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ZIENKIEWICZ–ZHU ERROR ESTIMATORS
ON ANISOTROPIC TETRAHEDRAL AND TRIANGULAR

FINITE ELEMENT MESHES
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Abstract. We consider a posteriori error estimators that can be applied to anisotropic tetrahedral
finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large.
Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different
backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second
one, and both estimators can be expressed using some recovered gradient. The advantage of keeping
two different analyses of the estimators is that they allow different and partially novel investigations and
results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known
residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The
anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular
attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and
confirmed by extensive numerical examples. They show that good results can be obtained for a large
class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction
diffusion problem.
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1. Introduction

Several classes of boundary value problems intrinsically give rise to solutions that exhibit lower dimensional,
anisotropic behaviour. Such anisotropic solutions show little variation in certain space directions but much
variation otherwise. For example, singularly perturbed problems often result in solutions with boundary layers.
Even the solution of the Poisson problem in three space dimensions is generically anisotropic along some concave
edge, see the numerical experiments of Section 5. Within the finite element method, such anisotropic solutions
can be favorably resolved with anisotropic meshes. By this we understand meshes with stretched elements
which are characterized by an unbounded aspect ratio, i.e. the ratio of the diameters of the circumscribed and
inscribed sphere can be arbitrarily large.
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Our emphasis is on error estimators which form a basis of any adaptive solution algorithm. The theory of
error estimation in nowadays well established for conventional, isotropic meshes (i.e. where the aspect ratio of
the elements is bounded). The books [1, 24] provide a comprehensive overview of the state of the art.

On anisotropic meshes the error estimation theory is much less developed. Recently the intensive research
has led to several estimators that can be applied to different boundary value problems as well as norms,
see [10, 12–15, 17, 22]. Exemplary we mention residual error estimators and local problem error estimators for
the Poisson problem or a singularly perturbed problem; the error can be estimated in the energy norm or in
the L2-norm.

There is one popular estimator for isotropic meshes that did not have yet a counterpart for anisotropic meshes.
This so-called Zienkiewicz–Zhu (ZZ) estimator has been invented in [26] and later been improved in [27]; many
more variants have been developed since. The basic idea consists in computing an improvement of the gradient
of the numerical solution by some post-processing procedure. The difference between this so-called recovered
gradient and the original gradient serves as error estimator. This idea of ZZ error estimation has been very
appealing and popular in the finite element community since

• the estimator is comparatively cheap because a recovered gradient is often computed anyway;
• the estimator is astonishingly robust (in numerical experiments) for a wide range of problems, see

e.g. [3, 4].
Our work here is devoted to the extension of the ZZ estimator to anisotropic meshes. We start with a recapit-
ulation of the existing isotropic analyses and discuss their suitability for anisotropic meshes. The theoretical
approaches to ZZ error estimators (on isotropic meshes) can be divided roughly into three classes:

• proving equivalence to residual error estimators;
• utilizing superconvergence properties;
• minimization approach.

Each of these approaches will now be discussed briefly.

Equivalence to residual error estimator: Here the ZZ error estimator is proven to be equivalent to a residual
error estimator, thus transferring reliability and efficiency to the first estimator. This approach goes back to [20]
and is repeated in [24, Sect. 1.5]. In our paper these ideas will be generalized to anisotropic meshes. Of course
several modifications and extensions are necessary:

• Although some recovered gradient is still applied, it is now scaled with weights that depend on the
stretching directions (i.e. the alignment) of the anisotropic elements.

• The anisotropic meshes have to meet additional requirements which are due to the anisotropy. These
requirements roughly mean that the anisotropic meshes should not be totally unstructured but in-
stead obey some “sensible” geometrical principles. These demands also seem reasonable in the light of
superconvergence properties discussed below.

Superconvergence approach: It forms the basis of most proofs for ZZ estimators. Exemplary we refer to [1] and
the citations therein. In suitable, specialized settings even asymptotic exactness of the (global) ZZ estimator
can be shown. This requires:

• consistence, localization, boundedness and linearity of the recovery operator;
• and a superconvergence property of the finite element scheme.

Unfortunately the superconvergence approach inherits two drawbacks. Firstly, the theoretical analysis requires
very specialized meshes which are rarely found in practice (e.g. in adaptive refinement procedures). Secondly
local equivalences cannot be proven.

The application of such a superconvergence analysis to anisotropic meshes is unclear up to now. Supercon-
vergence results are not known for general meshes but only for special Shishkin (type) meshes, see [21,25]. For
example, the authors of [21] prove a certain kind of superconvergence for 2D Shishkin-type meshes consisting of
axiparallel rectangles, bilinear finite elements, and a singularly perturbed reaction-convection-diffusion problem
in the unit square. Most likely the results can be employed to define a ZZ estimator, even if this is not presented
in the aforementioned work.
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Summarizing, we do not pursue the superconvergence approach because of the high demands on the meshes
which are hardly consistent with anisotropic solutions.

Minimization approach: A third kind of analysis utilizes a close relation between the ZZ estimator and a
minimum formulation, cf. [5,8]. It allows to investigate general averaging operators which define the estimator,
and it avoids superconvergence assumptions. The resulting error bounds involve so-called “higher order terms”
that contain the unknown solution. Hence these bounds can only be interpreted in an asymptotic sense.
Moreover the constants in the reliability result depend on the shape of the finite elements.

After presenting different techniques to analyse ZZ estimators, we will consider from now on exclusively the
first approach, namely the equivalence to a residual error estimator. As it has been explained, this analysis
seems most promising for anisotropic meshes.

The outline of this paper is as follows. The model problem, some notation as well as the assumptions on the
mesh are introduced in Section 2. In Section 3 we first recall a known residual error estimator that is required for
the subsequent analysis. Afterwards two kinds of ZZ error estimators are derived and rigorously analysed. The
first estimator is based on a global projection property which corresponds to a particular choice of the underlying
recovered gradient. The second ZZ estimator is an improvement because the recovered gradient can be defined
with arbitrary weights. Our novel analysis additionally yields local elementwise estimates. Although the first
estimator is a special case of the second one, we present them both because of the different background and the
different and partially new analytical approaches and results. Section 4 is devoted to a detailed examination of
the mesh assumptions. These investigations indicate that the anisotropic discretization is the main technicality
when deriving the ZZ estimator. The numerical examples of Section 5 complement and confirm the theoretical
analysis. There we also consider a (more realistic) reaction-diffusion problem (for which boundary layers appear
naturally), state first theoretical results and present some numerical tests for that model problem.

2. Model problem and notation

2.1. Model problem

We consider a Poisson model problem with homogeneous Dirichlet boundary conditions in a polyhedral
domain Ω ⊂ R

d, d = 2, 3:
−∆u = f in Ω, u = 0 on ΓD := ∂Ω. (2.1)

Our analysis is presented for three dimensional domains (d = 3); the application to two dimensional domains
(d = 2) is readily possible. The corresponding variational formulation reads

Find u ∈ H1
o (Ω) :

∫
Ω

∇u∇v =
∫

Ω

f v ∀v ∈ H1
o (Ω) , (2.2)

where H1
o (Ω) denotes the usual Sobolev space of functions of H1(Ω) that vanish on ΓD. For f ∈ L2(Ω)

problem (2.2) admits a unique solution.
In order to discretize (2.2), let F = {Th} be a family of triangulations Th of Ω. We assume a conforming

triangulation (cf. [9, Chap. 2]) that consists of tetrahedra (d = 3) or triangles (d = 2). Let Vh ⊂ H1
o (Ω) be the

finite element space of piecewise affine linear functions on Th that vanish on ΓD. The finite element solution uh

is uniquely obtained via

Find uh ∈ Vh :
∫

Ω

∇uh∇vh =
∫

Ω

f vh ∀vh ∈ Vh . (2.3)

2.2. Notation

The following paragraphs now introduce most of the notation required. For some domain ω ⊂ R
2 or ω ⊂ R

3

let ‖·‖ω := ‖·‖L2(ω) be the usual L2(ω) norm. The space of polynomials of order at most k is denoted by P
k(ω).

For some (column) vectors v, w let (v, w) be the Euclidean scalar product and |v| := (v, v)1/2 be the Euclidean



1016 G. KUNERT AND S. NICAISE

P0

P1

P2

P3

p
1,T

p
2,T

p
3,T

Figure 1. Notation of tetrahedron T .

length. Instead of x ≤ c · y or c1y ≤ x ≤ c2y (with positive constants independent of x, y or Th) we use the
shorthand notation x . y or x ∼ y, respectively.

The next paragraph presents notation that is related to the triangulation Th and its elements. Tetrahedra
are denoted by T, T ′ or Ti, faces are denoted by E, and nodes of Th are denoted by x. Next, define nodal
sets NT ,NE ,NΩ̄ that contain all nodes of a tetrahedron T , a face E, or of Ω̄ (i.e. including boundary nodes),
respectively. Let EΩ be the set of all interior edges (2D) or faces (3D) of Ω. For a node x we introduce a local
neighbourhood patch ωx :=

⋃
T :x∈NT

T ⊂ R
3 which is the union of all tetrahedra having this node. Similarly for

some face E let ωE ⊂ R
3 be the union of both tetrahedra having this face (with obvious boundary modifications).

For a tetrahedron T , a face E or a patch ωx set |T | = meas3(T ), |E| = meas2(E) or |ωx| = meas3(ωx),
respectively (the distinction from the Euclidean vector length is obvious from the context).

The four vertices of an arbitrary but fixed tetrahedron T ∈ Th are temporarily denoted by P0, . . . , P3 such
that P0P1 is the longest edge of T , meas2(4P0P1P2) ≥ meas2(4P0P1P3), and meas1(P1P2) ≥ meas1(P0P2).
Additionally define three pairwise orthogonal vectors p

i,T
with lengths hi,T := |p

i,T
|, see Figure 1. Observe

h1,T > h2,T ≥ h3,T and set hmin,T := mini=1...3 hi,T = h3,T . The matrix CT ∈ R
3×3 is defined as

CT :=
(
p
1,T

, p
2,T

, p
3,T

)
,

and describes (roughly speaking) the anisotropic orientations of the tetrahedron T .
For a face E of a tetrahedron T let hE,T := 3|T |/|E| be the length of the height over E in T . Note that hE,T

is not the diameter of E, as in the usual convention.
The quantities hmin,T and hE,T are associated with a tetrahedron T . Often it is more convenient to utilize

equivalent data that are related to a face E or node x. To this end define averaged terms by

hE := (hE,T1 + hE,T2)/2 for E = T1 ∩ T2

hmin,E := (hmin,T1 + hmin,T2)/2 for E = T1 ∩ T2

hi,x :=
1
n

∑
T⊂ωx

hi,T hmin,x :=
1
n

∑
T⊂ωx

hmin,T ,

where n is the number of elements T in ωx. Note that hmin,E is not the minimal dimension of the face E. For
boundary faces E ⊂ ∂Ω modify hE := hE,T and hmin,E := hmin,T , where ∂T ⊃ E.

Next consider an arbitrary interior face E. Let nE be any of the two unit normal vectors for E, and keep it
fixed from here on. For a piecewise continuous (scalar or vector valued) function v denote by

[[
v
]]

E
the jump

of v across E in the direction nE . Let ∂nEv := nE · ∇v be the (unitary) directional derivative. Note that the
orientation of nE influences terms like

[[
v
]]

E
but not

[[
∂nE v

]]
E

.
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2.3. Mesh requirements

In addition to the usual conformity conditions of the mesh (see Ciarlet [9, Chap. 2]) we demand the following
assumptions. They are explained in more detail in Remark 2.1 below and in Section 4.
(A1) The number of tetrahedra containing a node x is bounded uniformly.
(A2) The dimensions of adjacent tetrahedra must not change rapidly, i.e.

hi,T ′ ∼ hi,T ∀T, T ′ with T ∩ T ′ 6= ∅ , i = 1 . . . d .

(A3) For each node x there exists a matrix Cx ∈ R
d×d such that

|C−1
x v| ∼ |C−1

T v| ∀ v ∈ R
d, ∀T ⊂ ωx .

(A4) An assumption on the shape of each element:

|C−1
T nE | ∼ h−1

E,T ∀ E ⊂ ∂T .

(A5) The L2 projection is stable in the sense of [17, Sect. 4]. For self–containment we repeat the definition
given there. Start with two (distinct) elements T1, T2 ∈ Th and define their (topological) edge distance by

l(T1, T2) := 1 + minimal edge number of all edge paths connecting T1 and T2.

Set l(T, T ) := 0. Note that in both the 2D and 3D case the edges count. Next, for a given element T
introduce neighbourhood (ring) patches by

Rk(T ) := {T ′ : l(T ′, T ) = k}, k ∈ N .

Then assumption (A5) is satisfied if there exist positive constants c1, c2, α, β, r such that




hmin,T1/hmin,T2 ≤ c1 · αl(T1,T2) ∀T1, T2 ∈ Th

card(Rk(T )) ≤ c2 · kr βk ∀T ∈ Th, ∀k ∈ N+

α · β <

{√
2 +

√
3 ≈ 3.146 if d = 2

(3 +
√

5)/2 ≈ 2.618 if d = 3.

(2.4)

The mesh assumptions (A1) and (A2) imply several convenient equivalences.


(A2) ⇒ hi,x ∼ hi,T ∀T ⊂ ωx

(A2) ⇒ hmin,x ∼ hmin,T ∀T ⊂ ωx

(A2) ⇒ hmin,x ∼ hmin,E ∀E : x ∈ NE

(A2) ⇒ hE ∼ hE,T ∀E ⊂ ∂T
(A1)+(A2) ⇒ |T | ∼ |ωx| ∀T ⊂ ωx

(2.5)

Furthermore, with the help of (A2) and (A3) we can rewrite assumption (A4) as

|C−1
x nE | ∼ h−1

E ∀ E : x ∈ NE . (2.6)

Remark 2.1. The mesh assumptions are scrutinized in detail in Section 4. Here some remarks may facilitate
the understanding.

Assumption (A3) roughly means that there exists a transformation C−1
x which maps the patch ωx onto an

isotropic patch of size O(1).
Assumption (A4) roughly demands for an anisotropic tetrahedron that small faces are almost perpendicular

to long edges, depending on the aspect ratio.
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Finally the stability assumption (A5) is only a sufficient condition to derive the residual error estimation. Re-
cent research [6,7,23] suggests that the restrictions of (A5) can be weakened; some results of the aforementioned
work already apply to our setting here.

2.4. Matching function

Reliability and efficiency are highly desirable properties in a posteriori error estimation. They basically
mean that the error ‖u − uh‖∗ (in some suitable norm) can be bounded from above and below, respectively,
with constants independent of u, uh or Th.

Most standard error estimators on isotropic finite element meshes are reliable and efficient at the same time,
cf. [1, 24]. Unfortunately the situation is much less obvious on anisotropic meshes. The analysis as well as
numerical experiments strongly suggest that reliability and efficiency cannot be achieved simultaneously on
arbitrary anisotropic meshes. However if the anisotropy of the solution is sufficiently well aligned with the
anisotropy of the mesh then one can expect both properties at the same time. Intuitively all applications of
anisotropic finite elements follow this concept: an element should be stretched in that direction where the
function (or more precisely, its derivative) exhibits little variation.

In order to measure the alignment of an anisotropic mesh Th with an anisotropic function v, a so-called
matching function has been proposed by Kunert [11, 12].

Definition 2.2 (Matching function). Let v ∈ H1(Ω), and Th ∈ F be a triangulation of Ω. Define the matching
function m1 : H1(Ω)×F 7→ R by

m1(v, Th) :=

(∑
T∈Th

h−2
min,T · ‖C>

T ∇v‖2T
)1/2

/
‖∇v‖Ω . (2.7)

The vital importance of the matching function for anisotropic error estimation can be seen in the error
bounds (3.2, 3.3) and (3.7, 3.8) below.

The matching function is not central to our analysis here. Hence we refer to [12] for a comprehensive
discussion, and restrict ourselves to a brief explanation of basic features. Firstly the definition immediately
implies m1(v, Th) ≥ 1. On isotropic meshes one obtains easily m1(v, Th) ∼ 1; then the matching function
merges with other constants and becomes invisible. In contrast to this more care is necessary for anisotropic
meshes. If the mesh is suitably aligned with the anisotropic solution one still achieves m1 ∼ 1 and thus reliable
and efficient error estimation. If however the anisotropic mesh is not aligned with the solution then m1 can be
arbitrarily large (cf. [13, Numerical experiment 2] or [11, Rem. 3.3]). Hence upper and lower error bounds may
differ by an arbitrarily large factor; thus the error estimator is useless for error control and adaptive refinement.

3. Error estimators

We start by presenting the residual error estimator of [17] which forms the basis of the subsequent analysis.
Afterwards two kinds of ZZ error estimators are presented whose element–based definitions are analogous. The
main difference of both estimators is the transformation to nodal–based terms which are required for the analysis.
The first ZZ estimator follows the lines of [20] (also described in [24] (Sect. 1.5)). It is based on a recovered
gradient ∇R1 which satisfies a global projection property. In contrast, the second ZZ estimator utilizes a new
technique to derive nodal–based terms. Consequently a much more flexible recovered gradient ∇R2 can be
employed to define this ZZ estimator. Accordingly a novel analysis is required (cf. Lem. 3.12 and Th. 3.13)
which is based on different techniques than for the first estimator.

Note that all estimators are given in several forms. The first representation is the one used in practice, and
is related either to a face E or an element T . The other, equivalent representation is related to a node x, and
is required for analytical purposes.
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3.1. Residual error estimator

In [17] a face residual based error estimator is introduced for interior faces by

ηR,E := hmin,Eh
−1/2
E · ‖

[[
∂nEuh

]]
E
‖E , E ∈ EΩ . (3.1)

The corresponding lower and upper error bounds are given in [17, Th. 5.1]. Provided that mesh assump-
tions (A1), (A2) and (A5) are satisfied, one has

ηR,E . ‖∇(u− uh)‖ωE + inf
fh∈Vh

hmin,E ‖f − fh‖ωE ∀E ∈ EΩ (3.2)

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
( ∑

E∈EΩ

η2
R,E + inf

fh∈Vh

∑
T∈Th

h2
min,T ‖f − fh‖2T

)1/2

. (3.3)

Clearly ηR,E is associated with a face E. For our purposes, however, node related quantities are much better
suited. Therefore we fix a patch ωx and combine all its (interior) faces. The first expression below introduces
the local, node related error estimator. The second definition introduces the global error estimator whereas the
remaining definition facilitates our exposition later on.

Definition 3.1 (Residual error estimators). The local and global residual error estimators are given by

η2
R,x := h2

min,x|ωx|
∑

E:x∈NE

h−2
E

[[
∂nEuh

]]2
E

(3.4)

η2
R :=

∑
x∈NΩ̄

η2
R,x (3.5)

η2
Ř,x

:= h2
min,x|ωx|

∑
E:x∈NE

∣∣C−1
x

[[
∇uh

]]
E

∣∣2 . (3.6)

Lemma 3.2. Let the mesh assumptions (A1), (A2) be satisfied. Then

η2
R,x ∼

∑
E:x∈NE

η2
R,E .

Proof. The assertion follows immediately from the fact that the dimensions of neighbouring elements must not
change rapidly, cf. (2.5). �

The error estimation by means of the node related error estimator ηR,x can now be derived easily.

Lemma 3.3 (Residual error estimation). Assume that the mesh assumptions (A1), (A2) and (A5) are satisfied.
The error is bounded locally from below and globally from above.

ηR,x . ‖∇(u− uh)‖ωx + inf
fh∈Vh

hmin,x ‖f − fh‖ωx ∀x ∈ NΩ̄ (3.7)

‖∇(u− uh)‖Ω . m1(u− uh, Th)
(

η2
R + inf

fh∈Vh

∑
T∈Th

h2
min,T ‖f − fh‖2T

)1/2

. (3.8)

Proof. The inequalities follow immediately from (3.2, 3.3) and Lemma 3.2. �
The next lemma presents a sufficient condition for the equivalence of ηR,x and ηŘ,x. This lemma will be

essential for further analysis.
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Lemma 3.4. Let the mesh assumption (A2)–(A4) be satisfied, then it holds:

ηR,x ∼ ηŘ,x . (3.9)

Proof. Consider an arbitrary face E, x ∈ NE , and any one of its two unit normal vectors nE . Then there exist
two further unit vectors τ1, τ2 such that (nE , τ1, τ2) forms an orthonormal vector system. Hence

nE n>E + τ1 τ>1 + τ2 τ>2 = I3×3

giving nE · ∂nEuh + τ1 · ∂τ1
uh + τ2 · ∂τ2

uh = ∇uh .

Both terms ∂τi
uh are continuous across E; only ∂nEuh jumps. Thus we conclude

[[
∂nE uh

]]
E
· nE =

[[
∇uh

]]
E

.

Together with assumptions (A2)–(A4) which imply (2.6) one obtains∑
E:x∈NE

∣∣C−1
x

[[
∇uh

]]
E

∣∣2 =
∑

E:x∈NE

∣∣C−1
x

[[
∂nEuh

]]
E
· nE

∣∣2

=
∑

E:x∈NE

∣∣C−1
x nE

∣∣2 · [[∂nEuh

]]2
E

(2.6)
∼

∑
E:x∈NE

h−2
E ·

[[
∂nEuh

]]2
E

which proves the assertion. �

3.2. First ZZ error estimator

Let us first define the recovered gradient ∇R1 by means of a projection with respect to a particular scalar
product. For a precise definition of this inner product, let Wh be the space of piecewise linear vector fields on
the triangulation, and set Vh := Wh ∩ C(Ω, Rd), cf. also [24]. In order to shorten the notation we temporarily
introduce the matrices

Bx := hmin,x C−1
x and BT := hmin,T C−1

T .

On Wh, we introduce the mesh dependent inner product (·, ·)h by

(v, w)h :=
∑

T∈Th

|T |
∑

x∈NT

(Bx v|T (x), Bx w|T (x)), (3.10)

where v|T (x) = lim
y→x,y∈T

v(y).

From mesh assumptions (A2), (A3) we have concluded (2.5), i.e. hmin,x ∼ hmin,T , |C−1
x v| ∼ |C−1

T v| for
all T ⊂ ωx and thus also |Bxv| ∼ |BT v| for all T ⊂ ωx and all vectors v ∈ R

d. For an arbitrary but fixed
tetrahedron T and for any piecewise linear function v ∈ Wh we can further conclude

|T |
∑

x∈NT

|Bx v|T (x)|2
(A3)
∼ |T |

∑
x∈NT

|BT v|T (x)|2 ∼ ‖BT v‖2T .

Therefore the mesh assumptions (A2), (A3) imply

(v, v)h ∼
∑

T∈Th

‖BT v‖2T . (3.11)

This last result also shows that (·, ·)h is a scalar product indeed since all BT are regular matrices. Now the
recovered gradient can be defined.
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Definition 3.5 (First recovered gradient). The recovered gradient ∇R1 : Wh → Vh is defined as the projection
of∇uh onto Vh with respect to the inner product (·, ·)h, i.e. ∇R1uh ∈ Vh is uniquely determined by the condition

(
∇R1uh −∇uh, vh

)
h

= 0 ∀vh ∈ Vh. (3.12)

The recovered gradient ∇R1uh is piecewise linear and continuous. Its nodal values can be computed locally
and coincide with the usual recovered gradient as presented, for example, in [24, equality (1.80)]. Details are
given in the next lemma.

Lemma 3.6. The value of the recovered gradient at a node x can be determined locally by

(
∇R1uh

)
(x) =

∑
T⊂ωx

µT ∇uh|T with weight µT :=
|T |
|ωx|

∈ R, T ⊂ ωx. (3.13)

Proof. The proof utilizes standard ideas as presented e.g. in [24]. Fix the node x and apply the definition of
the recovered gradient with vh := ϕx · ei, where ϕx is the standard (piecewise linear) basis function of Vh for
node x, and ei ∈ R

d is the i th unit vector. Then

0 =
(
∇R1uh −∇uh , ϕx · ei

)
h

=
∑

T∈Th

|T |
∑

x′∈NT

(
B>

x′Bx′
(
∇R1uh(x′)−∇uh|T (x′)

)
, ϕx|T (x′) ei

)
=
∑

T⊂ωx

|T | ·
(
B>

x Bx (∇R1uh(x) −∇uh|T (x)) , ei

)

holds for i = 1 . . . d. Furthermore B>
x Bx is regular, and hence

0 =
∑

T⊂ωx

|T | ·
(
∇R1uh(x)−∇uh|T (x)

)
= |ωx| ∇R1uh(x) −

∑
T⊂ωx

|T | · ∇uh|T (x)

which proves the assertion.
Note that the choice of the regular matrix Bx in the definition of the scalar product (·, ·)h has no influence

on the nodal value of the recovered gradient. �

Now we are ready to define our anisotropic version of the first ZZ estimator. Again, the first two terms are
given in a form that can be used in practice. The third quantity is a node related term which can be utilized
in further analysis.

Definition 3.7 (First anisotropic ZZ estimators). The local and global ZZ estimators are given by

ηZ1,T := hmin,T ‖C−1
T (∇R1uh −∇uh)‖T (3.14)

η2
Z1

:=
∑

T∈Th

η2
Z1,T (3.15)

η2
Z1,x := h2

min,x |ωx|


 ∑

T⊂ωx

|T |
|ωx|

|C−1
x ∇uh|T |2 −

∣∣∣∣∣
∑

T⊂ωx

|T |
|ωx|

C−1
x ∇uh|T

∣∣∣∣∣
2

 . (3.16)

Similar to the residual error estimator we first establish a relation between the global estimator ηZ1 and
the node related quantity ηZ1,x. To achieve this, assume that mesh assumptions (A2) and (A3) hold which



1022 G. KUNERT AND S. NICAISE

imply (3.11). Furthermore utilize the projection property (3.12), recall the definition of the matrices Bx, BT

and of the scalar product to obtain

η2
Z1

=
∑

T∈Th

h2
min,T

∥∥C−1
T

(
∇R1uh −∇uh

)∥∥2

T

(3.11)
∼

(
∇R1uh −∇uh , ∇R1uh −∇uh

)
h

(3.12)
= (∇uh , ∇uh)h −

(
∇R1uh , ∇R1uh

)
h

(3.10)
=

∑
T∈Th

|T |
∑

x∈NT

h2
min,x

(∣∣C−1
x ∇uh|T

∣∣2 − ∣∣C−1
x ∇R1uh(x)

∣∣2) .

Insert now the nodal value of ∇R1uh and change the summation order from
∑

T∈Th

∑
x∈NT

to
∑

x∈NΩ̄

∑
T⊂ωx

to conclude

η2
Z1

∼
∑

x∈NΩ̄

h2
min,x

∑
T⊂ωx

|T | ·
(∣∣C−1

x ∇uh|T
∣∣2 − ∣∣C−1

x ∇R1uh(x)
∣∣2)

(3.13)
=

∑
x∈NΩ̄

h2
min,x |ωx|


 ∑

T⊂ωx

|T |
|ωx|

|C−1
x ∇uh|T |2 −

∣∣∣∣∣
∑

T⊂ωx

|T |
|ωx|

C−1
x ∇uh|T

∣∣∣∣∣
2

 .

Hence the following relation between the global estimator ηZ1 and the node related estimator ηZ1,x is obtained
provided that the mesh assumptions (A2) and (A3) hold:

η2
Z1
∼
∑

x∈NΩ̄

η2
Z1,x. (3.17)

Let us start the analysis of the estimator with a general equivalence lemma which is already known from
isotropic investigations.

Lemma 3.8. Let mesh assumption (A1) be satisfied, and consider an arbitrary node x and the associated
patch ωx. Let v be a (scalar or vector valued) function defined on ωx such that v|T ∈ P

0(T ), i.e. v is piecewise
constant. Let further µT , T ⊂ ωx be arbitrary positive weights such that all µT are uniformly bounded away from
zero, µT ≥ c > 0, and that satisfy

∑
T⊂ωx

µT = 1. Define the ZZ averaged value by vZZ :=
∑

T⊂ωx

µT v|T . Then

∑
E:x∈NE

∣∣[[v]]
E

∣∣2 ∼ ∑
T⊂ωx

µT |v|T |2 − |vZZ |2. (3.18)

Proof. For two dimensional domains (d = 2) this lemma has been proven in [20]; the proof is also repeated
in [24] (Sect. 1.5). An extension to three dimensional domains (d = 3) is readily possible with the ideas from
the proof of Lemma 3.12. �

The main result follows now.

Theorem 3.9 (Equivalences with first ZZ estimator). Let the mesh assumptions (A1)–(A4) be satisfied. Then
the residual error estimator and the first ZZ error estimator are equivalent:

ηR,x ∼ ηZ1,x (3.19)
ηR ∼ ηZ1 . (3.20)
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Proof. We apply the previous lemma 3.8 with v := C−1
x ∇uh and µT = |T |/|ωx| as well as lemma 3.4 to derive

η2
R,x

(3.9)
∼ η2

Ř,x
= h2

min,x|ωx|
∑

E:x∈NE

∣∣C−1
x

[[
∇uh

]]
E

∣∣2
(3.18)
∼ h2

min,x|ωx|
∑

T⊂ωx

|T |
|ωx|

∣∣C−1
x ∇uh|T

∣∣2 −
∣∣∣∣∣
∑

T⊂ωx

|T |
|ωx|

C−1
x ∇uh|T

∣∣∣∣∣
2

(3.16)
= η2

Z1,x.

This yields (3.19); the equivalence (3.20) follows thanks to (3.17). �

Note that this is only an equivalence between the global estimators. An equivalence involving the local
estimator ηZ1,T cannot be proven in this way since the projection property (3.12) is given globally. The
procedure of the second ZZ error estimator avoids this drawback.

3.3. Second ZZ error estimator

A different approach to describe a ZZ error estimator is given now. It avoids the global projection prop-
erty (3.12) at the cost of a refined analysis. As a consequence local elementwise relations can be derived. We
start with the definition of an arbitrary recovered gradient.

Definition 3.10 (Arbitrary recovered gradient).
The arbitrary recovered gradient ∇R2 : Wh → Vh is defined by the nodal values

(
∇R2uh

)
(x) :=

∑
T⊂ωx

µT,x∇uh|T (3.21)

where the weights µT,x ≥ 0 can be chosen arbitrarily such that
∑

T⊂ωx

µT,x = 1.

The corresponding second ZZ estimator is given next. Again the first two definitions describe the local
(element related) estimator and its global counterpart. The third term is a node related quantity required for
the subsequent analysis.

Definition 3.11 (Second anisotropic ZZ estimator). The local and global ZZ estimators are given by

ηZ2,T := hmin,T

∥∥C−1
T

(
∇R2uh −∇uh

)∥∥
T

(3.22)

η2
Z2

:=
∑

T∈Th

η2
Z2,T (3.23)

η2
Z2,x := h2

min,x|ωx|
∑

T⊂ωx

∣∣C−1
x

(
∇R2uh(x)−∇uh|T (x)

)∣∣2 . (3.24)

In order to establish a relation between the node related term ηZ2,x and the element related estimator ηZ2,T ,
recall that ∇R2uh −∇uh is linear on T . Together with mesh assumptions (A1)–(A3) we conclude

η2
Z2,T ∼ h2

min,T |T |
∑

x∈NT

∣∣C−1
T

(
∇R2uh(x) −∇uh|T (x)

)∣∣2
(2.5),(A3)

∼
∑

x∈NT

h2
min,x|ωx| ·

∣∣C−1
x

(
∇R2uh(x) −∇uh|T (x)

)∣∣2 .



1024 G. KUNERT AND S. NICAISE

Note that equivalences (2.5), ASSc have been applied to switch from element related data hmin,T , C−1
T to node

related data hmin,x, C−1
x . This yields immediately the desired inequalities

η2
Z2,x .

∑
T⊂ωx

η2
Z2,T (3.25)

η2
Z2,T .

∑
x∈NT

η2
Z2,x (3.26)

provided that the mesh assumptions (A1)–(A3) are satisfied. Note that the sums on the right-hand side
of (3.25, 3.26) are necessary because ηZ2,x depends on uh|ωx

whereas ηZ2,T depends on uh on
⋃

x∈NT

ωx.

The next lemma states a novel equivalence that is similar to the one of Lemma 3.8. The main difference is
that now the weights µT do not have to be bounded away from 0. The technique to prove this lemma seems to be
partially new: the transformation to a matrix eigenvalue problem is standard (at least in 2D, cf. [24, Sect. 1.5])
while the subsequent eigenvalue analysis is novel.

Lemma 3.12. Let mesh assumption (A1) be satisfied, and consider an arbitrary node x and the associated
patch ωx. Let v be a (scalar or vector valued) function defined on ωx such that v|T ∈ P

0(T ), i.e. v is piecewise
constant. Let further µT , T ⊂ ωx, be arbitrary non–negative weights such that

∑
T⊂ωx

µT = 1. Define vZZ as in

Lemma 3.8. Then ∑
E:x∈NE

∣∣[[v]]
E

∣∣2 ∼ ∑
T⊂ωx

∣∣∣vZZ − v|T

∣∣∣2 . (3.27)

Proof. Note first that it suffices to prove (3.27) component wise, i.e. assume that v ≡ v is a scalar, piece-
wise constant function on ωx. For simplicity of notation denote the elements of ωx temporarily by T1 . . . Tn.
Accordingly set µi := µTi and vi := v|Ti

. The mesh assumption (A1) states that n is bounded uniformly on Th.

We start the proof for an interior node x and follow [24, Sect. 1.5]. Consider first the left hand side of (3.27)
which now reads ∑

E:x∈NE

∣∣[[v]]
E

∣∣2 =
∑
i,j

x∈NE ,E=Ti∩Tj

∣∣vi − vj
∣∣2

i.e. we sum over all elements Ti and Tj that share a common face E (in 3D) or a common edge (in 2D). The
last sum can be written in matrix notation as

0 ≤
∑
i,j

x∈NE,E=Ti∩Tj

∣∣vi − vj
∣∣2 = (Aw, w) (3.28)

with w := (v1, v2, . . . , vn)> and

A = (ai,j)n
i,j=1 ∈ R

n×n, ai,j =




d if i = j
−1 if Ti and Tj share a common face (3D) or edge (2D)

0 otherwise.

Obviously A = A> is positively semidefinite and weakly diagonally dominant. From (3.28) we further conclude
that A has exactly one eigenvalue 0 corresponding to the eigenvector w = 1 := (1, 1, . . . , 1)> ∈ R

n; all other
eigenvalues are positive. The matrix A depends solely on the topology of the patch ωx but not on its geometry.
Since the number of such topologies is finite (n is bounded because of mesh assumption (A1)), there is only a
finite number of possibilities for the corresponding matrices A. Hence all positive eigenvalues of A are bounded
from above and below (and away from 0). Note that in 2D the matrix A simplifies to a circulant tridiagonal
matrix consisting of (−1, 2,−1).
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Consider next the right hand side of (3.27) which can be rewritten as

∑
T⊂ωx

∣∣∣vZZ − v|T

∣∣∣2 =
n∑

i=1

∣∣∣∣∣
(

n∑
j=1

µjv
j

)
− vi

∣∣∣∣∣
2

= (Bw, w),

with B = (bi,j)n
i,j=1 ∈ R

n×n , bi,j = δij + nµiµj − µi − µj .

Introducing µ := (µ1, . . . , µn)> ∈ R
n one derives

B = I + nµ µ> − µ1> − 1µ>

B − I = νµ> + µν> with ν :=
(n

2
µ− 1

)
.

Since B−I is symmetric, it has a full system of eigenvectors. Because B−I is of rank 2, it has n−2 eigenvalues 0.
For every other eigenvalue λ of B−I the corresponding eigenvector is a linear combination of µ and ν. A simple
calculation reveals that then λ is also an eigenvalue of the matrix


µ>ν µ>µ

ν>ν ν>µ


 =


 n

2 µ>µ− 1 µ>µ

n2

4 µ>µ n
2 µ>µ− 1


 ∈ R

2×2,

i.e. λ1 = −1 and λ2 = nµ>µ− 1. Hence the eigenvalues of B are

λ(B) =




0 single eigenvalue
nµ>µ single eigenvalue
1, . . . , 1 n− 2 times.

The arithmetic quadratic mean inequality gives

1 ≤ nµ>µ = n

n∑
i=1

µ2
i ≤ n,

hence all positive eigenvalues of B lie in the range [1, n]. The eigenvalue 0 is associated with the eigenvector 1.
Summarizing, A and B both have a single eigenvalue 0 corresponding to the same eigenvector 1. All other

eigenvalues are positive and bounded from above and below. This implies

A ∼ B and (Aw, w) ∼ (Bw, w) ∀w ∈ R
n

which proves the lemma for an interior node x.
For a boundary node x we can proceed in almost the same way. The only difference consists in a slight

modification of the matrix A, namely, ai,i = d− k where k is the number of boundary faces (of the element Ti)
that contain the node x. The properties of A and the remainder of the proof stay exactly the same as before. �

Now we are able to prove equivalences with the second ZZ estimator (involving the arbitrary recovered
gradient ∇R2).
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Theorem 3.13 (Equivalences with second ZZ estimator). Let the mesh assumptions (A1)–(A4) be satisfied.
Then the following local and global relations hold (for all x ∈ NΩ̄ or T ∈ Th).

ηR,x ∼ ηZ2,x (3.29)
ηR ∼ ηZ2 (3.30)

η2
R,x .

∑
T⊂ωx

η2
Z2,T (3.31)

η2
Z2,T .

∑
x∈NT

η2
R,x. (3.32)

Proof. To prove (3.29), fix an arbitrary node x ∈ NΩ̄ and consider v := C−1
x ∇uh on the patch ωx. Then the

ZZ averaged value at the node x becomes

vZZ =
∑

T⊂ωx

µT,xC−1
x ∇uh|T = C−1

x ∇R2uh(x).

Since v is piecewise constant on ωx, Lemma 3.12 can be applied. In conjunction with lemma 3.4 this yields

η2
R,x

(3.9)
∼ η2

Ř,x
= h2

min,x|ωx|
∑

E:x∈NE

∣∣ [[C−1
x ∇uh

]]
E

∣∣2
(3.27)
∼ h2

min,x|ωx|
∑

T⊂ωx

∣∣C−1
x ∇R2uh(x) − C−1

x ∇uh|T
∣∣2 = η2

Z2,x.

Next, (3.31) is a direct consequence of (3.29) and (3.25). The converse relation (3.32) can be concluded similarly
from (3.26) and (3.29).

Finally the global equivalence (3.30) can be proven via (3.31, 3.32).

η2
R

(3.31)
.

∑
x∈NΩ̄

∑
T⊂ωx

η2
Z2,T = (d + 1)

∑
T∈Th

η2
Z2,T = (d + 1)η2

Z2

(3.32)
.

∑
T∈Th

∑
x∈NT

η2
R,x .

∑
x∈NΩ̄

η2
R,x = η2

R. �

Note that the sums in (3.31, 3.32) appear because ηR,x is a node related term whereas ηZ2,T is an element
related quantity.

Theorem 3.14 (ZZ error estimation). Assume that mesh assumptions (A1)–(A5) are satisfied. Then the error
is bounded locally from below and globally from above.

ηZ2,x . ‖∇(u− uh)‖ωx + inf
fh∈Vh

hmin,x ‖f − fh‖ωx ∀x ∈ NΩ̄ (3.33)

‖∇(u− uh)‖Ω . m1(u− uh, Th)
(

η2
Z2

+ inf
fh∈Vh

∑
T∈Th

h2
min,T ‖f − fh‖2T

)1/2

. (3.34)

Proof. These are immediate consequences of Lemma 3.3 and Theorem 3.13. �
Corollary 3.15 (ZZ error estimation on isotropic meshes). Assume that an isotropic mesh satisfies mesh
assumption (A5). Then the ZZ error estimator ηZ2,x is reliable and efficient.
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Figure 2. Anisotropic tensor product type mesh.

This holds even when the corresponding recovered gradient ∇R2 is defined with arbitrary weights (non-negative
with sum 1).

This result seems to be new even for isotropic meshes (at least the authors have not found a proof anywhere
else). So far special weights had to be chosen for the recovered gradient in order to prove equivalence with the
residual error estimator and, in turn, reliability and local efficiency of the ZZ error estimator, cf. [24, Sect. 1.5].
Now there is the freedom to choose arbitrary weights.

Note that reliability alone for an arbitrary recovered gradient has been shown in [8]. Global efficiency (up to
higher order terms) is obtained in the sequel [5].

4. The mesh assumptions revisited

As we have seen, the analysis of the ZZ error estimators required several mesh assumptions that were
introduced in Section 2.3. These assumptions are now discussed in more detail.

In Section 4.1 it is shown that there exist meshes which satisfy all assumptions. Sections 4.2 and 4.3 are
devoted to mesh assumption (A3) while Section 4.4 investigates mesh assumption (A4). With that help we can
prove in Section 4.5 that the mesh assumptions are satisfied for another class of meshes. In Section 4.6 the
role of the mesh assumptions is examined by showing that assumption (A4) is a necessary condition for error
estimation.

4.1. Rectangular tensor product type meshes satisfy the mesh assumptions

In this section we prove that the mesh assumptions (A1)–(A5) can be satisfied. To this end we consider
rectangular tensor product type tetrahedral meshes. By this we understand that the tetrahedra of Th can be
grouped such that a set of six of them forms a rectangular hexahedron, cf. also Figure 2. Assumption (A1) then
clearly holds.

At this stage of generality, assumption (A2) obviously can be satisfied, so we assume that it holds. It states
that the dimension of the tetrahedra (in each of the three anisotropic directions) must not change rapidly across
neighbouring elements. This assumption is quite weak. It allows, for example, meshes that resolve boundary
layers, see e.g. Figure 2.

For rectangular tensor product type meshes we now prove that (A1) and (A2) imply (A3)–(A5). Let us start
with (A3), i.e. we construct a matrix Cx and show the corresponding properties. Our exposition describes the
3D case; the 2D analogies are straightforward.
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Proof of assumption (A3). Start with a node x of Th and an arbitrary tetrahedron T ⊂ ωx. Since we consider
tensor product type meshes there exists a circumscribing rectangular brick (i.e. hexahedron) B ⊃ T . The three
edge lengths of this brick B are denoted by h1,B ≥ h2,B ≥ h3,B. Choose corresponding edge vectors p

i,B
,

i = 1, 2, 3, i.e. such that |p
i,B
| = hi,B. The orientation of these orthogonal vectors does not matter. Define next

the matrix CB ∈ R
3×3 whose columns are formed by the vectors p

i,B
,

CB :=
(
p
1,B

, p
2,B

, p
3,B

)
,

as well as three orthogonal vectors

p
i,x

:=
hi,x

hi,B
· p

i,B
= hi,x ·

p
i,B

|p
i,B
| i = 1, 2, 3

which are oriented along the edges vectors p
i,B

of B but which have a different length |p
i,x
| = hi,x. Define the

matrix Cx ∈ R
3×3 by

Cx :=
(
p
1,x

, p
2,x

, p
3,x

)
.

This immediately implies C>
x Cx = diag(h2

1,x, h2
2,x, h2

3,x). Furthermore the geometric properties as well as rela-
tions (2.5) yield the equivalences

hi,T ∼ hi,B ∼ hi,x i = 1, 2, 3. (4.1)
Now we are ready to prove assumption (A3). Let us start with investigations of the linear transformations
associated with CB and C−1

T . Recall first that ei ∈ R
3 is the i th unit vector. Because of CBei = p

i,B
∈ R

3, the
transformation via CB maps the unit cube [0, 1]3 onto the brick B (or more precisely onto the corresponding
brick at the origin of the coordinate system). Since the four vertices of T ⊂ B are also vertices of B, the
transformation via CB thus maps T̃ → T , where T̃ ⊂ [0, 1]3 is a tetrahedron whose four vertices are also vertices
of the unit cube [0, 1]3. Therefore the diameter %(T̃ ) of the inscribed sphere of T̃ is of order O(1), i.e., %(T̃ ) ∼ 1.
Similarly the second transformation via C−1

T is examined. It maps T → T̂ , where the tetrahedron T̂ has vertices
(0, 0, 0)>, (1, 0, 0)>, (x2, 1, 0)> and (x3, y3, 1)>, with 0 ≤ x2, x3 ≤ 1 and |y3| ≤ 1, cf. the definition of CT

or [12, Sect. 1.2]. Thus the diameter diam(T̂ ) of the tetrahedron T̂ satisfies 1 < diam(T̂ ) ≤
√

6.
The combined transformation via C−1

T CB now maps C−1
T CB : T̃ → T̂ . Hence the spectral norm of this

matrix can be bounded from above by

‖C−1
T CB‖ ≤

diam(T̂ )
%(T̃ )

. 1.

This inequality can be used to derive the matrix bound∥∥C−1
T CxC>

x C−>
T

∥∥ =
∥∥C−1

T CB · C−1
B CxC>

x C−>
B · C>

B C−>
T

∥∥
≤
∥∥C−1

B Cx

∥∥2 ·
∥∥C−1

T CB

∥∥2 . max
i=1,2,3

h2
i,x

h2
i,B

· 1 . 1

since C−1
B Cx = diag(h1,x/h1,B , h2,x/h2,B , h3,x/h3,B), and because of (4.1). The first matrix M := C−1

T CxC>
x C−>

T

is symmetric and positive definite. For such matrices the largest eigenvalue is λmax(M) = ‖M‖ and hence

λmax

(
C−1

T CxC>
x C−>

T

)
. 1.

In a completely analogous fashion one treats M−1 = C>
T C−>

x C−1
x CT to obtain

λmax(M−1) =
∥∥C>

T C−>
x C−1

x CT

∥∥ . 1.
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This implies λmin(M) = (λmax(M−1))−1 & 1, i.e. all eigenvalues of M are of order O(1). Since the eigenvalues
of M = C−1

T CxC>
x C−>

T and of (C−>
x C−1

x )−1C−>
T C−1

T are the same, one further concludes

v>C−>
x C−1

x v ∼ v>C−>
T C−>

T v ∀v ∈ R
3.

This finally gives |C−1
x v| ∼ |C−1

T v| for all v ∈ R
3 which proves (A3). �

Proof of assumption (A4). We now prove that (A2) also yields (A4). Thus let T be an arbitrary tetrahedron
and E be any face thereof. Employ the notation of the previous paragraphs and consider the brick B that
circumscribes T . Then C−1

B maps T onto T̃ (see above). Next we consider the vector hE,T nE in a geometric
way. If the unit vector nE points inward (with respect to T ) then hE,T nE points from the face E of T (or its
plane) to the opposite vertex of T . If nE is the outward vector then consider −hE,T nE instead.

Therefore C−1
B hE,T nE is a vector that points from the face Ẽ := C−1

B E of T̃ to the opposite vertex of T̃ .
This results in

1 ∼ %(T̃ ) <
∣∣C−1

B hE,T nE

∣∣ <
√

3 , i.e.
∣∣C−1

B nE

∣∣ ∼ h−1
E,T .

Next recall that C−1
x CB is a diagonal matrix. Apply the equivalence hi,B ∼ hi,x from above to conclude

min
i=1,2,3

hi,B

hi,x
·
∣∣C−1

B nE

∣∣ ≤ ∣∣C−1
x nE

∣∣ =
∣∣C−1

x CB · C−1
B nE

∣∣ ≤ max
i=1,2,3

hi,B

hi,x
·
∣∣C−1

B nE

∣∣ .
In conjunction with (A3) one finally arrives at the desired equivalence

h−1
E,T ∼

∣∣C−1
B nE

∣∣ ∼ ∣∣C−1
x nE

∣∣ (A3)
∼

∣∣C−1
T nE

∣∣ . �

Proof of assumption (A5). For (A5) to hold we have to specify assumption (A2) slightly more precisely, namely
we demand

hmin,T1

hmin,T2

< αd :=
{√

2 +
√

3 ≈ 3.146 if d = 2
(3 +

√
5)/2 ≈ 2.618 if d = 3

∀T1 ∩ T2 6= ∅.

This slightly more restrictive assumption on the change of hmin,T across neighbouring elements immediately
implies the first inequality of (2.4) in (A5).

In order to investigate the neighbourhood patches Rk(T ) observe first that
⋃k

l=0 Rl(T ) contains O(kd)
elements. Hence Rk(T ) contains O(kd−1) elements, and the second inequality of (2.4) in (A5) holds with
r = d− 1, β = 1. With these values of αd and β the third inequality of (2.4) in (A5) is satisfied as well. �

4.2. Assumption (A3) implies (A1) and (A2)

In this section we state that assumptions (A1) and (A2) are already consequences of assumption (A3). The
proof uses some standard arguments (as in the above section) and is therefore omitted for the sake of shortness
(we refer to [16] for the details).

Theorem 4.1. Assumption (A3) implies (A1) and (A2).

Remark 4.2. The converse implication does not hold as a comparatively simple counterexample can show.
Thus (A3) is a stronger assumption.
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4.3. Necessary and sufficient condition for mesh assumption (A3)

Here we state a geometrical condition which is necessary and sufficient for assumption (A3) on unstructured
tetrahedral meshes. We start with some technical equivalences.

Lemma 4.3. The assumption (A3) is equivalent to the condition

∥∥C−1
x CT

∥∥ ∼ 1 and
∥∥C−1

T Cx

∥∥ ∼ 1 ∀T ⊂ ωx and all nodes x. (4.2)

Proof. ⇒: Starting from (A3) and taking v := CT w, we get

∣∣C−1
x CT w

∣∣ = ∣∣C−1
x v

∣∣ (A3)∼
∣∣C−1

T v
∣∣ = |w| ∀w ∈ R

d, ∀T ⊂ ωx.

This yields ∥∥C−1
x CT

∥∥ = max
|w|=1

∣∣C−1
x CT w

∣∣ ∼ 1.

We obtain similarly the second bound by taking v := Cxw.
⇐: Define the symmetric, positive definite matrix M := C−1

T CxC>
x C−>

T . Completely analogous to Section 4.1
one concludes

λmax(M) =
∥∥C−1

T CxC>
x C−>

T

∥∥ ≤ ∥∥C−1
T Cx

∥∥2 ∼ 1

λmin(M) =
(
λmax

(
M−1

))−1
=
∥∥C>

T C−>
x C−1

x CT

∥∥−1 ≥
∥∥C−1

x CT

∥∥−2 ∼ 1.

Hence all eigenvalues of M are of order O(1). Following once more the arguments of Section 4.1 yields

∣∣C−1
T v

∣∣ ∼ ∣∣C−1
x v

∣∣ ∀ v ∈ R
d,

which is nothing else than (A3). �

Corollary 4.4. The assumption (A3) is equivalent to the condition

||C−1
T1

CT2 || . 1 ∀T1, T2 ⊂ ωx and all nodes x. (4.3)

Proof. For the necessity of the condition (4.3) apply Lemma 4.3 and write

∥∥C−1
T1

CT2

∥∥ =
∥∥C−1

T1
CxC−1

x CT2

∥∥ ≤ ∥∥C−1
T1

Cx

∥∥ · ∥∥C−1
x CT2

∥∥ ∼ 1 ∀T1, T2 ⊂ ωx.

The sufficiency of (4.3) follows directly by the choice Cx := CT ′ for an arbitrary element T ′ ⊂ ωx. �

Theorem 4.5 (Equivalent formulation of (A3)). Assume that for all patches ωx and any two elements T1, T2 ⊂
ωx the inequality

∣∣∣cos^
[
p

i,T1
, p

j,T2

]∣∣∣ . hi,T1

hj,T2

∀ 1 ≤ i, j ≤ d (4.4)

is satisfied. Then we can fix an arbitrary element T ′ ⊂ ωx and set Cx := CT ′ . This choice implies assump-
tion (A3), i.e. ∣∣C−1

x v
∣∣ ∼ ∣∣C−1

T v
∣∣ ∀ v ∈ R

d, ∀T ⊂ ωx.

Conversely the assumption (A3) implies (4.4) for all T1, T2 ⊂ ωx and all nodes x.
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Proof. Let us first derive an equivalent formulation of inequality (4.4). Fix an arbitrary patch ωx and two arbi-
trary elements T1, T2 ⊂ ωx. Since the vectors p

i,T1
are mutually orthogonal, there exists a unique decomposition

p
j,T2

=
d∑

i=1

αij · pi,T1
∀ j = 1 . . . d.

The real coefficients αij satisfy (p
j,T2

, p
i,T1

) = αij · (pi,T1
, p

i,T1
) = αij ·h2

i,T1
. Utilizing the definition of hi,Tk

one
obtains

αij =
hj,T2hi,T1 · cos^

[
p

i,T1
, p

j,T2

]
h2

i,T1

=
hj,T2

hi,T1

· cos^
[
p

i,T1
, p

j,T2

]
.

Condition (4.4) of the theorem is thus equivalent to

|αij | . 1 ∀ 1 ≤ i, j ≤ d.

Recall next that the matrices CT1 , CT2 are formed by CTk
:=
(
p
1,Tk

, p
2,Tk

, p
3,Tk

)
, cf. Section 2.2, which results in

C−1
T1

p
j,T2

= C−1
T1

d∑
i=1

αijpi,T1
=

d∑
i=1

αijei

C−1
T1

CT2 = (αij)
d
i,j=1∥∥C−1

T1
CT2

∥∥ ∼ max
i,j=1...d

|αij |.

Hence ‖C−1
T1

CT2‖ . 1 is equivalent to |αij | . 1 ∀ i, j and to (4.4). From here we conclude the desired result
thanks to Corollary 4.4. �
Remark 4.6. The previous theorem provides the means for practical tests whether assumption (A3) is satisfied
on a real mesh. For neighbouring elements one has to compute the angle between the main anisotropic direction
vectors p

i,T1
and p

j,T2
and compare its cosine with the stretching ratio hi,T1/hj,T2 .

4.4. Necessary and sufficient condition for mesh assumption (A4)

In this section we give equivalent formulations of mesh assumption (A4), both of which are geometrically
characterized.

Theorem 4.7 (Equivalent formulation of (A4)). The assumption (A4) holds if and only if for all elements T
and all faces E ⊂ ∂T one has

max
i=1,··· ,d

h−1
i,T ·

∣∣∣cos^
[
p

i,T
, nE

]∣∣∣ . h−1
E,T . (4.5)

Proof. Fix an element T and a face E ⊂ ∂T . As before we may write

nE =
d∑

i=1

αi · pi,T
,

with (nE , p
i,T

) = αi · h2
i,T and αi = h−1

i,T cos^[p
i,T

, nE ]. Since C−1
T p

i,T
= ei we obtain C−1

T nE = (α1, α2, α3)>.

From the equivalence of norms in R
d we conclude

∥∥C−1
T nE

∥∥ ∼ max
i=1,··· ,d

h−1
i,T ·

∣∣∣cos^
[
p

i,T
, nE

]∣∣∣
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which finishes the proof. �
Next we derive a purely geometrical formulation of (A4). This assumption states∣∣C−1

T hE,T nE

∣∣ ∼ 1 ∀ E ⊂ ∂T.

Thus fix an arbitrary element T . Given a face E ⊂ ∂T , denote temporarily its opposite vertex by VE . Let UE

be the orthogonal projection of VE onto E (or the plane that contains E). Hence
−→

UEVE is the height of VE

onto the plane of E.
Next we have to define an appropriate neighbourhood of E. To this end denote by Eα the face E scaled

by the real factor α with respect to the midpoint ME of E. In vector notation this can be written as Eα :=
{ ~ME + α · (y − ~ME) : y ∈ E}. In other words, Eα is contained in the plane of E, and E1 ≡ E. With that
definition we can reformulate (A4) as an equivalent geometrical condition.

Theorem 4.8 (Equivalent formulation of (A4)). (A4) holds if and only if UE ∈ Eα is satisfied for all E ⊂ ∂T
with some α . 1.

Proof. Obviously the vector
−→

UEVE equals
−→

UEVE= ±hE,T nE . Since C−1
T maps T onto T̂ , the vector

−→
UEVE is

mapped onto a vector from the point ÛE := C−1
T (UE) of the the face Ê := C−1

T (E) of T̂ to the opposite vertex

V̂E := C−1
T (VE). Utilizing ±C−1

T hE,T nE = C−1
T (

−→
UEVE) =

−→
ÛEV̂E , assumption (A4) can be rewritten as

∣∣∣∣ −→
ÛEV̂E

∣∣∣∣ ∼ 1.

Because T̂ is an isotropic tetrahedron of size O(1) and V̂E is a vertex thereof, this is equivalent to ÛE ∈ Êα

and UE ∈ Eα, with α . 1. �

4.5. Prismatic tensor product type meshes satisfy the mesh assumptions

In Section 4.1 we have shown that the mesh assumptions are satisfied for tetrahedral meshes which are the
tensor product of three 1D meshes. In this section we state that the assumptions (A3)–(A5) hold also for
anisotropic tensor product meshes of a prismatic domain Ω = G× (a, b) with a < b, obtained using a 2D refined
isotropic mesh of Raugel’s type in G and a uniform mesh in the third direction. Examples of such meshes are
given in the right part of Figure 5 and in [2].

We define families of meshes Th of Ω by introducing in G the standard mesh grading for two-dimensional
corner problems, see for example [18,19]. Let TG = {K} be a regular isotropic triangulation of G; the elements K
are triangles. Let rK be the distance of K to the corner,

rK := inf
(x1,x2)∈K

(
x2

1 + x2
2

)1/2
,

(note that Ω is scaled such that rK < 1). With h being a global mesh parameter and µ ∈ (0, 1] being a grading
parameter, we assume that the element size hK := diamK satisfies

hK ∼
{

h1/µ for rK = 0,

hr1−µ
T for rK > 0.

This graded two-dimensional mesh is now extended in the third dimension using the uniform mesh size h. In
this way we obtain a pentahedral (i.e. prismatic) triangulation and, by dividing each pentahedron into three
tetrahedra, we further get a tetrahedral triangulation Th of Ω, see the right part of Figure 5 for an illustration.

Using Lemma 4.3 and Theorem 4.7 one can show the following theorem (see [16] for the details).
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T

x00 x10

x01

h1

h2

Figure 3. Mesh for the counterexample.

Theorem 4.9. The above family of meshes satisfies assumptions (A3) and (A4).

Note that the assumption (A5) holds under exactly the same conditions as described for the rectangular
tensor product type meshes of Section 4.1.

4.6. Mesh assumption (A4) is necessary for error estimation

In the previous sections we investigated what meshes satisfy the mesh assumptions. In contrast, this section
sheds light on the role that the mesh assumptions play in error estimation.

Our main Theorem 3.13 states that mesh assumptions (A1)–(A4) are sufficient to prove equivalences between
the residual error estimator and the ZZ error estimator. Here we prove that mesh assumption (A4) is also a
necessary condition. To this end we present a 2D counterexample where (A4) is violated and consequently the
desired equivalences no longer hold.

Consider a criss–cross type mesh with nodal points located at

xik =
(

i · h1 + k · h2

k · h2

)
= i · h1

(
1
0

)
+ k · h2

(
1
1

)
i, k ∈ Z,

where 0 < h2 � h1 are fixed parameters, cf. Figure 3. Elementary calculations yield

Theorem 4.10. The above mesh (cf. Fig. 3) satisfies assumptions (A1), (A2) and (A3) but not assump-
tion (A4). Moreover there exists a finite element solution uh := max{0, y − x, x − y − h1} which has in
particular the nodal values

uh(xik) =
{

0 for i = 0 or i = 1
h1 for i = 2 or i = −1,

see Figure 4, for which relation (3.32) of Theorem 3.13 does not hold. Consequently the local equivalence (3.29)
is violated at certain nodes x of Th.

5. Numerical experiments

The aims of the numerical experiments are threefold. Firstly we investigate the mesh assumptions. Secondly
the main theoretical predictions are to be verified. Lastly the constants that are involved in most inequali-
ties/equivalences are examined numerically, and the asymptotic behaviour is observed.

To this end we present five experiments. The first one features an isotropic solution on an isotropic mesh,
and thus tells what can reasonably be expected. The second experiment exhibits an anisotropic solution on
tensor product type, rectangular anisotropic mesh. We believe such structured meshes to be best suited for ZZ
error estimation. Finally the third experiment involves an anisotropic solution on a more irregular anisotropic
mesh (which is unstructured in the xy directions, cf. also Sect. 4.5).
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Figure 4. Finite element solution uh for the counterexample.

In Section 5.1 we present the details of each experiment. Section 5.2 is devoted to the mesh assumptions (A3)
and (A4). Finally in Section 5.3 the main theoretical results are tested numerically. We restrict ourselves to the
second ZZ error estimator ηZ2 because it is more general than the first ZZ estimator ηZ1 , and since the second
estimator allows local equivalences/estimates.

5.1. Description of the experiments

Experiment 1: Isotropic solution + uniform mesh

This experiment utilizes the most favorite settings; thus one can observe which results reasonably can be
expected. Here we solve the Poisson problem

−∆u = f in Ω := (0, 1)3, u = uD on ∂Ω.

The exact isotropic solution u is prescribed to be

u = e−x + e−y + e−z,

and the data f, uD are chosen accordingly. We employ isotropic, uniform tetrahedral meshes Tl, l = 1 . . . 5,
which are the tensor product of three uniform 1D meshes of mesh size h = 2−l. The table below displays some
interesting information about mesh and solution.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T /h3,T m1(u − uh, Tl)

1 48 1.61E − 1 2.45 1.71
2 384 8.16E − 2 2.45 1.71
3 3 072 4.10E − 2 2.45 1.71
4 24 576 2.05E − 2 2.45 1.71
5 196 508 1.03E − 2 2.45 1.71
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Figure 5. Meshes T3 of experiment 2 (left) and 3 (right).

Experiment 2: Anisotropic solution + structured anisotropic mesh

Here again the Poisson problem with inhomogeneous Dirichlet boundary conditions is solved in Ω := (0, 1)3.
The exact anisotropic solution u is here prescribed to be

u = e−x/ε + e−y/ε + e−z/ε, ε := 10−2,

and thus exhibits sharp boundary layers along the planes x = 0, y = 0 and z = 0. The data f, uD are chosen
accordingly. We employ structured anisotropic meshes Tl, l = 1 . . . 5, cf. left part of Figure 5. These meshes
are formed by the tensor product of three 1D Shishkin type meshes with transition point at τ = 2ε| ln ε|.

In a similar fashion as before we present details of mesh and solution.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T /h3,T m1(u − uh, Tl)

1 48 9.91E + 0 14.1 1.61
2 384 8.82E + 0 14.3 1.71
3 3 072 6.28E + 0 14.4 1.70
4 24 576 3.67E + 0 14.5 1.67
5 196 508 1.94E + 0 14.5 1.62

Note first that the problem is comparatively poorly resolved. This is mainly due to the right hand side f =
−∆u ≡ ε−2u which has large and steep boundary layers (although still f ∈ L2(Ω)). Secondly, the maximum
aspect ratio of the anisotropic meshes is about 1:15. These meshes are well suited to the anisotropic solution,
as the small matching number m1(u− uh, Tl) ≈ 1.7 confirms (cf. also exp. 1).

Experiment 3: Anisotropic solution + semi-structured anisotropic mesh

The domain Ω here consists of 3/4 of a cylinder of height and radius 1, cf. the right part of Figure 5. The
exact anisotropic solution u is prescribed to be

u(r, ϕ, z) = rλ · sin(λϕ) ·
{

1 + 2z(2z − 1) for z ∈ (0, 1/2)
1 + (3− 4z)(2z − 1) for z ∈ (1/2, 1) , λ = 2/3.

This function behaves anisotropically along the concave edge, and is piecewise quadratic in the z direction. The
data f and uD are chosen accordingly.
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Figure 6. Mesh T3 of experiment 4 (left) and zoom at bottom corner (right).

The sequence of meshes Tl, l = 1 . . . 5, is constructed by first generating an isotropic, uniform mesh in the
domain Ω. The subsequent nodal coordinate transformation

(x, y, z)> := (ρ · x̂, ρ · ŷ, ẑ)> with ρ :=
{
x̂2 + ŷ2

}(1−µ)/2µ
, µ = 0.4,

yields the final, anisotropic mesh, see right part of Figure 5. Hence the semi–structured meshes Tl are the tensor
product of an unstructured, graded 2D mesh in the xy plane, and a uniform 1D mesh in the z direction, as in
Section 4.5.

The details of the meshes and of the solution are displayed below. The problem is well resolved, and all
anisotropic meshes are well adapted to the solution, i.e. m1 < 2.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T /h3,T m1(u − uh, Tl)

1 96 1.59E + 0 5.4 1.91
2 768 8.60E − 1 9.7 1.86
3 6 144 4.50E − 1 27.3 1.83
4 49 152 2.33E − 1 77.0 1.83
5 393 216 1.21E − 1 217.7 1.83

Experiment 4: Anisotropic solution + randomly perturbed mesh

The domain Ω and the solution u are the same as in experiment 3. The meshes Tl, l = 1 . . . 5, are here
a random perturbation of those of experiment 3. More precisely we start with an anisotropic mesh as in
experiment 3, perturb the nodal coordinates randomly (uniform distribution, max= ±0.25hisotrop ≈ 0.25 · 2−l)
and then use the same nodal coordinate transformation as above. See the left part of Figure 6.

Although the mesh still looks quite structured, this is not really the case. Near the concave edge the random
perturbations of the nodal coordinates have quite a dramatic effect on the shape of the elements, which can be
clearly seen in the zoom at the right part of Figure 6. This will also be observed in the mesh assumptions (A3)
and (A4), cf. Section 5.2 below.

The next table presents some informations on the meshes and the solution. From this, we may conclude a
good decrease of the error (similar to exp. 3). As already pointed out, the random perturbations induce strongly
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Figure 7. Mesh T3 of experiment 5 (left) and zoom at bottom corner (right).

anisotropic meshes (the aspect ration becoming larger and larger). Despite of this fact, the matching functions
remain small and thus reliable error estimations may be expected.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T /h3,T m1(u − uh, Tl)

1 96 1.66E + 0 8.3 1.94
2 768 9.11E − 1 10.2 1.94
3 6 144 5.02E − 1 11.6 1.89
4 49 152 2.62E − 1 288.5 1.87
5 393 216 1.35E − 1 732.3 1.87

Experiment 5: Singularly perturbed reaction diffusion problem

According to the results from [17] and the theory developed in the previous sections, we may extend our
results to reaction-diffusion equations (see below). These are problems where boundary layers appear naturally
and for which the use of anisotropic meshes is recommended and particularly advantageous. This example
illustrates that our theory is not restricted to the comparatively basic Poisson problem but also applies to
real-world problems.

As a model problem we consider the singularly perturbed reaction-diffusion equation:

−ε∆u + γu = f in Ω := (0, 1)3,

with ε := 10−4, γ := 1, f := 0 and inhomogeneous Dirichlet boundary conditions such that the prescribed exact
solution is

u = e−x/
√

ε + e−y/
√

ε + e−z/
√

ε.

In contrast to experiment 2, we now employ a tensor product type mesh which consists of three 1D Bakhvalov
type meshes, cf. left part of Figure 7. The main difference with a Shishkin type mesh is that here the mesh is
exponentially graded inside the layer region. This can be observed in the right part of Figure 7 which depicts
a zoom of the mesh. For a comprehensive description we refer to [15].

The energy norm over some domain ω becomes

|||v|||2ω := ε‖∇v‖2ω + γ‖v‖2ω.

For the reaction diffusion problem we have to modify the error estimators. To this end define

µT := min
{

hmin,T√
ε

,
1
√

γ

}
, µx := min

{
hmin,x√

ε
,

1
√

γ

}
, µE := min

{
hmin,E√

ε
,

1
√

γ

}
·
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On the basis of [17] and the theory of the previous sections one concludes fairly easily the definitions and results
below.

Definition 5.1 (Error estimators for a reaction diffusion problem).

η2
R,E := µE ε3/2 hmin,E h−1

E

∥∥[[∂nEuh

]]
E

∥∥2

E
(5.1)

η2
R,x := µx ε3/2 hmin,x|ωx|

∑
E:x∈NE

h−2
E

[[
∂nE uh

]]2
E

(5.2)

η2
Z2,x := µx ε3/2 hmin,x|ωx|

∑
T⊂ωx

∣∣C−1
x

(
∇R2uh(x) −∇uh|T (x)

)∣∣2 (5.3)

η2
Z2,T := µT ε3/2 hmin,T

∥∥C−1
T

(
∇R2uh −∇uh

)∥∥2

T
(5.4)

η2
R :=

∑
x∈NΩ̄

η2
R,x η2

Z2
:=

∑
T∈Th

η2
Z2,T (5.5)

Note that we use the same notation as for the Poisson problem. In the numerical experiments below it will be
clear from the context which formula is to be used.

Theorem 5.2 (ZZ error estimation for a reaction diffusion problem). With the definitions from above, the
following error equivalences and error bounds hold.

ηR,x ∼ ηZ2,x (5.6)
ηR ∼ ηZ2 (5.7)

ηZ2,x . |||u− uh|||ωx
+ inf

fh∈Vh

µx ‖f − fh‖ωx ∀x ∈ NΩ̄ (5.8)

|||u− uh|||Ω . m1(u − uh, Th)
(

η2
Z2

+ inf
fh∈Vh

∑
T∈Th

µ2
T ‖f − fh‖2T

)1/2

. (5.9)

As before we give below some details on the meshes and the solution.
Level l Elements |||u− uh|||Ω max

T∈Tl

h1,T /h3,T m1(u− uh, Tl)

1 48 2.62E + 1 14.1 1.60
2 384 7.57E + 0 62.0 1.85
3 3 072 2.87E + 0 74.6 2.19
4 24 576 1.26E + 0 80.3 2.46
5 196 508 5.93E − 1 83.1 2.63

Again, the error decreases at a quasi optimal rate. Although the meshes are relatively anisotropic, they
are well adapted to the solution. This is reflected by small values of the matching function, m1(u − uh, Tl) ≈
1.6 . . . 2.6. Thus reliable error estimation is to be expected.

5.2. Mesh Assumptions (A3) and (A4)

Here the mesh assumptions are investigated numerically. An additional, graphical presentation of some
results is given in [16].

Mesh Assumption (A3)

This assumption can be reformulated as

c1 · |C−1
x v| ≤ |C−1

T v| ≤ c2 · |C−1
x v| ∀ v ∈ R

d, ∀T ⊂ ωx.
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Table 1. Values of c1, c2 for assumption (A3); all experiments.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Level c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

1 0.500 1.856 0.082 11.908 0.451 6.169 0.345 10.184 0.082 11.908
2 0.500 1.856 0.078 11.730 0.323 7.328 0.290 13.393 0.092 12.553
3 0.500 1.856 0.078 11.640 0.379 8.178 0.234 18.147 0.103 10.997
4 0.500 1.856 0.078 13.444 0.372 8.336 0.238 21.070 0.109 9.092
5 0.500 1.856 0.078 13.419 0.353 8.357 0.227 39.618 0.127 7.517

Table 2. Values of c3, c4 for assumption (A4); all experiments.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Level c3 c4 c3 c4 c3 c4 c3 c4 c3 c4

1 0.754 1.202 0.901 1.492 0.760 1.415 0.723 2.476 0.901 1.492
2 0.754 1.202 0.754 1.497 0.723 1.564 0.638 6.828 0.754 1.705
3 0.754 1.202 0.754 1.500 0.714 1.690 0.609 13.912 0.754 1.679
4 0.754 1.202 0.754 1.501 0.714 1.714 0.566 42.960 0.754 1.706
5 0.754 1.202 0.754 1.502 0.712 1.717 0.552 70.767 0.754 1.711

In order to investigate this condition numerically we have to specify the matrix Cx for a given node x. In view
of Theorem 4.5 choose that element T ⊂ ωx that has the smallest aspect ratio h1,T /h3,T , and set Cx := CT .
Table 1 gives the corresponding values of c1, c2 for all five experiments, and all meshes Tl.

On isotropic meshes (experiment 1) one always has c1 ∼ c2 ∼ 1 which is confirmed by the moderate values.
For the anisotropic meshes of experiments 2 and 5, the theoretical considerations of Section 4.1 reveal that (A3)
holds as well. The values of c1, c2 are mainly of the same size over the different levels, although they are less
favorable than in the isotropic case. This mainly seems to be due to relatively large changes of the element
sizes hi,T across neighbouring elements. This observation is strengthened by the results of experiments 3 and 4.
Indeed experiment 3 presents a gradual change of the element sizes and the values of c1, c2 are more moderate.
In experiment 4, the random perturbations imply a large change of the element sizes which in turn seems to
induce larger c2 so that (A3) tends to be violated.

Summarizing, well structured meshes are more advantageous for (A3) to hold.

Mesh Assumption (A4)

The assumption (A4) on the shape of the elements can be rewritten as

c3 ≤
∣∣C−1

T nE

∣∣ · hE,T ≤ c4 ∀T ∈ Tl, ∀ E ⊂ ∂T.

Utilizing the theory of Section 4.4, we can apply Theorem 4.8 to all experiments except exp. 4, which yields
c3 ∼ c4 ∼ 1 (alternatively employ the results of Section 4.1 for experiments 1, 2 and 5, as well as the results of
Section 4.5 for experiment 3). This is verified impressively by the numerical results presented in Table 2. This
table also reveals a very large value of c4 for experiment 4. This is readily explained by the very unstructured
(i.e. perturbed) meshes of that example.

Summarizing, (A4) does not cause problems for well shaped elements.
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Table 3. Values of c5, c6 for local estimator equivalence (3.29); all experiments.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Level c5 c6 c5 c6 c5 c6 c5 c6 c5 c6

1 0.855 1.309 0.197 3.420 0.844 4.354 1.082 6.070 0.185 2.082
2 0.826 1.309 0.843 14.854 0.848 5.512 0.682 6.031 0.370 4.482
3 0.817 1.309 0.562 15.576 0.859 5.607 0.806 9.599 0.398 3.173
4 0.815 1.309 0.541 14.546 0.797 5.500 0.674 8.694 0.468 2.321
5 0.815 1.309 0.598 13.833 0.725 5.440 0.620 8.530 0.289 2.055

Table 4. Global estimator equivalence (3.30); all experiments.

ηR/ηZ2

Level Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

1 25.1 39.9 43.7 40.8 19.3
2 28.7 35.1 36.7 39.0 31.9
3 31.2 28.2 39.5 41.1 31.8
4 32.8 30.5 43.0 46.0 36.0
5 33.8 33.6 45.8 45.8 38.7

5.3. Main numerical results

In this section the main theoretical results for the second ZZ error estimator are tested numerically. The
corresponding recovered gradient ∇R2 is defined with weights µT,x := |T |/|ωx|, cf. definition 3.10.

First we investigate relations (3.29, 3.30) of Theorem 3.13 which state a local and global equivalence between
the residual error estimator and the ZZ error estimator, respectively. Afterwards the results of the actual ZZ
error estimation of Theorem 3.14 are presented.

Results for Theorem 3.13

The local equivalence (3.29) can be rewritten as

c5 · ηZ2,x ≤ ηR,x ≤ c6 · ηZ2,x ∀ x ∈ NΩ̄.

The values of c5, c6 are given in Table 3. One observes that the equivalence between both error estimators
diminishes for anisotropic meshes but is still acceptable even for the unstructured meshes of experiment 4 (note
that c5, c6 describe only the worst cases over all x ∈ NΩ̄). The comparatively large values of c6 in experiments 2
and 4 seem to be caused by the sharp change of the element sizes. This observation is supported by experiment 5
which features a smoother change of the element sizes and reveals smaller values of c6.

In view of experiment 4, the mesh assumption (A3) and (A4) seem to be of less influence on c5 and c6.
The global equivalence (3.30) between the residual estimator and the ZZ estimator reads ηR ∼ ηZ2 . Thus we

present ηR/ηZ2 for all meshes and experiments. The results of Table 4 impressively confirm the theoretically
proven equivalence and underline the weak influence of assumptions (A3) and (A4) on these results. Note that
the comparatively large values of ηR/ηZ2 are mainly due to the different range of the sums, cf. (3.5) and (3.23).
Furthermore the summand ηR,x contains the factor |ωx| while ηZ2,T is related to |T |.
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Table 5. Lower ZZ error bounds: (3.33) of Theorem 3.14 and (5.8) of Theorem 5.2; all experiments.

Lower error bound (3.33) Lower error bound (5.8)

max
x∈NΩ̄

ηZ2,x

‖∇(u− uh)‖ωx + ζx
max
x∈NΩ̄

ηZ2,x

|||u− uh|||ωx
+ ζx

Level Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

1 7.094 0.379 2.990 2.617 0.169
2 7.968 4.180 6.567 6.415 4.909
3 8.235 5.462 7.866 8.741 7.452
4 8.302 10.744 8.265 10.819 9.605
5 8.319 8.201 8.382 8.600 9.644

Results for Theorem 3.14

In order to present the results of the ZZ error estimation clearly, let us denote the data approximation terms
of Theorems 3.14 and 5.2 by

Poisson problem (Th. 3.14): ζx := hmin,x ‖f − Lhf‖ωx ζ2 :=
∑

T∈Th

h2
min,T ‖f − Lhf‖2T ∼

∑
x∈NΩ̄

ζ2
x

Reaction diffusion problem (Th. 5.2): ζx := µx ‖f − Lhf‖ωx ζ2 :=
∑

T∈Th

µT ‖f − Lhf‖2T ∼
∑

x∈NΩ̄

ζ2
x

with Lh being the linear Lagrange interpolation operator. Note that for the reaction diffusion problem of
experiment 5 we have f ≡ 0 and thus ζx = ζ = 0.

Next, inequalities (3.33, 3.34) of Theorem 3.14 and (5.8, 5.9) of Theorem 5.2 can be reformulated as

Lower error bound (3.33) or (5.8) Upper error bound (3.34) or (5.9)

Poisson problem:
ηZ2,x

‖∇(u− uh)‖ωx + ζx
. 1 ∀x ∈ NΩ̄

‖∇(u− uh)‖Ω
m1(η2

Z2
+ ζ2)1/2

. 1

Reaction diffusion problem:
ηZ2,x

|||u− uh|||ωx
+ ζx

. 1 ∀x ∈ NΩ̄

|||u− uh|||Ω
m1(η2

Z2
+ ζ2)1/2

. 1

i.e. all ratios have to be bounded from above.
The numerical results for the lower error bounds (3.33) and (5.8) are given in Table 5. Clearly, all values are

bounded from above, as predicted by the theory. Furthermore, the actual size is even similar to the values of
the isotropic experiment 1. This is quite a positive surprise, in particular in view of the anisotropic elements or
the unstructured meshes of experiment 4.

The exceptionally small values on the coarsest level 1 for experiments 2 and 5 seem to be due to an insufficient
resolution of the boundary layer. Lastly, the influence of the mesh assumptions is again barely noticeable.

The numerical results for the upper error bounds (3.34) and (5.9) are presented in Table 6. All values but
one are bounded from above by the value of the isotropic experiment 1 (i.e. bounded by 1.9). Thus the theory
is confirmed again. Nevertheless the situation gives rise to several interpretations.

Firstly, the large value for experiment 5 level 1 seems to be due to unresolved boundary layers (cf. also the
corresponding entry of Table 5 which shows an exceptionally small value). Secondly, on the coarse levels 1–3
of experiment 2 one observes small values. They are cause by a dominating approximation term ζ, i.e. the
discretization is not yet fine enough.

Summarizing, the numerical results are in good agreement with the theory. Again, the influence of the mesh
assumptions seems to be rather weak.
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Table 6. Upper ZZ error bounds: (3.34) of Theorem 3.14 and (5.9) of Theorem 5.2; all experiments.

Upper error bound (3.34) Upper error bound (5.9)

‖∇(u− uh)‖Ω
m1(η2

Z2
+ ζ2)1/2

|||u− uh|||Ω
m1(η2

Z2
+ ζ2)1/2

Level Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
1 1.819 0.015 0.110 0.155 42.140
2 1.935 0.048 0.167 0.207 1.574
3 1.864 0.180 0.246 0.324 1.270
4 1.834 0.678 0.356 0.454 1.060
5 1.823 1.479 0.505 0.635 0.965

6. Summary

Zienkiewicz–Zhu error estimators are popular because of their cheap implementation and their astonishing
robustness. We have proposed and rigorously analysed two kinds of ZZ error estimators that can be applied to
anisotropic tetrahedral finite element meshes. Both estimators have been defined by scaling the components of
the original gradient ∇uh and some recovered gradient ∇Ruh. Although the first estimator has turned out to
be a special case of the second one, both have been presented because of their different background, analysis,
and results.

While our first ZZ estimator is related to a particular choice of the recovered gradient, our second ZZ estimator
is much more flexible because arbitrary weights can be employed to define the recovered gradient. Hence our
novel analysis proves that each averaging technique yields reliable and efficient error control.

The basis of examination is formed by standard isotropic (2D) arguments. However, our analysis requires
a refinement and improvement of these ideas. Moreover, the main technicality of the analysis stems from
the anisotropic nature of the discretization. Particular emphasis has been given to the requirements on the
anisotropic mesh.

The analysis has been complemented and confirmed by extensive numerical examples. The experiments show
that ZZ error estimation is possible on anisotropic meshes. The estimators can be defined for a large class of
problems; here the Poisson problem and a singularly perturbed reaction diffusion problem have been treated.
Judging from the numerical experiments, structured meshes are advantageous but unstructured ones also give
satisfactory results. The examples further show that the mesh assumptions are not too dominant in practice.
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[19] G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le Laplacien dans un
polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791–A794.

[20] R. Rodriguez, Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE 10 (1994) 625–635.

[21] H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-
diffusion. Math. Models Methods Appl. Sci. 11 (2001) 1169–1179.

[22] K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373–398.
[23] O. Steinbach, On the stability of the L2-projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367–379.
[24] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester,

Stuttgart (1996).
[25] Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas

Tech University (1998).
[26] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat.

J. Numer. Methods Engrg. 24 (1987) 337–357.
[27] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput.

Methods Appl. Mech. Engrg. 101 (1992) 207–224.

To access this journal online:
www.edpsciences.org


