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RIESZ SPACES VALUED MEASURES
AND PROCESSES

BY

Nassitr GHOUSSOUB (*)

ABSTRACT. — We give necessary and sufficient conditions for the weak convergence (resp.
strong convergence, resp. order convergence) of L'-bounded (resp. uniformly bounded, resp.
order bounded) supermartingales and, more generally, order asymptotic martingales valued in
Banach lattices.

RESUME. — On donne des conditions nécessaires et suffisantes pour la convergence faible (resp.
forte, resp. pour I’ordre) des surmartingales et plus généralement des martingales asymptotiques
pour l'ordre & valeurs dans un treillis de Banach et qui sont bornées dans L! (resp. uniformément

"bornées, resp. bornées pour I’ordre).

0. Introduction

This paper is mainly concerned with Riesz spaces valued measures and
processes. We first study the lattice properties of processes of vector
measures valued in an ordered vector space, but the main goal is to analyze
those Banach lattice-valued processes of random variables, which include
martingales, submartingales and supermartingales, that is an extension of the
notion of asymptotic martingales to the infinite dimensional
setting. Different extensions of this notion were studied by A. BELLowW
(uniform amarts), by R. V. CHacoNn, L. SucHestoN and G. EDGAR (strong
amarts), by A. BRUNEL and L. SucHEsTON (weak amarts). In this paper
(section II.3) we show that these notions do not, in general, preserve the
lattice properties of the real asymptotic martingales and we study another
notion (orderamart) which is stable under the lattice operation and shares
most of the properties of the other extensions.

(*) Texte regu le 25 novembre 1979, révis¢ le 30 novembre 1981.
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234 N. GHOUSSOUB

In section I1.2 we prove the Riesz decomposition for o-amarts, while in
sections I1.4,I1.5 and II. 6 we give necessary and sufficient conditions on the
Banach lattice and the “‘right” boundedness conditions on the processes to
ensure the weak convergence, the strong convergence and the order
convergence of these processes. :

Some of the results included in this paper were obtained by the author with
Y. BEnsamint and M. TALAGRAND to whom we are grateful for their invaluable
collaboration.

1. Riesz spaces valued measures

1.1. GENERALITIES

Let E be an order complete Riesz space (i. e. every majorized set of E has a
supremum). We will say that a family (e, ) in E decreases to zero (and we will
write e, | 0) iff (e,) is directed downward and inf, e, =0.

A net (x,) in E is said to be order convergent to x, if there exists ey | 0 such
that: | x, — x| <eg where a> P (B) Wthh is equivalent to: sup, | x, | exists and
lim sup x,=lim inf x,=x.

A net (x,) in E is called o-Cauchy, if there exists eg |0 such that:
[x,—x,|<eg for all a, y=P(B). It is easy to show that a net(x,) is
o-convergent if and only if it is o-Cauchy.

For complete studies of Riesz spaces we refer to the books ([24), [27]).

Let now (Q, &, P) be a probability space and let E, denote the positive
cone of E.

DeriNITION 1.1.1. — A set function p: & — E is said to be a positive
measure iff pis E | -valued, finitely additive and order-countably additive, that
is: for every disjoint sequence (4,) in & we have p(U, 4,)=order limit of

*n(4,). It can be easily shown that the latter condition is equivalent to
the following property:

* If(A,) is a sequence of elements of &, decreasing to @, then p(4,) | 0.

~ DeriNimioN 1.1.2. — A set function p: & — E is said to be a signed
measure iff p is the difference of two positive measures.

Suppose p is a signed measure which is the difference of the two
positive measures p, and p,. Since p<y,, we can defme for every
Ae¥, pn' (A)=supg ;p (AN B) which is a positive measure since
0<p* (4)<p,(A) for every Ae#. Thus, p* is the smallest positive
measure majorizing p.
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RIESZ SPACE VALUED MEASURES AND PROCESSES 235

Also, if A and p are two signed measures then p v A=A+(p—A)*. We
deduce easily the following:

ProposiTiON 1.1.3. — The class # (¥, E) of the E-valued signed measures
is an order complete Riesz space.

1.2. ORDER ASYMPTOTIC MARTINGALES OF MEASURES

Let now (#,), be an increasing sequence of sub-oc-fields of # such that
F =0 (U, #,). Denote by T the set of bounded stopping times. A
sequence (p,) of E-valued signed measures is said to be (¥ ,)-adapted if for
every neN, p, is a signed measure on & ,. If ¢ is a stopping time in T, we
define the o-field:

Fo={AeF, An{c=n}eF, for every neN}.
For oeT, we also define p, on #, by:
Ho(A)=Y ,p,(An{o=n}) foreach AeF,.

It is easily seen that p is then a signed measure and that (p, ), . r is adapted to
('g: o)ae T

DerFiniTioNs 1.2.1. — An # ,-adaped sequence of signed measures (f,) is
said to be an order asymptotic martingale (o-amart) if the net { p,(Q) }ocris
o-convergent. The sequence (u,) is said to be a martingale (resp. sub or
supermartingale) if for every ne N and every A€ &, B+ (A)=n,(4) (resp.
=or <). Itisclear that every submartingale or supermartingale such that
sup, | 1, ] (Q) exists is an o-amart.

The sequence is said to be an order potential (o-potential) if the net | u, | (Q)
o-converges to zero.

LEmma 1.2.2. — Let (p,) be an E-valued o-amari, then the net p,(A)
o-converges to a limit u(A) for each Ae\U,.nF,= UserF, and the
convergence is uniform, that is: there exists ¢, | 0 such that:

ceT and o= N(a)=sup,, s |1, (4)—p(A)|<e,
Proof. — There exists ¢, | 0 and N (a) such that if 6, p> N («) then:
1, (Q)— He Q)< ey

Let c=1>N(a). For any A€ &, define the following stopping time:

) on A,
P c on A
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236 ' N. GHOUSSOUB

Ii follows that:
(B (4)=po(4) =11, (Q)—p (Q)I<e,,

if 6>1>N(a) and the net p,(A4) is 0-Cauchy and hence o-convergent to
p(4). Letting o go to infinity we get:

SUP,cs |1, (4)—p(A)|<e, whebever 1> N (a).

1.3. RIESZ DECOMPOSITION OF ORDER AMARTS OF MEASURES:

THEOREM 1.3.1. — Every o-amart (u,) can be written uniquely as the sum of
a martingale m, and an o-potential p,,.

Proof. — For every Ae #,, let m,(A) be the o-limit of p,(.4) given by
Lemma 1.2.2. It is easily seen that m, is a signed measure for every n and
that (m,) is a martingale since m,, , (4)=limp, (4)=m,(4)forAe F,. To
prove that p,=p,—m, is an o-potential, we use again Lemma 1.2.2 to get:

SUD4c s | Po(A)|=SUDsc s, | Ko (A) =M (A)|=5Up ey, | Ho(4)—p(A)]|<e,,

whenever ce Tand o> N (). Itfollows that p} (Q)<e,if 6=N(a). The
same holds for p_, hence | p,|(Q) o-converges to zero.

If p,=m,+p, is another Riesz decomposition of (u,) then, |m,—m,|is a
submartingale which is also an o-potential, hence m,=m;, and p,=p, and the
decomposition is unique.

CoROLLARY 1.3.2. — If(u,) is an o-amart such that lim inf | p, | (Q) exists
then sup . r| 1, | (Q) exists.

Proof. — By Lemma 1.2.2, there exists e, | 0 such that:
|p,(4)—pn,(A4)]|<e, if m>n>N(x) forevery Ae#,.
Thus, for every Ae &, u,(4)<e,+liminf|p,, |(Q) and:
m,(A)=o-limp,(4)<e,+liminf|p,, | (Q).

Since it holds for every 4 € #,, we get that m; (Q)<e,+lim inf|p,, | (Q) and
consequently {m,|(Q)<e,+liminf|p, |(Q). Now (|m,|), is a submartin-
gale such that sup, | m, | (Q)=sup, .| m, | (Q) exists, but clearly sup, | p, | (Q)
exists, hence sup, |, |(Q) exists.

CoroLLARY 1.3.3. — The class o9 of o-amarts (u,) such that liminf |y, | (Q)
exists is a Riesz space.

TOME 110 — 1982 — N°3



RIESZ SPACE VALUED MEASURES AND PROCESSES ' 237

Proof. — For that it is enough to notice that for every ceT,
—lpol<uy —m <|p,|. Iflim inf|p,|(Q) exists, then sup, m; (Q) exists,
hence m} (Q) o-converges and consequently p. (Q) o-converges.

2. Banach lattices valued random variables

2.1. GENERALITIES

Let E be a Banach space. A function p : & — E is said to be a vector
measure if p is finitely additive and countably additive for the norm topology
in E. An application X :Q — E is said to be strongly measurable if X is
almost everywhere norm limit of E-valued simple functions. A strongly
measurable function X is said to be Bochner integrable iff

| X||dP<oo. For more details on vector measures we refer to the

book [12].

Let now E be a Banach lattice. We recall that E has an order continuous
norm if and only if each order convergent net in E is norm convergent. A
well-known characterizations of weak sequential complete Banach lattices is
that every norm bounded increasing sequence is norm convergent.

An E-valued vector measure p is said to be of bounded variation if

sup, Y 4cxllR(4)|l< co where the supremum is taken over all finite partitions
n of Q. We denote by:

M (¥, E) the space of E-valued norm-countably additive measures;

M (¥, E) the subspace of # (&, E) consisting of the measures of
bounded variation;

M (F, E) the subspace of #, (¥, E) consisting of the differentiable

measures (p (A)=J‘ X dP where X is Bochner integrable).
A

M (¥, E) the space of signed E-valued measures.

The following relations between the different sets of measures defined
above are easily verifiable.

(i) In any Banach lattice E we have 4, (¥, E)c M (¥, E).

(ii) E has an order continuous norm if and only if # (¥, E)s 4 (¥, E).

(iii)) E is weakly sequentially complete if and only if
MN(F,E)c M [T, E).

(iv) We will say that E has the Radon-Nikodym property if and only if
MNF,E)=M,F,E).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



238 N. GHOUSSOUB

Note also that if E has an order continuous norm then .#,(#, E) is an
order ideal in .#,(#, E) and that the space #,(#, E) equipped with the
norm N (u)=|||1|(Q)]|| is a Banach lattice which has an order continuous
norm.

2.2. DECOMPOSITION OF 0-AMARTS OF RANDOM VARIABLES

Let (X,) be an % ,-adapted sequence of E-valued Bochner integrable
random variables.
DEeFInITIONS 2.2.1. — The sequence (X ,) is said to be an o-amart (resp. an

o-potential) if ( '[ X ,) o-converges in E (resp. <J| Xcl) o-onverges to
oeT
zero |.
The sequence (X ,) is said to be a submartingale (resp. a supermartingale) if

( I X ,) is increasing (resp. decreasing).
oeT

It is clear that (X ,) is an o-amart (resp. submartingale or supermartingale)
if the measures (X,P) form an o-amart (resp. a submartingale or
supermartingale) in the sense of section I. If the space E has also an order
continuous norm, thenforeveryneN,| X, P|=|X,| . P,and the two notions
of o-potentials coincide. '

We denote by &} (resp. o) the spaces of o-amarts (X,) such that
lim iﬂle,l exists (resp. lim inf J]|X,,|| <oo).

PRrOPOSITION 2.2.2. — (1) If E has-an order continuous norm then 3 is a
Riesz space.

(2) If E is weakly sequentially complete then /3 is a Riesz space and
Ay oA,

Proof. — (1) Letp,=X,.P. If(X,)e 9 thenliminf|p,|(Q)exists, hence
(1) is also an o-amart. But p} =X P since E has an order continuous
norm.

(2) Again let p,=X,.P and let pn,=m,+p, be its Riesz
decomposition. Following [14], we observe that:

variation m,<lim inf f X,
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RIESZ SPACE VALUED MEASURES AND PROCESSES 239
To see this, given €>0 choose disjoint sets A4,, i=1, ..., k so that

variation (m,)—Y%_,|Im,(4,)]l<e. Next, find N so large that n>N
implies for all i :

Il mn(Ai)-f X, ll<e/k.
A

[ x,

variation m,<lim inf fIIX,.lHZz-:.

Now:

lim inf Y%,

<1iminf2?=1f 1 X, [ <lim inffllX..ll,
4;

which implies that:

Note now that || |m, |(Q)||<|Im, || (Q)<lim infjll X,||. Hence(|m,|(Q))

is increasing and norm bounded in the weakly sequentially complete
space E. Therefore, sup,|m,|(Q) exists. Since sup,.r|ps| (Q) exists, we

get that sup, J‘IX .| exists and the result follows from the first part of the
proposition.

THEOREM 2.2.3. — For a Banach lattice E, the following properties are
equivalent:

(1) E is weakly sequentially complete;

(2) every o-amart(X,) in o9 can be written uniquely as X ,= Y, + Z,, where
(Y,) is a martingale and (Z,) is an o-potential;

(3) every submartingale (X ) in <79 can be written uniquelvas X ,=Y,—Z,
where (Y,) is a martingale and (Z,) is a positive supermartingale and an
o-potential.

Proof. — (1) = (3)follows easily from the fact that if (X ,) is a submartingale
in &/, then, for every ne N, the sequence of random variables { E*- [X];
m=n} is increasing and norm bounded in L' [E], hence convergent to Y, in
L'[E]. Thesequence(Y,)isamartingale and(Y,— X,)is a supermartingale
and an o-potential.

(3) = (1) is straightforward by considering norm bounded increasing
sequences in E. :

(1)= (2) By the preceding proposition, every o-amart in /3 is the
difference of two positive elements of &/, thus it is enough to prove the
decomposition for positive o-amarts.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



240 N. GHOUSSOUB

Let p,=X,.P the positive o-amart. Write p,=m,+p, its Riesz
decomposition and recall that for every n, m,(4)=o0-lim p,(A4) uniformly in
Ae#,. ltfollows that u, converges to m, in the Banach lattice .#, (¥, E)
equipped with the order continuous norm N (u)=|||p|(Q)|l. Since the lat-
tice operations are continuous in this space, we get that p, A keP — m, A keP
for every k. Clearly, u,AkeP=(X,Ake).P and from the remarks of
section 2.1wegeta Yje L' [E],0< Yi<kea. e.andm,Ake.P=Y;.P. The
same reasoning as in the preceding proposition gives that:

j || Y2 || = variation (m, A ke)<lim inf j I X, Akel|<lim infjll X,ll<oo.

Thus the sequence (Y7), is increasing and norm bounded in L*[E], hence
convergent to Y, in L![E]. Now, it is enough to show that
m,=Y,.P. Letting v,=X,.P, we have:

[Vo—m,|<|v,—v,AkeP|+|v,Ake P—p,AkeP|
+“'lp/\kep_ppl+“‘lp—mnl’

which clearly implies that v,=m,,

2.3. THE OTHER NOTIONS OF AMARTS

An % ,-adapted sequence (X ,) in L! [E] is said to be a strong amart (resp.
weak amart) if the net ( jX ,) converges strongly (resp. weakly). It is
known [18] that (X,) is a stran;;mart if:

limg,,_ o (E" [X,j —X,)=0 in Pettis norm.

The sequence (X,) is said to be a uniform amart [3] if:
limt)a)n;o.tef;n-ooo J‘” E"[X:]-Xo" =0.

We now give the analogous characterisation of o-amarts.

THEOREM 2.3.1. — IfE has an order continuous norm then the following are
equivalent: :
(1) (X,) is an o-amart.

(2) o-limog,;a,,er le'-—E" [Xa] | =0.

TOME 110 — 1982 — N°3
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Proof. — If (X,) is an o-amart, there exists e, | 0 such that:

Hx,_ [x.

<e, i p,0=P(a)

Let 2t>P(a). For any 4 e #,, define the following stopping time:

_ )t on 4,
p= c on A-
Thus,
J‘(X‘——E"[X,])=J‘X,—J\X,= J.X,—- jX,.
A A A
Since:
p?P(a):J‘X,—E"[X,Ke, if o=t>2P(a)
A
and:
supAef, J‘ Xt’.—E"[Xo]Sec lf GZT?P(a)
. :
Hence:

j(X,—E’- [X))*<e, if o=t=P(a)
The same holds for j[X .—E%[X_]]” and finally we get:

frx,—E"[x,,llseu i o2t>P()

We now compare the notion of o-amarts to the other notions.
first that:

{ uniform amarts } < { strong amarts } < { weak amarts }.

THEOREM 2.3.2. — (1) E has an order continuous norm if and only if

{ 0-amarts} < { strong amarts}.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



- 242 N. GHOUSSOUB

(2) E isisomorphic (as a topological vector lattice) to an A— M space if and
only if { strong amarts} < { o-amarts}.

(3) E is isomorphic (as a topological vector lattice) to an A— L space if and
only if { 0-amarts} < { uniform amarts}. -

Proof. — (1) is obvious.
(2) fEisan A — M space and < IX ,) is norm convergent hence it is norm

convergent in E’’ which is an A — M space with unit hence isomorphic as a
topological vector lattice to a C (K) where K is compact stonian. The order
convergence follows from [26]. The reverse implication follows from
(p. 243, [27]) since every null sequence is then order bounded.

(3) Let (X,) be an o-amart and E be an A— L space. Then by (p. 244,
[27]) there exists feE’ such that ||x]|< f(]x]|) for all xeE. Using
Theorem 2.4.1. we get that:

fllX'—E"[XoIIIS jf(le—E"[Xo]l)_

and hence goes to zero when o>1 — 0.

Suppose now E is not an A — L space, thus by (p. 242, [27]) there exists a
positive summable sequence (x,) in E, such that ) , || x, || =c. Hence, we
may find an increasing sequence of integers (m,), such that

w11 X1l =1, Without loss of generality, and by multiplying some x,,’s
by coefficients smaller than 1, we can assume Y ) o, |l x, || =1.

For every k e N, divide the interval [0, 1] into (m, .. , —m,) sub intervals 4, ,
such that the length of each 4, ,is||x,|l. LetQ;=[0,1], A;is the Lebesgue
measure, y , the Borel sets, Q=[Ten Qi # =[ien i and P=][icnA;.  Let
o, denote the k-th coordinate of weQ. Define the sequence of E-valued
random variables X, : Q — E by:

m x"
X, ()= ‘-’Jnnmlﬁ,(mk)'*' Zi>m,.,xj~

The sequence (X,) is an o-amart. In fact it is a positive
supermartingale. Since the X, ’s are independent, it is enough to show that
EX))=2X,,.

E[X J(@)=) 1w o1 llx ..II[ + Lo, X .I:l

m;‘"l‘l"" X+ Z>’"uﬂ xigxk 1 (m)'
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RIESZ SPACE VALUED MEASURES AND PROCESSES 243

The sequence J' X =Y i5m+1 X; decreases to zero since (x,) is summable, so

is the net ( JX,) .
ceT

Now, (X ,) is not a uniform amart since if it was (|| X, ||) must-converge to
zero, which obviously is not the case.

COROLLARY 2.3.3. — The notions of uniform amarts and o-amarts coincide if
and only if E is finite dimensional.

Proof. — E will then be an A —L and an A — M space.

COROLLARY 2.3.4. — The notions of strong amarts and o-amarts coincide if
and only if E is ¢, (T).

-Proof. — It follows from the fact that an A — M space with an order
continuous norm is isomorphic to ¢, (I") [24].

Now, we show that generally the space of strong amarts is not a Riesz
space. Recall that (X,) is said to be a strong potential if (X ;) converges to
zero in Pettis norm.

THEOREM 2.3.5. — (1) The Banach lattice E is isomorphic (as a topological
vector lattice) to an A — M space if and only if the absolute value of every strong
potential is a strong potential. :

(2) Eisweakly sequentially complete if and only if the absolute value of every
L'-bounded martingale is a strong amart.

(3) E isfinite dimensional if and only if the L*-bounded strong amarts form a
Riesz space.

Proof. — (1) Let E be an A— M space, E” is then a C(K) where K is a
stonian compact. There is no loss of generality if we suppose

E=C(K). Letnow(X,)beastrong potential, thatissup,.s || j Xl —0.
. , A

We claim that j | X, | norm converges to zero, thus that | X, | is a strong
potential.

Suppose not, then there exists £ >0, such that for every ne N, there exists
c,eT,n<c,<m,and t,€ K and:

f! X,, (@) (1,)|dP () =&

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



244 N. GHOUSSOUB
Clearly A= {o; X, (@) (1,)20}€#,, and:
f X,, (@) (1,)dP(0)>€/2.
A

Define the stopping time:

o, on A,
T, n= .
P p=m, on A-.

We have:

| J X, . () ()=
o

Since the third term goes to zero when p — oo, we may then find p, large
enough such that:

J X,, (@) (1) + LX,((D) () |-

J‘ Xt..P. (m) (In)l 28/4’
Q .

which is a contradiction.

Suppose now that E is not an A — M space, hence by [27], there exists a
summable sequence (x,) in E such that (| x,|) is not summable. By Orlisz-
Pettis theorem, there exists feE’,, such that f(|x,|) is not summable
(absolutely summable in R). We may construct an increasing sequence of
integers (m,) such that:

m:r:l,+lf(|xn|)=1'

For every ke N, divide the interval [0, 1], into (m,, , —m,) sub-intervals
A, ,such that the length of each 4, ,isf (| x |) Let Q=[0, 1] and P be the
Lebesgue measure. Define:

X,: Q #%,P)-E,

Xk(m)= m‘-‘"‘l.‘f‘lf(l I) AA ( )

For every k, #, will be the c-algebra generated by { X, X,, ..., X, }. Let
c be a bounded stopping time >N. For each k=N, let
B, ,=A, .,n{o=k}. We have for every De ¥,

i

My _—...._.x"
LX" = ||z ano-n:x" = || 2w Lz PO O Br

TOME 110 — 1982 — N°3




RIESZ SPACE VALUED MEASURES AND PROCESSES 245

Since DN B, ,SA; » _
P(Dn B, ,)
—_—— = nsl’
S x,1) .

Jx
A

which goes to zero since (x,) is summable. However (| X, |is not a potential,
since if it was, f (] X,|) must converge to zero a.e. But, it is easy to chech
that f (| X, |(®))=1 for each n and each 0 e Q.

(2) To prove that ¢, does not embed in E, consider (Y,) an independent
sequence of real valued random variables taking the values + 1 with
probabilities 1/2, 1/2. Clearly, the sequence:

thus:

SUD4cs,

’

My
< “Z@N Zm+1Xn

X,: (Q, &, P)—c,,
X, (0)=(Yy Y, ..., Y,,0,0,...),

is an L'-bounded martingale (|| X, ||, =1).

Ontheotherhand,Jl X, l=@1,1,...,1,0,0, ...)is not norm convergent

to an element of c,.

(3) Follows from the fact that a weakly sequentially complete A — M space
is finite dimensional.

2.4. WEAK CONVERGENCE OF 0-AMARTS. — An adapted sequence (X,) in
L' [E] is said to be a weak potenbtial if for every 4 in U, %, ( J X ,,)
A

converges weakly to zero. We say that (X,) is of class (B) if

SUD,cr f Xl < oo,

In [8], it is shown that every separable subspace of E has a separable dual
(E’ has R.N.P.) if and only if every E-valued weak potential of class (B)
converges weakly a.e. We now show that if we restrict ourselves to positive
potentials, then the R.N.P. in the dual is not needed.

For every subspace F of E, we denote by dens (F) the density character of F
and for every subset A4 of E, denote by H , the smallest closed ideal generated
by A. An element u in E, is said to be a quasi-interior point if H,,=E.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



246 N. GHOUSSOUB

THEOREM 2.4.1. — For a Banach lattice E the following properties are
equivalent:

(1) Every closed separable sublattice of E has a quasi-interior point in the
dual;

(2) every E-valued positive weak potential of class (B) converges weakly a. e.;

(3) for every closed sublattice F of E, there exists Ain F',card (A)<dens(F)
such that H,=F'.

Proof. — (1)=(2). Let (Z,) be a positive weak potential of class
(B). Using the maximal inequality of [10], we get that sup,|| Z,|| <o
outside a set Q, with P(Q,)=0. Since (Z,) is almost separately valued,
there exists a separable sublattice F such that P[Z,e F]=1 for every n.

Let u be a quasi-interior element in F’, . Clearly, (u(Z,)) is an L'-bounded
real potential, hence u(Z,) — 0 outside Q, with P(,)=0. Let f be any
element in F',, we have:

f(Z,(@)=f A mu(Z,(@)+(f—f A mu)(Z,(®))
Clearly, f A mu(Z,(®w)) converges to zero outside Q, when n— x and
lim,, (f—f Amu) (Z,(®))=0 uniformly in n, outside Q,. Thus f(Z,)
converges to zero outside Q, U Q,.

(2) =(3). Wecansuppose F=E. Let K denote the positive part of the
unit ball of E’ equipped with the weak-star topology. It admits a base of
open sets of cardinality a=dens (E). Suppose (3) is not satisfied, that is if
A< E' is of cardinality <a, then H,#E’'.

We will need the following lemma.

LemMMa 2.4.2. — Let W=u { V weak-star open set of K such that there
exists AcE’, card A<a and V=H,+(1/2) K}. Then: L=K\W is non
empty and for every open set V@ of L and all v in E' we have:

1
V\<H{v}+EK)¢®-

Proof of the lemma. — Since \U;H, =« H, , and W has a base of open sets of
cardinality=«, we have W< H,+(1/2) K for one A with card A<a. If
W=K, we have K< H,+(1/2) K and since H,+ H,=H,, by induction we
getthat K< H,+(1/2")K,thus K = H, and H , being closed, E’' = H , which is
a contradiction. Thus L# Q.

Setnow I =[0, 1]and A the Lebesgue measure on I. We shall construct an
increasing family of finite algebras (#,) on I, and a sequence of E, valued,
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# ,-measurable random variables, and for every ¢ in I, closed subsets V()
of L verifying the following conditions:

(a) s,=inf{A(B); Be #,}>0:

®) 1EZ[X, J(D1<27"s,, te];

(©) 1 X.(DII<1, tel; neN;

d) V,()#® and V,,, (1)< V,(1), tel;

(e) For heV, (1), h(X,(1))=1/3:

(f) V,(1)is constant on each atom of % .

Denote by B the positive unit ball of E.

Suppose the construction is made till the rank n. Let Z be an atom
of #, Let V be the only representative of the (V,(z)) for ¢ in Z.
Set D={xeB; heV, h(x)>1/2} and C=conv D. We first prove
that d(0, C)=0. If not, the norm being increasing on E,, we have
d(o, m+)=d(0, C)=p>0. By Hahn-Banach theorem, there exists f
in E' with f>B on C+E,, thatis an f>0 with f>p on D. By Lemma
2.4.2, there exists i€ I such that h¢H +(1/2)K. Letn>2p~!. Then,
h¢[0,f]1+(1/2) K—E’, which is weak-star closed. Again, by Hahn-
Banach theorem, there exists x in E, || x| =1 such that for every ke K,
0<g<nfand /eE’,, we have g(x)+(1/2) k(x)—I(x)<h(x). Thus xeE,
and since (1/2)k(x)<h(x) for keK, we have h(x)=>1/2. Finally
nf(x)<h(x)<1 and f(x)=0. This contradiction shows that
d(0, C)=0. Hence, there exists a finite family (x;),, of D and real numbers
;>0 such that ) ,o;=1 and ||} o, x;[| <s5,27"

Divide now Z into k disjoint subsets Z; of measure o; A (Z) and define X, , ,
onZbyX,,, (t)=x;ifteZ,. Also set:

Vn+1(t)={he lc}n(’); h(Xn+l(t))>%}-

For each n, let a,= f X, If #,,,is the smallest o-field generated by

X,+1, we get a,= |E’-[X,], hence |la,|]<2™ """ s,_,. Set

by=),5xa,/s,_,, then||b,|| <27"*2. Letnow Y,(t)=X,(1)+b,for rin L
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We get that || Y,(1)|l <3. Also, (Y,) is a supermartingale. Indeed, for
teZ. we have: '

1
E"‘[Y,,“](t)=b,,+l+E"[X,,+l](t)=b,,+1+ m Lxﬁl

1 a,
Sb"”+WZ)fx"“=b"“+ s+l.

Thus, E*-[Y,,,]<b,<Y,.

f”'

On the other hand, for every hin V,(¢), h(Y,(2))= h(X,(1))=1/3, hence if
he ﬂ, V,(t) which exists from (d), h(Y,(t))=>1/3 for every n. Thus if (Y,)
converges weakly, the limit cannot be zero which is absurd.

(4) =(1) follows from the fact that if A={a, neN} and

a=3,27"(a,/lla,|l) then, H(,) =H,.

CoOROLLARY 2.4.3. — For a Banach lattice E, the following properties are
equivalent: ‘

(1) E has the R.N.P. and every separable sublattice of E has a quasi-interior
point in the dual,

(2) every E-valued o-amart of class (B) converges weakly a. e.

Moreover, =|la,+b,|| <2~ "** norm converges to zero.

Proof. — Follows from the Riesz decomposition and the preceding
theorem. '

Now, we prove that we cannot weaken the (B) boundedness in order to still
get the weak convergence of positive potentials.

THEOREM 2.4.4. — If E is a Banach lattice, the following properties are
equivalent:

(1) E is isomorphic (as a Banach lattice) to an A— L space;

(2) every E-valued o-potential (or positive weak potential) converges weakly
a.e.;

(3) every L'-bounded o-potential (or positive weak potential) converges
weakly a.e.

Proof. — (1) = (2), 3) follows from Theorem 2.4.1.

(3) = (1) Asin Theorem 2. 3.2, suppose there exists (x,) in E, summable,
such that ) Jusi | || x, || =1 for an increasing sequence of integers (m,). For
eachk, divide the interval [0, 1/k]into (m, , , —m,)disjoint subintervals (4, ,)
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such that the length of each 4, ; is |Ix,|I/k. Set A,=Ui .14, ,
Let (Q, #, P) be as in Theorem 2.3.2 and define:

X,.: Q-—E,
by:

X, .
B"ﬁ..‘.,uk'"x—"hu(‘ﬂk)“’ Zi>m,+lxj if o,€4,,
Zj>m,,+l Xj if o,¢A,

It is easily seen that (X,) is an L'-bounded positive supermartingale which
is an o-potential (also a weak potential).

Xy ()=

To show that (X,) is not weakly convergent, let
B,={weQ; o.c€A4,}. The sets (B,) are independant and
Y« P(B,)= Y, 1/k=c0, hence from the Borel-Cantelli theorem, almost all ®
belongs to an infinite number of B,. But if weB,, || X,(®)||=k and (X,)
cannot converge weakly.

CoROLLARY 2.4.4. — If E is a Banach lattice, the following properties are
equivalent:

(1) E is isomorphic (as a Banach lattice) to an I* (T');

(2) each E-valued o-amart in oY) is weakly convergent a.e.;

(3) each E-valued o-amart in o9 is weakly convergent a.e.

Proof. — (1) = (2)follows from the Riesz decomposition and thefact that in
an A— L space if sup, JI X, | exists then sup, jll X, <oo0.

(3)=(1) An A — L space with the Radon-Nikodym property is an /* (T").
The following corollary shows that if E is infinite dimensional, then the real

valued submartingales and supermartingales convergence theorems hold if
and only if E is I (I').

COROLLARY 2.4.5. — The following are equivalent:
(1) E is an I*(T') for some set T';
(2) each E-valued positive supermartingale converges weakly a.e.;

(3) each E-valued submartingale such that sup, f X! exists converges
weakly a.e.
2.5. STRONG CONVERGENCE OF 0-AMARTS

We first show that the strong convergence of (B) bounded o-amarts
generally fails.
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THEOREM 2.5.1. — The following properties are equivalent:

(1) E is isomorphic (as a Banach lattice) to an A— L space;

(2) every E-valued o-potential (or positive weak potential) converges
strongly a.e.;

(3) every E-valued o-potential (or positive weak potential) of class (B)
converges strongly a.e.

Proof. — The same as in Theorem 2.3.2, since we exhibit a positive
supermartingale of class (B) which is not a uniform potential, hence not
strongly convergent to zero.

COROLLARY 2.5.2. — The following properties are equivalent:
(1) E is isomorphic to a I*(T');
(2) each E-valued o-amart of class (B) converges strongly a.e.

CoROLLARY 2.5.3. — The following properties are equivalent:
(1) E is isomorphic to I' (T);
(2) E has the shur property and a quasi-interior point in the dual.

Proof. — If E has the shur property, and a quasi-interior point in the dual,
then every E-valued o-potential of class (B) converges weakly, thus
strongly. By the preceding theorem, E is an A — L space. The Kakutani’s
representation theorem gives that E is an L! [u) for some measure p. Ifpis
not purely atomic, L' [p] will contain a sublattice isomorphic to L' [0, 1]
which contradicts the shur property. Hence E is an /* (T).

We now show that o-amarts valued in a weakly compact set do not
necessarily converge strongly like martingales do. The following example is
of a supermartingale valued in the unit ball of /> which is not strongly
convergent.

Example. — Let (Q, #, P) be as in theorem. Define X,,:(Q, #, P) -1,
by:

% if m<n;
= - k
(X (©)]50 4 \ i men and k__1<m

m Wy = i;a
0 otherwise,
for each m, n and 1 <k <2
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It is easily seen that (X,,) is a positive supermartingale which converges
weakly to 0. It is uniformly bounded since:

X, (@)2=1+ Z..”(—zl;)z.zmsz.

It is not convergent in norm to zero since || X, (w)||;=1. However, if one
considers weakly compact sets which are ‘‘close’ to order intervals, we can
get strong convergence. The reason is the following theorem which shows
that weakly compact order intervals ‘‘behave” like compact sets, namely that
their extreme points are denting.

THEOREM 2.5.4. — A Banach lattice E has an order continuous norm if and
only if whenever (x,) is a sequence in E, 0< x,<x and x, converges weakly to
zero then it converges strongly to zero.

Proof. — (1) Let 0< x,<x and x, — x weakly. For every denting point z
of [0, x], x,vz—x weakly, hence x,Az converges weakly to z and
consequently x, A z — zstrongly. From [25], we get that x, A z — z strongly
for every z in the convex hull of the denting points. Now, write
x—Xx,<2(x—2z)+(z—z A x,) and use that a weakly compact set is the closed
convex hull of its denting points to get the result.

(2) If E does not have an order continuous norm then there exists an
increasing sequence (x,) order bounded by x and not norm Cauchy, that is
there exists >0 and a subsequence (x,) of (x,) so that the vectors
uj=x, —x, satisfies ||u;||>a and u;<x for all j. Clearly u; » 0 weakly
and not strongly which is a contradiction.

COROLLARY 2.5.5. — If E has an order continuous norm and (x,), (y,) are
two sequences verifving:

(i) 0<x,<y,, Vn;

(ii) x, = x weakly and y, — x strongly then x,— x strongly.

Proof. — Clearly, x,<x,v v<y,vx, hence x,vx—x weakly and
x,Ax — x weakly thus strongly. But:

Og(}yﬂ_xn)s.yn_xnA'\Tsl)’ﬂ_x|+l'\‘—xﬂ/\xl’

which gives the strong convergence of (x,).

We now give a general form of Theorem 2.2.1. It will allow us to prove
the strong convergence of two subclasses of L'-bounded o-amarts.
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THEOREM 2.5.6. — If E is weakly sequentially complete and (X,) is an
o-amart such that 0<| X, | < Y, where (Y,) is an L*-bounded norm convergent
sequence in L' [E], then (X,) converges strongly a.e.

Proof. — The sequence (X,) is L'-bounded, hence we can suppose (X,)
positiveand 0<X,<Y,. Now, Y<X, vY<Y, vY where Yis the limit of
(Y,). Thus X, vY converges weakly to Y and therefore strongly. For
feE,, f(X,)convergesa.e., hence f (X, A Y)convergesa.e. But(X,AY)
is valued in the weakly compact set [0, Y (w)], thus it converges weakly to a
Bochner integrable X ,. Therefore, X, converges weakly a.e. to X . Let
Z,=X,—-E”-[X_)] It is an o-potential. Now, 0<Z;<X,<Y, The
sequence (Z} A Y) converges weakly to zero, therefore strongly. Also,
(Z; v Y) converges weakly to Y and therefore strongly since:

0<Z;vY<Y, VY.

It follows that (Z;) converges strongly a.e. Again, 0<Z; <E*'[X_] and
the same proof gives that (Z, ) converges strongly a.e.

2.6. POSITIVE SUBMARTINGALES AND HYPOMARTINGALES

DEFINITION 2.6.1. — An o-amart (X,,) is said to be an hypomartingale if for

every Aeu;,f,, the sequence (J

A
limit. If E is weakly sequentially complete and (X,) is an L!'-bounded

hypomartingale, then X,=M,— Z, where (M,) is a martingale and (Z,) is a
positive weak potential.

X ,,) converges while being below its

We can now state the following.

THEOREM 2.6.2. — The following properties are equivalent:

(1) E has the Radon-Nikodym property;

(2) every L'-bounded positive submartingale converges strongly a.e.;

(3) every L'-bounded positive hypomartingale converges strongly a.e.

Proof. — Since X,=M,—-2Z,,(M,) is norm convergent and 0<Z,<M,,
the theorem follows from Theorem 2.5.6.

This theorem shows the surprising difference between positive
submartingales and positive supermartingales in infinite dimensional
spaces. On the other hand, it shows how the order structure blends with the
Radon-Nikodym property and that the R.N.P. in Banach lattices appears
like the random analog of weak sequential completeness since submartingales
can be considered as ‘‘randomly_increasing sequences”.
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2.7. ORDER BOUNDED 0-AMARTS

The results of section 2. 6 clearly imply that order bounded o0-amarts norm
convergesa.e. Inthissection, we show that they are even order convergent.

The key of the proof is to show an inequality extending the one of
R. V. CHacoN in the real case [3). That is if (X,) is an L!-bounded

(# ,)-adapted sequence of real random variables such that ('[X ,) is

oeT

bounded then the following holds:
J(lim sup X, —lim inf X ) dP <lim sup,, ‘ETJ(X, —X,)dP.

In the finite dimensional case, the L!-boundedness implies—via the
maximal inequality —that the process is finite a.e. In the infinite
dimensional case, such a property is not satisfied, so we must assume that for
almost all ® in Q, sup, | X, (w) ]| exists in the Banach lattice, at least to assure
the existence of lim sup X, and lim inf X ,.

Clearly, the inequality is of interest in ordered spaces where the order
convergence is stronger than the norm convergence, that is in spaces which
have an order continuous norm.

We shall start recalling some well-known facts.

LemMA 2.7.1. — Let E be an order continuous Banach lattice which has a
weak unit, then there exists a probability space (X, Z, p) such that E is order
isometric to an ideal of L'[X, Z, pl.

For a proof, see LINDENSTRAUSS and TzaFrir1 [24].
The following lemma is also standard.

Lemma 2.7.2. — For every Bochner integrable random variable
X:(Q, F,P)>L'[X, I, yul, there exists Y:Qx X = R, F ®X measurable
such that P a.e. Y(o, .) represents X (o). Moreover, Y is unique modulo a
Py negligible function. The following also holds:

(i) XeLl[P]< YeLL(P®u] where E=L'[X, I, ul;
(ii) if XeLL[P] then jX dP is represented by t — JY(&), t)dP(o):

(iii) i (Y,) is associated to a sequence (X ,) such that for almost all o, the
sequence |X,|(®) is order bounded in E, then lim supY, and lim infY,
represent the functions ® — lim sup X, (0) and ® - lim inf X, (o).
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Consider now thefiltration (#,®X)onQ x X. - The nextlemma describes
an approximation process for the stopping times relative to this
filtration. Since the arguments are standard, we give only a sketch of the
proof.

LeEMMA 2.7.3. — Let t be a stopping time for the filtration (¥ ,®X) such
that p<1<q. Then, for all €>0, there exists a finite partition (A,) of X by
measurable sets and stopping times (c,) on Q such that p< ©,< q and that if the
Stopping time o is defined by:

() o, t)=Y,1,(1)0;(@),

then:
PRu{t#c}<e

Proof. — Let keN and p<k<gq. The set {t=k} belongs to #,®Z,
hence there exists a set B, which is a union of rectangles C x D with Ce #,
and DeX and such that: -

P@u({1=k})AB,)< 5

Let o be such that { 6 =k } = B, \ U, ,< B, foreachk, p<k<gq. Clearly,c
is a stopping time and P@u { 1# 0 } <e. If we denote by 4, the atoms of the
finite algebra of X generated by the projections on X of all the rectangles
involved, then o can be written as in (%).

THEOREM 2.7.4. — If E is a Banach lattice with an order continuous norm
and (X,) is a sequence of E-valued Bochner integrable random variables

verifying:
(i) sup,| X, (w)| exists for almost all ®€Q;

(i1) (IX ,) is order bounded in E,
oeT

then the following inequality is satisfied:
j(lim sup X, —lim inf X ,)dP <lim supo_,erj(Xo—X,)dP.

Proof. — Since the X ,’s are almost separably valued, we can assume that E
is separable, hence with a weak unit. By Lemma 2.7.1,itis enough to show
the inequality in L' [X, X, p). Denote by T” the set of bounded (¥#,RZ)
stopping times and by T the set of those which can be written as in the
formula (%).
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For every n, let Y, be an #,®ZX representation of X,. Let te T with
p<t<gq. It follows from Lemma 2.7.3 that for every £>0, there exists

J Y,- J Y.,

supter,t?p J‘Yt=supter,,tkp JYt

v eT, with p<1'<g and <e&. Hence we have:

Write now, t(0, 1)= Y1, (1) 5,(w) for te T, where p<o,<supt.

JY,d(P®u)=Z, j f Y, (@, 1)dP(®)du(r)
A,JQ
= Zl lA,'[ Xo,dPssupczp.aeTf XodP'
Q Q

Since t—»J' Y, . (o, 1)dP(w) represents J X,,dP(»). This shows that:
o] [¢]

J‘[YIS J <Supo;p.ceTJ Xch>du(t)
X 0

-The same proof shows that:

J j v, j (e e j X P (o)
x o

Using now Chacon’s inequality of the real line, we get:

jj(lim sup Y, (w, t)—lim inf Y, (0, 1))

<lim supr‘perj‘j(Y,(m, N-Y, (0, 1)dP®n)

< j [lim supoerj‘ X,dP-lim infaj XodP]dp.
X Q Q

By Lemma 2.7.2, we get:

f I:J (lim sup X, (w)—lim ian,,(m))dP(m)dep

< J (lim sup“,erj (XO—X,)dP>du.
-JX Q
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Replacing X by any measurable subset A4, the inequality will still hold
hence:

j (lim sup X, —lim inf X )<lim sup,,',J.(X,—X,)ua. e,
o

which concludes the proof.

CoROLLARY 2.7.5. — (a) If E has an order continuous norm and (X ,) is an

o-amart such that sup,| X ,(0)| exists for almost all ©eQ, then (X,) order
converges a. e.

(b) The same holds when we replace the hypothesis (X,) o-amart by (X,)
supermartingale.

Proof. — (a) Follows immediately from the inequality. For (b), we notice
that for almost all ®, (X ,(®)) is valued in a weakly compact order interval,
hence (X,) converges weakly to XeL'[E]. Consider now

Z,=X,—E*[X]. Wehave inf,(fZ,) =0, thus (X,) is an o-amart which

is order convergent. -

REFERENCES

[1] AsTBURY (K.). — Amarts indexed by directed sets, Ann. Prob., 1977 (to appear).
[2] BELLow (A.). — On vector valued asymptotic martingales, Proc. Nat. Acad. Sc. U.S.A.,
Vol. 73, No. 6, 1976, pp. 1978-1979.

[3] BELLow (A.). — Les amarts uniformes, C.R. Acad. Sc. Paris., T. 284, Serie A, 1977,
pp. 1295-1298.

[4] BENsamiNI (Y.) and GHoussouB (N.). — Une caractérisation probabiliste de /. C.R. Acad.
Sc. Paris, T. 286, Serie A, 1978, pp. 795-797.

[5] Bru and HeinricH (H.). — Convergence forte de certains amarts vectoriels-O-amarts et
hypomartingales (1978) (to appear).

[6] BRUNEL (A.) and SUCHESTON (L.). — Sur les amarts faibles a valeurs vectoriélles. C.R. Acad.
Sc. Paris, T. 282, Serie A, 1976, pp. 1011-1014.

[7] BRUNEL (A.) and SUCHESTON (L.). — Sur les amarts a valeurs vectorielles. C.R. Acad. Sc.
Paris, T. 283, Serie A, 1976, pp. 1037-1039.

[8] BRUNEL (A.) and SUCHESTON (L.). — Une caractérisation probabiliste de la séparabilité du
dual. C.R. Acad. Sc. Paris, T. 284, Serie A, 1977, pp. 1469-1472.

[9] CHAcON (R. V.). — A stopped proof of convergence. Advances in Math., Vol. 14, 1974,
pp. 365-368.

[10] CHAcoN (R. V.) and SUCHESTON (L.). — On convergence of vector-valued asymptotic .
martingales. Z. Wahrs. verw. Ceb., Vol. 33, 1975, pp. 55-59.

TOME 110 — 1982 — N° 3



RIESZ SPACE VALUED MEASURES AND PROCESSES 257

[11] CHATTERN (D.). — Martingale convergence and the Radon-Nikodym theorem. Math.
Scand., Vol. 22, 1968, pp. 21-41.

[12] DiesteL (J.) and Jr. UHL (J.). — Vectors measures, A.M.S. survey, 1977.

[13] EDGAR (G. A.) and SUCHESTON (L.). — The Riesz decomposition for vector-valued amarts.
Zeit. Wahrs. Ceb., Vol. 36, 1976, pp. 85-92.

[14) EDGAR (G. A.) and SUCHESTON (L.). — Amarts: a class of asymptotic martingales. J. Mult.
Analysis., Vol. 6, 1976, pp. 193-221.

[15) GHoussouB (N.). — Banach lattices valued amarts. A.I.H.P., Vol. XIII, No. 2, 1977,
pp. 159-169.

[16] GHOUssouB (N.). — Summability and vector amarts, Vol. 9, N° 1, 1979, pp. 173-178.

[17] GHoussous (N.). — Order amarts: a class of asymptotic martingales. J. Mult. Analysis,
Vol. 9, No. 1, 1979, pp. 165-172.

[18] GHoussous (N.) and SUCHESTON (L.). — A refinement of the Riesz decomposition of
amarts and semi-amarts. J. Mult. Anal. Vol. 18, No. 1, pp. 146-150.

[19] GHoussous (N.) and TALAGRAND (M.). — A generalised Chacon’s inequality and order
convergence of processes, Seminaire Choquet, 17¢ année, 1977-1978.

[20] GHoussouB (N.) and TALAGRAND (M.). — Convergence faible des potentiels de Doob
vectoriels. C.R. Acad. Sc. Paris, T. 288, Série A, 1979, pp. 599-602.

[21] HemNicH (H.). — Thése de Doctorat, 1975.

[22] HeNicH (H.). — Martingales asymptotiques pour 1'ordre, 1978, (to appear).

[23] HenicH (H.). — Convergence des sous-martingales positives dans un Banach réticule. C.R.
Acad. Sc. Paris, T. 286, Série A, 1978, pp. 279-280.

[24] LiNDENSTRAUSS (J.) and TzarriT (L.). — Classical Banach spaces-Functwn spaces, Vol. 11,
Springer-Verlag, 1978 (to appear).

[25] PerissiNi (A.). — Ordered topological vector spaces, Harper’s series in modern
mathematics, New York, Evanston and London, 1967.

[26] PErissini(A.). — Banach limits in vector lattices, Studia Mathematica, Vol. TXXXYV, 1970.

[27] SHAEFFER (H. H.). — Banach lattices and positive operators, Springer-Verlag, 1974.

[28] Woycinskl (W. A.). — Geometry and Martingales in Banach spaces, Winter school of
probability, Karpacz, Springer-Verlag, 1975.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



