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UNIVERSAL TOPOLOGICAL STRATIFICATION

FOR THE PHAM EXAMPLE

BY

JAMES DAMON ̂  AND ANDRE GALLIGO (2)

RESUME. — On etudie la stratification de Pespace des modules d'un germe de
singularite, par Ie type topologique de la deformation verselle. On considere une coupe
transverse au discriminant de versalite, puis par un precede inductif, on recupere les
informations topologiques en utilisant un certain type de champs de vecteurs stratifies.
Ceci necessite Ie calcul explicite du discriminant de versalite, realise a 1'aide d'un
systeme de calcul formel.

ABSTRACT. — We study the stratification of the moduli space of a germe of
singularity by the topological type of the versal deformation. We take a slice to the
versality discriminant, then our method becomes an inductive process which recovers
topological properties by the use of a special kind of stratified vector fields. This requires
the explicit determination of the versality discriminant, performed via a computer
algebra system.

Around 1970, F. PHAM [Ph] showed that constant topological type in
a family of singularities does not imply constant topological type of the
corresponding families of versal deformations. He found an example of a
complex curve singularity fo(x^y) = y3 + x9 which has a two parameter
family of deformations (parametrized by the moduli (s,t))

FI (x, y , s, t) = y3 + tyx6 + syx7 + .r9.

This family has constant Milnor number, and hence is topologically
trivial. However, the versal deformation of /o is not topologically a product
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154 J. DAMON AND A. GALLIGO

along the ^-axis. In fact, he showed that for t = 0 there are fibres arbitrarily
close to fo1^) with both EQ and Es singularities in the fibre while this
does not happen for t / 0.

This raised the question for general singularities of how the space of
moduli is stratified by the topological type of the versal deformation (such
a stratification exists by results of THOM-MATHER [T], [M2], [M3]). For the
unimodal hypersurface singularities, the results began with LOOIJENGA [L]
and were extended by WIRTHMULLER [W] (and for complete intersec-
tions by RONGA [R] and [Dl]). This contrasts with the situation for the
bimodal singularities on ARNOLD'S list [A]. While advances have been
made on understanding the topological structure and the adjacencies,
e.g. BRIESKORN [B], EBELING [E], EBELING-WALL [E-W], BALKENBORG-
BAUER-BILITEWSKI [BBB], the stratification question has remained unan-
swered.

In this paper we address this question for the Pham example and
provide an outline for understanding the topological stratification of versal
deformations of bimodal singularities.

The approach initiated by LOOIJENGA demonstrated that the answer
to the stratification question for the unimodal singularities follows from
the Jacobian algebra being Gorenstein. This can be thought of as first
order information about the versal deformation. For the higher modality
singularities higher order information must be understood. This involves
the consideration of two problems for unfoldings which are partially
versal. It requires first a determination of the versality discriminant, which
describes where versality fails, and second an understanding of the germ
in a neighborhood of the versality discriminant. These two problems are
reduced to a single problem for unimodal case.

The role of the Jacobian algebra is replaced by an algebraic criterion
for determining the versality discriminant (given in § 2). We are able to
geometrically identify a candidate for the versality discriminant for the
Pham example; however, to verify that it is correct via the algebraic
criterion requires symbolic computations using the system MACSYMA
(see §3).

The theorem we prove uses the results of [D4]. To apply these results,
we must determine the structure of the germ in a neighborhood of the
versality discriminant and prove that it is stratified topologically trivial
(see § 4). By constructing a section to the versality discriminant and
using J^-action we are able to reduce consideration of the germ in a
neighborhood of the versality discriminant to consideration of the multi-
germ / obtained from this section.
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UNIVERSAL TOPOLOGICAL STRATIFICATION 155

More precisely we determine a local normal form for the multi-germ /,
whose initial parts, with respect to certain weights, consists of versal
deformations of Es and D^ (the singularities appearing in the special
fiber) although the multi-germ itself is not stable. By using algebraic
calculations of Looijenga and results from [D3] we are able to prove
stratified topological triviality for this multi-germ. Also, a smoothing
method is introduced to allow the stratifications to extend outside the
neighborhood (PROPOSITION 4.8). This result depends on another piece
of second order information, namely, an algebraic linking between the two
Jacobian algebras of the germs appearing in the multi-germ (LEMMA 5.6).
Such a linking is forced by the finite determinacy of the multi-germ
together with the failure of it for the initial terms in the normal form.

We would like to thank the Institute INRIA, Sophia-Antipolis, France,
for providing us with the use of its facilities for carrying out the compu-
tations in this paper.

1. Statement of theorem

Consider the following polynomial mapping

F{x,y,s,t,u,v) = {F{x,y,s,t,u,v),s,t,u,v)

5 7

where F(x, y , s, t, u, v) = Fi {x, y , s, t) + ̂ UQ^y + ̂ 9- '̂.
i=0 i=l

The germ at the origin of this polynomial gives the versal deformation
of fo, more generally the germ of F at the point (0,0,5o,^ 0,0) is also
the versal deformation of the germ ^i(.r, y , so, to} for SQ and to fixed.

Figure 1. Figure 2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



156 J. DAMON AND A. GALLIGO

We either let K = C and consider holomorphic germs or, K = R and
consider smooth germs.

Since the versal deformation is with respect to X-equi valence, we begin
with the K-orbit structure of the (s, t)-subspace given by figure 1. For any
given value of t there are only two orbits, the intersection with the t-axis
and the complement. The missing points on the ^-axis correspond to the
values where 4^3 + 27 = 0, where X-determinacy fails. This follows from
Arnold's classification [A] and the basic results of J. MATHER [Ml].

We shall prove in either the smooth case or holomorphic case :

THEOREM.— The stratification of the (s, t)-subspace such that the versal
unfolding (as a germ of mapping) is topologically a product on strata
is given by : the s-axis^ the punctured lines for 4t3 +27 = 0, and the
complement (see figure 2).

By a result of WIRTHMULLER [W], the versal deformation is topolog-
ically a product along any line parallel to the s-axis with 4t3 +27 7^= O.
Hence, we may assume 5 = 0 and study when the unfolding restricted to
this subspace is locally topologically a product along the t-axis.

It was pointed out to us by Terry WALL that if we write the weighted
homogeneous part of F\ as

y3 + ay'2x3 + byx6 + ex9,

the modulus is that of the elliptic curve

z2 = y3 + ay2 + by + c

and that another value (a = c = 0, b ^ 0), corresponding to t = oo is
also exceptional; indeed the same reasoning as used by PHAM shows that
only this case admits two ^-singularities in the nearby fibre. In fact this
other exceptional value was left off of Arnold's list.

Thus, another statement of our theorem takes the j-invariant of the
elliptic curve as the modulus parameter. Then j = 0 and j = 1 are the
only values where universal topological triviality fails (the equal roots case
4^3 + 27 = 0 disapears at j = oo).

This raises the question of whether this phenomena can be explained
by algebraic-geometrical methods.

2. The versality discriminant

We will freely make use of facts and notation concerning A and OC-
equivalence, see for example J. MARTINET [Mar], M. GOLUBITSKY et
V. GUILLEMIN [G-G], J. MATHER [Ml] or [Dl].

TOME 121 — 1993 — N° 2



UNIVERSAL TOPOLOGICAL STRATIFICATION 157

First we recall the definition :

DEFINITION 2.1. — Let go : X^O -^ KP.O be a finitely X-determined
polynomial germ and g : J^+^.O -^ KP^,0 be an unfolding of go', if
K = R we can construct the complexifications, which we still denote by go
and g. As g is finitely OC-determined, there is a neighborhood U of 0 such
that g has a representive on U (again denoted by g) and a neighborhood W
of 0 in CP^ so that:

(i) g\^g)r\u '• ^{9) F\U —^ W is proper and finite to one',

(ii) ^(O) D S(^) H U = {0} ; where S(^) denotes the critical set of g.

Then, the versality discriminant V of the unfolding g denotes the
complement in W of the set ( z , w) such that if g ~ l { z , w) D S(^) Fi U = S,
then the multi-germ

G(-,w) '.^.S -^CP.Z

is infinitesimally stable.

We call Vo = V H (CP x {0}), the versality discriminant of go.

In our case, we denote the restriction of the unfolding F with 5 = 0
by /. If we further restrict t = to we denote the restricted unfolding by f^.
Then, / viewed as an unfolding of f^ by the parameter t, is an unfolding
of weight 0.

To see that in our case the versality discriminant is more than just a
point, we consider the family (where t ̂  0)

y3 + t{x - xof(x + ̂ xofy + {x - xo)6^ + 2xof

which we may write in the form :

6 9

(2.2) y3 + tx^y + x9 + ̂  tc^x6-^ + ̂  b^x9-1.
i=l i=2

Near x = XQ with X = x — XQ we have (from the lowest order terms) the
germ

2/3+^(3;^o)2X4^+(3^o)3X6,

which is an E'g-singularity. While near x = —2xo with X = x + 2xo^ we
obtain

^ + ̂ o)4^ + (3^o)6^3.

which is a ^-singularity.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



158 J. DAMON AND A. GALLIGO

Thus, along the parametrized curve G in K14" denned by ui = tCzXQ,
Vi = biXQ and z = b^x^ where z denotes the coordinate for / and XQ
denotes the parameter for the curve 6, there are Es and D^ singularities
in a fibre. However, for fixec^ ̂  0, the dimension of the target space is 14
while the codimensions of Es and D^ are 10 and 4 respectively. Thus, if
the multi-germ in this fibre were multi-transverse, the set of points where
it occurred would be isolated and not along a curve.

Thus, as versality implies multi-transversality [M1V], the curve G
belongs to the versality discriminant of /. In fact, we shall prove :

PROPOSITION 2.3. — The versality discriminant/or ft, where t -=/=- 0 and
4^3 + 27 7^ 0, is exactly the curve G described above.

Remark. — As t varies {t ̂  0) the curve Q is analytically trivial and a
simple change of coordinates makes it constant.

To begin the proof we let V denote the versality discriminant. We recall
that V is an analytic set [D1I] which has the following algebraic property,
with g as in the above definition :

PROPOSITION 2.4. — Let<]1 be an ideal in Cz,w such that:

(2.5) ^'6{g) C C^^{9G/9x,} + C^(a/9w,r)

then on some neighborhood of 0, V is contained in the analytic set V
defined by ( ] ' .

(Here we have abbreviated the ring of germs at J^"^, 0 by Cx w and
the JP-module generated by / i i , . . . , /^ over a ring R by R{h\,..., hk)
or R(hi) if k is understood.)

For the proof of the proposition, consider the inclusions

v 1 D v c e
where V is defined by an ideal J7. We shall show in § 4 that we can
choose J' such that 6 3 V, proving the PROPOSITION 2.3.

In our special case, where g = f and go = j^p, we are able to simplify
the inclusion (2.5) :

LEMMA 2.6. — In order for J' in Cz^u,v to satisfy (2.5) it is sufficient
that:

(2.7) hyx\ hyx7 c C^y^_{Qft^x,9ftJ9y}
+C^^(l,...,a17,^...,^5)

for a set of generators h of r } 1 (here f^ = z o /^p).

TOME 121 — 1993 — ?2



UNIVERSAL TOPOLOGICAL STRATIFICATION 159

Proof. — We observe for F^(x, y) = y3 + tox6y + x9 that

{ ! , . . . , a;7 ,2/,. . . ,7/;r7}

is a basis for C x , y / ' (?f\/Qx,Qf\/Qy). By the preparation theorem,

(2.8) C ,̂, = C^^_(ftJ9x^9ftJ9y)
+C^^(l,. . . ,a;7 ,^,. . . ,^7).

Multiplying by ( ] 1 yields :

(2.9) J^(/,J = ̂ C,,̂  C C^^_{9ftJ9x^ftJ9y}

+ 0,^(1,..., a;7,2/,...,^5)

+J'C^(^6,^7).

Since the right hand side of (2.7) is a C^ ̂ -module, J' • yx6 and J' • ?/a;7

belong to it. This gives (2.5).

Now we will construct an ideal J' as described above.

Let (j)i C { 1 , . . . , x7 ^ y ^ . . . , yx5} and

Z=ft,- ^xQftJQx - ̂ yQftJQy.
then by (2.8) we may write for k > 1 :

(2.10) Z^^h^^^h^yx6

modulo the right hand side of (2.7). Observe that :

(2.11) ^ = ft^i

modulo the right hand side of (2.7). Besides (2.11), we may also write

(2.12) Zyx5^ = ̂ yx7 + C^yx6

modulo the right hand side of (2.7). Form the infinite matrix :

H =
r/,(i) ^(i) ?,(i) 7 /1) /1)
I ^l,! ^l^ • • • ^l • • • ^ -^1 -^2

,(2) ,(2) ,(2) /2) „ .(2)
^1 i ^1^2 • • • li'2,\ ' • • ~tl ZJ ~ ^2

By (2.10)-(2.12) the expressions h^\yx7 + h^}yx6 belong to the right
hand side of (2.7). Then, by Cramer's rule the (2 x 2)-minors of H
satisfy (2.7).

Let f]1 be the ideal generated by the (2 x 2)-minors of H\ by
LEMMA (2.6), ?' satisfies (2.5).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



160 J. DAMON AND A. GALLIGO

In our case we want to show that the space defined by f]1 is the curve 6.
First, we want to determine the projection of the space denned by J7 onto
the (iA, z;)-subspace by computing det(/^ , ) for the possible values of z,j .
Second, we will show that on the image of the projection both entries in
one of the columns are nonzero. This implies that the (2 x 2-determinants
using this column and each of the last two columns specifies Z. This
forces V(^) to map bijectively onto the image in {u, 'L')-space. Thus, it will
be enough to show that the image of the projection has the desired form.

3. Symbolic computations

Our goal is to compute sufficiently many generators of J' (defined at the
end of § 2) in order to prove that C 3 V and hence V = 6. A conceptual
(versus an effective) way of achieving this goal is the following.

Consider the first derivatives of / with respect to x and y as two
polynomials with coefficients in Q(t)[u^v\ :

fy = 3y2 + tx6 + ̂  U6-iX\

0<i<5

f^ = 6tx5y + 9x8 + ^m6-^^-l^+ ^ wg-^"1.
0<i<5 0<i<7

To them we add

g = ̂ x^fy - (2ty - 3x3)^
= (4^3 + 27).r11 + {terms smaller than x11 in x},

to form { f x ^ f y ^ g } ^ a standard basis for the jacobian ideal (fx^fy) with
respect to the following ordering :

x ' y 3 < x ^ y 3 ' if (z + 3j < i' + 3j') or (z + 3j = z + 3j and j < f)

(see [Ga, 3.1]). Then, for any polynomial P in Q(t)[n, v}[x, y} we can apply
the generalized Euclidean division algorithm with respect to the following
partition of N x N :

N x N == A U Ai U A2 U As

^ AI

A
Aa

As
0 5

TOME 121 — 1993 — ?2
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UNIVERSAL TOPOLOGICAL STRATIFICATION 161

(see [G3]), and obtain unique qi,Q2^Q3^Ri such that

p = Qify + Q2/x + 039 + Rl

with exponents {qiy2) in Ai, exponents (q^y) in As, exponents (93 a;11)
in As, and exponents {Ri) in A.

Very briefly, the algorithm consists of repeatedly replacing

V2 by J(3^/2-/,),

^ by -(Qtx^y-f^,bt

x11 by 4*3-^27((^3+27)^l-<?)

in such a way that the "generalized degree" z + 3j descreases.
In the remainder J?i, we successively replace x10 by ^^(O^8 — fx),

then a;9 by ^.r(9o'8 — /^), and then a;8 by ^ (9a*8 — /.r), to obtain the new
remainder R.

Thus, we obtain the following decomposition :

Q(t)[^,^;]=Q(t)[u,^(l, . . . ,a;7 ,^. . . ,^7)eQ(t)[^,^][^,2/](^,^}.

This process can, in theory, be programmed on a computer and we
would like to carry it out for P = Zkx^y3 for j = 0, i = 0 , . . . , 7 or
for j == 1, i = 0 , . . . , 5, and e.g. k = 1,2, where we recall

Z=f- ^xf,- \yiy.

If we collect the coefficients h^ \ • and hj^ \ • of x7y and x6y for the
corresponding 28 remainders into a (2 x 28)-matrix, then the (2 x 2)-
minors provide some of the generators of J'. However, we do not know in
advance which k will give us a complete set of generators.

Unfortunately, this "naive" method would lead to symbolic computa-
tions for which the number of terms and the size of the coefficients become/e\\
unmanageable. For example the coefficient h\ 7 5 is a quasi homogeneous
polynomial in u,v of total weight 22 in 14 variables over Q(t) and hence
may involve several thousand monomials which may as well have very
large coefficients.

We avoid this possible computational complexity by using an interative
procedure. Specifically, we compute (2 x 2)-minors as above; however we

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



162 J. DAMON AND A. GALLIGO

use the result of each step of the computation to simplify the later steps.
This amounts to replacing the ideal J7 by its radical.

Secondly, we change the presentation of / for this computation :

/ = y3 + x9 + tx6y + u^x°y — Gu^x^y + ̂ u^y

+ Qu^y — 12uQxy + ^UQV — ^v^x7 + Gv^x6 + ̂ Jv^x5

- 36v^ - 15V6X3 + 54^2 - 36^ - 8^9.

When Ui = tvi = tx^ i.e. on the curve 6,

/ = y3 + t[(x - xo)2(x + 2xo)l]2y + [(x - xo)2(x + 2a;o)1]3 ;

we might then expect the coefficients in our computation to remain
"small integers".

Thirdly, we recognize that each division will increase the number
of monomials in u and v appearing as coefficients in the remainders.
Consequently we minimize the number of divisions to be performed by
considering only polynomials of degree smaller than 2 in y .

Finally, we allowed for the possibility of considering truncated versions
of the problem to inductively obtain partial results; but this provision
was ultimately not needed.

Now, we will list the principal steps of the calculation (we suppose t 7^ 0
and 4^+27 ̂  0).

Here we let = denote equality modulo (/^, fy) '.

(3.1) 9Zx = u^y - 12u^y - ISv^x8 + • • • .

After division by f^i

9Zx E= u^y - 12(^2 - tv^x^y + • • • ,

9Zx2 = u^y - 12(^2 - tv^y + • • • .

Then

^41o = ̂ lo = u^ l̂o = 0. îlo = -12^ - ̂ 2).

Thus, the first equation obtained is (^i)2 = 0. This implies that u^ = 0
which we use to simplify /. Next

9Zx3 = -12(^2 - tv^y + • • •

which gives u^ = tv^.

TOME 121 — 1993 — N° 2
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After noticing that h^ = ^l^o = ^^+2,0 (where h^ is the
coefficient of x^y), in the same way we obtain from Zx^ and i < 7, the
relations :

^3 = ̂ 35 ^4 = 2^4 — tv^, U^ = 2tv^ — tv-^V^,

UQ = ^t{-5ve - 2vj + 27^4 - 18^J).

Observe we can't use Zx8 ; however, v^Zx8 will appear as a linear com-
bination of the products (1, . . . , x7, ̂ / , . . . , yx5) • (Z, Z2). Thus using (3.1),

ISv^Zx8 = Z2x - 12^2 Zx5y + • • • .

Provided ^2 7^ 0, we can use v^Zx8 to obtain :

V7 = 2^2 ̂ 5 + ̂ 3^4 — 2^J^3.

Also, considering the minor obtained from v-^Zx8 and

2Zy = - ̂  (4t3 + 27)(^7?/ - ̂ 3^2/) + • • •

yields :

vs= -^ (10^6 - 16^5 + 27 |̂ - 108vJV4. + 16^J + 63^).

Since
2Zyx= ̂  (4^+27) (^7^) + • • >

we observe that the expression for A = ^32^ + v^Zyx has no ;r7^ term.
In fact, a computation shows

9A = (At3 + 27) FV + ̂ j - J^]rr6^ + . • • .

Therefore via a similar procedure the minors formed from Ax^ for i < 3,
yield the relations :

^4 = -i^j - 7vl^ ^ == -i^J(^J -11^3),
^6- ^^(2^-27^j+35^).

To get z>9 and ^3 we need to compute remainders for multiples of Z2.
For that purpose we simplify the expression for Z x ^ ' y 3 by evaluating
^4 5 ^8 ? ^2 ? • • • 5 '^6- We write

Z2 EE Z(-12^4^ - 18^7 + • • • ) ,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



164 j. DAMON AND A. GALLIGO

then we obtain

^ 9 = j (150-^7 + 30?;3^6 + 324'y4/^;5

- 624^5 - 635^3^4 + 16^j + 732^^),
9 ^vi = v^.

Then, everything simplifies to the required relations by parametrizing
v'2 = x^ and v^ = x^. Now the last case to consider is v^ = 0; the same
computations, but considerably simplified yield ui = v^ == 0 for all i.

Lastly, observe that the coefficients for Zy are (up to constant multi-
ples) v^ and vs. Therefore, by the comment at the end of § 2, the versality
discriminant is exactly the curve we have identified. Q

This computation was actually performed with the MACSYMA system
[MAC], it could have been done with any other interactive computer
algebra system which provides the usual "simplification" routines such
that Expand, Substitute or Eval, and where the function "Remainder" can
be constructed. The function Remainder^, m, x) returns the remainder
of the multivariate polynomial p divided by the a;-monic multivariate
polynomial m.

Lastly, to give an idea of the size of the intermediate data, we mention
that the listing for the entire session consists of about 40 pages and can
be checked with 2 or 3 hours interactive use of a mini-computer.

4. Stratified topological triviality and the structure of the
multi-germ

To prove that f is topologically trivial along the ^-axis, it is sufficient
by theorem 1 of [D4] to prove that / is tratified topologically trivial in
a conical neighborhood of the versality discriminant in the sense of [D4]
(see below).

We know that the versality discriminant of ft is a curve (°, which on
replacing ui by tui, with t ̂  0, is defined parametrically by

Ui=CiXQ, Vi=biXQ, z=bQX^,

for XQ in K, and for appropriate integers c^, bi given in § 3. Then,

./r^nscf,)^

is a curve with two components parametrized by y = 0, x = XQ or
x = —2xo and t^,z^ given above.

TOME 121 — 1993 — ?2



UNIVERSAL TOPOLOGICAL STRATIFICATION 165

We recall that "conical neighborhoods" of (° x K and C' x K are
neighborhoods of (C \ {0} x K and (C' \ {0}) x K of the form

£/ = {(z^t) € ^13 x K : p(z) < e'pQ(z)}^

U' = {M C K14 x K : p^(x) < e'p^(z)}^

where the various p are smooth non-negative "control" functions which
vanish on {0} x K for po and p^ and on 6 x K and 6' x K for p and p^.
Observe that since (° and (0/ are invariant under the JC*-action, we may
choose the p's to be real weighted homogeneous of the same degree and
then U and U ' are unions of K* -orbits.

PROPOSITION 4.1. — There exist conical neighborhoods U and U'
such that given a smaller conical neighborhood U\ of Q x K such that
Cl([/i) C U (where Cl denotes closure in K13 \ {0} x K) then there exist
K* -equivariant stratified vector fields ^, rj defined on Uf and U respectively
(in the sense of [D4, § 3] and see below) such that:

1) ^ and T] project to 9/9t^

2) ^ andr] are smooth on L7'/\.f~l(Cl(L/l)) andU\G\(U\) respectively^

3) fi(f)=rjof.

Now, if we examine the definition of stratified topological triviality
in [D4], we see that the conditions of PROPOSITION 4.1 are conditions 1), 2)
and 4) of that definition. Also, the K^-eqm variance implies the remaining
condition 3). Hence, we can apply theorem 1 of [D4] to obtain the theorem.

In this section we shall prove this proposition modulo several algebraic
lemmas to be established in § 5; the outline of the proof is as follows :

First, slices to (° and 6' are taken, reducing the problem to one about
multi-germs. Next the multi-germ is put into a normal form. From this
normal form we prove that the multi-germ is stratified topologically
trivial. We also prove that this trivialization can be smoothed outside
of a small neighborhood. Lastly, the stratified vector fields used for the
trivialization are extended by the J^-action to prove the proposition.

In order to obtain a useful local form, we now take a slice through 6 by
fixing XQ (as above) to be small and not zero, and by intersecting 6 with
the affine hyperplane :

V4_ = -(126^ + 24^2 + Gxovs).

This is easy seen to be transverse to the curve 6 with inverse image
in X15 defined by the same equation and passing through (0/ in two points
corresponding to x = XQ and to x = —2xQ.
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Figure 3.

By restricting ft to the inverse image of this slice in a neighbor-
hood of (0// we obtain a multi-germ that we continute to denote by
f^ = (^ 1,^2) ^OT a nxea t ¥" 0; and we will denote by / = (/i^)
the corresponding unfolding along the parameter t.

K^,x .

K^.x".

Next, we place the multi-germ f= (f^,f^) into normal form.

PROPOSITION 4.2. — If to 7^ 0 and 4^ + 27 7^ O, then by a local change
of coordinates near t = t — to = 0 and z f ,x / and x"\ we may write the
multi-germ in the form

f^(x',y',w,s,t) == (/i,w,5,t) nearx',

f^(x",yff,w,s,t) = (/2,w,5,t) nearx",

where W = (wi,... ,wg), s = (^i,..., 54) and

(4.3) h (^ ^//, ̂  5, t) = ^//3 + (t + ̂ o + c^)^4 + ̂ /6

3 4

+ y ' (^ w,+ia;7^ + ̂  w,+4^/% + ̂ i
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(4.4) f^x\ y " ^ s) = y " ^ + t^x"2 + x^

+5l+52^ /+^ /(53+54^ /) ,

where c -^ 0.

If we assign weights

wt(^2/ ,wi , . . . ,w8) = (1,2,4,3,2,1,5,4,3,2),

wt^.^i,...,^) = (2 ,2 ,6 ,4 ,4 ,2) ,

then H\ consists of terms of weight greater than 5 in (x'',?/) and greater
than 6 in all coordinates. Moreover, it is without terms which are products
of the form 54 (terms of weight 6 in (a/, ^/)).

The proof of this proposition will be given at the end of this section.
Next we use this normal form to prove that the multi-germ / is stratified

topologically trivial.

PROPOSITION 4.5. — The multi-germ f is stratified topologically trivial^
i.e. there exist stratified vector fields ^ and 77 (in the sense of [D3, §2] ,
see below) which project to 9/9t such that

M)=rjof,.

Proof. — We first observe that f^ is a stable germ and that Q/Qwi,
for 1 < i < 8, and ^o == 9 / 9 z + QjQs\ preserve the discriminant of f^
and lift to 9/9wi, respectively 9/9s\. We consider . ̂ .-equivalence of f^
preserving the discriminant of f^. Let /i^o denote the germ obtained
from /i by letting [si = 0} and t = t - to = 0. Then, let :

f^x'.y'.w) = (/i,o(^W^)^)-

Then, f^ is an unfolding of non-decreasing weight of the germ f^^, where
the unfolding variables are {s,t). We define :

< : C^^^(9/9x\ 9/9yf) © C^(Co, 9/9w^ .... 9/9ws)
k Cx',y',w(9/9z}

by
<(^ 0 - ̂ (A,o) + CWl ̂ t)=o - rj o f^

where if C = ^oCo + S 9i9/9wz then rj = -go9/9z and C' = C + r ] -
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By 1) of LEMMA 5.4, an associated homomorphism a[ is graded
surjective in weight > 0. Since the images only differ in that

c//(Co)= 9 / 9 z +9/i/95i

is replaced by a[(9/9z) = 9 / 9 z , and wt((9/i/<9si) > 6, it follows by
the preparation theorem (see e.g. lemma 7.4 of [D3]) that o// is graded
surjective in weight > 0.

It then follows by THEOREM 12.5 of [D3] that f^ is stratified topolog-
ically trivial along that ^-axis. This means that there are vector fields ^
and 77 projecting to 9/9t such that

(4.6) ^(f,)=rjof,

and where 77 has the form ^oCo + ̂ 9i9/9wi where g^ are continuous and
satisfy |^| < Cp^l^ for C > 0 with

p = y ^ 'w^\'2a^ + \z\l2ao and a^wt(w^) = aowt(2;) = 2777,.
l<,i<,8

Then, 77 can be lifted to ^2 = 9o9/9s-i + ̂ gz9/9u)i for f^ so that

(4.7) Uf2)=rfof^

It remains to verify that the ^ and 77 are stratified vector fields in the
sense of [D3, §2]. Because this is largely a question of verifying certain
technical conditions, we postphone this until we have completed the proof
of PROPOSITION 4.1. []

Lastly, to smooth these vector fields outside a neighborhood of z1\ we
need the next proposition. Let pi = ^ ^ \Si 2.

Ki<4

PROPOSITION 4.8. — There exist germs of smooth vector fields ^[^^rf
such that:

-pl9f,/9t=W+r^fof,

for i = 1, 2 and ^'(p)] < Cp in a neighborhood of 0.

This will be proven in § 5.

Proof of Proposition 4.1. — There exist neighborhoods W of z ' and
W of ( x ' ^ x " } on which the vector fields from PROPOSITIONS 4.5 and 4.8
are defined. If we extend both W's by applying the -?C*-action, then
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we obtain our conical neighborhoods U and U ' . Given a smaller conical
neighborhood U\ with Cl(?7i) C U, let W^ denote the intersection of U^
with the slice through z. Then, Cl(Wi) C W.

First consider the vector fields rj from PROPOSITION 4.5 and 9 /'9t-{- p~^rf
from PROPOSITION 4.8. In terms of local coordinates on the slice, rj is
smooth off of { ( / z , 5 ,w ,^ ) : s = 0} and 9/9t + p^1^ is smooth off
of {(z,s,w,t) : w = O ^ z = 0}. Pick a product neighborhood (as shown
in figure 4.2) W x W" x J C Wi with W in the w-subspace and W" in
the 5-subspace (and J an open interval containing to).

Figure 4-2.

Also, choose neighborhoods of 0, W^ and W[^ so that

GW) c w[' c GW) c w " , c\(w[) c w.
Let (see figure 4.3) :

Ti = [(W" x (W \ C1(W[)) U W'{ x W'} x J,

T2 = (W" \ C\(W^)) xW/ xj.

"^

- - - - - - - -

Ti
w

T.

W^

Figure ^.3.
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Let {^1,^2} be a partition of unity subordinate to {T^,T^}. Then,
consider rj^ = \^T] + X2(9/9t + pF17/)- since X2 = 0 on a neighborhood
of the subspace where 5 = 0 , then 'x.'^Pi1 ls smooth. Hence, rj^ is smooth
off of C\(W^) x {0} x J . Hence, it is stratified off of this set relative to
the given stratification by proposition 2.5 of [D4]. Lastly, where ^(1) is not
smooth, i.e. on C\(W!^) x {0} x J,

(Xi^+X2(9/^+^V)) < |77(p)|+X2prW)l

< Cip + C2p = Cp.

That T]^ is stratified follows the same arguments to be given for rj in the
remainder of the proof of PROPOSITION 4.5.

Next, let \\^\2i and p\ denote the composition with /. Also, with ^
and ^ denoting the vector fields defined in PROPOSITIONS 4.5 and 4.8, we
consider, for i = 1,2,

^^xi^i+W/Qt+p^.

By the same arguments used for 77 ̂  we see that Q is smooth off of the
inverse image of the subspace where s = 0, and stratified relative to the
stratification on the slice.

Now extend these vector fields by the K* -action to give vector fields on
the conical neighborhoods U and U ' . If we denote these by 77 and ^, then
by the equivariance they are stratified relative to the stratifications on U
and U 1 ' . We have already seen that they are smooth where required. Since
they are constructed using partitions of unity from vector fields which
satisfy 3) (of the proposition), they also satisfy 3). []

Completing the proof of Proposition 4.5. — Actually the vector fields
are stratified in the stronger sense of [D4, § 2]; however only the weaker
notion of stratified vector field given in [D3, § 2] is needed in the proof.

The stratifications for T^and ^i are given by V\ which in a neighborhood
of z ' is defined by the Eg-stratum Vi and its complement and V{ a
stratification of a neighborhood of x ' defined by the complement of
/r1^!^ /f^i \ ̂  and y^ where V{ denotes the Eg-stratum in
the source.

Secondly, there is a stratification of a neighborhood of z ' by strata
where multi-germs of a given type occur for f^. Since f^ is a stable D^-
germ, these form a stratification which we denote by V^. Let V^ be formed
by the inverse images of the strata of V^ in ^i(f^) and off of ^(/a)-
These again form a stratification because they are the pull-backs by
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the jet extension of f^ of multi-jet orbits. Since Vi is transverse to f^
Vs intersects V\ transversally.

Then, the stratifications for the multi-germ / consist of :
• V formed by the complement of V\ and the intersections of V\ with

the strata of V^;
• V formed by the pull-backs of the stata of V to S(/i) and off S(jfi);
• V" formed by the pull-backs of the stata of V to ^(/s) and off ̂ {f^-
Again V is a stratification with strata where the multi-germs occur.

The strata of V and V" are the pull-backs via the multi-jet maps of / of
the multi-jet orbits.

It remains to verify that the vector fields are stratified relative
to (V, V, V). We already know that T] is stratified relative to Vi, hence rj
is tangent to Vi. Also, Co a^d the Q/Qwi define smooth trivializations of f^
and hence are tangent to the strata of V-z. Thus, any linear combination
is still tangent to the strata of V^. Thus, rj is tangent to the strata of V^
and to YI and to their transverse intersections.

Next, the stata of V and V" are mapped submersively onto the strata
of V by /i and f^. For /i this follows because /f^Vi) H S(/i) = V{
and f^ induces a diffeomorphism of V{ to Vi. For f^ V\ is transverse to
the strata of V^; hence f^1^^) ls transverse to the strata of V^. The
intersection gives the strata of V " . Thus, (4.6) and (4.7) imply that ^i
and ^2 ^e tangent to the pull-backs of the strata to S(^) and off of S(/J.

Secondly, we must verify the local control conditions : since f^ is trivial
in the direction of Co ^d the 9/Owi, there is a local control function pz
for the stratum Vi of V^ containing z such that Co(p^) = 9pz/9^i = 0-
Then, p + pz is a local control function for Vi H V\; and r]{pz) = 0. Thus,

\rj(p+P.)\= rj(p)\ <Cp<C(p+p,).

The first inequality follows from 77 being stratified with p the control
function for V\.

Also, if p ' is the control function for V{, then p ' + p^ is a control
function for f^~\Vi f-1 Vi) H S(/i) and (p + p,) o f^ for f^(V, U Vi) \ V/
with p^ = p z Q f\' Since

î(P.) = W^(Pz) = r](pz) o f, = 0,

the local control condition is satisfied because it is for <^i using p ' and p of^.
Lastly, for ^2 let px be a local control function for the stratum V{ of V^

containing x such that ^(px) = 0. Hence, the stratum V^ D /2-l(^l) nas
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local control function px~\~ P° f^' Again, by (4.7)

|6(^+po^)| = \UP 0/2)! - |d/2(6)(p)| = \r](p 0/2)!
<Gpo/2<C7(^+po^).

This completes the verification that the vector fields are stratified. []

Proof of Proposition 4.2. — We begin with a change of coordinates
x ' = x — XQ so that x = XQ + x ' . Upon substitution into /i we obtain :

z = y3 + ̂ /4 + ̂ ( ̂  ^/6"') + ̂ /9 + Qxox^ + ̂  ^/9-'
0^<5 2<i^8

where ^4 = 0 by the choice of the slice.
Each u^ v^ z is an affine function of the i^'s, respectively z^s,

respectively ^'s and 2;. Since we have an inverse transformation obtained
by resubstituting x ' = x — XQ, we conclude that this transformation is
invertible.

Secondly, we consider the multi-germ at x = —^XQ. We let

x = x + '2XQ = x ' + 3xo^ or x ' = x — 3xo.

Upon substituing, we obtain :

^ = V3 + (-^xo)^tyx2 + (-3xo fx3 + ̂ /(^ + <^)
+ (^ + <^ + v^x2) + 7:f

where H contains terms of weights greater than 5 in (a?, y) and than 6 in
all variables.

Furthermore, remembering that v^ = 0, we see by direct calculation
that modulo (^3,. . . ,^,^5,. . . ,v§) the i^', respectively ^/, are affine
functions of (^,^3), respectively (v^v^), with linear parts given by,
respectively :

5(-3xo)u[ + 4^2, (-3xo)u[ -\- u^

7(-3xo)v^ + 6^3, (-3xo)v^ + 2:3.

These are easily seen to be linearly independent.
Next, we absorb v^x2 by a substitution x" = x + j (—S^o)"6^-

Because each term of ^f is at least cubic (and at least quadratic in a/')
the coefficients of 1 and x" will still differ from v^ and v^ by higher order
terms in the v[. Also, the linear terms of the coefficients of y and y x "
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will differ from those of u'^ and u'{ by at most terms in < whose linear
terms involve ̂ . Thus, the linear terms of the coefficients are still linearly
independent, modulo (^3 , . . . , UQ, ̂ 5 , . . . , Vs)-

Hence, the coefficients together with u^ . . . ,UQ,V^. .. ,Vs and ei-
ther ( x ' , y ) or (x'^y) or z form systems of local coordinates (giving
w i , . . . , s\ . . .) vanishing at x ' ' , x " , z ' .

Next, we incorportate the powers of (-3a;o)2 into x" and (since t ̂  0)
replace tw, by w, for 1 ^ z < 4, and t^ by 5, for i = 3,4. To verify
that the coefficient c is non-zero we note that u^ is replaced by a linear
combination of < and u^ modulo (^3,.. . . < {^}); ̂  direct calculation
we see that the coefficient of u^ is non-zero. The preceding step will also
leave the coefficient of u^ non-zero.

Now everything has the desired form except that /2 differs from the
desired form by the terms ty"^2 + H, with t = t - to. These terms give
a deformation of non-decreasing weight of the germ in (4.3), which is the
versal unfolding of a D^ singularity. Moreover, it is versal in a graded
sense by 2) of LEMMA 5.4; hence the vector fields trivializing h viewed as
an unfolding of (4.3) with unfolding parameters (w,t) have weight > 0.
Thus, the germs of diffeomorphisms trivializing h are of nondecreasing
weight This introduces a change of coordinates for 5, depending on (w, t)
which is the identity when (w,t) = 0. Thus, h is only changed by terms
of weight > 6 in { x ' , y ' ) or terms which are products of the form s^,
ts^ or wis,(f) with ^ a term of weight 6 in (x1', y ' ) . Hence, ;i still has the
desired form. []

5. The algebraic lemmas

In this section we prove PROPOSITION 4.8 and give the algebraic
justifications needed in PROPOSITION 4.2 and 4.5. First, we view /, as
unfoldings of germs f,^ Let /i,o denote the germ obtained from h by
letting {Si = 0} and t = to i.e. t = t - to == 0. Then,

A^W.^ (A^W^)^)-
Also, /2 is a constant unfolding of the germ ^o obtained from it by
setting w == 0, t = 0. Here

/i,o = ̂  + W^4 + ̂  + V' (E^ )̂
„•_n A;=0 4

+^W,

i=i
( /2,0 = V"3 + toy"X"2 + X " 3 + Sl + S^X" + y"(S3 + S4X").

(5.1) { +^Wi+4X'^+H[,
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Again to simplify the description of modules of vector fields that
follow, we denote R(h^... ,hk) by R(hi) when the index k is clear
from the context. Weight nitrations on modules of vector fields are
defined by wt(g9/9\) = wt(g) - wt(A) for weighted homogeneous g and
A = x ' , y1, z, si or w,. For an arbitrary vector field ^ we define wt(^) ^ k
if the terms of ^ each have weight > k. This defines weight nitrations on :

0(fi,o)=C^^^(9/9z)^

C^^^(9/9x^9/9yf)^

C^(9/9z^9/9w,)^

for A,o, as well the corresponding modules for /2,o obtained by replac-
ing «?/,w) by (x^y^s) and C^(9/9z, 9/9w,) by C^(9/9s,). Given
such a module M with a weight filtration, we denote the submodule of vec-
tor fields of weight > k (respectively > k) by M(>^) (respectively M(>/,)).

Next, for f^o we define the maps a[ which are essentially the infinites-
imal orbit maps. For /i^o, we define :

^i : C^^^(9/9x^9/9yf)eC^{9/9wi)eC^{9/9z)

——C^^^(9/9z)

by ̂  (^ C, rj) = ̂ (/i,o) + C(/i,o) - r] o f^.
We denote that on the first summand a[ is a C x ' , y ' ̂ -module ho-

momorphism, while on the second and third summand a[ is a module
homomorphism over f^Q : C^ -^ C^^^- For /2,o, we define :

02 : C^^^(9/9x^9/9yff)(BC,(9/9s

-C^^^(9/9z)

by^^Q-^^+C^o).
We note that the a[ preserve the filtrations, i.e.

wt(0 > k implies wt(o^)) > k.

A homomorphism of filtered vector spaces a : M —^ N is said to be
graded surjective in weight > L (respectively > L) if for any k > L
(respectively k > L)

(5-3) 7V^) = Oi{M^}} + A^+i).

We say that a is graded surjective if (5.3) holds for all k.
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LEMMA 5.4.

1) a[ is graded surjective in weight > 0 ;

2) o;2 is graded surjective;

3) if V denotes the subspace spanned by y/x/4:9/9z and

i' :V^C^^^{9/9z)

denotes the inclusion, then a[ + i' is graded surjective in weight > 0.

Proof. —First consider a[. It is enough to replace /i^o by the germ /{ o
defined by the terms of lowest weight (i.e.= 6) in /i^o- This amounts
to discarding t y ' x ' ^ and H[. Then, ^ o ls exactly the unfolding of an
Eg-germ, which is versal except for the modulus term. By the algebraic
calculation ofLooijenga [L, prop. 2.1], the corresponding map a[ for /^o
is graded surjective in weight > 0 and its image in weight 0 has codimen-
sion 1 spanned by y ' x ' ^ . This implies that we can solve (5.3) for a[ of /i^o
for k > 0, or k = 0 adding i ' .

For a^ the germ /2,o ls weight homogeneous and is the versal unfolding
of D^ with respect to right equivalence. Hence, the corresponding map o^
for /2 o ls surjective in all weights, which implies that (5.3) for a^ can be
solved for all k. \\

We can draw several consequences of this lemma for each f^ viewed
as an unfolding of f^ o. For this, we extend the filtrations in such a way
that (5,^), respectively (w,t) are treated as unfolding parameters for /^,
respectively f^. To simplify the notations, let :

-RI = Cx',y' ,w,s,t? ^2 = Ca;",^/",w,,s,t? D = ̂ z,w,s,t'

We then define induced filtrations on Ri{9/9z}, R^{9/Qx1\ 9 / Q y ' } , etc., by
taking the submodules of vector fields of weight > k to be those generated
by vector fields in C^/^/^(<9/(9,z), etc., of weight >_ k. Moreover, we shall
replace 9 / Q z by Co =\9/9z + 9/9s^ -9/9s^) and denote 9/9w, by <,.
We let :

T,=R,{9/9xf,9/9yf)eS(Q,

T2 = R2(9/9x\9/9yf) C S(9/9s,).
Then, we define homomorphisms ai: Ti -^ Ri{9/9z) = 0(fz) by

^ ._ f ^ ( / l )+C / ( / l ) -C / / oA if i=^
^^'{W+W if .=2,

where for i = 1, if we write C = S Qi^ii ^^en C" = ~9o9/9^ ^d C' = C—C / /•
Again these homomorphisms preserve filtrations. Then, the ai also satisfy
surjectivity results.
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LEMMA 5.5.

1) ai is graded surjective in weight > 0 ;
2) 02 is graded surjective;

3) ifi'- Cs,t(y/x/49/9z) -> R^(9/9z) is the inclusion, then a^ + i is
graded surjective in weight > 0.

Prw/. — By LEMMA 5.4, a[ is graded surjective in weight > 0, a[ + i'
is graded surjective. By LEMMA 7.4 of [D3], ai, o/i + z, and 02 are graded
surjective as claimed. []

To understand the interaction between the multi-germs we define :

a : r ie r2—0(/ i )e^( /2)
so that

^ R ^ Q / Q x ' . Q / Q y ' } = (<^1,0), q^a/c^a/ch/7) = (O,^),

a(9/9z) = (9/9z, 9/9z), a(9/9w,) = {9f,/9w^ 0),
a(9/9s,) = (9f,/9s^ Qh/Qs,}

and a extends S'-linearly over S(Q C S(9/9si).
The surjectivity of the o^ no longer implies the surjectivity of a.

Nevertheless, the algebraic linking that we referred to earlier can be
established by using jumps in filtration that occur for certain vector fields.
Define :

Mi =Ti(>o), M2=Ti(>o),

^l-^OO), ^2^(/l)(>0).

LEMMA 5.6. — For each i, there are vector fields /^ e T^>o\ so that:

^(A) = [siy'x^Q/Qz, 0) modulo {m^W^ + TVi).

Proof. — To prove this lemma, we need one more lemma about /2 o-

LEMMA 5.7. — The restriction ofa^ :

C^^^Q/Qx^Q/Qy")
+ C^Q/Qs^.... 9/9s^ z9/9s^.... z9/9s^)

— oW
is surjective in weight ̂  -2, and in particular ms 6 (^2,0) is contained in
the image of a^.
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Proof. — If we had 9/9s^ in place of the z Q / Q s i , the mapping would
be surjective by the preparation theorem and the stability of D^. The
argument in Looijenga [L, prop. 2.1], which was given for simple elliptic
singularities, implies that Q/Qs^ may be replaced by {zQ/Qsi} and the
homomorphism remains surjective in weight -^ —2 with complement
spanned by y ^ x ^ Q / Q z (alternately see e.g. [Dl II, thm 6.5]). Q

Proof of lemma 6.6 continued. — Let :

{^^^^=^x^y",x^yfl},

7, = 6z9/9si - ̂ "Q/Qx" - ̂ y y ^ / Q y " .

Then, by the Euler relation,

(5.8) 7,(/2,o) = ( ̂  wt(s,)s^)9/0z.
1^<4

By LEMMA 5.7, if wt(<^) + wt(^) -^ 4, then there exists ̂ j of weight
wt(<^) + wt(^) — 6 such that

(5.9) ^(/2,o)=<^

and for which the coefficient of 9 / O s 4 vanishes when z = 0.
As the Jacobian algebra of D^ is Gorenstein, if wt(^^-) == 4 then there

exists a constant c^j so that :

(5.10) (^ = c^V

modulo C^^^Qf^/Qx^Qf^/Qy"} +m,C^^.

In addition by LEMMA 5.7 we may set Czj = 0 when wt(^)+wt(0.) 7^ 4.
The fact that the Jacobian algebra is Gorenstein further implies

that (cij) is non singular. Then, (5.10) together with LEMMA 5.7 implies
that there is a ̂ j such that :

(5.11) a^)=c^y^x".

Let ^ = 7, - ̂  wt(5,)5^j. Then, by (5.9) to (5.11) :
l<i<4

^(^/) = (I^^jwt(^)^)2/Y/9/^.
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Hence, if we let

^ = K - (^ ̂  wt(5,)5,) (9/954

then a2(/^) = 0. Next we determine a(^). We observe :

7,(/i)= 6z9f^/9si GTVi.

• First consider z = 4; by weight considerations c^j = 0 i f ^ ' ^ l . Also,
wt(74) = 4 and wt(>,) ^ 4 if i > 1. Thus, wt(^j) ^ 6 for j > 1. Thus,

^4j(A)^^2+TVi for j>l.

Hence :

(5.12) a(f3[) = (Sc^i^'^/c^O) modulo (m2^ + W,).

We let A =(5c'C4,i)-1^.

• Next, for i = 2,3, C2j = 0 and csj = 0 if j = 1,4. Also,
wt(72) = wt(73) = 2. Then, wt ($2,4)^1(^4) > 0 and again

54$2,4(/l), ^3,4(/l) G m^2 + ̂ 1.

Thus, for i = 2,3,

a(^) = (4c(c,,252 + C i ^ y ' x ' ^ Q / Q z , 0) modulo (^iF^ + ̂ ^2 + W^).

Since (0^2,^,3) are linearly independent for z = 2,3, there are linear
combinations of /^ and ^3 minus multiples of /3i which yield ^2 and ^3.

• Finally, for z = 1, we note by LEMMA 6.7 that in ^4 the coefficient
of 9/9s4 vanishes when z = 0; and 0^4 = 0 if z 7^ I by weight
considerations. Thus :

a({3'^ = (2c/Cl,454^/4(9/(9z,0) modulo (51,52,53)^2+^^2+^1.

We let /?4 = (2c'ci^) /^ minus an appropriate linear combination
Of/3l,/^3. D

Now we are ready to turn to the proof of PROPOSITION 4.8 :
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Proof. — Multiplying 3) of LEMMA 5.5 by iris and applying LEMMA 5.6
yields :

(5.9) a(m,M2 + C^(A)) + m2^ + TYi = m,W^ + TYi.

From 1) of LEMMA 5.5, a(Mi) = W^. Hence, for W = rrisW^ + TVi (5.9)
becomes :

(5.10) a(Mi + m,M2 + C^(^)) + m.TV = W.

Thus, by the preparation theorem :

a(Mi + m,M2 + C^(A)) = W

Hence, we may solve

-s,9f,/9t=^\f,)+^of,

where T]^ has weight > 0 with respect to {z,w) in the 9/9wi and 9 / 9 z
terms. Multiplying by —conjugate (si) and summing over i yields :

-p,9f,/9t=^f,)+rfof,.

Lastly, if
T/ = go9/9z + ̂  9i9/9w, + ̂  ^9/9^

1<^8 Ki<4

then wt(^) > wt(w^) or (wt(^) if z = 0) with respect to (z,w); thus,

1^1 < Cp^^^2171

in a neighborhood of 0. Then,

r]\p}\ < \go\ • \Qp/9z\ + ̂  |^| . \9p/Qw,
Ki<8

<^ Uop^^^' ^ " " - ' p ^ ^"^-y/ ——}< Cop^2^2^?1'^^^2^
_^ V^^ (wt(w,)/2m) l-(wt(w,)/2m)

<cp. D
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