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A DOMAIN DECOMPOSITION ANALYSIS
FOR A TWO-SCALE LINEAR TRANSPORT PROBLEM
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Abstract. We present a domain decomposition theory on an interface problem for the linear transport
equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order
of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the
density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the
interface at the next order of approximation. In particular, our algorithm avoids iterating the diffusion
and transport solutions as is done in most other methods — see for example Bal–Maday (2002). Our
analysis is based instead on an accurate description of the boundary layer at the interface matching
the phase-space density of particles leaving the non-diffusive region to the bulk density that solves the
diffusion equation.
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1. The interface problem

Consider the steady, linear transport equation with isotropic scattering and slab geometry:

µ∂xΨ(x, µ) + σ(x)Ψ(x, µ) = σ(x)c(x)Ψ(x) ,

where Ψ(x) =
1
2

∫ 1

−1

Ψ(x, µ)dµ .
(1.1)

The phase space density Ψ is defined so that Ψ(x, µ)1
2dµ dx is the number of particles (e.g. neutrons) located

inside an interval of width dx centered at x, moving in a direction whose angle θ with the x axis is such that
µ = cos θ belongs to an interval of width dµ centered at µ. The function σ(x) > 0 is the scattering cross-section
at position x, while c(x) > 0 is the average number of emitted particles per collision at x. Below we assume that
0 < c(x) ≤ 1. When c = 1 the material is purely scattering; when c < 1 there exist absorbing collisions. The
transport equation (1.1) is posed for x ∈ (x

L
, x

R
) and µ ∈ [−1, 1], supplemented with boundary conditions at x

L
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and x
R
. Perhaps the simplest example of boundary conditions for (1.1) consists in prescribing the phase-space

density of particles entering the domain (xL , xR) at xL and xR :

Ψ(xL , µ) = FL(µ) , for µ ∈ (0, 1] ,

Ψ(x
R
,−µ) = FR(µ) , for µ ∈ (0, 1] .

(1.2)

More general boundary conditions can also be analyzed by the methods of the present paper. For more details
on the physical meaning of (1.1, 1.2), the interested reader is referred to chapter XXI of [7]. Our purpose is
to analyze the solution of (1.1, 1.2) in the case where the order of magnitude of the scattering cross-section σ
varies considerably over the domain (xL , xR). Such situations are frequently encountered in most applications
of transport theory where the background medium is often made of (very) different materials. Specifically, we
consider the case of two different materials with an interface located at x

M
∈ (x

L
, x

R
). At x

M
, the scattering

cross-section σ and emission rate c(x) are assumed to be discontinuous; they are given as follows in terms of a
small parameter ε:

σ(x) = 1 , and 0 < c∗ ≤ c(x) ≤ c∗ < 1 , for x ∈ (x
L
, x

M
) ,

σ(x) = ε−1 , and c(x) = 1− ε2γ(x) , for x ∈ (x
M
, x

R
) .

(1.3)

The mathematical analysis of our coupling algorithm will be done under the following assumptions:

0 < γ∗ ≤ γ(x) ≤ γ∗ , for each x ∈ (x
M
, x

R
) (1.4)

for some constants γ∗ and γ∗; we shall also restrict our attention to ε’s such that

0 < ε < ε∗ , where ε∗ < 1/γ∗ . (1.5)

Notice that these assumptions exclude the case where c takes the value 1: in particular, the case of a purely
scattering, low σ medium is excluded by the assumption (1.3). However, this is only for mathematical con-
venience, and our algorithm also works in that case: we shall return to this after the statement of our main
results, Theorems 3.1 and 3.2.

The small parameter ε is the ratio of the mean free path (the average distance a particle travels between two
consecutive collisions with the background medium) to the size of the domain x

R
− x

M
. Changing the space

variable x in (1.1) into

x
M
−
∫ x

M

x

σ(z)dz for x ∈ (x
L
, x

M
),

and x
M

+
∫ x

x
M

σ(z)dz for x ∈ (x
M
, x

R
),

one sees that there is no loss of generality in assuming σ to be piecewise constant as in (1.3). (In the context
of radiative transfer, the new space variables so defined are referred to as the “optical thickness”: see Chap. I,
Sect. 7 in [6].) Since the mean-free path is small in the region (x

M
, x

R
), we expect that the solution Ψε is

isotropic (i.e. a function of x alone) to leading order and governed by the diffusion approximation of (1.1):
see Section 4.1 below. Hence the domain (x

M
, x

R
) is referred to as “the diffusive region”. The smallness of

the mean free path in (x
M
, x

R
) makes it very costly to solve the transport equation accurately there. Solving

the diffusion equation on the other hand is much more efficient. By contrast, in the domain (xL , xM ) one must
retain the µ dependence in the solution Ψε and solve the transport equation for Ψε in that domain, which
will be therefore referred to as “the transport region”. Domain decomposition methods matching kinetic and
hydrodynamic or diffusion models have received a lot of attention in the past 15 years. Some of the ideas in the
present work can be found in [10]; other methods have been proposed in [1, 4, 8, 9, 13, 17, 18, 20, 21, 24–26]. In
the notations of Figure 1, solving the problem (1.1, 1.2) with coefficients given by (1.3) reduces to finding good
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Figure 1. The interface problem.

approximations of the angle distributions of particles crossing the interface in the direction of the transport
domain — i.e. f− — and in the direction of the diffusive domain — i.e. f+. In fact, the solution in the diffusive
region depends only on some appropriate angle average of f+, so that the most critical task is to evaluate f−
accurately. In most of the existing domain decomposition methods for this problem — for instance in [1,26] —
this is done by an iteration procedure in which the diffusion and the transport equations are solved alternately
until convergence of the successive approximants to f− and f+ is reached. The method described in this paper
is completely different. Instead, we propose a boundary condition at x

M
on the transport side which mimics

the reflection of particles on an infinitely thick, purely scattering domain. This reflection condition is based on
almost explicit computations for the steady transport equation in a half-space filled with a purely scattering
material. These computations go back to the work of Wiener and Hopf [27] on the Milne–Schwarzschild problem
in astrophysics. This material is recalled in Section 2. Then, classical results on the diffusion approximation of
the transport equation show that, by solving the transport equation in the transport region (xL , xM ) with this
reflection condition at x

M
, one approximates the restriction to the transport domain of the global solution to

within O(ε). Thus, using this reflection condition yields the correct transport and diffusion solutions in one step
up to an O(ε) error and in two steps (a prediction-correction algorithm) up to an O(ε2) error. In particular,
this method avoids iterating alternately on the diffusion and transport solutions until convergence of the fluxes
at the interface is reached. This simple model can be seen as the prototype in a series of analogous problems,
such as, for instance, radiative transfer in multi-material media, gas (or plasma) dynamics in cases involving
both a kinetic and a hydrodynamic description etc. We hope that a complete and rigorous treatment of this
simple case can give valuable insight on some of the issues listed above.

The domain decomposition method proposed here applies to problems where σ(x) is discontinuous. If σ(x)
varies continuously from O(1) to O(ε), then there is a smooth transition between the transport and the diffusion
regions. In such a case, one can use the asymptotic-preserving schemes developed in [5,16,19], where one solves
just the transport equation but allows coarse mesh sizes and large time steps (compared with ε) in the diffusive
region.
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2. Half-space problems, Chandrasekhar’s H-function,

reflection on a semi-infinite, purely scattering medium

In this section, we quickly review the mathematical objects involved in the reflection condition at the interface
between the transport and the diffusive domains. Consider the half-space transport problem

µ∂zΓ + Γ− Γ = 0 , z > 0 , 0 < |µ| < 1 , (2.1)

with boundary condition
Γ(0, µ) = G(µ) , 0 < µ < 1 . (2.2)

The theory of existence, uniqueness and asymptotic behavior of this half-space transport problem follows from
the work of Wiener and Hopf [27]. It is summarized in the next lemma which can be proved by energy (PDE)
methods — this was done originally in [2], with a few technical improvements in [12] (see pp. 1359–1368 there).

Lemma 2.1. For each G ∈ L2([0, 1], µdµ) there is a unique solution Γ in L∞([0,+∞);L2([−1, 1], |µ|dµ)) to
the half-space transport equation (2.1). This solution satisfies the following properties:

• if G ∈ L∞([0, 1]), then Γ ∈ L∞([0,+∞)× [−1, 1]) and one has

‖Γ‖L∞ ≤ ‖G‖L∞ ; (2.3)

• it has zero flux
1
2

∫ 1

−1

µΓ(z, µ)dµ = 0 ; (2.4)

• there exists a constant Γ∞ such that, for each γ ∈ [0, 1)

‖Γ(z, ·)− Γ∞‖L2(|µ|dµ) = O(e−γz) , and

‖Γ(z, ·)− Γ∞‖L∞ = O(e−γz) , if G ∈ L∞([0, 1])
(2.5)

as z → +∞.

Notice that (z, µ) 7→ z − µ is a solution of (2.1); hence, by Lemma 2.1, the half-space problem (2.1, 2.2) with
G ≡ 0 has a unique solution Γ∗ such that (z, µ) 7→ Γ∗(z, µ) − z belongs to L∞([0,+∞) × [−1, 1]). (In other
words, Γ∗ = Γ0∗ + z − µ where Γ0∗ is the unique bounded solution of (2.1, 2.2) with G(µ) ≡ µ.)

Definition 2.1. The Chandrasekhar H-function is defined as

H(µ) =
1√
3
Γ∗(0,−µ) , µ ∈ (0, 1) .

In particular1, H ∈ L∞([0, 1]).

By Lemma 2.1, the map G 7→ Γ∞ defines a linear functional on L2([0, 1], µdµ); likewise, Γ(0,−µ) = (RG)(µ)
a.e. on [0, 1] where R is a bounded operator on L2([0, 1], µdµ). The striking fact in the theory of the half-space
problem (2.1) is that both this linear functional and the operator R have remarkably simple expressions in
terms of the Chandrasekhar H-function.

Lemma 2.2. For each G ∈ L2([0, 1], µdµ) the unique solution Γ of the half-space transport equation (2.1) in
L∞([0,+∞);L2([−1, 1], |µ|dµ)) satisfies the following properties:

• as z → +∞, Γ(z, ·) converges in L2([−1, 1], |µ|dµ) to

Γ∞ =
√

3
2

∫ 1

0

G(µ)H(µ)µdµ ;

1One also knows that µ 7→ µH(µ) is in W 1,1([0, 1]) — see [12], Theorem C.3 — but this is not needed below.
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• for a.e. µ ∈ (0, 1], the density of particles emerging from the half-space is

Γ(0,−µ) = (RG)(µ) =
1
2
H(µ)

∫ 1

0

G(µ′)
H(µ′)
µ+ µ′

µ′dµ′ .

In particular, if G ≡ 1, the uniqueness part of Lemma 2.1 shows that the solution of (2.1, 2.2) is Γ ≡ 1. Hence
R1 = 1, and therefore the H function satisfies the following nonlinear integral equation:

1
H(µ)

=
∫ 1

0

H(µ′)
2(µ+ µ′)

µ′dµ′ . (2.6)

This integral equation can be solved iteratively by a relaxation method in order to tabulate H . This presentation
of Chandrasekhar’s function H and of the reflection operatorR goes back to [10] (pp. 309–311, in the context of
the Boltzmann equation) and is given in detail in [11] (pp. 222–224). Another presentation, based on stochastic
processes, can be found in [3].

3. The coupling algorithms

In this section we give a detailed description of the coupling algorithms for the steady transport problem (1.1)
with coefficients (1.3).

3.1. Order O(ε) coupling

The prescription for a coupling algorithm that approximates the solution of the interface problem to within
O(ε) is as follows. First solve the steady transport problem

µ∂xΦ0 + Φ0 − cΦ0 = 0 , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

Φ0(xL , µ) = FL(µ) , µ ∈ (0, 1] ,

Φ0(xM
,−µ) = R(Φ0(xM

, ·)
∣∣
(0,1]

)(µ) , µ ∈ (0, 1] ,
(3.1)

where R is the operator defined in Lemma 2.2. That the problem (3.1) has a unique solution is a more or
less classical result in the theory of the transport equation: see Appendix A below. Once this is done and the
density Φ0 has been computed, solve the diffusion problem

−1
3
∂xxΘ0 + γΘ0 = 0 , x ∈ (x

M
, x

R
) ,

Θ0(xM
) =

√
3

2

∫ 1

0

µH(µ)Φ0(xM
, µ)dµ ,

Θ0(xR) =
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ ,

(3.2)

where H is Chandrasekhar’s function of defined in 2.1.

Theorem 3.1. Let Ψε be the solution of the original two-scale steady transport problem (1.1, 1.2) with coeffi-
cients as in (1.3), and define Ψ0 as follows:

Ψ0(x, µ) = Φ0(x, µ) for (x, µ) ∈ (xL , xM )× [−1, 1] ,

Ψ0(x, µ) = Θ0(x) for (x, µ) ∈ (xM , xR)× [−1, 1] .

Then
‖Ψε −Ψ0‖L1([x

L
,x

R
]×[−1,1]) = O(ε)
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and, for each x′
M

, x′
R
∈ (x

M
, x

R
) such that x′

M
< x′

R
, one has

‖Ψε −Ψ0‖L2([x
L

,x
M

]×[−1,1]) + ‖Ψε −Ψ0‖L∞([x′
M

,x′
R

]×[−1,1]) = O(ε)

as ε→ 0.

Notice that the function Ψ0 is in general discontinuous in x at x
M

while Ψε is continuous in x for a.e.
µ ∈ [−1, 1] and each ε > 0. Hence the approximation above cannot hold in the L∞ norm. This discontinuity is
the manifestation at the macroscopic scale of the boundary layer with thickness of order O(ε) at the interface
inside the diffusive region. The great advantage of this procedure is that the transport region and the diffusive
region are completely decoupled at this order of approximation. That may seem somewhat paradoxical: indeed,
suppose that FL ≡ 0. According to the prescription above, Ψ0 ≡ 0 in the transport region, independently
of whether FR ≡ 0 or not. However, the total flux of particles inside the diffusion region is approximated by
−ε 1

3∂xΘ0 and gives in general a non trivial contribution of order O(ε) at the interface from the diffusion side.
Based on this simple observation, we anticipate that the treatments of the transport and diffusion regions must
be coupled somehow if one wants to get the next order of accuracy O(ε2).

3.2. Order O(ε2) coupling

Once the solution of the problem (1.1)–(1.3) has been computed to within O(ε) by the prescription above,
one determines the order O(ε) correction to the steady transport problem (3.1) by solving

µ∂xΦ1 + Φ1 − cΦ1 = 0 , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

Φ1(xL , µ) = 0 , µ ∈ (0, 1] ,

Φ1(xM
,−µ) = R(Φ1(xM

, ·)
∣∣
(0,1]

)(µ) + (µ−Rµ)∂xΘ0(xM
) , µ ∈ (0, 1] ,

(3.3)

where λ is a positive constant given by

λ =
√

3
2

∫
µ2H(µ)dµ . (3.4)

The parameter λ is related to the so-called “extrapolated endpoints” xM − ελ and xR + ελ.
Having determined Φ1 we next compute the diffusion approximation of the solution Ψε as follows:

−1
3
∂xxΘε + γΘε = 0 , x ∈ (x

M
, x

R
) ,

Θε(xM
)− ελ∂xΘε(xM

) =
√

3
2

∫ 1

0

µH(µ)(Φ0 + εΦ1)(xM
, µ)dµ ,

Θε(xR
) + ελ∂xΘε(xR

) =
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ .

(3.5)

Once Φ0, Φ1 and Θε are determined, the approximation of the solution of (1.1)–(1.3) to within O(ε2) is expressed
as follows.

Theorem 3.2. Let Ψε be the solution of the original two-scale steady transport problem (1.1, 1.2) with coeffi-
cients as in (1.3). Define Ψ1

ε as follows:

Ψ1
ε(x, µ) = (Φ0 + εΦ1)(x, µ) for (x, µ) ∈ (x

L
, x

M
)× [−1, 1] ,

Ψ1
ε(x, µ) = Θε(x) − εµ∂xΘε(x) for (x, µ) ∈ (x

M
, x

R
)× [−1, 1] .

Then, for each x′
M

, x′
R
∈ (x

M
, x

R
) such that x′

M
< x′

R
, one has

‖Ψε −Ψ1
ε‖L2([x

L
,x

M
]×[−1,1]) + ‖Ψε −Ψ1

ε‖L∞([x′
M

,x′
R

]×[−1,1]) = O(ε2)

as ε→ 0.
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The following observation is crucial in understanding the coupling algorithms discussed here: a perturbation
of order O(1) (resp. of order O(ε)) in the solution of the diffusion equation on (xMxR) has an effect of order O(ε)
(resp. O(ε2)) on the solution of the transport equation over (x

L
, x

M
). In any case, both algorithms presented

in Theorems 3.1 and 3.2 lead to approximations of the solution Ψε of the original two-scale steady transport
problem (1.1)–(1.3) to within O(ε) and O(ε2) respectively in a finite number of steps (respectively one and two
steps). By using this algorithms, one avoids iterating on the transport and diffusion solutions as is done in most
other domain decomposition algorithms (e.g. in [1, 26]).

Remark 3.1. Theorems 3.1 and 3.2 are proved below under the assumption (1.3) and (1.4) which exclude in
particular the case of a purely scattering material. Our coupling algorithm still works in that case. However,
this requires that the proof be modified in the following manner: the proof of Lemma 4.1, and both the
estimates (4.27) and (4.32) rest on the energy estimate (4.17) in a way that requires c to be less than and even
bounded away from 1. If one only assumes c = 1, the results in Lemma 4.1, (4.27) and (4.32) are still true. The
argument based on the energy estimate (4.17) must be replaced by the fact that the spectrum of the unbounded
operator

T : f 7→ µ∂xf + f − f

with domain

D(T ) =
{
f ∈ L2([x

L
, x

M
]× [−1, 1]) |µ∂xf ∈ L2([x

L
, x

M
]× [−1, 1]) , f(x

L
, µ) = f(x

M
,−µ) = 0 , µ ∈ (0, 1]

}
is the union of its continuous spectrum included in {z ∈ C | <z ≥ 1} and of a sequence of real eigenvalues in ]0, 1[
converging to 1 (see [23]). We have chosen to present the proof based on the energy inequality (4.17) because
of its wider range of applicability — in particular, c does not need to be a constant as in the argument based
on the explicit spectral analysis of [23]. Another argument in favor of this choice is that the O(ε) (resp. O(ε2))
estimates in the statement of Theorem 3.1 (resp. 3.2) can be expressed in terms of explicitly known parameters
such as c∗, c∗ γ∗, γ∗ and λ: see in particular the remark at the end of Section 4.

4. Error estimate for the domain decomposition algorithm:

The steady problem

Our proof of Theorems 3.1 and 3.2 is based on a precise error estimate for the diffusion approximation of
the transport equation with boundary layer terms and on a few elementary stability results for the transport
equation itself. This preliminary material is discussed in the next few sections.

4.1. The diffusion approximation

In the diffusive region [x
M
, x

R
], the scaled transport equation is

µ∂xΨε +
1
ε
Ψε =

1
ε
(1− ε2γ)Ψε , x

M
< x < x

R
, −1 < µ < 1 . (4.1)

It is supplemented with the boundary conditions

Ψε(xM
, µ) = FM (µ) , 0 < µ < 1 , (4.2)

and
Ψε(xR

,−µ) = FR(µ) , 0 < µ < 1 . (4.3)

The main difficulty in the domain decomposition algorithm is that the boundary condition FM is not explicitly
known, but eventually determined by the coupling of the transport and diffusion domains. Assuming however
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that FM is known, the diffusion approximation of the scaled transport equation (4.1)–(4.3) can be formulated
as follows. Let Θε be the solution of the diffusion equation

−1
3
∂xxΘε + γΘε = 0 , x

M
< x < x

R
; (4.4)

with Robin boundary conditions

Θε − ελ∂xΘε

∣∣∣
x=x

M

=
√

3
2

∫ 1

0

µH(µ)FM (µ)dµ ,

Θε + ελ∂xΘε

∣∣∣
x=x

R

=
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ ,

(4.5)

where H is the Chandrasekhar function (see Def. 2.1). The Robin boundary conditions (4.5) can be viewed as
Taylor expansions at order O(ε2) of the Dirichlet boundary conditions at the extrapolated endpoints.

In particular, when ε = 0, the problem (4.4, 4.5) reduces to the Dirichlet problem

−1
3
∂xxΘ0 + γΘ0 = 0 , x

M
< x < x

R
;

Θ0(xM
) =

√
3

2

∫ 1

0

µH(µ)FM (µ)dµ ,

Θ0(xR
) =

√
3

2

∫ 1

0

µH(µ)FR(µ)dµ .

(4.6)

Let ΓM
ε be the solution of

µ∂zΓM
ε + ΓM

ε − Γ
M

ε = 0 , z > 0 , −1 < µ < 1 ,

ΓM
ε (0, µ) = FM (µ)−Θε(xM

) + εµ∂xΘε(xM
) , 0 < µ < 1 ,

(4.7)

in L∞([0,+∞);L2([−1, 1], |µ|dµ)) (whose existence and uniqueness is guaranteed by Lem. 2.1) while ΓR
ε is

similarly defined with the boundary data

ΓR
ε (0, µ) = FR(µ)− Θε(xR

)− εµ∂xΘε(xR
) , 0 < µ < 1 . (4.8)

The diffusion approximation consists then in replacing the solution Ψε of the transport problem (4.1)–(4.3) by
the truncated multi-scale expansion

• at order O(ε):

Φ0
ε(x, µ) = Θ0(x) + ΓM

0

(
x− x

M

ε
, µ

)
+ ΓR

0

(
x

R
− x

ε
,−µ

)
. (4.9)

• at order O(ε2):

Φ1
ε(x, µ) = Θε(x)− εµ∂xΘε(x) + ΓM

ε

(
x− xM

ε
, µ

)
+ ΓR

ε

(
xR − x

ε
,−µ

)
. (4.10)

With these notations, the diffusion approximation for the transport equation (4.1)–(4.3) can be stated as follows.

Proposition 4.1. The error between the solution Ψε of the transport problem and the truncated expansion Φε

satisfies
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• At order O(ε): ∥∥Ψε − Φ0
ε

∥∥
L∞([x

M
,x

R
]×[−1,1])

≤ C0ε ; (4.11)

in addition
sup

µ∈(0,1)

∣∣∣Ψε(xM ,−µ)−R(Ψε(xM , ·)
∣∣
[0,1]

)(µ)
∣∣∣ ≤ C0ε . (4.12)

• At order O(ε2): ∥∥Ψε − Φ1
ε

∥∥
L∞([x

M
,x

R
]×[−1,1])

≤ C1ε
2 ; (4.13)

in addition

sup
µ∈(0,1)

∣∣∣Ψε(xM
,−µ)−R(Ψε(xM

, ·)
∣∣
[0,1]

)(µ)− ε(µ−Rµ)∂xΘ0(xM
)
∣∣∣ ≤ C1ε

2 . (4.14)

In (4.12) and (4.14), R is the operator defined in Lemma 2.2. This Proposition is the main result in [2]; it is
phrased here essentially in the notations of Theorem 2.2 in [12]. An equivalent formulation, based on stochastic
processes, can be found in [3].

4.2. Stability results

The first stability result needed in the error estimate for the coupling algorithm bears on the transport
equation itself. Let σ ≡ σ(x) satisfy 0 < σ∗ ≤ σ(x) ≤ σ∗ and c ≡ c(x) satisfy 0 < c∗ ≤ c(x) ≤ c∗ < 1 for some
constants σ∗, σ∗, c∗ and c∗ and for each x ∈ [xL , xM ]. Consider the transport equation

µ∂xf + σ(f − cf) = 0 , (x, µ) ∈ (xL , xM )× [−1, 1];

f(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

f(xM ,−µ) = FM (µ) , µ ∈ (0, 1] .

(4.15)

We next define two operators on L2([0, 1], µdµ), denoted by TL and TM , in the following manner:

(TLFL)(µ) = f(x
M
, µ) for a.e. µ ∈ (0, 1] when FM = 0 ,

(TMFM )(µ) = f(x
M
, µ) for a.e. µ ∈ (0, 1] when FL = 0 .

(4.16)

By linearity of the problem (4.15), in the general case where neither FL nor FM is identically 0,

f(x
M
, µ) = (TLFL)(µ) + (TMFM )(µ) , for a.e. µ ∈ (0, 1] .

Lemma 4.1. The operators TL and TM are bounded on L2([0, 1], µdµ); further

‖TL‖L(L2([0,1],µdµ)) ≤ 1 , ‖TM‖L(L2([0,1],µdµ)) < 1 .

Proof. We start with the basic energy estimate obtained by multiplying (4.15) by f and integrating over [x
L
, x

R
]×

[−1, 1]:

∫ x
M

x
L

∫ 1

−1

σ(1 − c)f2dxdµ+
∫ x

M

x
L

∫ 1

−1

σc(f − f)2dxdµ+
1
2

∫ 1

0

µf(x
L
,−µ)2dµ+

1
2

∫ 1

0

µf(x
M
, µ)2dµ

=
1
2

∫ 1

0

µFL(µ)2dµ+
1
2

∫ 1

0

µFM (µ)2dµ . (4.17)

Applying this successively to FM ≡ 0 and FL ≡ 0 leads to

‖TL‖L(L2([0,1],µdµ)) ≤ 1 and then ‖TM‖L(L2([0,1],µdµ)) ≤ 1 . (4.18)



878 F. GOLSE ET AL.

It remains to prove that the second inequality is strict. Set FL ≡ 0. The energy estimate (4.17) and the bounds
assumed on the functions σ ≡ σ(x) and c ≡ c(x) imply that

ν
(
‖f − f‖2L2([x

L
,x

M
]×[−1,1]) + ‖f‖2L2([x

L
,x

M
]×[−1,1])

)
≤ 1

2
‖φ‖2L2([0,1],µdµ) −

1
2
‖TMφ‖2L2([0,1],µdµ) (4.19)

where ν = σ∗min(1− c∗, c∗). On the other hand, since FL ≡ 0, for a.e. µ ∈ (0, 1] one has

1
2
µ (TMφ(µ))2 =

∫ x
M

x
L

f(x, µ)µ∂xf(x, µ)dx

≤ ‖µ∂xf(·, µ)‖L2([x
L

,x
M

])‖f(·, µ)‖L2([x
L

,x
M

]) .

Integrating this in µ over (0, 1], one finds

1
2
‖TMφ‖2L2([0,1],µdµ) ≤ ‖µ∂xf‖L2([x

L
,x

M
]×[−1,1])‖f‖L2([x

L
,x

M
]×[−1,1])

≤
(
‖σc(f − f)‖L2([x

L
,x

M
]×[−1,1])

+ ‖σ(1 − c)f‖L2([x
L

,x
M

]×[−1,1])

)
‖f‖L2([x

L
,x

M
]×[−1,1]) .

(4.20)

By using (4.19) and (4.20) one arrives at

‖TMφ‖2L2([0,1],µdµ) ≤
3σ∗

2ν

(
‖φ‖2L2([0,1],µdµ) − ‖T φ‖2L2([0,1],µdµ)

)

and since this is true of any function φ ∈ L2([0, 1], µdµ), one eventually obtains

‖TM‖L(L2([0,1],µdµ) ≤
√

3σ∗

2ν + 3σ∗
< 1 , (4.21)

which concludes the proof. �

The second stability result that we need bears on the operator R defined in Lemma 2.2 and can be seen as
a stability result for the transport equation, however inside the diffusive region.

Lemma 4.2. The operator R defined in Lemma 2.2 is a contraction mapping on the space L2([0, 1], µdµ):

‖R‖L(L2([0,1],µdµ)) = 1 .

Proof. The energy estimate analogous to (4.17) for the problem (2.1) with the boundary condition (2.2) is
obtained by multiplying equation (2.1) by Γ, on account of (2.2) and of the asymptotic behavior as z → +∞ in
Lemma 2.1. One finds that∫ +∞

0

∫ 1

−1

(Γ− Γ)2dz dµ+
1
2

∫ 1

0

µΓ(x
L
,−µ)2dµ =

1
2

∫ 1

0

µG(µ)2dµ . (4.22)

Hence
1
2

∫ 1

0

µΓ(x
L
,−µ)2dµ ≤ 1

2

∫ 1

0

µG(µ)2dµ ,

which means that ‖R‖L(L2([0,1],µdµ)) ≤ 1. This inequality is actually an equality since R1 = 1. �
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4.3. Continuity across the interface

The last ingredient in our proof is the following continuity statement.

Lemma 4.3. Let σ ≡ σ(x) satisfy 0 < σ∗ ≤ σ(x) ≤ σ∗ and c ≡ c(x) satisfy 0 ≤ c(x) ≤ c∗ < 1 for some
constants σ∗, σ∗ and c∗ and for each x ∈ [x

L
, x

R
]. Consider the transport equation

2µ∂xf + σ(f − cf) = 0 , (x, µ) ∈ (x
L
, x

R
)× [−1, 1] ;

f(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

f(x
R
,−µ) = FR(µ) , µ ∈ (0, 1] ,

(4.23)

where FL and FM ∈ L2([0, 1], µdµ). Then, for a.e. µ ∈ [−1, 1], the function x 7→ f(x, µ) is continuous.

Proof. The energy estimate (4.17) implies the existence of a positive constant C such that

∫ x
M

x
L

∫ 1

−1

σ(1− c)f2dxdµ ≤ C and
∫ x

M

x
L

∫ 1

−1

σc(f − f)2dxdµ ≤ C .

These inequalities and the transport equation (4.23) imply that

µ∂xf = −σc(f − f)− σ(1 − c)f ∈ L2([x
L
, x

R
]× [−1, 1])

because of the bounds 0 ≤ σ ≤ σ∗ and 0 ≤ c ≤ 1. This implies in particular that the derivative ∂xf(·, µ) ∈
L2([xL , xR ]) for a.e. µ ∈ [−1, 1], which in turn establishes the announced continuity. �

4.4. Proof of Theorem 3.1

Apply Lemma 4.3 with

σ(x) = 1[x
L

,x
M

](x) +
1
ε
1[x

M
,x

R
](x) and c(x) = 1− ε2γ for x ∈ [x

M
, x

R
] .

Hence, for each ε ∈ (0, ε∗) and a.e. µ ∈ [−1, 1], the function x 7→ Ψε(x, µ) is continuous — see (1.4) and (1.5) for
the definition of ε∗. Notice that this continuity is in general not uniform in ε for σ is not bounded uniformly in
ε in the diffusive region. This lack of uniformity is consistent with the presence of boundary layers ΓM

0 and ΓR
0

with variations of order 1 over lengths of order ε in the truncated expansions (4.9). For the O(ε) estimate, this
continuity at x

M
for a.e. µ ∈ [−1, 0) together with (4.12) implies that

φε(µ) := Ψε(xM
,−µ)−R(Ψε(xM

, ·)
∣∣
(0,1]

)(µ) satisfies ‖φε‖L∞(0,1) ≤ C0ε .

Then, by definition of the operators TL, TM and R, one has

Ψε(xM
, µ) = (TLFL)(µ) + (TMΨε(xM

, ·)
∣∣
[−1,0)

)(µ) , µ ∈ (0, 1]

and hence
Ψε(xM , ·)

∣∣
[−1,0)

= R ◦ TLFL +R ◦ TMΨε(xM , ·)
∣∣
[−1,0)

+ φε .

By Lemmas 4.1 and 4.2 ‖R ◦ TM‖L(L2([0,1],µdµ) < 1; hence I −R ◦ TM is invertible in L(L2([0, 1], µdµ)) and

Ψε(xM
, ·)
∣∣
[−1,0)

= (I −R ◦ TM )−1(R ◦ TLFL + φε) . (4.24)

Define χ0 by
χ0 = (I −R ◦ TM )−1R ◦ TLFL . (4.25)
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Because of (4.24) and the stability results in Lemmas 4.1 and 4.2

‖Ψε(xM
, ·)
∣∣
[−1,0)

− χ0‖L2(µdµ)≤
‖φε‖L∞

1− ‖TM‖L(L2(µdµ))
≤ C0ε

1− ‖TM‖L(L2(µdµ))
· (4.26)

Consider Φ the solution of

µ∂xΦ + (Φ− cΦ) = 0 , (x, µ) ∈ (x
L
, x

M
)× [−1, 1];

Φ(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

Φ(x
M
,−µ) = χ0(µ) , µ ∈ (0, 1] .

Applying the energy estimate (4.17) shows that

‖Ψε − Φ‖L2([x
L

,x
M

]×[−1,1]) = O(ε) . (4.27)

On the other hand, the definition of χ0 implies that Φ = Φ0 (the solution of (3.1)). This establishes the O(ε)
approximation for the transport domain.

Let Nε be the solution of

−1
3
∂xxNε + γNε = 0 , x ∈ (x

M
, x

R
) ;

Nε(xM
) =

√
3

2

∫ 1

0

µH(µ)Ψε(xM
, µ)dµ ;

Nε(xR
) =

√
3

2

∫ 1

0

µH(µ)FR(µ)dµ .

By (4.18) and (4.26), |Nε(xM
)−Θ0(xM

)| = O(ε) and hence, by the Maximum Principle for the diffusion equation
‖Nε − Θ0‖L∞([x

M
,x

R
]) = O(ε). On the other hand, by the order O(ε) statement in Proposition 4.1, one finds

that ‖Ψε − Nε‖L1([x
M

,x
R

]×[−1,1]) = O(ε) and that, for any choice of interior points x′M < x′R in (x
M
, x

R
),

‖Ψε −Nε‖L∞([x′M ,x′R]×[−1,1]) = O(ε). This eventually implies that

‖Ψε −Θ0‖L1([x
M

,x
R

]×[−1,1]) = O(ε),

and

‖Ψε −Θ0‖L∞([x′M ,x′R]×[−1,1]) = O(ε),

which is precisely the O(ε) approximation for the diffusive part of the domain.

4.5. Proof of Theorem 3.2

The proof of the O(ε2) approximation is essentially identical to the O(ε) case. For a.e. µ ∈ [−1, 0), x 7→
Ψε(x, µ) is continuous at x

M
and hence, by (4.14), the function ψε defined by

ψε(µ) := Ψε(xM ,−µ)−R(Ψε(xM , ·)
∣∣
(0,1]

)(µ)− ε(µ−Rµ)∂xΘ0(xM )

satisfies
‖ψε‖L∞([0,1]) ≤ C1ε

2 .

Hence
Ψε(xM

, ·)
∣∣
[−1,0)

= R ◦ TLFL +R ◦ TMΨε(xM
, ·)
∣∣
[−1,0)

+ ε(µ−Rµ)∂xΘ0(xM
) + ψε ,
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which we put in the form

Ψε(xM , ·)
∣∣
[−1,0)

= (I −R ◦ TM )−1(R ◦ TLFL + ε(µ−Rµ)∂xΘ0(xM ) + ψε) . (4.28)

Define χε by
χε = (I −R ◦ TM )−1(R ◦ TLFL + ε(µ−Rµ)∂xΘ0(xM

)) . (4.29)

Because of (4.28) and the stability results in Lemmas 4.1 and 4.2

‖Ψε(xM
, ·)
∣∣
[−1,0)

− χε‖L2(µdµ)≤
‖ψε‖L∞

1− ‖TM‖L(L2(µdµ))
≤ C1ε

2

1− ‖TM‖L(L2(µdµ))
· (4.30)

Let Φε be the solution of

µ∂xΦε + Φε − cΦε = 0 , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

Φε(xL
, µ) = FL(µ) , µ ∈ (0, 1] ,

Φε(xM
,−µ) = χε(µ) , µ ∈ (0, 1] .

(4.31)

Applying the energy estimate (4.17) shows that

‖Ψε − Φε‖L2([x
L

,x
M

]×[−1,1]) = O(ε2) . (4.32)

On the other hand, the definition of χε implies that the boundary condition at x
M

for Φε can be replaced by

Φε(xM
,−µ) = R(Φε(xM

, ·)
∣∣
(0,1]

)(µ) + ε(µ−Rµ)∂xΘ0(xM
) , µ ∈ (0, 1] .

By linearity of the problem (4.31) and uniqueness of the solution to this problem with the above boundary
condition at x

M
, one finds that Φε = Φ0 + εΦ1 which proves the O(ε2) approximation for the transport domain.

Let Ñε be the solution of

−1
3
∂xxÑε + γÑε = 0 , x ∈ (xM , xR) ;

Ñε(xM
)− ελ∂xÑε(xM

) =
√

3
2

∫ 1

0

µ2H(µ)Ψε(xM
, µ)dµ ;

Ñε(xR) + ελ∂xÑε(xR) =
√

3
2

∫ 1

0

µ2H(µ)FR(µ)dµ .

By (4.18), (4.30) and the L∞ stability of the diffusion equation with Robin boundary conditions,
‖Ñε − Θε‖L∞([x

M
,x

R
]) = O(ε2). By the order O(ε2) statement in Proposition 4.1, for any choice of interior

points x′M < x′R in (x
M
, x

R
), ‖Ψε − Ñε‖L∞([x′M ,x′R]×[−1,1]) = O(ε2). This eventually implies that

‖Ψε −Θε‖L∞([x′M ,x′R]×[−1,1]) = O(ε2),

which is precisely the O(ε2) approximation for the diffusion part of the domain.

Remark 4.1. By using the basic energy estimate (4.17), the bound (4.21) and the techniques in [12] — see in
particular estimates (2.10) and (2.13) there — one can replace the O(ε) in Theorem 3.1 or O(ε2) in Theorem 3.1
by terms of the form C0ε and C1ε respectively, where C0 and C1 have explicit expressions in terms of data such
as c∗, c∗, γ∗, γ∗, λ, xM − xL , xR − xM and various norms of FL and FR.
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5. Extensions

5.1. The time-dependent problem

In many applications of transport theory, one has to deal with evolution rather than steady problems. Hence
there is some interest in extending the domain decomposition algorithms studied above to time-dependent
problems. There is however a fundamental difficulty in doing so: the natural time-scale of the diffusion equation
— in the domain (x

M
, x

R
) — is much longer than that of the transport equation — in the domain (x

L
, x

M
).

One way of avoiding this difficulty is to prepare the initial and boundary data so that the evolution time scale
in the transport region is exactly as long as in the diffusive region. In particular, this requires slowly varying
boundary data, and an initial data that almost belongs to the null-space of the transport operator. Keeping
the same coefficients as in (1.3), we start from the problem

ε∂tΨε + µ∂xΨε + σΨε = σcΨε , t > 0 , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

Ψε(t, xL
, µ) = FL(t, µ) , t > 0 , µ ∈ (0, 1] ,

Ψε(t, xR
,−µ) = FR(t, µ) , t > 0 , µ ∈ (0, 1] ,

Ψε(0, x, µ) = ΨI(x, µ) , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

(5.1)

assuming the compatibility conditions

µ∂xΨI + σ(x)ΨI = σ(x)c(x)ΨI , xL < x < xM , µ ∈ [−1, 1] ,

ΨI ≡ ΨI(x) , x
M
< x < x

R
, µ ∈ [−1, 1] ,

FL(0, µ) = ΨI(xL , µ) , µ ∈ (0, 1] ,

FR(0, µ) = ΨI(xR
) , µ ∈ (0, 1] .

(5.2)

The time-dependent coupling algorithm at order O(ε) is as follows:

• on the transport region x
L
< x < x

M
, solve

ε∂tΦε + µ∂xΦε + σΦε = σcΦε ,

Φε(t, xL
, µ) = FL(t, µ) , 0 < µ < 1 ,

Φε(t, xM ,−µ) = R(Φε(t, xM , ·)
∣∣
(0,1]

)(µ) , 0 < µ < 1 ,

Φε(0, x, µ) = ΨI(x, µ) ,

(5.3)

where R is the operator defined in Lemma 2.2;

• on the diffusion region xM < x < xR , solve

∂tΘε =
1
3
∂xxΘε − γΘε ,

Θε

∣∣
x=x

M

=
√

3
2

∫ 1

0

µH(µ)Φε(t, xM
, µ)dµ ,

Θε

∣∣
x=x

R

=
√

3
2

∫ 1

0

µH(µ)FR(t, µ)dµ ,

Θε

∣∣
t=0

= ΨI ,

(5.4)

where H is Chandrasekhar’s function — see Definition 2.1;
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• eventually the global solution is approximated by

Ψε(t, x, µ) = Φε(t, x, µ) , xL < x < xM ,

Ψε(t, x, µ) = Θε(t, x) , x
M
< x < x

R
.

(5.5)

A few remarks on this domain decomposition method are in order. First, because of the assumption bearing on
the boundary and initial data, if

∂tFL ∈ L2([0, T ]× [0, 1], µdt dµ) for all T > 0 ,

the energy estimate implies that

∂tΦε = O(1) in L2([0, T ]× [x
L
, x

M
]× [−1, 1], dt dxdµ) for all T > 0 .

Using (5.3) implies that the boundary data for the diffusion equation is uniformly bounded in H1
loc([0,+∞))

since
∂tΦε

∣∣
x=x

M

= O(1) in L2([0, T ]× [−1, 1], µdt dµ) .

In particular, the (slow) time scale of the diffusion equation is consistent with the (slow) time scale of the
distribution of particles emerging from the transport region. A straightforward modification of (4.9) leads
to a boundary layer governed by (2.1, 2.2) — exactly as in the steady case. Secondly, the transport and
diffusive regions are decoupled globally in time up to an O(ε) error by using the appropriate reflection condition
at the interface, that is given in terms of the operator R. One can see that in the other existing domain
decomposition algorithms, there is an iteration within any given time step so as to match the transport and
diffusive domains. As already mentioned above, avoiding these iterations is one of the benefits of using the exact
asymptotic reflection operator R instead of other, ad hoc prescriptions for the transmission condition at the
interface.

5.2. The case of higher space dimensions

The methods in this paper can also be extended to transport equations in space dimensions higher than 1.
Consider for example the transport equation with isotropic scattering

ω · ∇xΨ(x, ω) + σ(x)Ψ(x, ω) = σ(x)c(x)Ψ(x) ,

where Ψ(x) =
1

|SD−1|

∫
SD−1

Ψ(x, ω)dω ,
(5.6)

posed for (x, ω) ∈ Ω × SD−1, where Ω is a smooth, bounded convex domain in RD. The coefficients σ are of
the form

σ(x) = σT (x) , and c(x) = cT (x) ∈ (0, 1) , for x ∈ ΩT ,

σ(x) = ε−1σD(x) , and c(x) = 1− ε2γ(x) , for x ∈ ΩD .
(5.7)

Here ΩD is a smooth, convex domain whose closure ΩD is included in Ω, and ΩT = Ω \ΩD. The functions σT ,
σD, γ are assumed to be smooth and positive; likewise, the function cT is assumed to be smooth.

The problem (5.6) is supplemented with the boundary condition

Ψ(x, ω) = Fb(x, ω) , for (x, ω) ∈ Σ− . (5.8)

Here
Σ− = {(x, ω) ∈ ∂Ω× SD−1 |ω · nx < 0}, (5.9)



884 F. GOLSE ET AL.
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Figure 2. Geometry of the multi-dimensional interface problem.

where nx is the unit outward normal at the point x of ∂Ω. In this problem, the interface is ∂ΩD (see Fig. 2);
further, we need the notations

Σ+
i =

{
(x, ω) ∈ ∂ΩD × SD−1 |ω · νx > 0

}
,

Σ−i =
{
(x, ω) ∈ ∂ΩD × SD−1 |ω · νx < 0

}
,

(5.10)

where νx is the unit outward normal to ΩD at the point x ∈ ∂ΩD. We first describe the analog of Chandrasekhar’s
H-function and of the boundary layer response operator R for this problem. Given ν ∈ SD−1, consider the
auxiliary problem

−(ω · ν)∂zΓ + Γ− Γ = 0 , z > 0 , ω ∈ SD−1 ,

Γ(0, ω) = G(ω) , ω · ν < 0 .
(5.11)

Denote by S−ν = {ω ∈ SD−1 |ω · ν < 0}. Proceeding exactly as in Section 2, one sees that, given G ∈
L2(S−ν , |ω ·ν|dω), the problem (5.11) has a unique solution Γ ∈ L∞(R+;L2(SD−1, |ω ·ν|dω)). In addition, there
exists a linear functional Λν and a bounded operator Rν both acting on L2(S−ν , |ω · ν|dω) such that

Γ(z, ω) → Γ∞ = Λν(G) for each ω ∈ SD−1 and

Γ(0, sν(ω)) = (RνG)(ω) for each ω ∈ S−ν ,
(5.12)

with the notation sν(ω) = ω−2(ω ·ν)ν. The linear functional Λν and the operator Rν are expressed in terms of
a variant of the Chandrasekhar H-function which can be computed numerically by solving a nonlinear integral
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equation that is analogous to (2.6): see Appendix B. The coupling algorithm at order O(ε) for this problem is
as follows:
• on the transport domain ΩT , solve

ω · ∇xΦ(x, ω) + σT (x)Φ(x, ω) = σT (x)cT (x)Φ(x) , (x, ω) ∈ ΩT×SD−1 ,

Φ(x, ω) = Fb(x, ω) , (x, ω) ∈ Σ− ,

Φ(x, sνx(ω)) = RνxΦ(x, ω) , (x, ω) ∈ Σ+
i ;

(5.13)

• on the diffusion domain ΩD, solve

γ(x)Θ(x)− 1
D
∇x ·

(
1

σD(x)
∇xΘ(x)

)
= 0 , on ΩD ,

Θ(x) = Λνx(Φ(x, ·)) , on ∂ΩT ;
(5.14)

• finally the solution Ψε of (5.6)–(5.8) on Ω× SD−1 is approximated to within O(ε) by

Ψε(x, ω) = Φ(x, ω) if x ∈ ΩT ,

Ψε(x, ω) = Θ(x) if x ∈ ΩD .
(5.15)

There is also a O(ε2) coupling, whose formulation follows essentially Theorem 3.2, and which can be easily
worked out with the material presented in this paper.

5.3. The discrete-ordinate method

We return to the steady problem (1.1, 1.2) with coefficients as in (1.3), and discuss the domain decomposition
algorithms for the discrete-ordinate method. The discrete-ordinate method is a semi-discrete version of (1.1)
where only the angle variable µ is discretized. In this method, the variable µ is discretized by a set M
of 2M quadrature points µm with quadrature weights αm > 0. These points and weights are indexed by
m ∈M = {−M, . . . ,−1, 1, . . . ,M} ordered as follows:

−1 < µ−M < . . . < µ−1 < 0 < µ1 < . . . < µM < 1 , (5.16)

with the symmetry
µ−m = −µm , and α−m = αm , for m ∈M . (5.17)

In addition, these quadrature points and weights are assumed to satisfy the quadrature conditions

M∑
m=1

µ 2k
m αm = 1 for k = 0 ,

M∑
m=1

µ 2k
m αm =

1
3

for k = 1 .

(5.18)

Additional conditions might also be assumed (see [12,14,15]). The conditions above are met by many quadrature
sets, for instance, by the classical Gauss quadrature over [−1, 1], or the so-called “double Gauss” quadrature
over [−1, 0] ∪ [0, 1] provided that each half interval range contains at least 2 quadrature points. The value of
the exact solution Ψε(x, µ) of the steady transport equation (1.1)–(1.3) at the quadrature points µm is then
formally approximated by the discrete particle densities ψε ≡ ψε

m(x) that satisfy the so-called discrete-ordinate
equation

µm∂xψ
ε
m + σ(x)ψε

m = σ(x)c(x)ψε , (5.19)
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where

ψε(x) =
1
2

∑
1≤|n|≤M

ψε
n(x)αn ,

and with boundary conditions given by

ψε
m(xL) = fL,m , ψε

−m(xR) = fR,m , for m > 0 . (5.20)

The discretized boundary data fL,m and fR,m can be defined in various ways from the original boundary data
FL and FM , as discussed in [12,14]. The analysis of (5.19, 5.20) under the conditions (5.17) and (5.18) exactly
parallels that of (1.1, 1.2), at the expense of replacing the measure dµ by its discrete analogue

∑
1≤|k|≤M δµk

.
In the diffusive domain x

M
< x < x

R
, σ(x) = ε−1 while c(x) = 1− ε2γ(x); hence

µm∂xψ
ε
m + ε−1ψε

m = ε−1(1− ε2γ)ψε , x
M
< x < x

R
,

ψε
m(x

M
) = gm , for m > 0 ,

ψε
−m(x

R
) = fR,m , for m > 0 .

(5.21)

The boundary data gm will be determined later.
The diffusion approximation to the discrete-ordinate equation (5.21) is (see [12, 14, 22])

ψε
m = θε − εµm∂xθ

ε +O(ε2) ,

where θε satisfies the diffusion equation

−1
3
∂xxθ

ε + γθε = 0 , x ∈ (x
M
, x

R
), (5.22)

and the boundary conditions

θε − ελdisc∂xθ
ε
∣∣∣
x=x

M

=
M∑

m=1

ψε
m(xM )wm ,

θε + ελdisc∂xθ
ε
∣∣∣
x=x

R

=
M∑

m=1

fR,mwm .

(5.23)

Obtaining the boundary conditions (5.23) can be done exactly as in the case of a continuous angular variable µ:
see [14]. This involves discrete ordinate analogs of the half-space problem studied in Section 2. In particular,
one obtains discrete versions of the Chandrasekhar H-function and of the operator R, by replacing the measure
dµ with its discrete analog

∑
1≤|k|≤M δµk

in the procedure described in Section 2. Alternately, one can follow
the analysis in [6], originally done in the context of the discrete ordinate equation. We review this analysis
below in its slightly modified form to be found in [14].

The extrapolated endpoint distance λdisc in (5.23) measured in mean free paths is given by (see [14])

λdisc =
M∑

m=1

µm −
M−1∑
n=1

1
ξn+ 1

2

, (5.24)

where ξ = ξn+ 1
2

is the unique (positive, simple) root of the characteristic equation (see [6], Chap. III, eq. (6))

1 =
1
2

∑
m∈M

αm

1− µmξ
, (5.25)
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that lies in the open interval (1/µn+1, 1/µn). The weights wm that appear in (5.23) are computed in terms of
the µm and the ξn+1/2 by the formula

wm =
M−1∏
n=1

(
µm − 1

ξn+ 1
2

)
M∏

k=1
k 6=m

(
1

µm − µk

)
> 0 . (5.26)

These expressions for λdisc and the wm are derived in [14] — see equations (A.17) and (A.18) — through a discrete
boundary layer analysis. The wm’s are the discrete analog of Chandrasekhar’s H-function of Definition 2.1.
Finally, we need the discrete version of the reflection operator R. In the discrete case, the problem analogous
to determining Γ(0,−µ) in terms of G (with the notations of Lem. 2.2) reduces to Lagrange interpolation. One
finds that the discrete analog of R is

(Rdiscg)m ≡ (−1)M−1
M∑

k=1

gk


M−1∏

j=1

1− ξj+ 1
2
µk

1 + ξj+ 1
2
µm

M∏
i=1
i6=k

µm + µi

µk − µi


 · (5.27)

This formula can be found by following the argument in Appendix A of [14], after setting b = 0 in equation (A.1)
there. Proceeding as in Section 3, we formulate the coupling algorithms:

Order ε coupling. First solve the discrete ordinate equation

µm∂xφ
0
m + φ0

m − cφ
0

m = 0 , x ∈ (x
L
, x

M
) , m ∈ M ,

φ0
m(x

L
) = fL,m , 1 ≤ m ≤M ,

φ0
−m(x

M
) = Rdisc(φ0(x

M
))m , 1 ≤ m ≤M .

(5.28)

Once this is done and the density φ0 has been computed, solve the diffusion problem

−1
3
∂xxθ

0 + γθ0 = 0 , x ∈ (x
M
, x

R
) ,

θ0(x
M

) =
M∑

m=1

φ0
m(x

M
)wm ,

θ0(x
R
) =

M∑
m=1

fR,m(x
M

)wm .

(5.29)

When keeping M fixed and letting ε converge to zero, the solution ψε
m is approximated by

ψ0
m(x) = φ0

m(x) , x ∈ (x
L
, x

M
) , m ∈ M ,

ψ0
m(x) = θ0(x) , x ∈ (x

L
, x

M
) , m ∈ M ,

(5.30)

to within O(ε).
Order ε2 coupling. With θ0 computed as in the previous step, solve the discrete ordinate equation

µm∂xφ
1
m + φ1

m − cφ
1

m = 0 , x ∈ (x
L
, x

M
) , m ∈M ,

φ1
m(x

L
) = 0 , 1 ≤ m ≤M ,

φ1
−m(x

M
) = Rdisc(φ1(x

M
))m + (µm −Rdisc(µ)m)∂xθ

0(x
M

) , 1 ≤ m ≤M .

(5.31)
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Once this is done θ0, φ0 and φ1 have been computed and one can solve the diffusion problem

−1
3
∂xxθε + γθε = 0 , x ∈ (x

M
, x

R
) ,

θε(xM
)− ελdisc∂xθε

∣∣∣
x=x

M

=
M∑

m=1

(φ0
m + εφ1

m)(x
M

)wm ,

θε(xR
)) + ελdisc∂xθε

∣∣∣
x=x

R

=
M∑

m=1

fR,m(x
M

)wm .

(5.32)

When keeping M fixed and letting ε converge to zero, the solution ψε
m is approximated by

ψ1,ε
m (x) = φ0

m(x) + εφ1
m(x) , x ∈ (xL , xM ) , m ∈M ,

ψ1,ε
m (x) = θ0ε (x)− εµm∂xθε(x) , x ∈ (xM , xR) , m ∈M ,

(5.33)

to within O(ε2). The error estimates concerning the limit ε→ 0 while keeping M fixed are analogous to those in
Section 4. What happens if in addition one lets M tend to ∞ can be analyzed by using the methods described
in the present paper with those from [12].

Appendix A: The transport equation

with reflection boundary conditions

Let A be a bounded, linear operator on L2([0, 1], µdµ) such that

‖A‖L(L2([0,1],µdµ) ≤ 1 . (A.1)

Consider the transport equation

µ∂xψ + σ(x)ψ = σ(x)c(x)ψ , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

ψ(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ,

ψ(x
M
,−µ) = A(ψ(x

M
, ·)
∣∣
(0,1]

)(µ) + φM (µ) , µ ∈ (0, 1] .
(A.2)

Proposition A.1. Assume that the measurable functions σ and c satisfy the bounds 0 < σ∗ ≤ σ(x) ≤ σ∗ and
0 ≤ c(x) ≤ c∗ < 1 for each x ∈ (x

L
, x

R
) and some constants σ∗, σ∗ and c∗. For each FL and φM ∈ L2([0, 1], µdµ),

there exists a unique solution ψ to (A.2) in L2((x
L
, x

M
)× [−1, 1]).

Proof. We use the objects and notations from Lemma 4.1. Assume the existence of a solution ψ ∈ L2((xL , xM )×
[−1, 1]); the transport equation implies that µ∂xψ is in L2((x

L
, x

M
)× [−1, 1]), so that ψ(x

M
, µ) is a well-defined

element in L2([−1, 1], |µ|dµ). Define FM (µ) = ψ(x
M
,−µ) for µ ∈ (0, 1]; thus the boundary condition at x

M
is

equivalent to the equality

FM = A ◦ (TLFL + TMFM ) + φM .

By Lemma 4.1, ‖A ◦ TM‖L(L2([0,1],µdµ) < 1, thus I −A ◦ TM is invertible in L(L2([0, 1], µdµ). Hence

FM = (I −A ◦ TM )−1(A ◦ TLFL + φM ) ;
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this shows that FM ∈ L2([0, 1], µdµ) is uniquely defined in terms of FL and φM , so that there is at most one
solution ψ of (A.2) in L2((x

L
, x

M
)× [−1, 1]). Conversely, let ψ̃ be the solution of

µ∂xψ̃ + σ(x)ψ̃ = σ(x)c(x)ψ̃ , (x, µ) ∈ (x
L
, x

M
)× [−1, 1] ,

ψ̃(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ,

ψ̃(x
M
,−µ) = (I −A ◦ TM )−1(A ◦ TLFL + φM )(µ) , µ ∈ (0, 1] .

Since FL and φM ∈ L2([0, 1], µdµ), the boundary term

(I −A ◦ TM )−1(A ◦ TLFL + φM ),

also belongs to L2([0, 1], µdµ) so that the above transport equation has a unique solution ψ̃ ∈ L2((x
L
, x

M
) ×

[−1, 1]). But the boundary condition at x
M

implies that

ψ̃(xM ,−µ) = A(ψ̃(xM , ·)
∣∣
(0,1]

)(µ) + φM (µ),

so that ψ̃ coincides with ψ by the uniqueness property proved above. �

Appendix B: The multi-dimensional Chandrasekhar function

The adjoint problem
(ω · ν)∂zv + v − v = 0 , z > 0 , ω ∈ SD−1 ,

v(0, ω) = 0 , ω · ν > 0 ,

(ω · ν)v = −1 , z > 0 ,

(B.1)

has a unique solution v ≡ v(z, ω) such that

(z, ω) 7→ v(z, ω)− 1
K2

z belongs to L∞(R+;L2(SD−1, |ω · ν|dω)), (B.2)

where K = ((ω · ν)2)1/2. It is defined by the formula

v(z, ω) = v0(z, ω) +
1
K2

(z − (ω · ν))

where v0 is the unique solution in L∞(R+;L2(SD−1, |ω · ν|dω)) of the problem

(ω · ν)∂zv0 + v0 − v0 = 0 , z > 0 , ω ∈ SD−1 ,

v0(0, ω) = ω · ν , ω · ν > 0 .

Let Γ ∈ L∞(R+;L2(SD−1, |ω · ν|dω)) be the unique solution of (5.11). Observe that

d
dz

∫
SD−1

(ω · ν)Γ(z, ω)v(z, ω)dω =
∫
SD−1

(Γ(z, ω)− Γ(z))v(z, ω)dω −
∫
SD−1

Γ(z, ω)(v(z, ω)− v(z))dω = 0 .

By evaluating the quantity (ω · ν)Γv both at z = 0 and for z → +∞, one finds that∫
S−ν

(ω · ν)G(ω)v(0, ω)dω = (ω · ν)vΛν(G),
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leading to the formula

Λν(G) =
∫
S−ν
|ω · ν|G(ω)v(0, ω)dω . (B.3)

This expression is analogous to the first formula in Lemma 2.2. In other words, the linear functional Λν is
represented on the Hilbert space L2(S−ν , |ω · ν|dω) by the function 1

KHν(ω), where Hν is defined by

Hν(ω) = Kv(0, ω) .

Consider next the function
u(z, ω) = (ω · ν)Γ(z, ω) +

∫ z

0

Γ(s)ds ;

it satisfies
−(ω · ν)∂zu+ u− u = 0 , z > 0 , ω ∈ SD−1 ,

u(0, ω) = (ω · ν)G(ω) , ω · ν < 0 ,

(ω · ν)u = K2Λν(G) , z > 0 .
It also verifies the condition

(z, ω) 7→ u(z, ω)− Λν(G)z belongs to L∞(R+;L2(SD−1, |ω · ν|dω)) .

Let w ∈ L∞(R+;L2(SD−1, |ω · ν|dω)) be the solution of

−(ω · ν)∂zw + w − w = 0 , z > 0 , ω ∈ SD−1 ,

w(0, ω) = (ω · ν)G(ω) , ω · ν < 0 .

It must also verify the condition
(ω · ν)w = 0 for all z > 0 .

Indeed, by averaging over SD−1 the equations for w and (ω · ν)w, one finds that

(ω · ν)w = const. and
d
dz

(ω · ν)2w = (ω · ν)w ;

one concludes by observing that (ω · ν)2w ∈ L∞(R+). Hence the function u− w satisfies

−(ω · ν)∂z(u − w) + (u− w) − (u− w) = 0 , z > 0 , ω ∈ SD−1 ,

(u− w)(0, ω) = 0 , ω · ν < 0 ,

(ω · ν)(u − w) = K2Λν(G) , z > 0 .

By uniqueness of the solution of (5.11) in L∞(R+;L2(SD−1, |ω · ν|dω)), one finds that

(u− w)(z, sνω) = K2Λν(G)v(z, ω) , where sνω = ω − 2(ω · ν)ν .

At z = 0 and for ω · ν < 0, this relation can be recast as

−(ω · ν)RνG(ω)− (Rν(ω · ν)G)(ω) = Hν(ω)
∫
S−ν
|ω′ · ν|Hν(ω′)G(ω′)dω′ ,

which shows that Rν is of the form

RνG(ω) =
∫
S−ν

rν(ω, ω′)G(ω′)|ω′ · ν|dω′,
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with

rν(ω, ω′) =
Hν(ω)Hν(ω′)
|ω · ν|+ |ω′ · ν| · (B.4)

This expression is analogous to the second formula in Lemma 2.2. Obviously, the solution Γ of (5.11) corre-
sponding to G ≡ 1 is Γ ≡ 1; hence Rν1 = 1, which results in the nonlinear integral equation for Hν

1
Hν(ω)

=
∫
S−ν

Hν(ω′)
|ω · ν|+ |ω′ · ν| |ω

′ · ν|dω′ .

This shows that in fact Hν depends only on ω · ν: specifically

Hν(ω) = HD(|ω · ν|)

and the nonlinear integral equation for Hν can be recast in terms of HD in the following manner:

1
HD(µ)

=
∣∣SD−2

∣∣ ∫ 1

0

HD(µ′)
µ+ µ′

µ′(1− µ′2)
D−3

2 dµ′ .

This integral equation is analogous to (2.6) and can be solved numerically by a relaxation method.
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