 such that

(fe)
\€J,r ||oo(7) < Ckr-^3, ||^/||^ < Cfcr-^-^-^'.dk)\

"J^lloo -

By a simple calculation we can deduce from the estimates (6) and (7)
above that for all k e N there is Ck > 0 such that

/ \h^r(t)\ dt < CkS~kr~k2{k-^j, s > 0.(8)
J\t\>sJ\t\>s

We consider the operator

m (L)=h^(^L)e-l/r2L
'3,r\

and we denote by Kj^r(x,y) its Schwartz kernel. Since the operators
hj^(\/rL') and e~l/r L are selfadjoint and commute, we have

(9) Kj,r(x,y) = hj^(^/L)pr-2(x,y)

with the operator hj^(VL) acting on the variable y.

LEMMA 5.—Let i S Z such that 21"1 < r < 2\ Then there is a constant
c > 0 such that

(g. 2(D/2-a)j ifi<0, j > 0 ;

\\K^{x,-)\\,< c.2W2-^ ifi>0, 0 < j < i ;
^. 2(d/2-D/2)i 2(0/2-0), ifi^Q, j ^ i .

Proof. — It follows from (4) that

-1/2(10) \\pt(x,-)\\^c.\B^(x)

We also have

(11) H^VCL) |̂  < H^ll^ < 2-^'.
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 215

Hence, it follows from (9) that

IÎ ÎL .̂̂ )
^l^-.i1/2!)^,,^,.)^
<, \B^,-. (X) I172 \\h^(VL)\\^ \Pr-^X,-)\\^

^ C B^-.(x)\l/'2\\h^^\\J\P•2r-•^{x,x)\l'

/|^-.(^)|^/2

^c\~\B,^x}\)

and from this, by using either (1) or (2), we get :

( c • 2(D/2-^ if z < 0,

(12) \\K^.)\\^^< c.2W2-^- i f 0 < j < ^

^ . 2(d/2-D/2)z 2(D/2-a), ^ J > ^ > 0.

Let Ap(a:) = {y '.^ < d(x,y) < 2P+1}, where? > j-i. Then, it follows
from (3) that, if z 6 Ap(x), then

^,r(^)

= [h^r(^/L)Pr-^{x,-)](z)

/+oo

= (27^)-l/2 ^•^(^[cos^v/Zp^-2(.^,•)](^)d^
-00

/+00

= (27^)-l/2 ^•^(^){cos^vCL[^-2(a;,-)l^;^^)<2p-i}
-00

+^-2(.r,.)l^..^^)>2p-i}]}(^)d^

= (27r)-l/2 / ^,r(^){cos^\/L[p^-2(.r,-)l^:ri(^^)<2p-i}]}(2;)dt
J|^|>2P-1

/+oo

+ (27^)-l/2 h^{t){costVL^-2(x,y)l{y..^,y)>2p-^}]}(z)dt.
-00

Hence

(13) ||^(^-)||^^^

^ |Ap(.^)|l/2(27^)-l/2 / |^(^)| . ||p,-2^, .)||,
J|t|>2P-1

+ l^p^)!172!!^!!^!!^-^^, -)i{^(^)>2p-i}l|2.
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216 G. ALEXOPOULOS AND N. LOHOUE

Now it follows from (3) and (12) that there are constants c and C > 0
such that

l^^)! ll^r||cx)|^l/r2(^')l{^d(^)>2P-i}| 3

^ r \B^x)\ ^ 1 / 2 ^
-t|Bo-J;r)|J 2 e- l|B2-.(;r)|J

and from this, by using either (1) or (2), we get that there is c > 0 such
that

(14) ^ Ap(a;)|1 2\\h^r\\oo |pl/r2(^-)l{^(^)>2P-i} ^ ̂  C ' 2
11/2! -07

P>J—»

On the other hand if we put

W=\A,(x)\l/\27r)-l/2 f
J\t\

hj^(t)\dt\\pr-2(x,-)\\^
/|t|>2P-1

then it follows from (10) that there is c > 0 such that

Bw(x)\ - i i /2
Ip(x) < c { -r/; j u j,r(t)\dt.

1^2-. (X; \t\>2P-1

Hence, if we chose k G N, k > ^ max(d, D), then it follows from (8) (as well
as either (1) or (2)) that there is c > 0 such that

( ^ . 2(D/2-/c)p ̂ d/2-k)i^k-a)j ^ ̂  Q,

Ip(x) <, c ' 2W2-^ ̂ d/2-k)i^k-a)j ^ ^ ^ o, min(0,j - z) < p <, 0,

^ . 2(D/2-fc)p ̂ d/2-k)z^k-a)j if ^ > o, p > max(0,j - i)

and from this

r c • 2^/2-^ if i ̂  o,
^ ^(^)<^ c.2W2-^- if z > 0 , j < z ,

p>J-l [ c . 2^/2-^ 2(D/2-^ if i > 0, ̂  z,

which together with (12), (13) and (14) prove the lemma.

Proof of theorem 1. — This follows immediately from LEMMA 5 and the
inequality

\\K^(x,.)\,<^\\K^(x,-)\,. D
J>0
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 217

Proof of theorem 2. — We observe that (a) follows immediately from
theorem 1 and that it is enough to prove (b) and (c) for those p for which
we also have p < 2. Then, since rna^R(L) is self adjoint, by duality, we
shall also have these results for those p for which we also have p > 2.

Now, i f 0 < ^ < l ,

1 t 1-t . 2 ,
- = - , + — , - . i.e. t=--l,p 1 2 p

then, by interpolation, we have

|K,(L)||̂  ̂  ||m,,,(L)||̂ J|m,,,(L)||̂

^(supll^^.)!!!)^^^^!!^.
a;

Hence it follows from (11) and LEMMA 5 that there is c > 0 such that

( c. 2-[a-JD(l^-V2)^ if 0 < R < 1,

c • 2-[a-d(l-l/^ if R > 1, 0 < j < z,
^ r W \ \ < {m p-^p —

^ . ̂ -[a-D{l-l/p)]j ^d-D-){l/p-l/2)i

if R > 1 , 0 < i < J .

Assertions (b) and (c) of THEOREM 1 follow from the above estimates, by
taking the sums over j.

2. Proof of theorem 3
We shall prove first the following

LEMMA 6. — If f G Lp, 1 < p < oo, then 7 \-^ L^ f is a strongly
continuous Lp-valued function.

Proof. — If e, 6 > 0 then

\\L^^f - L^f\\^ < \\L^\f - e-^f)^

+|[(^(7+.)_^7)e-^

+||^(e-6L/-/)||^

Now since, by the multiplier theorem of Stein [28], the operators L^7"^,
0 < 6 < 1 are uniformly bounded on Lp and since \\e~6Lf — f\\p —^ 0, as
6 —> 0 we have

||77(7+.)^ _ e-^f)^ + H^e-"-/ - /)||^ ^0, (S -> 0).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



218 G. ALEXOPOULOS AND N. LOHOUE

On the other hand, since

]|(^(7+.) _ L^)e-^||^ < IKA^6) - A^e-^l^ ̂  0, (c ̂  0),

and since again by the multiplier theorem of Stein [28], the operators
(J/(7+<0 _ L^)e~6L, for 0 < e < 1, are uniformly bounded on Lp, it
follows by interpolating with L2 that

||(^(^)_I/7)e-"7||^o, (e-0)

and the lemma follows. \\

Now, we continue with the proof of THEOREM 3. Following [21] we write

m^i(A) = M(\) + e~x with M(A) = m^i(A) - e-A.

Then we have that

m^L)f(x) < SMp\M{tL)f(x)\ + sup e-^/^)].
t>0 t>0

Now we know that the heat maximal operator svLp^^Q\e~tLf{x)\ is
bounded on LP, 1 < p < oo (cf. [28]).

To deal with the maximal operator svip^Q\M(tL)f{x)\^ we proceed
as in [II], that is we consider the Mellin inversion formula

/oo

M(t\) = ./^(tA^c^,
-00

where M.{^} is the Mellin transform of M(A)

f°° c\\
M7) = (27r)-1 / M(A)A-^——

Jo A

This formula gives :

/oo

M(tL)f = M^t^L^fd^.
-00

From this we have

i /100
sup|M(^L)/| = sup / ^/((7)f7L^7/d7
*>0 t>oU-oo

/oo

^ M^) •|£n/|d7,
-00
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 219

which in turn implies :

/oo
[|supM(^)/||^ < \M^)\. \\L^\\ \\f\\,dr

t>U .QQ r r

The above formal calculations are justified by the fact that as was
proved in LEMMA 6, 7 i-> L^f is a strongly continuous, hence strongly
measurable, L^-valued function. So if

r\Mw\-\\L^\\^<oc,
* /0

(15)

then
r ° ° . .
/ M^L^fd^
Jo

is a convergent L^-valued integral. This integral defines a continuous
function of t, which implies that sup^>o \M(tL)f\ is well defined in LV.

Now, it has been proved in [21] that

(16) IA^I^I+H)-^

Furthermore, we have that \\L^\\^ = 1 and it follows from the proof
of the main result of [1] (that result is proved only for left invariant sub-
Laplaceans on Lie groups of polynomial growth, but it is also true for
the Laplace-Beltrami operator on a Riemannian manifold of non-negative
curvature; the proof is exactly the same) that for every e > 0

1 1 7 - ^ 7 1 1 ^ /i . | |\max(d/2,D/2)+e
ll^ IlLi^weak-Li < c(l + |7|} ' ' .

So, by interpolation and duality if necessary, we have that

(17) 11̂ 11̂  < c(l + I^D^W2^/2)^)!^-!!^ i < ̂  ̂ .

Now, it follows from (16) and (17) that when

( d D\\2 1 l
a>max(^)|^-l=max(^)^,

then (15) holds and THEOREM 3 follows. []
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220 G. ALEXOPOULOS AND N. LOHOUE

3. Proof of theorem 4
It is enough to prove this theorem for functions / belonging to some

space A which is dense to all spaces Lp, 1 < p < oo. Then THEOREM 4
will follow from THEOREM 3 by well known measure theoretic arguments.

The space A we shall consider is

A={^(L)e-SLf^ /eC-o00, t>l^ 0<^1},

where ^(A) = ̂ (\/t) and (^ e Cg°(R) with (^(0) = 1.
That A is dense to all spaces LP^ 1 < p < oo, follows from the fact that

I I e"^/ - /||p -^ 0 as s -^ 0 for all / € C^G) and 1 < p < oo and the
observation that for all A; € N

sup A^^ - ̂ We-^] 1-. 0, (t - oo),
dA^A>0

which together with the proof of the main result of [1] (we repeat that the
main result of [I], although is proved only for left invariant sub-Laplaceans
on Lie groups of polynomial growth, but it is also true for the Laplace-
Beltrami operator on a Riemannian manifold of non-negative curvature;
the proof is exactly the same) imply that :

He-^y-^^e-^/I^O, as t -^ oo.

Let us now fix some h = (pt(L)e~SLf G A. Let us also consider a
function ^ e C^R) such that

f l f o r | A | < ^
^(A) = {

[0 fo r |A | ^ i ,

and put ^(A) = ^(A/7?), R > 0. Then for R large enough we have that

m^R(L)h = ̂ R^m^pW^tWe-^f

and therefore

m^R(L)h -h= [^(L)m^(L) - ij^^e-51-/.

Now since for all k e N

^P ^——{[^RW^RW - ll^e-^}^ 0, (R -^ oo),
A>0 aA I

it follows from the proof of the main result of [1] that

\\m^n(L)h-h\ - [^(L)m^(L) - ij^^e-^/H -^0, {R -. 0),p l i p
which proves the first part of THEOREM 4.
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RIESZ MEANS ON LIE GROUPS AND RIEMANNIAN MANIFOLDS 221

The second part of the theorem follows from the observation that

\ma,R(L)h(x) - h(x)\ = | [^(L)m^(L) - l]vt(L)e-SLf(x)

< \\^R(L)m^(L) - lWL)p,(;r,.)|| -\\f\\^

< sup[^(A)m,,a(A) - 1] . <^(A)| • \\p,(x, -)\^. \\f\\^

which together with the fact that

sup[^(A)m^,fi(A) - 1] • |^(A)| -^ 0, (R -^ oo),
A^>0

imply that
\ma,R(L)h(x) - h{x)\ -^ 0, (R -^ oo).

This completes the proof of THEOREM 4. []

4. Final remarks
We point out that that our method also works when L is a self-

adjoint non-negative real subelliptic differential operator on a compact
manifold X, since, in that case, the finite propagation speed (3) for
the wave operator has already been proved in [23] and the gaussian
estimates (4) for the associated heat kernel have been proved in [31], [32].
The results that we shall obtain are similar. The only change is that as
dimension at infinity D we shall put D = 0 and as local dimension d we
shall put the best constant b for which we have that

\Br(x)\ /r^i^^u5 r > t
with the c > 0 independent of x G X (cf. [24]). For example when L is
a sum of squares of vector fields that satisfy Hormanders condition in a
uniform way, then there are constants c > 0 and k e N, independent of
x e X, such that (cf. [24], [30], [33])

c-V < \Bt(x)\ <c^, 0<t< 1
and then, of course, we take d = k.
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