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ON LIMITS TO THE ABSOLUTE VALUES OF THE ROOTS
OF A POLYNOMIAL 0);

BY EDWABD B. VAN VLECK.

In a. recent and very interesting article (2) Montel has shown
that when in the equation

( i ) i 4- a^x -r- a^2-)-.. .-4- apXP-{-...+ 0,^= o,

the values of the p consecutive coefficients a,, a^ ..., dp are
given with cip-^o^ there exists an upper limit to the moduli of
the p roots of smallest absolute value which is dependent only
upon the values of the p given coefficients and upon the number
of terms in the equation subsequent to dpXP (i.e., the number of
non-zero coefficients after a? regardless of the degree). Denote

( 1 ) Presented to the American Mathematical Society, :>q dec. 1923.
(2) Annales Sc. de VEcole Normale superieure^ (3), vol. 40, 1928, p. i. Only

a part of MonteFs results will be cited.
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this number by k and the familiar number — n ——'' ' . '————— )
J i\

by C^. When a single coefficient dp is given, the modulus of the

root of smallest absolute value does not exceed i / /?+^» and this
v l a p l .upper limit can be attained by a properly constructed polynomial

of degree n = p + A'. When p = 2 and equation (i) has the form

(2) i 4-Os-y2-!-^a?3-!-.. .-4--o?/i.r"== o,

the moduli of the two roots of smallest absolute value will not
/r^"2

exceed l/T^f? ^d this uppe.r limit is realized only in a properly

constructed polynomial of degree n == 2 +^- Montel conjectures
that when dp is given in the equation

(3) I -+- CLpXP-^- a^-i-i.^4-1-^. . .4- OnX11^ 0,

the corresponding upper limit to the moduli of the p .roots of
smallest absolute value is

(4) (/^.v 1 ^ 1
To establish his theorems on the moduli of the roots Montel

employs the method of mathematical induction in combination
with a quasi-converse of a well-known theorem of Lucas concern-
ing the roots of the derivative of a given polynomial (* ). This
combination is admirably adapted to demonstrate the existence of
an upper limit for th.e moduli of the p roots dependent upon p
and /r, and the particular strength of his theorem and method is
in taking account of the gaps in the equation subsequent to the
last given coefficient o..p, thus making the upper limit dependent
on k rather than upon the degree of the equation. On the other
hand, the method is apparently not so well adapted to the actual
determination of this upper limit except in the special cases treated
by him.

In the following investigation the subject is approached by the
consideration of symmetric functions of the roots. This method is
well adapted to the specific determination of the upper limit to the

( 1 ) Use is also made of a theorem of Walsk.
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moduli of the p smallest roots when the degree of the equation is
given. It is shown that when the coefficient a? -^- o is known in (3),

the moduli of the p roots of smallest absolute value have i/-,—'— as
. . . . . . . ^ ^ \aP\

an upper limit, and this upper limit can be attained in a properly
constructed polynomial, tho by only one of these roots. Thus the
correctness of MonteFs conjecture is established when p -4- k = n.
The value of this upper limit is lowered when there are gaps in
the equation subsequent to dpXP so that p + k << n, and the
amount by which it is lowered depends upon the position of the
gaps. It is not easily shown by my method that the upper limit
must be at least as small as (4 )» though I have no doubt of the
correctness of MontePs conjecture.

MonteFs attention was confined to the case in which the/? coeffi-
cients given in (i) form the continuous suite a<, 02, ..., dp. One
may ask whether there are not other cases in which a finite upper
limit exists for the moduli of the p roots of smallest absolute value
when/? coefficients Of are given. This question is here considered
and-it is found, more generally, that such a limit exists when the
suite a^ a^ . . . , a^-i is given with any subsequent coeffi-
cient a^p^w 72^ o. Further, i f a < , a^i . . . , dp_^ are all zero so that
the equation has the form (3), an upper limit to the moduli of
the p smallest roots is

P^/Wp^^^ ^
V I ftp^m \

and this upper limit is realized in a properly constructed polyno-
mial, tho by only one of the p roots. In part II it is shown thai in
no other case does a finite upper limit exist for the/? smallest roots
when /? coefficients ai are given.

I.

For the'investigation below it is found convenient to replace x

by — -• Then instead of seeking an upper limit U to the moduli of

the/? roots x,; of (i) which have the smallest absolute value, we

must find a lower limit L = = — for the moduli of the corresponding
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roots Zi= — — of
Vi

(5) ^n— a^s'1-1-}-^^1-2—.. .-h(— i)^ap^-^-+-.. .±:a,t= o.

The results obtained below for the roots of this equation can be
reformulated at once by the reader into corresponding results for
the equation (i). We will suppose the subscripts to be so assigned
that

and for brevity we will call s,, .. ., Z p the p largest roots of (5).
Suppose first a single coefficient a.p-^0 to be given in (5).

Since a^== S^i z^ ... Z p ^ we have immediately

(6 ) | a,, | — | S-si ̂ 2 . . . z,,\ ̂  S | ̂ 2 "^p\<= C^. | zi \f^

and therefore a lower limit to the largest root of (5) is t/L0^'. To
v G,»

attain this limit it is necessary and sufficient that the equality signs
shall hold in (6). Hence all the terms of S^^- . -^p must have
the same argument and be equal in absolute value to 5^. Conse-
quently we must take z-^= z^= . . . === z,i^ unless p == n when it
suffices to have | z^ \ = \ z^\ --= . . . === | Zn\. When several coeffi-
cients Op-^'o are given, the lower limit to the largest root of (5) is

at least as great as the largest of the corresponding valuest/1-^-'-
- ^/t

The lower limit just indicated for \z^\ can be likewise raised
when in addition to hpy^-Q we have given other coefficients ds==- o.
For then if we raise a? ==S^i z ^ . . . Z p to an appropriate i-th power,
thereby obtaining a new symmetric function with (C^)1 terms, this
number of terms can be reduced by the cancellation of one or more
groups of terms owing to the given relations a ^ = = S ^ i ^ 2 - - - ^ = = o -

/yj———,

Let N be the number of remaining terms. Then [ ^i ] S pi/-^ •

This method will be illustrated by considering the simple case

^n—'al^n-l^- (— l)l'^a|^iZft-r-l-+-.. ,±an== o,

in which only a\ is supposed to be given. We obtain

a^EsCS^i)'^ ̂ z\
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since a^= 03== ... == a, == o. This result can be more rapidly
derived from the familiar recurrent relation

s/.—ciiS/.-i-^-a^s/c-t—.. .4- (--1)^0^== o (A-^n) ,

where Sk denotes the sum of the /r-th powers of the roots of (5).
For the equation before us this gives

Sk—ais/c-i=o ( / f ^ r ) ,

and consequently .9,.== a\\ Hence we have

K'l^l^i^i^p-,

and therefore —^ is a lower limit for [ ̂  |. This is larger than the
//i

lower l imi t -—'U—— erven by application of MonteFs results,(n — r-hi) ° J i r J

since for n ̂ > r

/i = (n — r) -+-/•< [(/i — /•) 4- rY ( r> i ) .

In the case of the trinomial equation

with given Or it is extremely easy to specify a lower limit for the
modulus of the largest root which is independent of the degree of
the equation. Since [a,i]^| z^\^ the equation

,. ^/i•^=^+^.

gives immediately | a,.| ̂ 2 [-Si [/'. Consequently i/'-an is a lower

limit to the modulus of the largest root. Furthermore, this is the
largest possible lower limit independent of the degree, inasmuch
as this limit is attained in the case of the equation

^2r-^-ar^r+ (aL} ==o-

Pass next to the consideration of (5) when the p coeffi-
cients Oi, 02, ..., dp are given with dp-^o. Between the p
equations ai= S^i ^2 ... Zi (i' == i, 2, ..., p) we can eliminate p — i
roots of (5). Let the roots to be eliminated be called ^ i , . . . , ^p--^
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and the remaining roots Y| , . . . , ^n_p^.^ Denote the sum of the
products of the p, taken i at a time by b^ and the corresponding
sum for the "^by gi. We have then

, <^1 = ^1 -r- ^J ,

^ ^ 2 = ^ 2 + ^ l < T j 4 - ^ 2 ,

^3 = .«?'3 4- ^1 <?2 -1- ^2 ̂ J -+- ^3i

^ a,,_i == ^p-i + ^^^-2+. . . - ̂ -i,
^ ==^P +^J^-1+...+^-1<?'1,

\vliere ̂ ^ o when ( exceeds n — p + i.
Elimination of the bi from these equations gives

( 8 »

—a^ffi

—— Ctl -r- gz

—— ^3 = ̂ 3

—a^-i+^-i

—^+^

i

!̂
^'2

Sp-i
^p-i

0

i

^•i

^--3 • . •

^-2 ...

0

0

0

^J
^2

0

0

0

1

^
which forms the basis for our subsequent conclusions.

Put
ff'i
81

^'//-l ^/-^ ^-3 • • . ^1 *

SP ^P-\ ^P-l • • • ^ ^1

Orthosym metric determinants of this particular form occur occa-
sionally in mathematical literature ( { ) . We have the obvious law
of recurrence,

(10) A,/ = g, A/,-i - ̂  A/,-, 4- ^3 A/,-3 — . . . ± ̂ //-i Ai =p ̂ .

In the particular case before us the gi are the elementary symmetric
functions formed from certain elements y/, and accordingly

Ai = ^i = SYJ , A^ = ^? — ̂  == Sy^ + SYI y,.

(1) Cf. Pascal's Determinants, § 41.



— Ill —

Starling with these expressions, we will now establish by mathe-
matical induction the following result :

LEMMA I. — If the g-t in (9) are the elementary symmetric
functions Sy^a.. .-pformed from any number r of elements
taken i at a time (with gi^- o for i ^> r), the determinant \p is
the sum of all possible products of the y, taken p at atime,
repetition of^i, being allowed in the formation of the products.

Suppose that this is true of A/up to the value i= p — i inclu-
sive. In the first term g^ ^p-\ on the right-hand side of (10) there
occur all possible products of the Y( taken p at a time, repetition
of the Y( being permissible in the products. Consider any such
product containing exactly 771 distinct elements y^'. In the first term
on fhe right-hand side o f ( i o ) the product occurs C,1,, times, in the
second term C2,^ times, and so on until we reach the m-th term,
-after which it does not occur at all. The coefficient with which
the product enters into ^p is therefore

C^- C^-t- C^ -...-(- 1)^-1 C^ = r.

It follows that \p has the structure indicated in the Lemma.
Let the greatest of the absolue values | y, | 'he denoted by |y .

Since the number of combinations of /* elements taken p at a time
with repetition is C ^ , _ i and since no term in ^p exceeds ^P in
absolute value, we obtain from the Lemma the useful inequality

(r» I-^^-.-IY^

Consider now the special case in which a\ = a_> = = . . . = = a? = o.
Suppose that the n roots of (5) have been divided in any way
whatsoever into two classes, Y^ and ^ respectively, with the sole
restriction that the number of the ^ shall be at least as great as p .
The last equation of (7) must now be modified by adding bp to
its right-hand member. Then if 6,, ..., bp_^ in (7) are eliminated
as before, the resulting eliminant is the same as (8) except that a?
is there to be replaced by a.,— bp. Since also 0,=== o for i^pi our
equation (8) after this replacement may be written in the form

^{,-^-(—l)/)-^hf,== o.
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Thus it appears that A^, which explicitly contains only the gi and
hence the "p, can also be expressed in terms of the pi and is, except
for the factor (—i)^, identical with the elementary symmetric
function bp= 2[3< Pa . . . Pjp. By combination of this result with
Lemma /we reach immediately the following conclusion :

LEMMA II. — When di= o ( i== i , 2, ..., /^), the sum hi of the
products of p or more roots pi taken i at a time without
repetition is for even values of i^p equal to A^ which is the
sum of the products of the remaining roots taken i at a time
with repetition^ while for odd values of i^p it is equal to the
negative of this sum.

We arc now ready to consider the special equation

( 1 2 ) 3"-i-(—l)^a^ ^-<-(— i^+ia^i z't-p-i -(-... -+-(—iy»^= o,

which corresponds to MonteFs equation (3). We suppose only a?
to be given. Let us choose the p—i largest roots ^4, z^, ..., Z p _ ^ ,
as the [3-roots to be eliminated through (7). Since

^i = a.i = = . . . = = a^_i =. o,

our eliminantal equation (8) becomes

d3} (—i^a,,-4- ^=o.

Now Zp is the largest of the roots remaining which enters into A n .
Putting [y |== |^ , | , we find from (i i) and (i3) that

(H) 1^1=C{; ]^ | / \

Thus it is established that the moduli of the p largest roots of (12)

can not fall below i/—^- •

We proceed next to show that the lower limit just indicated for
the modulus is the largest possible lower limit for the set of the/)
largest roots of (12). To prove this we must establish that our
arbitrary coefficients a^,, a?^^ ..., On. in (12) can be so chosen
that the sign of equality will hold in ( i4) . We first put aside the
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case p = n as trivial, since equation (12) the becomes

zn^. (—i)^a,t= o

and all its roots have the modulus \l~a^\^ as demanded.
Suppose p < n. The sign of equality in ( i4) will hold when,

and only when, the Cg terms of which \p consists have all the same
argument and a common modulus equal to Zp\P. Hence we must
have Z p === Zp^ == . . .== z,^ and by (i3) their common value w^ill

be a p-th root of ^ iaf)- Except for the choice of this p-thLl//
root the determination of these n—p +1 roots is unique, and
correspondingly the determination of their elementary symmetric
functions gi in (7). Using the given value of cip and setting

ai == a.i ==. . .= ap-i = o,

we may now regard (7) as a system of equations to determine
the /?—-i unknowns ^. The first p — i equations of the system
determine the bi uniquely, while their consistency with the last
equation of the system is guaranteed by (i3). As the hi are the
elementary symmetric functions of the remaining p — i roots
of (12) taken ( at a time, these roots are accordingly uniquely
determined;

It has thus been shown that when cip is given, it is possible to
take the roots of (12) — and, except for the choice of the above
mentioned /?-th root, in one way only — so that the sign of
equality will hold in ( i 4 ) . Any set ofp roots of (12) will include
at least one of the n—p-{-\ equal roots which have a modulus

equal to \/——-- Now it was proved earlier that the moduli of

the p largest roots of (12) must be at least as great as this quantity.
Consequently when only dp is given, this is the greatest possible
lower limit for the moduli of the set of the p largest roots of (12).

It remains to examine whether in the determination just made
the values obtained for z^ z^ ..., Zp-^ through (7) are really as
great in modulus as the n — p + i equal roots Zi{i^p). Denote
by z ' any one of the former set of roots, and suppose, if possible,
that it has a modulus less than that of Z p . Let z ' be exchanged
with Z p in the preceding work so that z enters into \p in place

mi. 8



j{ Z p . Thereby some of the terms of ^p will be lessened in absolute
value. Since before the exchange all of its terms were equal to one
another and their sum by ( i3) was equal to ^.dp^ it follows that
after the exchange [ ^p will be less than Op\. This contradicts (i3),
and hence we conclude that z ' can not be less than Z p \. The same
contradiction arises if we suppose z ' to be equal to Z p in absolute
value but to differ from it in argument. For then on exchanging z
and Z p the terms ofAjr,, though equal in modulus, are no longer
all equal in argument so that again we have | ̂ p < | a^j .

We may, finally, remove the possibility that z ' should be equal
to Z p . For this purpose consider the equation

zP-^—b^z/'-^-^-b.iZP-^—.. .4-(-—i)^-i^_^= o,

which is satisfied by the p — i largest roots of (12). Since

ai = a.i = = . . . = = a^_i == o,

we have (— 1)^== A, by Lemma I I . But A, is the sum of the
products of the n— p-+-i equal roots z^i^p) taken i at a time
with repetition, and is therefore equal to C^^.z1^ Consequently
the above equation becomes

d5) ^-1-4- C,̂ ,. ,ZpZP-^ + C2_^^^-3-+-.. .4- C^}^-1 = o.

It is obviously impossible to satisfy this equation by taking z = Z p ,
as was to be shown.

The theorems reached in the last few paragraphs can be summed
up as follows :

THEOREM I. — When a? is given in (12), the quantity i/l^d

is a lower limit/or the moduli of the p largest roots Z i ( i ^ p )
o) (12). If p<^n\ this lower limit is reached by z? when and
only when z?= Zp^= ...--== z,^ their common value bein^

a p - t h root of ""'̂  la^. -the remaining p — i roots are of

greater absolute value and satisfy equation (i5). In the trivial
case p=n the n roots of ( 1 2 ) are the various n - th roots
o/(-iy1^.

Consider next the general equation (5) in which we will
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suppose a^ a^ ..., a? to be given with dp -^- o. The eliminant(8)
mav be written

(—n/^-r- (—i)^-1 ^-)Ai-r- {--i^-2^-^^^-. . .—a)A^-i+ A^= o,

and accordingly, with the help of ( i i),

(16; ja^l^l -r- [aiA^-i | -T-. . .— | a^_iAi|
^.1^+C^i.tail.l^-i

-^ C^i i a,!. 1 ^,,^-^-t-.. .-4-CA-/^i . I a^-i j . | ̂ i.

Tills inequality is clearly impossible if | Zp\ is taken too small. We
thus reach the conclusion :

THEOREM II. — When a< , a^ ... cip are given with \cip ^ o,
there is a lower limit for the moduli of the p greatest roots
of (5) which is at least as great as the smallest value of \ z?
which satisfies the iner/uality (16).

A similar treatment is possible when rti, 035 ..., On—i are given
with any subsequent coefficient ap^.m instead ofop. Then in place
of the last equation of (^) we must employ the equation

dp-^-m = gp-^-m -+- bi gp^.,,i-i -+- b^ gp^in -1 -r- . . . -r- ̂ ,-j g ,n -(-j.

Elimination, of the p — i greatest roots now gives

— — < 7 l - r - ffi I 0 . . . . . . 0

— ^-1 — ^-1 g\ * . . . . . . 0

( i ;^ . . . . . . . . . .. . * . . . . . . . ==o.
- O^-j -T- ̂ _i gy^ ^-3 ... ... I

" ap-^-^n '+• Sp^-nt gp-^-m—\ Sp^m—^ • • - • • • §m-t-l

Expand in terms of the elements of the last row. The cofactor
multiplying'— cip^.m is dL i while every other term contains one or
more of the g i as factors. It is therefore impossible to assign an
arbitrarily small upper limit to the gi\. Now the ̂  for i ̂ /i — p 4- i
are the elementary symmetric functions of the n —p 4-1 roots

^pi zp-^\ i • • • ? ^/i

taken i at a time. Consequently Zp , the greatest of the moduli of
these roots, must have a lower limit greater than zero. Hence we
conclude :
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THEOREM III. — When a,, a.,, ..., a p.,, ap^n are given

with o^^^o, the moduli of the p largest roots o/(5) have a
lower limit greater than zero which depends only on the given
coefficients and the degree n,

A special case of interest is that in which all the p given coeffi-
cients are zero except Op^nr Equation (5) has then the form

(l 8) z ' t 4- (— i)P apZ^-P 4- (— l)/^-i ap+t z'i-P-1
-+- . . . -4- (-. \}P^^ap^zrt-p-m^ . . ̂  an = 0,

where only Op^n is given. Our eliminantal equation (17) now
becomes

(•9)

in which

(20) A ,̂,,=

^i
^

8p-\
ffv^-m

(—l)/^

I

8\

Sp-i
Kn^-iit—\ f

i-\- fll

0

I

Sp-

-i—

-3

^p,m == 0,

()

0

S\
'̂,,,-i-O

0

0

I

P'..,L4

The expansion of (20) in terms of the elements of its last row
gives

(21 ) ^p.m • '• ^W-hl A^-! —— ^//(4-2 ^p—2 4- . . . ± §p-{-m

where gi^=Q for i :> n—/?+i- For convenience, designate
b y y i ( ( = i , 2 , . . . , / z — / ; > +i). the roots ̂ , ^4.1, ..., ̂  which
enter into (20). Since gi is the sum of their products taken ( at a
lime without repetition while A is the sum of such products with
repetition, A^w is a homogeneous function of the -p of degree p + m.
By (21) each of its terms must contain at least m+i of the Y(.
Take any possible product v^ ... y^, in which k = m +y
and /,-K'2+.. .-4- i^=p^-m. Here j is subject to the two
conditions y^jo, m -{-j^n —/?+i. The largest integral value
ofy satisfying both conditions will be denoted by q. Seek now the
coefficient with which this product enters into the right-hand side
of (21). The product occurs in gm+i ^p-i only for i^j\ and then
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with the coefficient C;;;̂  since this is the number of terms in grn^
which are factors of the product considerede. Hence the product
enters into the right-hand side of (21) with the coefficient

P/W4-1 pw+3 i , / .\,_i r^m+j^m+j — ^m+J -T- . . . 4- ( — I )J 1 t-,,i+y,

which can be condensed into the single term C%_^_i == C ^ - ^
with the aid of the formula

p'n+i _ pm-K'-i , r^m+t / « • ^
^m+j — ^m+y-i + ̂ /n+j'-i ( l == * i • • • ? J — I}-

Our equation (21) may therefore be written,

<7

(2.) ^ =^ C^_, ^ [S-^2.. .Y^],
7=1 11 + t'2+.. • + i!: -=m+f)

where the triple summation is to be understood as follows. In the
first summation we keep the exponents fixed but select the m -\-j
roots y from z ' p , Zp^^ ..., Zn in all possible ways, and in the
second summation we allow the exponents to'take all possible sets
of positive integral values consistent with the sum p -\- m.

We will next ask how many terms ^p^n contains. By the first
summation we get a total of C;;^^ terms. In consequence of the
second summation this total is multiplied by C ^ 7 ^ , for we then
assign p + m indistinguishable units as exponents to k == m -\-f
roots -^ in all possible ways with at least one unit to each root.
After the assignment of one unit to each root there are left p — /
units, for which we must select p —j of m 4-7 roots in all
possible ways with repetition allowed, and the number of ways in
which this can be done is C^,^. Finally, if each term in the
triple summation is counted a number of times equal to its coeffi-
cient, we obtain as the total number of terms in (22)

(]

W S0^-1 c//;^-1 c;^4-'-

Since
CJ-1. c.P-i - ( p — ^ ( p — ^ . ^ ( p — f ^ ^ p p -1
^m+j-i ^m-^-l —————————-j • ___ , ,————————L.;,,+^..i,
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this may be written

pn-i f pm+i , / _ , v pm+2 . ( P — O ^ ' 2 ^ pm+3C^-i C,,_,̂ .| -r-(p-l) G,,_^i -t- —————^————— ^n-p+\ -T-- • •

, py-1 pm+7 | _ p^-1 r^fn-^p— ̂ -i ^/(-^+| -—Li,,^_i ^,<

Return now to equation (19). We have just shown that A,,,^ may
be regarded as consisting of C;;;^_, C^'7' terms with coeffi-
cient +i, each term being of degree in -+- p in terms of
the n —7?+i roots Zi{i^pY Since none of these roots exceeds z?
in absolute value, equation (19) furnishes the inequality

; /, i A I < P^""1 nfl^P - m-^r-pI a^4-,^| = A,,/^| ̂  L.,,̂ ,-1 L./, ; ̂  / .

Thus we arrive at the following result :

THEOREM IV. — When cip^n is given in (18) , the p roots of
greatest absolute value have the lower limit

•*p-\-m \
c,p~1 c'11^/'tm+^)-\ ^fi

for their moduli,

By reasoning like that used for equation (12) when a? was
given, it is clear that the lower limit can be attained only by
taking Zp=. Zp^ ==. . .= 5,,. The first p — i equations of (7) may
again be used to determine the remaining roots Z { , . . . , z?-\ which
again satisfy (i5). The same considerations as before apply to
prove that the moduli of the latter set of roots are then actually
greater than that of Z p .

At the end of part II it is shown that not more tlian p roots are
conditioned to have a lower limit greater than zero for their moduli
in the case before us.

II.

In conclusion we will show that there are no cases other than
those included under Theorem I I I in which a lower limit
greater than zero for the moduli is imposed upon p roots by
giving p coefficients ai. In any other case there will be given a suite
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of only p — m consecutive coefficients a,, a^ ..., ap^n{^^m^p)
witli m subsequent coefficients. The two given coefficients of
greatest subscript will be denoted by a/,-i+A, a^_,+/(o < k < I).
The desired conclusion will be established by proving
that n — p + i roots of (5) can be taken as small as we please in
absolute value.

As before, we will divide the roots of (5) into two classes, the
one class containing the p — i largest roots z,(i' <^p) which have
the bi for their elementary symmetric functions, and the other
class containing the remaining n — p 4- i roots with the ^i for
their elementary symmetric functions. We will again eliminate
the former set of roots. The first p — in equations of (7) hold,
but in place of the last m equations of system (7) we now liave m
equations of the form

('^ > cip-^i == fTp-i+i -+- hi gp—w 4-... 4- ̂ -i gi.

A necessary condition for the consistency of the system is that the
eliminant A resulting from the elimination of the bi shall be zero.
For convenience of reference we shall write down the eliminantal
equation for m =- 3, which is

(25) A=

--ai+^i I

s\-— ^2 -+- g-i

——aP-3-^§rp-3 gp-^

- ^p-i+j -+- Sp—\-^-j Sp-i-^-j
- <^p— 1 -+-/•• -+- gp -1 +k ^p—i+k

- Op—14-/ -+- g'p—^1 g'p—^1

0

0

0

o

Sj
§k

Sl

It is to be noted, however, that the subsequent argument will hold
for every value of m > i . In any case the system will be consistent
and admit a unique solution if the first minor Mi of A obtained by
omitting its first column and last row is not zero, or just as well if
any other first minor is not zero which is taken from the matrix || M ||
remaining after the omission of the first colum of A.

A simplification of the problem may be made by equating to zero
all the coefficients in (5) after the last given coefficient a^,-^, or,
in other words, by taking h—{p — i + I ) roots equal to zero.
Then after the removal of the factor ,c"-(/»-i+/) there is left an
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equation of degree p — i + f w i l h j o given coefficients, for which
we must prove that / roots can be taken as small as we please in
absolute value. Since only / roots now enter into the gi, every gi
is identically zero for i^> I, In consequence, (25) takes the form

W AE=N^-4-(—i)/^-i+/Mi:=o,

in which N denotes that minor of A which is obtained by deleting
its last row and column.

It will suffice to show that the gi{i^l) can be made as small as
we choose in absolute value, for then the same is. true of the /roots
which enter therein. The method of proof will be based on the
form of A. As we pass from left to right along any row, the subscript
steadily diminishes by a unit, all elements to the right of ffo'-^ i
being zero. In passing down the principal diagonal or any parallel
file the subscript never diminishes, and the same holds for any
minor taken from r consecutive columns. Whatever be the value
of m > i , no element in the principal diagonal of A is 'identically
zero nor in the parallel file just above, and the last two rows are
the same as the last two of (a5) with now ^== o for i > /. On these
simple facts the proof is built.

It will be shown first that any minor of A taken from r
consecutive columns {inclusive of A if self) will not vanish
identically if the product of the elements in its principal
diagonal is not zero. To see this, begin with the top row of
the minor. Its first element has a subscript greater than that of
any other element of the same row. In case it is an element Oi— gi
from the first column of A, we will use only the g'i. In the next row
of the minor the element with greatest subscript which can be used
as its multiplier is the element in its principal diagonal. In the
third row the element with greatest subscript which pan be used to
multiply the product of the two elements already selected lies also
in the principal diagonal; and so ,on. Consequently, if there is no
zero element in the principal diagonal, the product of all these
elements will be unique among the products which make up the
minor, and hence the minor cannot then vanish identically. It may
be added, incidentally, that if the first element is an element ai — gi
with a^ o, we will obtain two unique terms.

By direct application of the result just established it follows that
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neither Mi nor N vanishes identically. The same is true of the
second minor Ma of A obtained by suppressing the last row and
column of Mi, or any /'-th minor Mr obtained by suppressing the
last r — i rows and columns of Mi.

We are now ready for the consideration of our equation (26).
If ajD_i4-/== o, it may be satisfied by merely taking ^==0. This
does not cause Mi to vanish since gi is not contained among the
elements of its principal diagonal. Then the other gi with i<^l
can be chosen as small as we please in absolute value but so as not
to make Mi==o. All conditions desired are then fulfilled, and
hence n — p -4- i roots of (5) can be taken as small as we please in
absolute value.

We may suppose henceforth Op—i+^^o. Let Mi be then
expanded in terms of the elements of its last row and their cofactors.
Equation (26) thereby takes the form

(•27) N^/4- (— i)/^_i+/(^7,M.2-h ^+iM2+. ..) == o.

In appearance the form is homogeneous in gjc^ gk+i^ . • • ? gi-> l3111-
it is to be born in mind that these quantities are contained in N, Ms,
Mg, .... We will now regard (27) as an equation to determine gk
when the remaining gi^i^l) are given. It has already been pointed
out that M2 does not vanish identically, and this still holds true if
all elements gi with subscript greater than k are equated to zero,
inasmuch as all elements in the principal diagonal of Ma have a
subscript k or less. Then Ms becomes a polynomial in some or all
of the quantities ^"i, g^ ..., g^. We will choose for g^ ^'2, ...,
gk—\ a set of values which does not cause this polynomial to vanish
identically. This will make Ma either a constant or a polynomial
in g k ' We will also suppose that the values just selected are less
in absolute magnitude than an arbitrarily prescribed positive e.
These values of ^i, ..., gk-i we will now employ in (27) and
holding them fixed, we will let gk+i^ gk+^ . • " i g t approach zero in
any manner. The left hand side which is a polynomial in gk with
varying coefficients will approach as its limit a polynomial with
fixed coefficients; namely, the limit of (— \)Pap^^igk^l^. Since
the roots of a polynomial are continuous functions of its coefficients,
there must be a root of the polynomial which is either zero or
approaches zero as its limit, and this root we will take as the value
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of g ' k . Thus all our \gi\ may be made simultaneously as small as
we please.

It only remains to make sure that we can thus take our \gi\
arbitrarily small without causing to vanish all the first minors of A
which can be formed from the matrix || M ||. In showing this we
w ill treat successively the tw-o possibilities / == k 4- i and / > k + i.

W hen /==/:+ i , every gi wdth 7 > k + i is identically zero.
Consider then the first minor giM.^ of A which results from the
omission of the next to the last row of || M [|. To keep this and other
first minors later under consideration different from zero, we wdll
henceforth impose the condition that gi shall be different from zero
in its approach to 2ero. Since the last element in the principal
diagonal of M| is g-k, the subscript of the last element in the
principal diagonal of Ma or of any other principal minor of M«
must be A or less. Suppose first that the last element in the principal
diagonal of Ma has a subscript less than /r. This renders it
impossible for it to vanish identically for gi= gk'=^ o, and clearly
we can impose the requirement that the fixed values given above
to g^ ^2? • • • 5 gh-\ are such that Ms is then different from zero.
Accordingly when in (2^) we make [ gi\ sufficiently small and with
it \gk\ also, we obtain a first minor giM^ ̂  o as demanded, and all
conditions desired are therefore met.

Suppose, on the other hand, that the last element in the principal
diagonal of M'a is g-jc- Then the adjacent element to its left in the
principal diagonal of A is gk+^ so that the three last elements of
the diagonal are gi'==- ffk+f- In this case consider the first
minor g-J^^ Ms of A which is obtained by omitting the second row
preceding the last in ||M||. If the last element in the principal
diagonal of Ms has a subscript less than A-, then Ms does not vanish
identically for gk+\ ==§^==0, and we may suppose the fixed values
already given to g ^ , g^ . .., ̂ -< to be subject to the restriction that
the value, of Ms is not then zero. Accordingly, when | g'jc+^ | ̂ == | gi\
becomes sufficiently small and with it \gk\ also, we get a first
minor ^-/^Ms^o, as desired. On the other hand, if the last
element in the principal diagonal of Ms is gjfc, the adjacent element
to its left is gk-{-\ and consequently the last four elements in the
principal diagonal of A are g'k+^. In this case consider in similar
fashion the first minor g-^^M^ resulting from the omission of the
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third row preceding the last in ||M||. Continuing thus, we come
finally to the case in which all the elements after the first in the
principal diagonal of A are g'k+i, and then the first minor g'^\
obtained by omitting the first row of| |M[[ is different from zero.

The case / ^> k -4- i can be handled in much the same manner.
For simplification we will equate to zero all gi with subscripts
between / and k + i. Then when gk+\ and gi in (27) approach
zero in any manner whatsoever, g k will also approach zero. We
will hereafter keep g'k+\ as well as gi different from zero in this
approach.

Consider again the first minor ^Mg. Suppose first that the last
element in the principal diagonal of Ma has a subscript less than k.
It will not vanish identically for g'i== g'k+i == gk^ o, and, as before,
we will suppose the fixed gi, g^i . - .5 gk-i so chosen that its value
is not then zero. If this has been done, the first minor gi^l^ will
be different from zero for sufficiently small gk+i and g ' i \ .

Suppose next the last element in the principal diagonal of M^ to
be gki the adjacent element to its left being g'k+i- Then we again
consider the first minor resulting from the omission of the second
row preceding the last in [|M||. Besides the term gigk+i M.3 this
may also contain another term ^Mg if the element g ' i occurs in
the next to last row of || M [|. If the last element in the principal
diagonal of M^ has a subscript less than A', clearly M^ will not
vanish identically for g'i= g'k+i === gk= o, and we can impose upon
the fixed values of ^'4, ^g, .... g'k-i the further restriction that the
value of M^ shall not then be zero. Now let g'k+i and g'i. approach
zero, making g ' i infinitesimal in comparison with g'k+i- The
term g'j^l\ in the minor ultimately becomes negligible in compa-
rison with g-igk+iMs-^ o. Consequently we get a first minor of A
which is different from zero.

On the other hand, suppose that the last element in the principal
diagonal of M3 is gk. Then the last four elements in the principal
diagonal of A are three g'k+i followed by gi. In this case we consider
again the first minor obtained by omitting in ||M|| the third row
preceding the last. In addition to g ' l g ' i ^ ^ M^ this minor may now
contain other terms such as g'^M'^ g] gk^"^ due to the occurrence
of gi to the left of the principal diagonal in the second or second
and third rows preceding the last in || M ][, but each of tliese
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additional terms will certainly contain g] as a factor. If the last
element of M.i is not g^ we may proceed in the same manner as
before and by taking finally gi infinitesimal in comparison
with g^^ make gig^+^n the dominant term of our first minor.
Since this is different from zero for sufficiently small | g i , g'jc+i ?
| gk , we get thus a first minor different from zero, as desired.
When the last element in the principal diagonal of Mi is g^ the
last five elements in the principal diagonal of A are four gjc+i
followed by gi. We then consider the minor obtained from || M ||
by suppressing the fourth row from the last; and so on. With
each succeeding stage we have a minor containing a term gig^\ M^
while every other term contains g] as a factor. Hence by taking gi
infinitesimal in comparison with g1^ we can make the first
mentioned term become the dominant one. We close finally with
a first minor of A whose principal diagonal consists of p — 2
elements g-jc+i followed by the final element gi. Since in each
successive case the dominant term does not vanish for sufficiently
small \gi\i \gk+\\, \gk\ provided that gi\ is conditioned in the
manner indicated, we conclude that we can always get a first minor
different from zero. This completes the proof that not more
than p— i roots are conditioned to have a lower limit greater than
zero for their moduli when the p given coefficients do not accord
with Theorem III.

We may now supplement Theorem III. This stated that
when Oi, ..., dp-\^ ap+m were given with a^+w^o, the set of
the p largest roots were thereby conditioned to have a lower limit
greater than zero for their moduli. It may now be shown that no
more roots are thus conditioned. For if m > i and we arbitrarily
assign dp+ ̂ _i, we thereby bring the case under the investigation
just made, from which it appears that no more than p roots will
be conditioned to have a lower limit greater than zero for their
moduli. The case m = i demands separate treatment. We may
then equate to zero all coefficients of (5) subsequent to a^-n, thus
making all but p 4- i roots zero. Let z denote that one of the
remaining roots which has the smallest absolute value. We have
the relations

Cti == Z'Si^ -+- Si ( i == 1 , 2, , . . , p — i),

ffv+l = ^ ' S p ,
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where Si denotes the sums of the products of the other p roots
taken / at a time. The set of equations for the Si are obviously
consistent for any value of z not zero, no matter how small its
absolute value. Lastly, i f m = = o , it is obvious that we may make
all but p roots equal to zero by equating to zero all coefficients
after dp. Consequently, no more than p roots of our equation are
conditioned in the manner above stated in the Theorem.


