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ABSTRACT ANALYTIC AND BORELIAN SETS

BY

ZDENEK FROLIK.

The aim of this note is to introduce the concept of analytic set over
a given topological space Q (in the classical theory Q is the space 1 of
irrational numbers) derived from a given collection 3Xi of sets (in the
classical theory, 3Ti is the collection of all closed sets in a topological
space). The main point is the general setting of the fact that, roughly
speaking, closed-graph usco-compact (an abbreviation for upper-semi-
continuous and compact valued) correspondences for topological spaces
behave like usco-compact correspondences with separated (i. e.
HAUSDORFF) range; in other words, the assumption of separatedness
of the range may be replaced by closeness of the graph. It turns out
that the basic properties of classical concepts extend to the present
general setting; the proofs are simple and natural, and the properties
of 1- needed in the descriptive theory are identified.

For the theory of analytic and Borelian spaces in topological spaces,
we refer to [8], and for a survey of descriptive theory covering the last
decade, we refer to [7]. In general, the notation and terminology of [1]
is used throughout.

It is convenient to make use of paved spaces as introduced by
P. MEYER [9]; the concept of a paved space will be explained in Section 1.
In Section 2, a reflection of the concept of <( closed graph " into the
present more general setting will be discussed. Finally, in the concluding
two sections, the concepts in the title will be introduced and inves-
tigated.

1. Paved spaces.

Following [1] by a struct P we mean a pair <X, a>, where X is a
set (we will talk about the so-called comprisable structs only), desi-
gnated by [P|, and called the underlying set of P, and a is an element
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designated by st(P) and called the structure of P. If there is no danger
of misunderstanding then we write P for | P , and vice versa; this is
in accordance with commonly used conventions.

DEFINITION 1. — A paved space is a struct P such that the structure ofP
is a non-void collection of subsets of P; the structure of P is called the
pavement of P, and the elements of the pavement are called stones. An
important assumption will be that the empty set is a stone; this is then
precisely the Meyer's paved space.

The most important example of paved spaces in this note are topo-
logical spaces. Every topological space is regarded to be a paved space;
the stones are just the closed sets. This convention is the first step
to explain the intuitive meaning of paved spaces in this note.

Consider a paved space P, and denote by top (P) the set P | endowed
with the smallest finitely additive and completely multiplicative collec-
tion of sets containing the pavement of P. Clearly top (P) is a topo-
logical space. Thus the pavement of P is a closed sub-base for the
topological space top (P).

A set X in a paved space P is called compact if, for any collection X
of stones such that X\j(X) have the finite intersection property, the
intersection of X with the intersection of X is nonvoid. It follows
immediately from Alexander Lemma that X is compact in P if and
only if X is compact in top (P).

Recall, see [II], that a correspondence f of a struct Q into a struct P
is a triple < p, Q, P >, usually written p : Q -> P, where p is a subset
of the Cartesian product Q\x\P\, the so-called graph of f, designated
by grf. We will follow the commonly used convention that f and grf
are denoted by the same symbol. In particular, if f is a correspondence
then Df and Ef stand for the domain and the range of the graph of /*.

The intuitive notion of a paved space in this note is deepened by
definition of the morphisms we are interested in.

DEFINITION 2. — A correspondence f of a paved space Q into a paved
space P is said to be usco if the preimages of stones are stones, compact
if the images of singletons, called values, are compact, and usco-compact
if f is usco and compact.

A correspondence f is said to be disjoint (also a fibration) if the
inverse of f is single-valued. The meaning of dusco and dusco-compact
seems to be obvious; d comes from disjoint.

It is obvious that the composite of two usco-correspondences is usco.
It is not so obvious that the composite of usco-compact correspon-
dences is usco-compact. One has to show that the image of a compact
set under an usco-compact correspondence is compact, and this is done
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by a routine argument. It follows that if a correspondence f of a topo-
logical space Q into top (P) is usco, compact or usco-compact then so
is the correspondence f: Q —^ P. The converse is obviously true for
mappings, and it does not hold for usco and usco-compact in general.
Nevertheless if P is finitely multiplicative [to mean that st(P) is fini-
tely multiplicative] and f: Q -> P usco-compact, then f: Q -> top (P)
is usco-compact.

2. S-correspondences.

An iS-family in OTi over d3 is a single-valued relation M with DM == d3,
EM c cTH, such that 3Xi is a collection of sets and d3 is a family of sets
(not necessarily one-to-one!). The associated relation to M is the
set M of all <rr, y> such that rce \ ] (^, and y belongs to each MB a,
Ba^c^ with xeBa. The set

EM=[ji ^{MBa\xeB^(B} xe \^J ^\

is called the Souslin set of M, and designated by SM.
The intuitive meaning of these notions may be seen from the following

result.
PROPOSITION 1. — Let f be a correspondence of a topological space Q

into a paved space P. If f is associated with a Souslin family in st(P)
over an open cover of Q then f is closed-graph, that means, the graph of f
is a closed set in the product topological space Q x top (P). If P is topo-
logical, and if f is closed-graph then f is associated with a Souslin family
in st(P) over an open cover ofP (in fact, over any base for open sets in Q).

proof. — Assume that fis associated with M in st(P) where d3 ==D M
is an open cover of Q. If

then
;^>€ieix|p|—/;

y^MBa
for some Ba in d3 with xe.Ba. Clearly,

B,x(|(3|—MB.)

is a neighborhood of < y, y > that does not meet f.
Conversely, assume that the graph of f is closed in Q X P, and ^ is

any open base for Q. Define M over d3 by setting
MB==clpf[B]

for B in ^3. It is easy to verify that f is associated with M.
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DEFINITION 3. — An S-family over a topological space Q in a paved
space P is a Souslin family M in st(P) over a countable open cover of Q;
the correspondence

M :Q->P

is called the correspondence associated with M. Finally an S-correspondence
of Q into P is a correspondence associated with an S-family in P over Q.

Remark. — A closely-related notion of an ^-family over a topological
space is introduced in [6]; the only difference is that here the domain
is a family, in [6] the domain is a collection. I decided to change the
definition to get Theorem 1 below that seems to be very important,,
see Theorem 3 below that is an immediate consequence of Theorem 1»
It should be remarked that we assume that the domain of an 5'-family
is countable to get an extension of the classical theory.

The following two theorems are fundamental for development of
analytic and Borelian sets.

THEOREM 1. — Let f:R—^Q be an usco-compact correspondence of
a topological space R into a space Q, and let P be a paved space such that
the structure ofP is finitely additive. If g : Q -> P is an S-correspondence,
then so is the composite h = g o f. More generally, if g is associated
with a Souslin family in st(P) over an open infinite cover of Q, then h is
associated with a Souslin family in st(P) over an open cover of R of the
same cardinal as that of the cover of Q.

Remark. — This is a generalization of Theorem 1.2 in [8] that says
that the composite of an usco-compact correspondence followed by a
closed-graph correspondence is closed-graph.

Proof of Theorem 1. — Assume that g is associated with a Souslin
family in st(P) over an infinite cover (^ == {Ua\ aeA }. Let B be the
set of all non-void finite subsets of A; clearly the sets A and B are of
the same cardinal. Define { V b \ b € B } and \Wb\b^B\ as follows:

V,=^j{Ua aeb},

W,=E{x\x^R,f[(x)]cVb}.

Finally, define Souslin families X and Y in st(P) over {Vb} and {Wb\
by setting (the sets Wb are open because f is usco)

XVb== YWb== \^J {MUa\ ae b}.

Clearly to show that h is associated with Y it is enough to prove that

f[C]==(^{XVb\beB, V^C}
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for each compact set C in Q. Given a y in P—/'[C] we can find a
family \ax\x^.C\ in A such that x<=.Uax, and y^.MUax' Since C is
compact, a finite subfamily covers C, and hence y^XV& for some V&3 C.
This concludes the proof.

THEOREM 2. — Assume that P is a paved space, and d3 is an open cover
of a topological space Q. For each B in d3 let fa : QB -> P be a corres-
pondence of a topological space Q/, into P. Define a correspondance f of

Qr=Qx^{QB\B^^}
into P by setting

«rr ,{^[Be^}>,! />egr/-
if and only if

ye (^\{fB[(x^]\xeBa€^}.

Then if (B is countable, and if all fs are S-correspondences then f is
an S-correspondence. If, in addition, there exists a subcover 0 of d3 such
that all fa with B in 0 are usco-compact, then f is an usco-compact S-corres-
pondence.

Remark. — Observe that Ef is the Souslin set of the Souslin family
F = [B->EfB\B^(^}, and if all fa, and also F, are disjoint then so
is /*. Theorem 2 is the main result needed for the proof of idempotency
of the Souslin operation, the invariance of analytic sets under Souslin
operation, etc. The construction of f is given in [6], where the result
concerning -S-correspondences is stated. The reader is invited to state
the obvious generalization suppressing the countability assumptions.

COROLLARY. — Let {fa: Ra->P\ aeA} be a family of S-correspon-
dences where Ra are topological spaces, and P be a paved space. The
intersection of {fa} is f:R'-^P, where R' is the product of {Ra}, and
<^x, y>ef if and only if <^Xa, y^efa for each a ; here Xa stands for the
a-th coordinate of x.

If A is countable, and if all fa are S-correspondences, then so if f. If,
in addition, at least one of fa is usco-compact, then f is usco-compact.

Remark. — Theorem 2 is a generalization of Theorem 1.3 in [8]. It
should be remarked that the intersection of two usco-compact corres-
pondences for topological spaces need not be usco. This is to correct
a statement in the concluding remark in [6] where the assumption of
separatedness should be inserted.

The reader is invited to prove a particular case of Corollary to
Theorem 2 that every S-correspondence into a compact paved space
is usco. The point of the proof is used in

Proof of Theorem 2. — Write (^ = {Ba\aeA}, fa instead of /^.
Assume that each fa is associated with Ma in P over J^. For each b
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in A, and for each member L of J?& denote by L^ the set of all
^== <(^x, { X a } ' ) > ^ Q / such that x^Bb, and a^eL. We get a cover
^^L^IaeA, Le^a}' Define

XL,=M,L.

It is easy to verify that f is associated with K. Assume, now, that P
is finitely multiplicative, and that for some cover {Ba\ ae o j, ocA, all fa
with a in o are usco-compact. Choose any ^=<(r r , \Xa}y in Q ' , and
let F be a stone disjoint to f[(^)]; we have to find a neighborhood U
of ^ such that f[U]r\F == 0. By definition,

fm=C^[fa[{Xa)} X^B.},

the values of f'^s are intersections of stones, and at least one of them
is compact in P, say fh[(Xb)\\ hence there exists a finite set acA such
that x^Ba for a in a, b e a, and the set

C=r\{fa[(x^}\a^^}

is disjoint to F. Since /a is associated with Ma we have

F\ f M^L | a e a, ̂  e L e ̂  j = C,

and as the set
C,=Fn/,[(^)]

is compact and disjoint to C, some finite intersection X should be
disjoint to Q,. For the proof of Theorem 2, we need just to know that
there exists a neighborhood V of ^, and a stone X such that

f[V]cX and XnC&==0.

Now consider the stone XnF. Since /& is usco, and the stone XnF
is disjoint to /z,[(^)], there exists a neighborhood W of ^ in Q such that

/•4W]nXnF=0,
and hence

/•[W^nXnF^^,

where W is the cylinder in Q' over W. Put £7 = V n W\ Obviously,
Fnn^cFnnVlnnw^cFnXnnW7]^.

This concludes the proof.

3. Souslin and analytic sets over Q.
Denote by 1- the set of all infinite sequences in the set N of natural

numbers, endowed with the topology of point-wise convergence. The
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space 1- is known to be homeomorphic with the space of all irrational
numbers. All results of this section apply to Q = 2.

DEFINITION 4. — Let Q be a topological space, and let P be a paved
space. A Souslin set in P over Q is the image of Q under an ^-corres-
pondence of Q into P. An analytic set in P over Q is the image of Q
under an usco-compact ^-correspondence of Q into P. We denote
by So(P) or A^(P) the set |P| endowed with the pavement consisting
of all Souslin or analytic sets in P over Q. If 3R is a collection of sets
then Souslin-JTl or analytic-JTL sets over Q are defined to be the Souslin
or analytic, respectively, sets in P over Q, where P is the union of JH
endowed with the pavement 3Ti. The symbols SQ(3\t) and A 9(0)11)
have the obvious meaning.

Convention. — If Q = ̂  then we speak just about Souslin or analytic
sets in P, and also the subscript 1 in symbols is omitted.

For further references we note an obvious proposition.

PROPOSITION 2. — If X is a stone in a finitely multiplicative P, and
if Y is Souslin or analytic in P over Q, then so is Xn Y.

THEOREM 3. — Assume that f is an S-correspondence of a topological
space Q into a finitely additive paved space P, and let A be the image of a
topological space R under an usco-compact correspondence of R into Q
(the latter assumption is fulfilled when A is analytic in P over R). Then f[A]
is Souslin in P over R, and if, in addition, f is usco-compact, then f[A]
is analytic in P over R.

Proof. — Let g : R —^ Q be usco-compact, and let A = f[R]- The
correspondence h == fo g is an ^-correspondence by Theorem 1, and h
is usco-compact if g is usco-compact by the concluding part of section 1.

Remark. — The set A in Theorem 3 need not be Souslin in Q over R,
even if Q = I and the values of g are closed in Q; see [8].

THEOREM 4. — Let P be a finitely multiplicative paved space, and let
Q be a topological space that maps continuously onto Q^o. Then

So(5<,(P))=^(P), SQ(AQ(P)) = Ao(P).

Remark. — If Q is a space then Q^o stands for the topological product
of a countably infinite number of copies of Q, say for J l { Q \ n ^ N } .
Since ^ = N^o, I-^o is homeomorphic to 1-.

The proof of Theorem 4 follows from Theorem 2 and the following
lemma.
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LEMMA 1. — If there exists a continuous mapping of Q^ onto Q then
^(P)3^(P) and A^(P)3Ao(P)

for any paved space P.

Proof. — Let f be a contiuous mapping of 0i into Q. If ^: Q ~> P
is an ^-correspondence, then g of is an S-correspondence without any
assumption on P, see the subsequent remark to Theorem 1.

Remark. — The relations in Lemma 1 hold if Q is a closed subspace
of Qi and empty set is a stone.

Proof of Theorem 4. — Assume that g is an ^-correspondence of Q
into SQ(P) or Ao(P), respectively, and say that f is associated with
a Souslin family M over a countable open cover d3 of 0. For each B
in d3 there exists and iS-correspondence or an usco-compact ^-corres-
pondence fs et Q into P such that MJ3 == £Yz?(= M6])- The corres-
pondence f in Theorem 2 is an S-correspondence or an usco-compact
correspondence. Thus

E g ^ E f

is Souslin or analytic in P over QxQ^. By Lemma 1, Eg is Souslin
or analytic in P over ().

COROLLARY (to Theorem 4). — Assume that P is a finitely multipli-
cative paved space that maps continuously onto Q^o. Then a set X is
analytic in P over Q if and only if X is Souslin in P over Q, and X is
contained in an analytic set in P over Q. A Souslin set over Q in a Souslin
set in P over Q is Souslin in P over Q.

Proof. — A subspace of a paved space is defined in obvious way :
the stones in the subspace are just the traces of stones in the space.
Thus by Proposition 2, the relative stones in Souslin or analytic sets
in P have the respective property in P. It remains to apply Theorem 4.

PROPOSITION 3. — Assume that Q is a topological space and P is a
paved space. Then

stSQ(P)^(stP)o;

if Q is regular and contains an infinite closed discrete set, and if the empty
set is a stone then also

st^(P)D(stP)^.

Proof. — Let {Xn} be a sequence of stones in P. To verify the first
inclusion, take the constant cover { Un} of Q and define MUn==Xn.

Clearly SM==(^[Xn}. To verify the second inclusion, consider a
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one-to-one sequence {Xn} of points in Q such that the set F of all Xn is
closed and discrete; choose a disjoint sequence { U n } of open sets such
that XnCUn, and put U=Q— F. Define M by setting MUn==Xn,
MU == 0. Clearly M is a Souslin family in P over the cover consisting
of all Un and U. Clearly SM = M {X,,}.

Remark. — li Q = 1, then we can choose £/„ such that ^ Un} is a dis-
joint cover, and hence we need not assume that the empty set is a stone
in P. Next, the slight distinction of the definition of ^-family in this
note and in [6] influences the first relation in Proposition 3; if we use
the definition in [6] then the first relation does not hold. Notice that
the cover in the proof was the constant cover { Q \ n e N }. If Q is a one-
point space then st(P) = st5'o(P) for any P if we use the definition
in [6]. See also the remark following Definition 3. On the other hand,

COROLLARY. — For any non-void finitely multiplicative collection of
sets, we have

d3 (S (0^)) = S (<m) 3 d3 (3n) 3 3XL,

d3 (A (on)) == A(<m) D on,

where (^(sn) is the smallest collection of sets (^•z>£rc with ^.u<^o == ^.

4. Souslin and analytic sets over 1.

For idempotency of SQ, we needed just the fact that Q continuously
maps onto ()Ko. In this section, we are interested in consequences of
more special properties of i. We shall need the following notation.

Let Sn, n = i, 2, ... be the set of all sequences { 4] k < n} of natural
numbers, and let S be the union of all Sn. Let f<g mean that f is
a restriction of g. For each s in S, put

ls==E{(7\ael, s<o-|.

Clearly { is } is an open base for i. We shall need the following simple
lemma.

LEMMA 2. — If {Ba} is an open cover of 1 then there exists a homeo-
morphism k of i onto 1 such that { k [ l s ] } refines {Ba} (or equivalently,
{ I s } refines {k-^Ba]}).

Proof. — Let S ' be the set of all minimal elements of the set of all s € S
with IscBa for some a. Pick a one-to-one mapping of N onto S ' ,
and let k be the mapping of 1 into 1 that assigns -to each { in | n e N } the
point o- = { in} such that cp i'o < c7, say 9 i, == {jn \ n < k} , and jk+n+i = in+i.
Clearly A is a homeomorphism onto, and { I s } refines {k-^Ba}}.
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PROPOSITION 4. — I f f i s an S-correspondence ofl into a finitely multi-
plicative paved space P, then there exists a homeomorphism k of ^ onto 1-
such that g = fo k is associated with a Souslin family in P over { ^ s }.

Proof. — Let fbe associated with an open cover { Un }. First assume
that { I s } refines {Un}. Set

Kls=(^{MUn\n^Ns},

where Ns is defined as follows : let k be the length of s, and consider
the set N ' s of all n such that Un 3 ̂  s. Now Ns = N ' s if the cardinal
of N^ is less than k, and Ns consists of the first k elements of N'5, other-
wise. Clearly f is associated with K.

The general case is reduced to the particular case that has just been
proved by Lemma 2.

Remark. — It follows from Proposition 4 that if 3Xi is a finitely multi-
plicative collection of sets, then S(3Xi) is the collection of all Souslin-^
sets in the sense of usual definition, see [6]. One can prove the equality
is also true if the empty set is a stone, see [6]. We do not need it, and
therefore we will not discuss it in more details.

Now we formulate the first separation principale for analytic sets.

LEMMA 3. — Assume that P is a finitely multiplicative paved space,
and e is a collection of sets in P such that (^(e) = C.

(a) Assume that ifX is a compact set in (stP)a, and Y is a stone disjoint
to X, then there exists a neighborhood U^e of Y with U r\ Y == 0. Then
ifX is analytic in P, and if Y is Souslin in P disjoint to X, then XcCcP-Y
for some C in e.

(b) Assume that for each disjoint compact X and Y in (stP)o there exist
disjoint C and D in C such that C is a neighborhood ofX, and D is a neigh-
borhood of y. Then if X and Y are disjoint analytic sets in P then there
exist disjoint C and D in C with XcC, and YcD.

Proef. — Follows the pattern of the proof of Theorem 1 in [5] and
Theorem 5 in [3].

Remark. — The « separation » assumption in Lemma 3 is satisfied
if top(P) is separated and locally belongs to e. We refer to [7] for
further development.

5. Borelian and d-Souslin sets.

In general setting the role of absolute Borel sets and of Borel sets
in the classical theory in separable metric spaces is sometimes played
by Borelian and rf-Souslin sets. Our technique developed for analytic
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and Souslin sets applies, and therefore we give the definition and just
formulate the basic theorems.

DEFINITION 5. — Assume that Q is a topological space, and P is a
paved space. A set X is d-Souslin in P over Q if X is the image of Q
under a disjoint S-correspondence of Q into P. A set X is Borelian
in P over Q if X is the image of Q under a dusco-compact 5'-correspon-
dence. In an obvious way, we use the notation 5^(P), A^(P), S^(3VL),
A^(JTl), 3d (P), .... Borelian sets in completely regular spaces were
introduced in [3].

THEOREM 5. — Assume that f is a disjoint S-correspondence of a topo-
logical space Q into a finitely additive paved space P, and let A be the
image of a space R under a dusco-compact correspondence of R into Q.
Then f[A] is d-Souslin in P over R, and if, in addition, f is usco-compact
then f[A] is Borelian in P over Q.

THEOREM 6. — If Q continuously i — i maps onto Q^ then

^ (S^ (P)) = ̂  (P), ^ (A^ (P)) = AW

for each finitely multiplicative paved space P.
For the theory of d-Souslin sets and Borelian set in a topological

space, we refer to 18]. Here we want to discuss another important
example.

For a topological space P denote by exact (P) the set P endowed
with all zero-sets in P (called in [1] exact closed). A Baire set in a
topological space P is an element of d3(st (exact (P))). It is easy to
see that X is Borelian in exact (P) if and only if X is a Borelian Baire
set in P; for the theory of these sets, we refer to [4], [5] and [10]. Simi-
larly, for analytic sets in exact (P). The present theory gives new
proofs. As concerns d-Souslin sets in exact (P) perhaps the second
separation principle technique should be applied, see [11].
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