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ON SMALL ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE WITH GIVEN ZEROS ;

BY

PAUL MALLIAVIN AND L. A. RUBEL (*).

1. Introduction. — In this paper, we give a complete solution of the
problem : t ( If the zeros of an entire function of exponential type are known
to include a given sequence of positive real numbers, what can be said about
the growth of the function on the imaginary axis? " Our solution of this
general problem provides the first solution of some special cases of it that
have been studied for some time.

It is well known that an entire function of exponential type that has many
real positive zeros cannot be small on the imaginary axis. The initial result
along these lines is Carlson's theorem that no such function f(z) can vanish
on all the positive integers and also be majorized on the imaginary axis
by [ sintz | if t < TT.

For a sequence A of positive real numbers, we denote by ^(A) the ideal,
in the ring of all entire functions of exponential type, of those functions that
vanish at least on A. (We exclude once and for all the null function f(z) == o
and the ideals containing only the null function.) We introduce an order
relation in this system of ideals, ^(A)-^ ^(A'), meaning that for
each ^G^A/), we can find an /€^(A) such that \f(iy) \ ^=_ \g(iy) for
every real y . Crudely stated, ^ r (A)•^^(A / ) if it is easier to construct
small entire functions that vanish on A than those that vanish on A'.

A consequence of our analysis will be that if there exists only one pair /o?
^o with /o<E^(A), ^^(A') such that |/o((y) | ̂  |^o(^) | for all 7, and
such that gQ has no other zeros in the half plane x >> o than those in the
sequence A^, then ^(A) -^ ^(A').

(* ) The second author was partially supported in this research by the United States
Air Force Office of Scientific Research.
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The major problem is to decide, by elementary computations on the
sequences A and A', whether ^ ( A ) ^ ^ ( A ' ) . First, we define an equiva-
lence relation between ideals, ^ (A) ̂  ̂  (A'), meaning that both ^ (A) -^^ (A')
and^A^^A).

On the other hand, consider

w=2^
A e A
\^x

and say that the two sequences A and A/ are equivalent, A ̂  A/, when

^ (^ )—}/ (^ )==0( i ) .

Then we have the result

5-'(A) ̂  ^ ( A ) if and only if A ̂  A7.

We continue by defining an order relation between the sequences, which is
the quotient of the inclusion relation modulo equivalence. This means
that A -^ A' if there exists A" such that AC A" and such that A'^ A'.

Then we have the result

^ ( A ) ^ ^ ( A ) if and only if A ̂  A'.

Furthermore, we can decide whether A -^ A by elementary computations :
we have A -^ A' if and only if

' k ( y ' ) — \ { x ) ^ Y ( y ) — ^ ( ^ ) + <9(i) for all x, y : x<y.

For instance, specializing our results to the case where A' is the sequence
of all positive integers, and choosing g ' o ^ ^ ( A ' ) as g-o(z) =s'mnz^ we see
that there exists a function /€^( A) satisfying

[/(^)|^exp(7:|j |)

if and only if
^) _ ^)^logj/^+0(i).

This statement gives us the first necessary and sufficient condition known
for the problem of completeness o f exp (— ̂ ) in a horizontal strip, under
uniform convergence on compact sets, a problem which has been considered
by CARLEMAN [2], KAHANE [5] and LEONTIEV [7], cf. [15] p. i35.

Furthermore, using other entire functions than the sine, we can decide
whether there exists in ^(A) functions with assigned growth on the imagi-
nary axis (see Theorems 6.2, 6.3, 6.^ and 6.5).

The main technique of construction relies on a method of balayage, or
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sweeping (see, for instance, [3]). In paragraph 5, a balayage of the measure
generated by the zeros is performed using explicit expressions for the
sweeping kernels, which are calculated by means of the Mellin transform.
This enables us to see exactly what changes we make in the growth when we
displace the zeros from A to A7.

In section 8 we consider the problem of minimizing the overall type of
functions in ^(A). By overall type, we mean

h(f)=lims^os\f(z)}.
1 Z | -^oo | Z |

This problem is central in the theory of adherent series and in the theory of
detection of singularities of functions denned by a Dirichlet series [11]. In
the previous work on this subject, the Weierstrass product over the
sequence A has often been used as a comparison function. We shall show,
as a matter of fact, that in a wide class of cases, the Weierstrass product
does not minimize the overall type of the functions in ^(A). An open
problem is to find an explicit expression for this minimum type in terms of
elementary computations on the sequence A.

CONTENTS.

1. Introduction.
2. Notations, definitions, and classical results.
3. Quasi-inclusion and logarithmic block density.
h'. The main theorem.
5. The construction.
6. Special majorants.
7. An alternate construction.
8. Overall type.
9. Applications.

10. An example.

2. Notations, definitions, and classical results. — We study
sequences A == { ~^n} ot positive real numbers '\ni arranged for convenience in
non-decreasing order :

(2. i ) A : o<^o^i^2^....

The " characteristic logarithm " \{t) associated with A is defined by

(2.2) \(t)=^^

hn^t
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and the counting function A(t) by

(2.3) A(t)==^ i== f sd\{s).
^t Jo

Some upper densities associated with A are the ( t upper density " -^(A), the
t l upper Poisson density" Dp (A), and the l l logarithmic block density '' Z^(A),
denned respectively by

(2.4) D(A)=\ims^pt-lA(t),
<-^oo

(2.5) ^(A)=lim^up^^^^^^

(2.6) ^(A^inflimsup^"^0 .v / v / <c>i ^F logo

See [13] for some of the properties and interrelationships of these and other
densities.)

Throughout the paper, we will assume that

(2.7) l imA(^)==oo ,
t-^w

(2.8) ^(A)<oo,

i.e., that A is an infinite sequence and has finite upper density. With
suitable interpretations, our theorems are trivially true if A is finite, or if
the upper density of A is infinite. We stress, however, that no extraneous
4 1 separation condition " of the sort ^n+i— \i^^ > o is assumed, except in
section 7, in which we re-prove, by other methods, a result of the prece-
ding section. Also, repetition of the same ~hn is allowed, provided the multi-
plicity is taken account of.

The notions of equivalence, quasi-inclusion, etc., and the symbols r^i
and -^ are denned in paragraph 3, and in the introduction.

We denote by ^(A) the class of entire functions f(z) of exponential type
such that f(^n)=o tor n == o, i, 2, . . . , with the exception of the null
function, f(z) = o for all z, which we exclude. To say that f(z) is of
exponential type is to say that

(2.9) \f(z) ^Ke-W

for some choice of the constants K and T, and for all z. We recall [I],
Chapter 5, that the growth of an entire function f(z) of exponential type is
studied by introducing the " indicator function " A / ( 6 ) defined by

(2 . io) /^•(e^limsup/^logi/^9)],
r-^x
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that hf (9) is continuous in 0, and enjoys certain convexity properties. By A/ ,
the overall type of /", we mean the inflmum of those numbers T for which
there is a constant K such that (2.9) holds. The type hf is also given by

(2.n) A^==:max/^(0).
9

The envelope of the line x cos 9 — y s i n O — ^/(9) ==o is a convex curver/ ,
called the indicator diagram of/. T/ is the convex boundary of the set of
singularities of the Borel transform F ( z ) of /

(2 .12) F(z)==-- f f^e-^dt.
^0

If P is a curve homologous to r and lying in the unbounded portion of the
complement of F, then

(2.13) ^)=—/ f F{w)e^dw.27T? JY^

We make frequent use of the following theorem of Lindelof [I], p. 27 :

THEOREM A. — In order that a sequence Zn of complex numbers be preci-
sely the sequence of zeros of an entire function of exponential type^ it is
necessary and sufficient that Zn== o for at most finitely many n and that
each of the following two conditions hold

(2.14) limsupr-1^^) <oo,
<>00

(2 .15) ^ ^=0(i^
0<|^|<R

where N(t) = ,̂ i. Furthermore^ given an entire function of order
0<\Zn\^t

1 whose zeros satisfy these conditions^ the function must be of exponential
type.

The function W(z) = W(z:A), belonging to ̂  (A), is called the Weiers trass
product (over A) and is defined by

00

(2.16) W(z:A)=W(z)=f[(i-z'-^).
n=0

The logarithm of | }V{z) \ may be written as a Stieltjes integral,

(2.17) log] W(z:A)\== jT logl i—r2 / -2^9!^^) ,
^n
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where z == re^. For 0 ̂  o, TT, an integration by parts in (2.17) gives

(2 .18) \og\W(re^)\=r F P(t^) A(rt) (rt)-^ dt^
^0

where

(2.19) P^ O)^——^-^05^-.
I — 2 <2 COS 2 6 + ^4

For the upper Poisson density, we have

(2.20) Dp(A) == 7r-1 h^ ( n \ = 7T-1 type (W(z:A) ) .

We define, for o < b < x), the arithmetic progression Ab by

( 2 - 2 1 ) A&={i/^, 2/6, 3/6, . . . j

and observe that
Ab(t)=[bt]=bt-^-0(i),

^b(t)==b\o^t-^-0(i) for î,
^(A^) ==Dp(Ab) =D^(Ab) =b,

W^A,)^-^.

h^(Q) == Tcb [ sinQ |.

3. Quasi-inclusion and the logarithmic block density. — We write A C A
to indicate that A is a subsequence of A', and remark that A C A' if and only
^(j) —^W^'(y) — ^ ( ^ ) whenever x^y.

DEFINITION 3 .1. — A is equivalent to A/, written A^A, shall mean
that V{x) —l(^)=z0(i).

DEFINITION 3.2. — A/ is a quasi-super sequence of A, written A'^-A,
shall mean that there exists a sequence A ' , A^A, such that A" ̂  A.

DEFINITION 3.3 — A is a quasi-sub sequence of A', written A ̂  A', shall
mean that there exists a sequence A^, A^cA', such that A^^A.

Although A ̂  A' and A^ A mean two different things, the first corollary
of the next lemma resolves this notational difficulty.

LEMMA 3.1. — A'^A holds if and only if there exist a constant K such
that

( 3 - 1 ) ^( j)-^(^)^^(j)-^(^)+A

whenever o < x ̂ y < oo. Likewise, A ̂  A holds if and only if (3. i ) is
satisfied.
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COROLLARY 1. — A -^ A1 if and only if A^- A.

COROLLARY 2. — // A ̂  Ai and A' ̂  A\, and A ̂  A, then Ai ̂ A\.

COROLLARY 3. — // Ai -^ Aa and A^ As, then Ai ̂  As.

COROLLARY h-. — If A -^ A and A-^ A, then A ̂  A.

Thus, -^ is a well-defined partial ordering of equivalence classes under r^.

PROOF OF LEMMA 3.1. — That A'^-A and A ̂  A/ each imply (3.i) is
trivial. To show that (3. i ) implies that A^- A, we define

(3.2) c p ( ^ ) = i n f { ^ ) - ^ ) j .
A';^.r

It follows from (3.i) that 9(^)^—Ar.
Now 9(^) is constant except for possible positive jumps at the jumps

ofk'(^). Let XQ be a point of discontinuity of cp. Then

(3.3) 9(^o— o) = I'(XQ— o) — ^(^-o— °) and

(3.4) 9(^o+ o)^7/(^o4- o) — ^(.z-o+o).

We denote by Acp(^o) the jump of cp at XQ. Then

(3.5) Acp(^o)^A^o)-A^o)^A7/(^o).

We let
(3.6) A'(^=[0(^)],

where \a\ denotes the integral part of a and

(3.7) 0(^)=r^cp(5),
•»<

5 <
^o•^n

and let ^ ( t ) be the characteristic logarithm of that sequence A* whose
counting function [see (2.3)] is A*(^). The function ^(t) is constant except
possibly at the jumps of cp (^ ) , and we have

(3.8) A^(^o)<i/^o+Acp(^o).

Using (3.5), we get

(3.9) A^oXi/^o+A^o).

Furthermore, ^oA?i*(^o) and x^ A?/ {x^ must be integers, so that (3.9)
implies

(3.io) A^(^o)^A^(^o),
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and this means that A* is a subsequence of A.
We now define

(3.11) ^ (^)=^(^)+^(^) ,

so that 'k" (x) is the characteristic logarithm of some sequence A'^A. To
prove that A"^ A^ we must prove that S(^c) == 0(i)^ where

(3.12) ^ ( ^ ) = = ^ ( ^ ) + ^ ( ^ ) — ^ {X).

Now

(3.13) c p ( ^ ) - c p ( o ) = = : f s ^ d ^ ^ s )
^0

and

(3 .14 ) r(t)= f s-^d[^(s)].
^0

An integration by parts shows that

(3 .15) r(t) -^)=-<p(o)+6»f1),
\ i /

so that it is enough to prove that 6 (cZ?)==0( i ) , where

(3. i6) 9 (x) == \{sc) + cp {x) — V^) == ^(^) — V(^) + inf { V (s) — ^ (s) j .
^•^:a:

But it is clear that 9(^)^o, and (3.i) is simply another way of saying
that 9(^)^(9(i).

To prove that (3.i) implies A -^ A', we put

(3 .17) ^(^)=^(^)-^(^).

Since, by (3.10), A* is a subsequence ofA^ there is a sequence A^ defined
by (3.17), and A'" is a subsequence of A'. Since we have already shown
that A" ^> A, i.e., <^(^) == 0(i), our proof is complete.

LOGARITHMIC BLOCK DENSITY. — Each sequence A [see (2.i), (2.7) and (2.8)]
is a quasi-subsequence of some arithmetic progression Ab [see (2.21)]. We
adopt the conventions Aoo= { 0 , 0 , 0 , . . . } and Ao==0, the empty sequence.

DEFINITION 3.4-. — Given a sequence A, we shall mean by &*(A) the
infimum of those numbers b for which A -^ A&.

DEFINITION 3.5. — Given a sequence A and a number a> i , we define

DL^A'.O') ^(loga)""1 lim sup {\(ax) — 'h(x) j ,
x^x

^(A)= inf^(A:a).
a>l
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The number D^(\) is the logarithmic block density of A, and was intro-
duced in [13]. A density dual to DL was introduced in [10].

LEMMA 3.2. — Z^(A) ==. Vim DL(A :a).
a-^^

PROOF. — Our proof uses some familiar ideas [12]. We put

ip(a) =^lim sup j 'X(e^x) — '\{x) }.
x-^w

Now
^(a+^^l imsup}^^^)—^) }

x^^

= lim sup j \(e^ x)—\ (e? x) -+- \ (e(3 x) —^{x)\
x^w

^ lim sup {^{e^x) — ' k ( e ^ x ) }
X-^- oo

+ l i m s u p ^ ( ^ ^ ) — ^ ( ^ ) } = ^ ( a ) + ^ ( ( 3 ) .
x-^w

Fixing .?, and writing, for large t^ t = ns +7?, with n a large positive integer
and o ^..p << 5, we see that

^W ^ n^(s)-^-^(p) ̂  ̂ (s) i _^_ ^(p)
t — ns -+-p s i-^p/n ns 4- p

Hence, lim sup^-1 ̂ ( t ) ̂ s~1 ^(.?). That is, lim supZ^(A:a) ̂ ^(A:^),
<-^=0 <l>00

and since s is arbitrary, the lemma is proved.

LEMMA 3.3. ^(A) ==/)z,(A).

PROOF. — First we prove that ^(A)^^(A). If A-^A^, then by
Lemma 3.1, there is a constant M^^ depending only on ^, such that
(3.18) ~k{y)—'K{x)^b\o^y/x)^-Mb

whenever y ̂  x. We put y == ax and let x —-oo to get

I^(A:a)^+(loga)-1^.

But we now let a->oo and apply Lemma 3.2 to obtain the desired conclusion.
To prove ^*(A) ^-^z(A), we choose any number ^>2)jr,(A), and shall

show that A ^ A & by proving (3.i8), which by Lemma 3.1 is sufficient. By
Lemma 3.2, we can find Oo such that

SL(A:ao)<b

and by the definition ofZ^(A:ao) we can find R such that

(3.19) \(ciQx)—^(^)^^logao for all x >> 7?.
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Now let y ^> x ;> R and denote by N the integer such that

a?^y/x<a^.
We have

^y)-1.{x)^'h{a^x)-^(x)

=^(<+l^)-}.(<^)+^(a^)-A(<-l^)+...+}.(ao^)-^(^)

^(7y+ i) ^ log^o^ & j logj/^ 4- logao j .

This implies that

(3.20) t (j) — \ {x) ̂  b \o^y/x + b logao 4- ̂ W

whenever y >> ^ >» o.

4. The main theorem. — In the introduction, we described how the
main theorem could be put in the form : ^ (A) -^ ^ (A') if and only if A^A^,
where ^(A) -^ ^ (A^ means that each function g ^ ^ ( A . ' ) majorizes at least
one/e^(A), in the sense that [/((y) \^\g{iy) \ tor all y . We now state
the main theorem in a form independent of the special notation of this paper.

THEOREM ^.1. — Given two sequences A and A/ of positive real numbers^
the following three statements are equivalent.

i. Given any entire function g(z) of exponential type such
that g'(^) == o for each V eA', but such. that g'(z) does not vanish identi-
cally^ there exists an entire function f(z) of exponential type such
that /(^) ==o for each ^€A, f(s) does not vanish identically^ and such
that for each real number y',

\f(iy)\^\g(iy)\-
ii. There exists a constant K such that whenever o <j x ^y <<oo,

V^ I V7' I r/-1 x^ 2 r^-
x<^^y x<^\'^.y

iii. There exists a single pair /o, g^ of entire functions of exponential
type^ neither of them vanishing identically^ such that yo(7)==o for
each 7 e A and g-o (77) = o for each 1' e A^ withg^ (x + iy) having no other
zeros in the half plane x >> o than those in A^ and such that
l/o {iy) | ̂  [ go {iy) \ for each real number y.

REMARK. — The condition in (?) and (iii) above, that \f{iy) \ ̂  { g ^ y ) \i
has many equivalent forms. For example, \g{iy) may be replaced
there by 0(i + \y \^) \g(iy) |, or Q( \y \ ) \g{iy) |, where Q(f)=

exp(^(|j])), where q { y ) increases as y\ oo, and j q ( y ) y~2 dy<i oo .
»/i
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PROOF OF THEOREM 4.1. — We leave the proof that (ii) implies ( i ) for the
next section. It is clear that (i) implies ( i i i ) ; a suitable choice for ^o(^)
in (iii) is the Weierstrass product W(z\A1) [see (2.i6)]. We prove
here that (iii) implies (ii). We give the proof for the special choice
^ ( z ) =:W(z\A1) since we shall refer later to some of the estimates in this
case, but the same proof works in the general case.

More precisely, if there exists any^^A) with

(4.1) \f^y)\^\W(iy:A')\ for all j,

then (3.i) holds, andA^A'.
We choose p, with o '< p << ^o so that all the zeros, Zn= ^n ^9"? of f(z) in

the right half plane [assuming for convenience that f(z) has no zeros
on z = iy] satisfy rn^> p, and write one form of Carleman's theorem, taking
j> ̂ > p, as

(4.2) 2(j) -I(^) =/(j) -7(^) +^(j) -JW + 0(i),

where

2 (7?)= 2 (/?:/)= ̂  (- - ̂ )cos9,,,
'•n-HK

iW=i^:f)=^f\^-^)ios\fWf(-it)\dt,

J{R)=J( /?:/)=—— f log|/(7?<^)|cos9rf0.
•^—7;/2

Following [13], we use the estimates

(^.3) ^^cos9,=0(i),

(M) J(B)=.0(i).

The estimate (4.3) follows from Theorem A, and (4.4) is a consequence [I],
p. 31, of Jensen's theorem. (Of course, these estimates are not valid for
functions holomorphic only in Rez^o.)

From (4.3) we obtain

(4.5) 2(j) -l^)^(y) - l{x) + 0(i),

and using (4.4) and (4.5) in (4 .2) we get

(4.6) 7(j) - 7(^)^ {/( j ) - I { x ) \ + 0(i).

The next lemma is trivial to prove, but nonetheless useful.
BULL. SOC. MATH. — T. 89, FASC.2. 13
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LEMMA 4.1. — If^(t)^o and p<^<j , then

(^.7) f (t-2-y-^)^(t)dt- f (t--^)^(t)dt^o.
^p ^p

PROOF. — We rewrite (4 .7) as

/^ ^3-

(4.8) \ (^-2-J-2)cp(^)^+ f (^-2-.7-2)cp(^^o,
17 p J x

which is obviously true, since each of the integrands is non-negative.
It follows from (4. i ) and Lemma 4. i that, writing W for W{z'.j\1),

(^ •9 ) i(y^f)-i{^f)^i{y\W)-i{x:W).
On the other hand, applying Carleman's theorem to W now, whose only

zeros in the right half plane are the ^, we see that

(4.10) /(y: W) — I{x\ W) == ̂ (j) — t ' { x ) + 0(i).

Combining (4.10) with (4.9) and (4.6), we get

^(j) - ̂ x ) ^ ' ( y ) - •k ' ( x ) + 0(i),

and the proof is done.

5. The construction. — We suppose given two sequence's A and A7 wdth

^(7) - HX) ̂ {y) - V(^) + 0(i),

and a function g • ( z ) e ^ ( A r ) . We must construct a function /e^(A)
with \f(^iy)\^\g{iy)\ for all y . By Lemma 3.1, we may suppose
that ^ ( t ) =^V(t) + 0(i) since A is a subsequence of a sequence A" for which
this is true, and ^ ( A " ) C^(A).

By the Hadamard factorization theorem, we may write

(5-1) ^ (^ )==^l (^ )^2(^) ,

where
(5.2) ^)=II(i-^)exp(^),

(5.3) ^(-z) =^czkexp(az)U(l— z/Zn) exp(^/^),

where the ^7^0 are the zeros of ̂ ( z ) that are not counted in A'.
Writing log g ' i ( i y ) \ as a sum of logarithms, and that sum as a Stieltjes

integral, we get

(5.4) logl^Qfj) - f log^+j^-2)^^)-
^o
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The following lemma will give us an explicit expression for the swept
measure on the imaginary axis of a measure carried by the real axis, the
potential kernel being log] i — z 2 |. This technique of sweeping, analogous
to the technique of [10] but different, will be the main tool of our construc-
tion; it will allow us to l t move the zeros n from the real axis to the imagi-
nary axis.

LEMMA 5 .1 . — Let 6/A be a measure with compact support contained in
an interval [s, 5~1] for some s > o. Then there exists a function cp(^)
defined on (o, oo ) such that

(5.5) flog(I+J^-2)6/A(0=flog[I-J2<-2]9(^)

and

(5.6) [ c p ( ^ ) ] < 2 s u p f s-ld^(s)
X Jn

dt

PROOF. — Since we are solving a Mellin-type convolution equation, we
shall compute some Mellin transforms, although our goal is (5.n), which
can be verified directly by an easy contour integration. We define T^(z),
for o^Q^ 7T/2 by

(5.7) TQ (z) == C log | i + u1 e-^ \ u^-1 du.
J Q

If z is real, then

(5.8) TQ(Z)=RQ C log(i+ u1 e-^)^-1 du,
^0

and by a routine contour integration we get

7T — 2 < Rez <; o.(^•9) TQ(Z)=
Z SUIT: ,3/2;

Similarly, we have the identity

T,(z)

COS 0.5,

—=2 r7^/2 T T j
- ̂ —1 du.(5 .10)

T^/^(z) COSTT^/2 11- + I

Hence

-T7r^
t dt

(5.11) l o g | i + ^ 2 ] i UL/
102; I — —t2 r2 +1 t

By Fubini's theorem

( 5 . 1 2 ) J'log^i+^^r)

r, x^ ( r w / t ,. , ) d wI log i — — : '\ f -——>——d\{t)\—•J b w2 (J w2/r-+I v ' j w
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We therefore define

,„ ^ , , 2 r t2 d^(t)
^'l3) C?(W )= „J ^^——

and (5 . i2) asserts (5.5) in another form. The bound (5.6) on c p ( w )
follows from integrating (5. i3) by parts

,, - , , 2 r90 dMt) 2 r ' f ^dMt)} ,
(5.4) 9«.)=,/ ———-^ i^ ———i^^./O t TTj,, (^ ^ ) -\.»-+W\

Thus

a;-

(5.,5) |^)|<^^^(^)jsu^|^^x"- \\ ^d^t)

since .a?2 (.a?2 4- w2)""1 is increasing, and we have proved the lemma.
We now choose

(5 .16) a (^ )= :^ {^ (^ ) - ^ (^ ) i , d^(t)=td^(t),
2

but cannot apply Lemma 5.i to d\ since its support may not be compact
We truncate the support by defining

(5.17) ^(^j^ ^^ d^{t)=tdW,

with the same convention for ^{t) and ^ ( t ) .
We now apply Lemma 5.1 to d\^ and conclude that there exists func-

tions ^ k ( t ) such that

(5.18) flog(i +j2^-2) d^(t) == Flog [ i -y^-21 ?^) ̂ .

Now

(5.19) |?^^)|^^

where B is a constant that is independent of/:, namely, from (5.6) and the
equivalence of A and A',

^ = = 2 S U p [ 7 . ( Q - ^ ( Q [ .

On putting(5.20) ^(j)=riog(i4-j^-2) ^^(o+riogii-j2^-2 d^t),
where
(5 .21) ^.(^)==Cp^)^,
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we have

(5.22) ^(J)=^log(I+J2<-2)^>4(^).

Hence, by (5.4),
(5.23) l imZ^(j)==log|^i(zj) | .

k-^-w

At this point, the idea is to find an entire function F ( z ) for which the
hypothetical formula

log|/(<y) =lim f log | i-j2^-21^(0
k-^^J

holds in some appropriate sense. First, however, the limit need not exist,
but a simple selection [argument with normal families will handle this diffi-
culty. Also, the measures d^k(t)== ^ k ( t ) dt are unsuitable since they need
not be positive, and cannot be discrete. (It is easy to see that all
the'd^k(t) are positive only in case AcA/, a trivial case.) But first we
show that adding a constant to o^., in order, to make d^k(t) positive, does
not change Z^. Then we show that the resulting measure may be made
discrete with little loss of precision.

Resuming the construction, we define

(5.24) ^)=Z?+cp^),

and by (5.19) conclude that

(5.25) ^kW^o for all t.

A contour integration, or (5.9), establishes that

(5.26) f log] :i—j2^-2 \dt=o,

so that

(0.27) Z,(J)=^log(I+J2<-2)^^(^)+flog|I-J^-2 dWk(t),

where dWk(t) == ^ k ( i ) dt. We now let W^t) = [W^)], the integral part
of^F^), and we define L^(j) by (5.27), with Wk replaced by W*^ there.

LEMMA 5.2, — There is a constant p, independent of /:, such that for
ally>i,

(5.28) flog | i -j2^-21 dW\ (t) f-flog [ i -j^-21 dW) + P log \y |.

PROOF. — It is, clearly, enough to apply the next lemma with Wk{t)=^{t)
and W^(t) ==n(t). That p is independent of k rests on the facts
that ( d / d t ) W k ( t ) | and | Wk{t) — W^(t) \ are bounded independently of A-.
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LEMMA A. — Suppose that v ( r ) is a continuously differentiable function
for o<r<oo, that o^i/(r) < B < oo, that n(r) is non-decreasing
and that

^r)^n(r)>v(r)-K

for some constant K. Then

Flog | i —y^t-1 \ dn (t) ̂  Flog | i -j2^-2 dv(t) -+- (9(logj)

as y ->- oo.

REMARK. — There is a proof of this result in [6]. We give here a
somewhat different proof.

PROOF. — Putting p ( r ) ==v(r) — n(r), we must show that

J^log i-j^[4(^0(logj).

Now, denoting Cauchy principal values by P. V.^ we have

J'logli-j^l^)^?. F.y—Z^p(,)^.

/.1/45 /.y-1 ^r+i ^ao-*y-i ^y+i
+ P. V. \

/l/45 ^•-1
=j +/ +P•V•J +

•^0 ^\lhB ^v—'[ *A--4-1

,1/45

On the interval [o, i/4-S], ^ ( t ) < ^ £ t so that

say. Hence

<2 for j|>jo,

/'-^i^^
<4 -^ ^=0(log|^|).

4Ar

In the same way,

r =0(log\y\).
»-/T_i i

Finally,

^y+i „
P. F. f =P.V.

^•-i ^r-
4--p.r.rV2 <//

^•'of-^''- A.»'"^
Making the substitution t=y—h at the left of y and t=y-\-h at the
right, we may write these last integrals in the form

^{^.(-A)-^,.^)}^,
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where

Hy-di) = -————y-————-n(u)y (J+^)(2J+^) v /

with a corresponding formula for the integral involving ^ ( t ) '
Since v ( t ) has a bounded derivative, then so has the corresponding H^

and thus the integral involving v{t) is 0(i). For the term with n(t)^ we
write

i f r2 i \Hy(u) == - /^ (y+ u) + ;——————————r — - ^(j+ u).rk / 2 vt/ / \ (J+^)(2J+^) 2; vl/

The contribution of the first term is non-positive because n(t) is non-
decreasing, and the contribution of the second term is 0(i), by an easy
estimate. Hence the lemma is proved.

We consider now the polynomials P k ( z ) defined by

(5.29) log | Pk(z) | =jTlog | i + ̂ -21 dWl(t).

LEMMA 5.3. — There is a constant f^, independent of A-, such that for
allz,
(5.30) log|P^) ̂  z\.

PROOF. — Putting z =. x 4- ^y, we see that

f log|I+^^-2 |^^(0^flog[I+^^-2 |^^(^).
»y J

r r' i-[f.But since ̂ (^ = / { B + ̂ (s) } ds , and since cp^) [ ̂ B by (5.19),

the proof is immediate by an integration by parts.
Since the family [ P k ( z ) \ is therefore uniformly bounded in each

disc [ z [ << 7?, it is consequently a normal family and we may extract a
sequence { 7 V ( , z ) j , that converges to an entire function as A-y->oo. We
call this entire function F ( z )

(5 .31) F(z)=\imPk.(z).
j->^

Because -P^(o) = i for each A-, it follows thatjF(o) =i. From Lemma 5.3
we conclude that F ( z ) is of exponential type. Since each P k ( z ) has only
imaginary zeros, so has F{z). Furthermore, F ( z ) is an even function.

Let iT = { i^n} be the zeros of F ( z ) . Since F ( z ) is of exponential type,
r has finite upper density. Thus,

(5.32) F(z}=~a(i+z^).
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We can, at last, define f(z) by

(5-33) /(^/i^)^)^),
where

(5-3^ /i(^)=n(i-^)exp(^).

As a consequence of the estimates (5.23) and (5.28) we see that

(5.35) log|/(^)[^log|^(<y)|4-0(log|j | ) .

As indicated in the remarks following the statement of Theorem 4.1, (5 35)
is as good, for our purposes, as \f{iy)\^\g{iy)\. The additional
term 0(log|j| ) is easily removed from (5.35). One wayis to multiply the
function f(z) by a{ (iz)-1 smiz j6, with a suitable choice of a and b.

It is not immediately obvious, though, that f(z) is of exponential type,
since f,(z) and ^ ( z ) will not in general be of exponential type, although
they are certainly of order i. To prove that/(^) is of exponential type, we
appeal to Theorem A, § 2.

Let us denote by ^ and bn the zeros, other than the origin, of f(z)
and g { z ) respectively. Then we see that

ow= 2 ^1= 2 bnl+^w= 2 ^-^(^-H^W-^)}
\bn\^P \bn\^R \bn\^R

bn^A' b^l\.'

= 2 ̂ ^^^^I^ 2 a-i-L-o(I^
\bn\^R \an\^R
b ' ^ A '

by observing first that ^(7?) - 7(7?) = 0(i) by hypothesis, and then that
the zeros off(z) other than the origin fall into three categories : i. those bn
not counted in A/; ii. the elements of A, and iii. the zeros of F ( z ) . The
zeros of F ( z ) contribute nothing to 1 a^ since F ( z ) is even. Thus, we
have verified (2. i5) fovf(z). The condition (2. i4) is even easier to verify.
Now a second appeal to Theorem A tells us that/(^) is of exponential type,
and our proof is done.

6. Special majorants. — In this section, we derive, as consequences of
the main theorem, the conditions on A that correspond to the usual kind of
majorant for |/((y) |. The same remarks that follow the statement of the
main theorem apply here.

THEOREM 6.1. — Given a sequence A and a number b^o, in order that
there exists a/i/e^(A) with

( 6 . 1 ) |/((y) ^exp(7^|j[),
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it is necessary and sufficient that A be a quasi-sub sequence o/A^, or equi-
valently {by lemma 3 .1 ) that there exist a constant K such that

(6.2) ^(J)-^)^log(j/^)+^

whenever o << x ^y << oo.

PROOF. — In theorem 4.1, choose A'=Ab and g ( z ) = sinnbz.

REMARK. — The analogous result [1]. p. 157 of FUCHS, for functions holo-
morphic in the right half plane only, is that

\{x)^b\o^x 4- K,

instead of (6.2), is necessary and sufficient.

THEOREM 6.2. — Given a sequence A and a number ^^o, in order that
there exist, for each s ;> o, an /€ ̂  (A) with

(6.3) ^•(±7T/2)^7r6+£

it is necessary and sufficient that

(6.4) A.(A)^.

PROOF. — Theorem 4.1 and Lemma 3»3.

REMARK. — This theorem was conjectured in [13], where necessity was
proved in general, and sufficiency in the case that A is a sequence of distinct
positive integers and b = i.

THEOREM 6.3. — Given a sequence A and a number ^^o, in order that
there exist an /€ ̂  (A) with

(6.5) h^(±fK\^b
\ 2 7

it is necessary and sufficient that there is a function ^(y) such that
^ (y) -> o as y -> oo, and

(6.6) ^(j)-^)^{^+3(j)}logj/^+0(i)

whenever o <j x ^-y <oo.

The proof of this result uses Theorem 6.5 and we defer it to the end o
this section.

THEOREM 6.4. — Given a bounded mesurable function q(t)^ suppose that
there exists an /€ ̂  (A) with

(6.7) l / W l ^ e x p M j I ^ l j l ) }
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for ally. Then

(6.8) \ (j) - \ {x) ̂  F g(f) t-1 dt + K
^ x

whenever o << x ^y <: oo, where K is a constant.

PROOF. — By (^.9), with Q ( y ) ^= exp{ 7: \y \ q( \y\ ) } replacing W(iy),
and using the fact that

(6.9) l{y'.Q)-I{x'.Q)=r\(t)t-^dt-^0(i^
J x

we immediately obtain (6.8).

THEOREM 6.5. — Let q{y) be a positive^ bounded^ and measurable function
that is slowly oscillating in the sense that

(6.10) q{ty) —q{y)->o as J-^oc

uniformly for £ ̂  t ̂  s-1 for each £ > o. Then given a sequence A for
which (6.8) holds, ^ere exists an /€^(A) ^^c/z ^a^

(6 .11) | / ( ^ ) | ^ e x p { 7 r [ j | ^ ( | j | ) + o ( | j ) ^

REMARKS. — A simple condition that implies (6.10) is

( 6 . 1 2 ) q ( y ) = o ( . 1 } as J^oo.
^7 \ j /

Some restriction like (6.10) is to be expected. The gap between Theorem 6.^
and Theorem 6.5 is the term o( \y\) in (6.11).

PROOF OF THEOREM 6.5. — Let us consider the comparison sequence Ay
denned by

\(t)= f s-^d^^s)], where Q(t)= [ q{s)ds.
v 0 *- 0

Then

(6.13) \{t)= f q^s-^ds-^o ( i )+ a,
Ji

where a is a constant. Now let Wq{z) == W(z'.Aq) [see (2.16)]. By
Theorem ^.1 there exists an/€^(Ay) with

(6 .14) 1 / ( ^ ) 1 ^ 1 ^ ( ^ ) 1 -

But, as in [6], we have the estimate

(6 .15) log|^(y)|=7r|j|y(|j l)+o(lj|),
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and the theorem is proved. To obtain (6. i5) , write (taking j>o for
convenience)

(6.16) log|T^y((y) — T : y q { y )

= f \o^-^-y'-t-^d,\t\{t)-7:yq{y)t\.
J o

Using (6.i3) and an integration by parts, we obtain

(6.17) log| Wcf{iy)\ — ^ y q { y )

=y f log(i 4- r-2) i q{ty) - q{y) } dt + o(.y).
^o

Choosing £ > o, and taking evident estimates on f and j , and usins
t/O J £——1

r'~1
the hypotheses (6.10) on f , we get (6.15),

PROOF OF THEOREM 6.3. — We remark first that (6.6) is easily shown to be
implied by

(6.18) ^(j) - ̂ ) ̂ b logj/^+F e ( t ) / td t - ^ -0 ( i ) ,
t7X

where e(t) is a continuous function that approaches o as t—^so.
To get (6.18) from (6.5), we see that (6.5) implies that

io§l/(<y)l^^|j|+^(j)-

Writing o ( t ) as te(t) for a suitable choice of the function s ( ^ ) , and
applying Theorem 6.4, we obtain (6.18)

Conversely let us suppose that (6.6) holds. We may, without loss of
generality, further suppose that 8(t) is positive, ^>(t) derivable, decreasing,
and <^)==:o(r-1).

Then n(t) == bt + t 8(t) is a growing function, let Ai the sequence defined
byA,(t)=[n(t)].

Then we have by Lemma 3.i and (6.6) thatA-^Ai. Since t^A^t) —> b^
we have

log[ W(iy:A,) =b y +o(j),

then Theorem ^. i completes the proof.

7. An alternative construction. — Another method of construction,
combining a method of FUCHS [I], p. 157 with a method of MACINTYRE [9], is
possible. It requires the additional hypothesis (7. i ) and yields less general
results. Also, the method of section 5 is more explicit about the location
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of the zeros of the function constructed than this section is. Nevertheless,
it sheds additional lighten the problem, and from a new angle.

In this section only^ we assume the separation condition

(7.1) ^+ i—^^Y>o

and will construct the function required by Theorem 6.1 under the hypo-
thesis (6.2).

FUCHS' LEMMA. — Under (7.i), the function

(7 .2) ^^)^TT^_^exp(2^,)
— -M- • ^ n ~ i ••"

is holomorphic for x == Re^ ̂  o and satisfies there

(7.3) log|^)|^2^( \z\)-^-Ax,
(7.4) log |77(^) |^2^7( \z\)+Bx, z^,

where

(7.5) ^==F^2:|^-^|^Y/3{,
71=0

where A and B are finite constants.

We consider now the function G{z) defined by

(7.6) G(z)=ff(z)/T(2-^-2bz),

where r is the Euler gamma function. By Lemma 3.i, we may as well
assume that ^ ( r ) -==b\o^r -\- 0(i). We then have

(7.7) \G(iy)\^K!(l-^y2)-le^7:b}y\,
(7.8) log|^) ^0( z \ ) ^
(7.9) log]^)|^M, ^€^,

where K' and r] are constants.
By the Polya-Macintyre representation theory [9] for holomorphic functions

of exponential type in a half plane, there exists a function y(^) === y((7 4- it)^
defined on the semi-infinite rectangle Cp

( t=±^b, a<R\
( 7 - 1 0 ) CR: \a==^ \t\^b i5

where R is the constant implied by 0( \ z \) in (7.8), such that

(7.n) G(z)=: f -f^e^ds.
J c.^
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Following a construction of Macintyre, we define Gr(z) by
i97

(7.i2) Gr(z)= fy(
Jr^

s) e^ds^

where ^*== C\T) is the part of CR lying in the half plane a^ T. The
function Gy^z) is an entire function of exponential type, since C* is bounded,
and it satisfies

(7.i3) \GT(z)-G(z)\=0(eTX),

By (7.9) and (7.i3), we have

^ ^^ .̂̂  ,̂

for any preassigned positive M^ provided that T is chosen near enough
to —oo.

By Rouche's theorem, Gr(z) and G(z) have the same number of zeros in
each of the circles

(7.15) |^-^|^-^.

Writing the Hadamard product for Gr(z),

(7.16) GT(Z) = cz-1 e^ n(i - z / z n ) exp(z/zn) Tl( i - z/V^ exp(^;),

where the ̂  are the zeros of Gr{z) in the circles (7. i5), we define

(^.17) f W = c z m e a : ' ' ^ ( l - z / Z n ) e x p ( z / Z n ) ^ l ( l - z / ^ ) e x p ( z / ^ ) .

By the ^argument at the end of paragraph 5, we see that/e^(A). Now
because
(7.18) I^-^I^-^^-T^

an easy estimate shows that

(7.19) log[/«y)[^log|Gr(^) |+0(log| j[) .

From (7.7) and (7.13), we see that/satisfies (6.1), with an error factor
of polynomial growth, which can be removed just as the same error was
removed from (5.35).

8. Overall type.

THEOREM 8.1. — Given a sequence A of positive real numbers, the
Weierstrass product W(z) has the smallest overall type of any function
in ^ (A) if and only if

(8 .1 ) . ^z(A)=^(A).
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A sequence A [see ( l O . i ) ) , of distinct positive integers, for which
D^(A) ̂ Dp(A), was given in [13], p. 424- We remark that Theorem 8. i
is, after Theorem 6.2, equivalent to the statement that W{z) has the smallest
overall type if and only if is has the smallest type on the imaginary axis.

It is, perhaps, surprising that W(z) need not minimize the overall type,
since Jensen's theorem shows that W(z) minimizes the mean type h of all
/e^(A), where

A- l imsup—— f log|/(r^)|
^>- ^rJ-T.

re^)\dQ.

A pertinent minimal property that W does have is given in Theorem ^ . i ,
namely : given A and Ai, if there exists an /o€^ (Ai ) such that

|/o((y)[^l^((y)l

for all j, then for each ^•^^(A), there exists an /e^(Ai) such that
\f(ly) I -^=- \g (iy) I ^or a^ y ' Stated crudely, this says that W is as hard to
minorize on the imaginary axis as any other function in ^(A).

Since it has become the pratice in the literature, in dealing with overall
type, to use W ( z ) as a comparison function, the effect of Theorem 8.1 is to
show that results obtained in this way, despite their quantitative formulation,
are not sharp. How the minimum overall type depends on A is an unsolved
problem.

A peculiar consequence of Theorem 8. i and Theorem 6.3 together is that
if .Z)p(A)=Z^(A), then (6.6) holds, namely

^(j)--^)^{^(A)+s(j)}logj/^.

Our proof of theorem 8.1 requires precise information on the indicator
diagram of W. It is well known that A ( 9 ) = A ^ ( 9 ) is a non-decreasing
function of 9 in o < 9 < 7T/2. We prove in the next theorem that h (9 ) is
strictly increasing there. The estimates used to prove it can be made precise,
to find a function p ( 9 ) = p ( 9 : A ( 7 T / 2 ) ) which is strictly increasing in
o << 9 -< 7T/2, such that

p ( 7 T / 2 ) = = i , and / i ( 9 ) ^ p ( 9 ) A ( 7 T / 2 ) .

This should be compared with a result of LEVIN [8], p. 829, exhibiting a
function p*(9) such that

^(9)^p-(9)^(A).

THEOREM 8.2. — Given a sequence A of positive real numbers^ hw(Q) is a
strictly increasing- function of 9 for o << 9 << 7T/2, with the exception^ of
course^ of the case hw (9) = o for all 9.
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PROOF. — We choose 61 in (o, 7T/2) and let r^==r,^(9i) be a sequence
tending to +00 such that

(8.2) lim r^\o^\W(r^)\=h(^).
m-> so

We observe that if A ( 9 i ) == o then, as is well known, A(0) = o for all 0, the
case that we have excluded. To see this, we notice first of all that A ( 6 ) is
certainly non-decreasing in (o, TT/a) because | i — r2 e^ [ is an increasing func-
tion of 6 there. Also, / i (9)^o everywhere. Thus, A ( Q i ) = = o implies
that A ( o ) = = = o , which in turn implies that A (6) == h ( n / 2 ) [ sin 9 [ for all 9,
since h is a supporting function (see section 2). Thus, if A ( 9 i ) == o then,
in particular, A(0i) = A(7T/2) [ sin0i|, which implies that A(7T/2) = o so that
A (6 ) == o for all 9, as asserted.

Hence, for all sufficiently large m^ we have

(8.3) ^log] W(r,ne^)\=r^ f log] i - r^-2 ̂ [ dA(t) ̂  '- A ( 6 i ) .
^0 2

r7 '™2 y . .On estimating I and ^ by integrating by parts [see (2.18)], and using
^0 Jr^lZ

(2.8), we see that there exists an s >> o for which

(8.4) r^ ̂  lo^l-r^t-e^\dA{t)>Ih(^)
tj /-m£ •

for all sufficiently large TTZ, since / i (9i) >> o. But

(8.5) r7,1 [ w^og[I-^^^|^A(^)^^(s)r7, l f m ^A(^),
^mS ^ / m S

where

(8.6) Af(£)=:^/"(£, 61)= max log| i — E2 e^\.
£^^£—1

We thus have the useful fact that

y^m/2

(8..7) r^\ dA(t)^S>o
^r^s.

for all sufficiently large m, where (^ is independent of m.
Now, by the mean value theorem of the differential calculus, if

o << 9i < 62 <^ ̂ l^i there is a value of 9, 9i^ 9 ̂  62, for which

(8.8) r-UogI ^(r^^lmr^logi ^-(r^)|+(9,-9i)9(9, r),
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where

(8•9) ?(9, r) :==^{r-i log| W(re^)\}.

A simple calculation shows us that

(8*1 0) (p (9 , r )= r - i f ()(9, t / r ) d A { t ) ,
^0

where

( 8 . 1 1 ) Q(^s)= ^2sm26

5 4— 252 COS 2 9 + I

But (?(9, ^) is non-negative for all t, and is uniformly bounded awav from o,
^J (?(9. ^ )^>ofor9 i^9^92and£^^£- i , so that

(8 .12 ) cp(9, r,,)̂ r;,1 f m ^(9, ̂ ^) dA(t) ̂ r^ F^dA^).
Jr^ Jr^

Hence, by (8.7), when m is sufficiently large, we have

(8-13) 9(9,r,,)^y^>o.

Putting now r=:r,^(9i) in (8.8), and using (8.2) and (8.i3), we get

(^^ ^(92)^(9i)+(92-9i)^ ,

and our proof is done.

PROOF OF THEOREM 8.1. —We remark first of all that by Theorem A, A must
have finite upper density [see (2. i4)] i f^(A) is to be non-empty. Now if A
does have finite upper density then ^€^(A), and h^=. /^^(7T/<2)==^rDp(A).
It follows, then, from Theorem 6.2 that Z^(A) ^Z)p(A). Thus, if
Z^z(A) == Dp (A), then for every /€^ (A) we have

/^Ay(±7r/2)^/^(±7r/2)=/^,

where hf denotes the overall type of/[see (2.11)]. But this means that W
has the smallest overall type of functions in ^(A) and we have proved the
sufficiency.

In the other direction, supposing that DL (A) < 2)p(A), we must construct
a function ^>(z) €^(A) with smaller overall type than that of W.

To this end, we let b be a number with Z^(A)<6<2) (4) . By
Theorem 6.2 there is then a function /e^(A) with hj '(± 71/2) < TT^, and
hence

(8..5) */(±-;)<*,,^).
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At this point we require a modification of the construction of paragraph 5
which permits us to choose an even function /(^), whose zeros lie only on
the coordinate axes. More specifically, we can choose f(z) of the form

(8.16) f(z)=W(z)F(z)^

where F ( z ) is the function (5.32), the sequence r == { Y^ } of positive real
numbers being chosen to satisfy the hypothetical formula

^^(i+j^-^^^^+yiogli-j^-2 td^{t)=f\o^i-^yn-^td ĥ(t).

As in paragraph 5, this formula cannot actually be satisfied, but the same
techniques used there are just as effective here. Indeed, the details of the
construction are easier.

LEMMA 8 .1 . — Let ^(9) and ^ (9) be continuous real-valued functions
on o^9^ Tr/2 such that

(8.17) P(7T/2)>^(9) for 0^9<7T/2,

(8.18) ^(7T/2)<^(7r/2).

Then there is a number ao, o <; ao<; i, such that

(8.19) max { a ^ ( 9 ) - h ( i — a ) P ( 9 ) j < ^ ( 7 r / 2 ) ,
0^9^71/2

whenever o <^ a ̂  ap.

We stress the strict inequalities in (8.17), (8.18) and (8.19). We omit
the easy proof of this lemma. To apply the lemma, we take u(Q) ==Ay(9)
and P(9) = A^(9). The point of Theorem 8.2 is that the hypothesis (8.17)
is satisfied, and the hypothesis (8.18) is a restatement of (8. i5). In parti-
cular, we choose a rational number a =p/q such that

(8.20) max ^A/(9) + ̂ -^ A^(9) i < ̂ ^(77/2).
o^O^TT/2 ( q q )

We consider now the entire function

(8.21) g{z) = { / ( z / q ) }P { W ( z / q ) } .̂

On calculating ^(9), and applying (8.20), we get

(8.22) /^(9)</^(7r/2) for all 9.

Unfortunately, the function g{z) vanishes not on A but on the (closely
related) sequence A* instead, where

(8.28) A*=:^o, ^o, ... , ̂ o, ̂ i, ̂ i, ... , ̂ i, ̂ 2, q^, ... , ̂ 2, ... ,
BULL. SOC. MATH. — T. 89, FASC. 2. 14
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where q\rt occurs q times for each n. In other words, g ' ( z ) has a y-fold
zero at each of the points ^o? ^^ii • • • • ^ut 1^ is not hard to replace g ' ( z )
by a function €>(^ )e^ (A) with the same indicator,

(8.24) /^>(9) ==^(9) for all 9.

We may write

(8.a5) ff(z) = n { (i - ^(^n)-2) }» { n(i + ^-('7T'.)-2) ̂

where •+• ^'y^ are the imaginary zeros of f(z). For simplicity, we rewrite (8.25)
as
(8.26) g{z) --= n j i - ̂  (^,)-2 }^n(i 4- ̂ a,2),
with the appropriate choice of a^. Our function ^ ( ^ )€^ (A) will have
the form
(8.27) €^)=n(i-^V)n(i+^(3,2),
where we shall now see how to choose the sequence B =z {^n }•

From (8.26) and (8.27) we get

(8.28) r-l\os\^(rei^\=r-i\os\W{reiQ)\-^r-i Aog| i+r2^-2^9 [ ̂ ^(<),

(8.29) r-^o^\^(re^\=(r/q)-^os\W(re^/q)\

+ r-1 ^log ] i 4- r2^-2 e^ \ dA ( t ) ,
t/

where

A(t)=^i and £{t)=^i.
O^n^t ?»^<

We choose B so that
(8.30) ^(0=^- l^(^)4-o(<).

For example, (8.3o) could achieved by choosing for B the sequence
consisting of every ^'th term from the sequence ai/^, ^/q^ ag/^ • • • ? with
an error 0(i) in (8.3o). Integrating by parts as in (2.i8), and taking the
obvious estimate based on (8.3o), we get

(8.31) r- llog|^(r^)|=(r/^)- llog|€>((r/^)^9)|+o(r),

for those 9 that are not integral multiples of Tr/2. The desired result,
(8.24) therefore holds with these possible exceptions, and by the continuity
of A (9) must then hold for all 9.

9. Applications. — We give here two applications of the earlier results
of this paper. The first is a theorem of Szasz-Muntz type for functions
holomorphic in a horizontal strip. The second, a variant of the first, is a
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best-possible gap theorem for power series. There are numerous possible
other applications of the same kind.

THEOREM 9.1. — Let ^€b be the space of functions holomorphic in the
horizontal strip |Im^|<<7r6 and continuous in |Im^[^7T^, under the
compact open topology {uniform convergence on each compact subset
of | liaz | ̂  TT&). Let A be an arbitrary sequence of distinct positive real
numbers. In order that the collection of functions [ e~^ } be incomplete
in S€bi it is necessary and sufficient that (6.2) hold^ i.e.^ that A-^A^.

PROOF. — We reduce this problem to the uniqueness problem for entire
functions that is solved in Theorem 6.1. If { exp(— ^n^) } is not complete,
then applying the Hahn-Banach theorem to the locally convex vector space Cb
of continuous functions in the closed strip under the compact open topo-
logy, we select a measure (^JL, whose support is contained in a compact
subset of the strip, and a function g-e^Cb such that

(9.o) ^ e x p ( — ^ w ) ^ ( w ) ==o (nz=o, i , 2, ...),

but such that(9 .1) r^M^(w)^o.
We put

(9.2) fW=-- ^exp(-^)^.(w),

to obtain a function f(z) that satisfies the hypotheses of Theorem 6.1,
unless f(z)^o. We show now that f{z) ̂  o contradicts (9. i ) , so that
by Theorem 6.1 we may conclude that A -^ A&.

If f(z) ==o, then /^(o) == o for all p == o, i , 2, . . ., that is,

f z P d ^ { z ) = o (p==o, i , 2, .. .).

This contradicts (9 . i ) since by an easy extension of Runge's theorem, the
function g{z) can be uniformly approximated by polynomials on a closed
rectangle containing the support of d^.

Conversely, i fA»^A&, then by a trivial modification of Theorem 6.1, we
construct a n / € ^ ( — A) such that

(9.3) |/(<y) <^^exp|7T^|.

The Borel transform [see (2 .12)] F(w) o f / i s continuous on the lines
Im(w) ==± nb since

/ \f(±iy) exp(—7r&j)6fy<oo.
^n
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Let 7? be the perimeter of a rectangle, two of whose sides lie along | Imw| =7: 6,
and which encloses the indicator diagram of/. Then, denning d^(w) as
the restriction to B of the measure (aTT^')"1 F ( w ) dw^ we see by (2. i3) that

f(z) = ^ exp(zw)dp.(w).
t/

Since / ( — I n ) = o, we see that d^ satisfies (9.o). But since, say,
f(zo)^o^ we may choose g{w) = exp(^ow) so that (9. i) holds. It follows
that g(w) cannot be approximated on /? by linear combinations of
j exp(— ^/zW) j , that is ( exp(— )^w) } is not complete.

Theorem 9.1 holds, with essentially the same proof, if we put b=o.
Thus, a necessary and sufficient condition for the completeness of {exp (—\n^) }
in the space of continuous functions on the real line, with the compact open
topology, is that ^(^) --^oo. We remark that this is the same condition as
the one given by MUNTZ [lo] for the completeness of { exp(— ^n^) } in the
space Co(^4') °f continuous functions on (o, oo) that tend to zero at infi-
nity, with the -uniform topology. These two theorems show that the
problems are equivalent on the line.

But for the space of functions holomorphic in | Im z | << TT&, continuous
on | Im^ |=7T^, and vanishing at infinity, with the topology of uniform
convergence in every closed right half strip, the problem of closure is
different. There, the associated uniqueness problem is for functions holo-
morphic only in a half plane, and FUCHS [4] showed that the condition for
completeness is that

lim sup { ^ (^?) — b log^r } ==+oo .
x-^w

The next result is a logarithmic variant of Theorem 9.1 and can be proved
by applying Theorem 6.1 in the manner described in [13], p. 422-

THEOREM 9.2. — Let A be a sequence of distinct positive integers^ and
let b'^0 be given. In order that there exist a function G{z)^ not identi-
cally zero^ that is holomorphic in a c ( keyhole " region consisting of a
neighborhood of z = o, a neighborhood of z =z oo, and the angle \ arg^ | <; TT 6,
and continuous on the closure of this region^ whose Tay lor series expansion
about the origin has the form

(9.4) G(z)==^a^
n=0

it is necessary and sufficient that A*, the set of positive integers comple-
mentary to A, satisfy A^^ A&.

10. An example. — The example of this section illustrates Theorem 6.1.
The method used to construct it is different from the methods of sections 5
and 7. It relies on the introduction of additional real zeros instead of the
imaginary ones used in section 5.
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The following sequence A was suggested in [13], p. 428 as a test sequence :

(1° - 1 ) A=\^J { n : 4^^<2.^}.
k=0

It is simple to verify that

(10-2) A^A*~Ai/,

where A* is the sequence of positive integers complementary to A,
and Ai/2== { i n } . Theorem 6.1 asserts that there is an /€^(A) with

(10.3) \f(iy)\^e^y^.
In this special case we can choose f(z) as

(10.4) f(z) = {n(i - z / ^ ) exp(.s/^)} j n(i + z/r,) exp(- z/r,) \.
By Theorem A and (10.2), f(z) is of exponential type, and it is easy to
see that

(10.5) [/(y))^^172,
i/

whence (10.3).
Incidentally, the function

^(z)==2^ze7liz{f(z) }2

is an example of a function of exponential type for which \g(x-^-iy)\
approaches a limit as j->oo for x = o but for no other value of x. The
first such function g - ( z ) was constructed by SCHAEFFER [14] in response to
a research problem posed by BOAS.

BIBLIOGRAPHY.

[1] BOAS, Jr (Ralph Philip). — Entire functions. — New York, Academic Press, 1964
(Pure and applied Mathematics. A Series of Monographs and Textbooks, 5).

[2] CARLEMAN (Torsten). — Ueber die Approximation analytischer Funktionen durch
lineare Aggregate von vergegeben Potenzen, Arkiv for Mat. Astron. och Fys.,
t. 17, 1922-1923, n° 9, 3o pages.

[3] CARTAN (Henri): — Theorie generale du balayage en potentiel newtonien, Ann.
Univ. Grenoble, N. S., t. 22, 1946, p. 221-280.

[4] FUCHS (W. H. J.). — A generalization of Carleman's theorem, J . London Math.
Soc.^ t. 21, 1946, p. 106-110.

[5] KAHANE (Jean-Pierre). — Sur quelques problemes d'unicite et de prolongement,
relatifs aux fonctions approchables par des sommes d'exponentielles, Ann. Inst.
Fourier, Grenoble, t. 5, 1953-1954, p. 39-i3o (These Sc. Math., Paris, 1954).

[6] KAHANE (J.-P.) and RUBEL (L. A.). — On Weierstrass products of zero type on
the real axis, Illinois J . Math.^ t. 4, 1960, p. 584-592.



206 P. MALLIAVIN AND L. A. RUBEL.

[7] LEONTIEV (A. F.). — Series of Dirichlet polynomials and their applications [in
Russian], Trudy mat. Inst. Steklova^ t. 39, iQSi, 2i4 pages.

[8] LEVIN (B. J.). — The distribution of the zeros of entire functions [in Russian].
— Moskva, Gosudarstvennoe Izdatel'stvo techniko-teoreticeskoj Literatury, 1956.

[9] MAGINTYBE ( A.. J.). — Laplace's transformation and integral functions, Proc. London
math. Soc., Series 2, t. 45, iQ38, p. 1-20.

[10] MALLIAVIN (Paul). — Sur la croissance radiale d'une fonction meromorphe, Illinois
J . Math.^ t. 1, 1957, p. 259-296.

[11] MANDELBROJT (Szolem). — Series adherentes^ regularisation des suites^ appli-
cations. — Paris, Gauthier-Villars, 1962 (Collection de Monographies sur la Theorie
des Fonctions).

[12] POLYA (Georg). — Untersuchungen liber Liicken und Singularitaten von Potenzreihen,
Math. Z., t. 29, 1929, p. 549-640.

[13] RUBEL (L. A.). — Necessary and sufficient conditions for Carlson's theorem on
entire functions, Trans. Amer. math. Soc.^ t. 83, 1956, p. 4I7-429.

[14] SCHAEFFER (A. C.) — Entire functions, Pacific J . Math., t. 6, 1966, p. 35i-362.
[15] SCHWARTZ (Laurent). — Etude des sommes d'exponentielles, 2® edition, Paris, 1959.

(Manuscrit recu Ie 5 janvier 1961.)

Paul MALLIAVIN,
Professeur a la Faculte des Sciences de Caen,

Institute for Advanced Study [Princeton],
252, rue de Rivoli, Paris ( i") ;

L. A. RUBEL,
Associate Professor at the University of Illinois

and Visiting Associate Professor at Columbia University,
Columbia University, New York 27, N. Y., U. S. A.


