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Abstract. In this work, we address the numerical solution of fluid-structure interaction problems.
This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same
order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes
are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a
highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the
structure. Standard strategies for solving this non-linear problems, are fixed point based methods such
as Block-Gauss-Seidel (BGS) iterations. Unfortunately, these methods are very CPU time consuming
and usually show slow convergence. We propose a modified fixed-point algorithm which combines
the standard BGS iterations with a transpiration formulation. Numerical experiments show the great
improvement in computing time with respect to the standard BGS method.

Mathematics Subject Classification. 65M60, 65B99, 74F10.

1. Introduction

Large displacements low speed problems where a flexible elastic structure interacts with the flow of an
external or internal fluid occur in many engineering fields: from civil engineering (aeroelasticity) to biomechanics
(biomedical flows). One challenge arising in the numerical approximation of these fluid-structure problems
is the definition of fast and accurate coupling algorithms that allow to predict the longterm time evolution
maintaining the stability of the overall system. This issue is particularly difficult to face when the fluid and the
solid densities are of the same order, for instance as it happens in hemodynamics, since only implicit schemes
can ensure stability of the resulting method (see [11,14,19]). Thus, at each time step, the rule is to solve a highly
coupled non-linear system (the fluid domain depends on the structural motion) using efficient methods that
preserve, inside inner loops, the fluid-structure subsystem splitting. Standard strategies to solve this non-linear
system are fixed-point based methods as Block-Jacobi or Block-Gauss-Seidel (BGS) iterations, see [3,14,17,19].
Recent advances concerns the use of Block Newton based method [9, 11, 25] for a fast convergence towards the
solution of the non-linear coupled problem.

In this paper we focus on accelerating numerical algorithms involving fixed-point iterations. It is well known
that the standard Block-Jacobi or Block-Gauss-Seidel iterations are very CPU time consuming. Indeed, we must
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Figure 1. Geometric configurations.

add to the often slow convergence of the algorithms the cost of updating the fluid mesh, and the corresponding
fluid matrices, at each iteration. We propose a modified fixed-point algorithm which combines the Block-Gauss-
Seidel iterations (see [3]) with a transpiration formulation (see [6, 8, 12, 16, 23, 24]). The underlying idea of our
approach relies on the fact that standard BGS iterations associated to moderate interface deformations can be
treated through transpiration techniques. These formulations do not require updating the fluid computational
mesh and matrices. They only involve modifications of the interface boundary conditions.

The outline of this paper is as follows. In Section 2, we introduce the fluid-structure interaction problem and
its mathematical description. We use the classical Arbitrary Lagrange-Euler formulation for the fluid. Section 3
we address the time discretization and the coupling algorithms, focusing on implicit schemes. We describe the
BGS iterations. In Section 4 we provide the new algorithm, it combines the Block-Gauss-Seidel iterations with
a transpiration formulation. Finally, in Section 5, we report the numerical results. They point out the great
improvement in computing time of the proposed algorithm.

2. Mechanical problem

The system under study occupies a moving domain Ω(t) in its actual configuration. It is made of a de-
formable structure Ωs(t) (vessel wall, pipe-line, . . . ) surrounding a fluid under motion (blood, oil, . . . ) in
the complement Ωf(t) of Ωs(t) in Ω(t) (see Fig. 1). The problem consists in finding the time evolution of the
configuration Ωf(t), as well as the velocity and Cauchy stress tensor within the fluid and the structure.

We assume the fluid to be Newtonian, viscous, homogeneous and incompressible. Its behavior is described by
its velocity and pressure. The elastic solid under large displacements is described by its velocity and its stress
tensor. The classical conservation laws of the continuum mechanics drive the evolution of these unknowns.

The fluid state satisfies the following incompressible Navier-Stokes equations, written in Eulerian conservative
formulation,

ρ
∂u

∂t
+ div[ρu ⊗ u − σ(u, p)] = 0, in Ωf(t),

div u = 0, in Ωf(t), (1)

where u, p and ρ stand for the fluid velocity, pressure and density, respectively. In addition, the fluid stress
tensor is given by

σ(u, p) = −p I+µ
[∇u + (∇u)T

]
,

µ being the fluid dynamic viscosity.
Because of the large displacements, the time variation of the actual configuration cannot be neglected.

The evolution of the fluid domain Ωf(t) is induced by the structural deformation through the fluid-structure
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interface Γw(t). Indeed, by definition
Ωf(t) = Ω(t) − Ω

s
(t).

It is convenient to describe Ωf(t) according to a map At acting in a fixed reference domain Ωf
0. This approach

is usually used for the solid domain Ωs(t), by means of the Lagrangian formulation [2, 13], as we will make
precise later on. However, the choice of a Lagrangian mapping is in general not convenient for the fluid domain.
Indeed, besides inducing large mesh deformations, it will be inconsistent with the inflow and outflow boundary
definition (which are in general at a fixed spatial location). Therefore, the evolution of Ωf(t) is handled by
introducing a family of homeomorphisms {At}t∈R+ (see Fig. 1)

At : Ωf
0 −→ R

3

x0 �−→ x = At(x0).

The choice of the configuration Ωf
0 and of the map At is rather arbitrary, a part for the obvious requirement

that At(∂)Ωf
0 = ∂Ωf(t), ∂Ωf(t) being provided by the evolution of the fluid structure interface.

Hence the name of Arbitrary Lagrangian Eulerian (ALE) formulation given to the resulting equations. Given
a material reference configuration Ωs

0 for the solid (see Fig. 1) the map

xs : Ωs
0 × R

+ −→ R
3,

stands for the solid motion. For x0 ∈ Ωs
0, xs(x0, t) represents the position at time t ≥ 0 of the material point x0.

This corresponds to the classical Lagrangian flow [2,13]. The map At can be defined from xs
|Γs

0
, as an arbitrary

extension over the domain Ωf
0. In short, the ALE map At is given by

At(x0) = Ext(xs|Γw
0
)(x0, t), ∀x0 ∈ Ωf

0,

where Ext represents an extension operator from Γw
0 to Ωf

0.

Remark 2.1. In the sequel ∂
∂t |x0

stand for the time derivative operator keeping the space variable x0 fixed.
More formally, if u: Ωf(t) × R

+ → R, then

∂u

∂t |x0

=
[

∂

∂t
(u ◦ At)

]
◦ A−1

t ,

where the composition operator applies to the space variables only.

Remark 2.2. The operator Ext is arbitrarily defined inside Ωf
0. It can be any reasonable extension of the

material interface deformation:
At = Ext(xs

|Γw
0
),

∂At

∂t

∣∣
Γw

0
= ẋs

|Γw
0
.

For instance, Ext may be defined from an harmonic extension of the interface displacement.

This map allows us to rewrite the time derivative in (1), yielding to the classical incompressible Navier-Stokes
equations written in ALE conservative formulation [5,14], satisfied by u: Ωf

0×R
+ −→ R

3 and p: Ωf
0×R

+ −→ R:

ρ
∂JAtu

∂t |x0

+ JAt div [ρu ⊗ (u − w) − σ(u, p)] = 0, in Ωf(t),

div u = 0, in Ωf(t), (2)

where the quantities JAt and w are defined by:

FAt =
∂At

∂x0
, JAt = det(FAt) > 0, w =

∂At

∂t
·



604 S. DEPARIS ET AL.

Remark 2.3. By definition, ẋs represents the solid velocity, whereas w stands for the velocity of the fluid
domain, which usually differs from the fluid velocity inside Ωf(t).

The solid evolution is given by its displacement d around the reference material configuration Ωs
0,

xs(x0, t) = x0 + d(x0, t), ∀x0 ∈ Ωs
0,

and the stress tensor field S (second Piola-Kirchoff tensor [2]). The field S is related to d through an appropriate
constitutive law (see [2, 13]). Then, the pair (d, S) satisfies the non-linear elastodynamic equations [2]:

d̈ − div0(FS) = f, in Ωs
0. (3)

The coupling between the solid and the fluid is realized through standard boundary conditions at the fluid-
structure interface Γw

0 , namely, the kinematic continuity of the velocity and the dynamic continuity of the
stress [14]:

u = w, on Γw
0 ,

FSn0 = Jσ(u, p)F−Tn0, on Γw
0 , (4)

where J and F are defined by

F =
∂xs

∂x0
, J = det(F ) > 0,

and n0 stands for the unit normal vector on Γw
0 pointing inside Ωs

0. In summary, the strong coupled problem,
with a ALE formulation for the fluid, is given by:

ρ
∂JAtu

∂t |x0

+ JAt div [ρu ⊗ (u − w) − σ(u, p)] = 0, in Ωf(t),

div u = 0, in Ωf(t),

u = w, on Γw
0 ,

σ(u, p)n = g on Γin(t) ∪ Γout(t),

ρ0d̈ − div0(FS) = f, in Ωs
0,

FSn0 = JσF−T n0, on Γw
0 ,

d = 0, on ΓD
0 ,

FSn0 = 0, on ΓN
0 ,

At = Ext(xs
|Γw

0
), w =

∂At

∂t
, in Ωf

0, (5)

where g stands for the external forces acting on the fluid. For simplification purposes, no fluid body forces are
considered. The boundary conditions to be imposed on Γin(t) ∪ Γout(t) as well as on ∂Ωs

0 − Γw
0 = ΓD

0 ∪ ΓN
0 will

depend on the problem under consideration.
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Problem (5) can be written in weak variational form as follows: find At: Ωf
0 −→ R

3, u: Ωf(t) × R
+ −→ R

3,
p: Ωf(t) × R

+ −→ R and d: Ωs
0 × R

+ −→ R
3 such that

ρ
d
dt

∫
Ωf (t)

u · vf dx − ρ

∫
Ωf (t)

div[u ⊗ (u − w)] · vf dx +
∫

Ωf (t)

σ(u, p) : ∇vf dx

−
∫

Γin(t)∪Γout(t)

g(t) · vf da +
∫

Ωf (t)

qf div u dx = 0, ∀(vf , qf) ∈ V f × Qf ,

u = w, on Γw
0 ,

ms(d̈, vs) + as(d, vs) =
∫

Ωs
0

f · vs dx −
∫

Γw
0

Jσ(u, p)F−Tn0 · vs dx ,

∀v ∈ V s = H1
ΓD

0
(Ωs

0)
3,

At = Ext(xs
|Γw

0
), w =

∂At

∂t
, in Ωf

0. (6)

Here, the spaces of fluid test functions are defined, as in [10], by

V f =
{
v ◦ A−1

t , v ∈ H1(Ωf
0)

3
}

, Qf =
{
q ◦ A−1

t , q ∈ L2(Ωf
0)

}
,

and

ms(d̈, vs) =
∫

Ωs
0

ρ0d̈ · vs dx , as(d, vs) =
∫

Ωs
0

FS : ∇vs dx ,

stand for the solid mass and stiffness integrals. Similar integrals appear when dealing with more general
structures such as elastic beams or shells in large displacements (see [1, 14]).

3. Time discretization: coupling algorithms

Concerning the time discretization of (6) several schemes can be considered. A first strategy, for instance,
leads to the standard loosely coupled algorithms [7, 20, 21]. It consists in using an explicit scheme for the fluid
(respectively for the structure) and an implicit scheme for the structure (respectively for the fluid). Thus, at
each time step, the fluid solution is completely determined starting from the solution of the previous time step
and, once the fluid load at the interface has been computed, the structure can be advanced on time updating
the position of the interface. In short, the geometry and the interface coupling are treated explicitly. This
strategy is computationally cheap and performs well in many practical situations, for example, in aeroelasticity
applications [7, 20, 21]. However, numerical experiments and some analysis on simplified models (see [11,14,19])
indicate that these staggered algorithms are unstable when the structure is light, more precisely when the fluid
and structure densities are comparable, as it happens in hemodynamic applications. In these situations, fluid-
structure equilibrium must be ensured at each time accurately. In other words, the geometry and the interface
coupling have to be treated implicitly, and then implicit coupling schemes must be considered.

For these reasons, in this paper we will focus on fully coupled implicit schemes. In the sequel, we consider
in (6) an implicit Euler treatment of the velocity derivatives in the fluid domain and a mid-point rule for the
structural equation. The resulting time discretized problem writes: for n = 0, 1, . . ., find un+1: Ωf(tn+1) −→ R

3,



606 S. DEPARIS ET AL.

pn+1: Ωf(tn+1) −→ R and dn+1: Ωs
0 −→ R

3 satisfying the following coupled non-linear problem:

Atn+1 = Ext(xs,n+1|Γw
0
), wn+1 =

1
∆t

(Atn+1 −Atn

)
, in Ωf

0,

ρ

∆t

∫
Ωf (tn+1)

un+1 · vf dx + ρ

∫
Ωf (tn+1)

div
[
un+1 ⊗ (un+1 − wn+1)

] · vf dx

+
∫

Ωf (tn+1)

σ(un+1, pn+1) : ∇vf dx −
∫

Γin(tn+1)∪Γout(tn+1)

g(tn+1) · vf da

+
∫

Ωf (tn+1)

qf div un+1 dx =
ρ

∆t

∫
Ωf (tn)

un · vf dx , ∀(vf , qf) ∈ V f × Qf ,

un+1 = wn+1, on Γw(tn+1),
1

∆t
ms(ḋn+1 − ḋn, vs) +

1
2

(
as(dn+1, vs) + as(dn, vs)

)

= −
∫

Γw(tn+1)

σ(un+1, pn+1)n · vs da, ∀vs ∈ V s,

1
2
(ḋn+1 + ḋn) =

1
∆t

(dn+1 − dn), in Ωs
0. (7)

The values at n = 0 are provided by the initial conditions.
Therefore, at each time step, we have to solve a highly non-linear system, where the fluid domain and the

structural displacement are tightly coupled. Assuming that problem (7) has been appropriately discretized in
space, for instance by a FEM formulation, we formally write the resulting non-linear system as a fixed point
problem,

(xf , wf) = M(
(xf , wf), (xs, ws)

)
, (fluid mesh update),

(u, p) = F(
(u, p), (xf , wf)

)
, (fluid subproblem),

(xs, ws) = S(
(xs, ws), (u, p)

)
, (solid subproblem), (8)

where (u, p), (xs, ws) and (xf , wf) stand, respectively, for the discretized fluid velocity and pressure, the structural
motion and velocity, and the fluid domain motion and velocity at a given time step.

Standard strategies to solve (8) are Block-Jacobi or Block-Gauss-Seidel iterations, see [3]. For instance, the
Block-Gauss-Seidel method consists in sub-iterating between the three subproblems. For k ≥ 0 we set

(xf
k+1, w

f
k+1) = M(

(xf
k, wf

k), (xs
k, ws

k)
)
, (update the fluid mesh),

(uk+1, pk+1) = F(
(uk, pk), (xf

k+1, w
f
k+1)

)
, (solve the fluid subproblem),

(xs
k+1, w

s
k+1) = S(

(xs
k, ws

k), (uk+1, pk+1)
)
, (solve the solid subproblem), (9)

with u0, p0, xs
0, ws

0, xf
0 and wf

0 given from fluid-structure state computed at the previous time step. We stop
the iterations when the difference between two successive interface displacements falls below a fixed tolerance
(see also Sect. 4). In some cases, it is mandatory – in order to obtain convergence – to add a relaxation step to
the structure displacement, see [11, 14, 17, 19].

It is well known that this strategy is very CPU time consuming. Indeed, we must add to the often slow
convergence of the algorithm the cost of updating the fluid mesh and the corresponding fluid matrices at each
iteration. In this paper, we propose a method to improve the performance of the standard BGS iteration (9).
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4. New algorithm: BGS with transpiration

Each iteration of the Block-Gauss-Seidel method (9) involves the numerical solution of the following non-
linear problem: for k ≥ 0 find Ak+1

tn+1
: Ωf

0 −→ R
3, un+1

k+1 : Ωf
k+1 −→ R

3, pn+1
k+1 : Ωf

k+1 −→ R and dn+1
k+1 : Ωs

0 −→ R
3

satisfying:

Ak+1
tn+1

= Ext(xs,n+1
k |Γw

0
), wn+1

k+1 =
1

∆t

(
Ak+1

tn+1
−Atn

)
, in Ωf

0,

ρ

∆t

∫
Ωf

k+1

un+1
k+1 · vf dx + ρ

∫
Ωf

k+1

div
[
un+1

k+1 ⊗ (un+1
k − wn+1

k+1 )
] · vf dx

+
∫

Ωf
k+1

σ(un+1
k+1 , pn+1

k+1) : ∇vf dx −
∫

Γin∪Γout

g(tn+1) · vf da

+
∫

Ωf
k+1

qf div un+1
k+1 dx =

ρ

∆t

∫
Ωf (tn)

un · vf dx , ∀(vf , qf) ∈ V f × Qf ,

un+1
k+1 = wn+1

k+1 , on Γw
k ,

1
∆t

ms(ḋn+1
k+1 − ḋn, vs) +

1
2

(
as(dn+1

k , vs) + as(dn, vs)
)

= −
∫

Γw
k+1

σ(un+1
k+1 , pn+1

k+1)n · vs da, ∀vs ∈ V s,

1
2
(ḋn+1

k+1 + ḋn) =
1

∆t
(dn+1

k+1 − dn), in Ωs
0. (10)

Here Ak+1
tn+1

represents the ALE map computed at the (k + 1)-th iteration of the BGS method, and Ωf
k+1 the

corresponding fluid domain, namely Ωf
k+1 = Ak+1

tn+1
(Ωf

0).
Then main disadvantage of the standard BGS method lies on the fact that its iterations are very costly.

Indeed, each iteration (10) involves an update of the fluid domain Ωf
k+1(tn+1) and of its velocity wn+1

k+1 . Con-
sequently, the fluid matrices have to be recomputed on this new configuration. This feature arises because we
are using an ALE formulation for the fluid (large displacements are involved in the whole fluid-structure prob-
lem). However, between to successive BGS iterations the fluid-structure interface frequently exhibits moderate
variations.

In order to be able to solve a low cost fluid-structure problems featuring moderate deformation, aeronautical
engineers have developed transpiration techniques, from an idea of Lighthill [15]. These formulations do not
require to update the computational grid, but only involve modifications of the interface boundary conditions
(see for instance [6, 8, 12, 16, 23, 24]). Consequently, whenever the fluid-structure interface shows a “small”
variation (with respect to a specified tolerance TOLtrans) between steps k and k + 1 of (10), the interface
motion can be taken into account for the fluid problem through transpiration boundary conditions, without the
need of updating the mesh and, consequently, the system matrices.

A transpiration interface condition on Γw
k can be derived, in a heuristic way (see [12, 16, 23, 24] and refer

to [6, 8, 18] for a more rigorous justification), from a truncated Taylor expansion of the fluid velocity in the
neighborhood of the reference fluid-structure interface Γw

k , see Figure 2:

un+1
k+1(xf

k+1) = un+1
k+1(xf

k) −∇un+1
k+1(xf

k)(xf
k+1 − xf

k) + o(‖xf
k+1 − xf

k‖), (11)

on Γw
0 . Thus, from the kinematic condition

un+1
k+1 = wn+1

k+1 , on Γw
k+1,
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Figure 2. Taylor expansion of the fluid velocity.

we get the following transpiration condition on the known interface Γw
k

un+1
k+1 = wn+1

k+1 −∇un+1
k+1(xf

k+1 − xf
k), on Γw

k .

The implicit dependence on un+1
k+1 can be made explicit by modifying the relation into

un+1
k+1 = wn+1

k+1 −∇un+1
k (xf

k+1 − xf
k). (12)

This latter condition can now be used to approximate the fluid subproblem in (10). Indeed, by setting

Ωf
trans = Ωf

k, Γw
trans = Γw

k , un+1
trans = un+1

k , wn+1
trans = wn+1

k ,

we introduce the following transpired fluid subproblem

wn+1
k+1 =

1
∆t

(
dn+1

k − dn
)
, on Γw

0 ,

ρ

∆t

∫
Ωf

trans

un+1
k+1 · vf dx + ρ

∫
Ωf

trans

div
[
un+1

k+1 ⊗ (un+1
trans − wn+1

trans)
] · vf dx

+
∫

Ωf
trans

σ(un+1
k+1 , pn+1

k+1) : ∇vf dx −
∫

Γin(tn+1)∪Γout(tn+1)

g(tn+1) · vf da

+
∫

Ωf
trans

qf div un+1
k+1 dx =

ρ

∆t

∫
Ωf (tn)

un · vf dx , ∀(vf , qf) ∈ V f × Qf ,

un+1
k+1 = wn+1

k+1 −∇un+1
k (dn+1

k+1 − dn+1
k ), on Γw

trans, (13)

The obtained fluid-subproblem allow us to take into account the interface motion, while keeping a fixed fluid
domain. This is achieved by using non-standard boundary conditions on the fixed reference interface Γw

trans,
without the need of updating the mesh and, consequently, the system matrices.

Remark 4.1. In (13) the velocity wn+1
k+1 is no longer needed inside the fluid domain. Therefore, we just compute

it at the fluid structure interface Γw
0 .

In the same way, the fluid load at the moving interface can be recovered from a similar Taylor expansion:

σk+1(xf
k+1) = σk+1(xf

k) + ∇σk+1(xf
k)(xf

k+1 − xf
k) + o(‖xf

k+1 − xf
k‖), (14)
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on Γw
0 . Thus, in (10), the solid subproblem can be now replaced by

1
∆t

ms(ḋn+1
k+1 − ḋn, vs) +

1
2

(
as(dn+1

k , vs) + as(dn, vs)
)

= −
∫

Γw
0

JAk+1
tn+1

(
σk+1 + ∇σk+1(xf

k+1 − xf
k)

)
F−T

Ak+1
tn+1

n0 · vs da, ∀vs ∈ V s,

1
2
(ḋn+1

k+1 + ḋn) =
1

∆t
(dn+1

k+1 − dn), in Ωs
0. (15)

Remark 4.2. A simpler approximation, see [6, 16], can be obtained by replacing the first order Taylor expan-
sions (11) and (14) by zeroth order expressions. Hence, the interface transpiration condition in (13) reduces to

un+1
k+1 = wn+1

k+1 , on Γw
trans,

and the fluid interface load in (15) to ∫
Γw

k

σk+1n · vs da. (16)

By exploiting the previous considerations we have derived the modified BGS algorithm reported in Figure 3.
The boxes on the right of Figure 3 represents the transpiration loop. Here, instead of updating fluid mesh
and matrices, we just enforce the transpiration velocity wn+1

k+1 −∇un+1
k (xf

k+1 − xf
k) at the interface. Tolerances

TOLin
trans and TOLout

trans define the range of relative interface displacements where the transpiration formulation
will be used. The convergence test of the whole algorithm is always made after two standard BGS iterations,
(2x in the figure), in order to ensure the convergence of the original coupled problem. This also implies that
the algorithm terminates with standard BGS iterations and with an updated mesh.

The convergence test can be done on the relative error

‖dn+1
k+1 − dn+1

k ‖
‖dn+1

k+1‖
< TOL,

in a suitable norm, for example the discrete L∞ norm. The main advantage of the relative error is that it is
adimensional. However, when the structure is almost at rest, this stopping criterion becomes too restrictive.
This is not the case when using adimensional absolute errors. Therefore, we have chosen here the following
expression

‖dn+1
k+1 − dn+1

k ‖
dref

< TOL,

where dref is a reference displacement for the fluid domain. For example, for the study of blood flow in an artery
it could be the mean radius of the vessel.

In order to test whether to activate the transpiration part of the algorithm, the relative error described above
is useless. Indeed, what we have to measure in this case is how much the computational fluid domain is distant
from the actual fluid domain. The transpiration may be adopted only when this distance is small. Hence, the
condition that has to be satisfied is

‖dn+1
k+1 − dn+1

trans‖
Lref

k

< TOLtrans,

where Lref
k is a characteristic length of the fluid domain at the kth iteration. In blood fluid dynamics Lref

k can
be taken as the minimum of ‖R + dn+1

k ‖ over the interface points.
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k+1 , ḋn+1

k+1) by solving compute (dn+1
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k+1) by solving

Convergence test on dn+1
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‖dn+1
k+1 − dn+1

k ‖
Lref

k

< TOLin
trans

the solid subproblem (15)

compute (Ak+1
tn+1

, wn+1
k+1 ) from

the structural state (dn+1
k , ḋn+1

k )

un+1
trans = un+1

k , wn+1
trans = wn+1

k

Ωf
trans = Ωf

k, Γw
trans = Γw

k , dn+1
trans = dn+1

k

condition (12) on Γw
trans

Convergence test on dn+1
k+1

MAXITERtrans or
‖dn+1

k+1 − dn+1
trans‖

Lref
k

> TOLout
trans or

compute (un+1
k+1 , pn+1

k+1) by solvingcompute (un+1
k+1 , pk+1

k+1) by solving
the fluid subproblem in Ωf

k+1 the fluid subproblem (13) in

condition un+1
k+1 = wf

k+1 on Γw
k+1

provided with the kinematic Ωf
trans with the transpiration

Figure 3. Diagram of the proposed algorithm. On the left, the BGS part; on the right, the
transpiration steps.
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Figure 4. The computational domain.

5. Numerical experiment

We have applied the above algorithm to a fluid-structure problem arising in the modeling of blood flow
on large arteries. Namely, a thin elastic tube conveying an incompressible viscous fluid. In order to simplify
the problem we considered the axisymmetric incompressible Navier-Stokes equations without rotation (see [4])
combined with a generalized string model (see [19]) for the structure. The initial domain is a cylinder of radius
R = 0.5 cm and length L = 12 cm (see Fig. 4). The cylinder wall may deform only along the radial direction.
The fluid and the structure are initially at rest.

The weak axisymmetric formulation of the Navier-Stokes equations reads

ρ
d
dt

∫
Ω̂(t)

r u · v + ρ

∫
Ω̂(t)

r ((u − w) · ∇a)u · v + ρ

∫
Ω̂(t)

r diva(w)uv + ρ

∫
Ω̂(t)

wruv+

+ 2µ

∫
Ω̂(t)

rεa(u) : εa(v) + 2µ

∫
Ω̂(t)

1
r
urvr −

∫
Ω̂(t)

rp divav −
∫

Ω̂(t)

pvr

+
∫

Ω̂(t)

rq divau +
∫

Ω̂(t)

qur =
∫

Ω̂(t)

r f · v +
∫

Γ̂N (t)

r g · v,

where

u =
(

ur

uz

)
, w =

(
wr

wz

)
, v =

(
vr

vz

)
, f =

(
fr

fz

)
, g =

(
gr

gz

)
,

and

εa(u) =
1
2

(
∇au + (∇au)T

)
, ∇a =

(
∂r

∂z

)
, divau = ∂rur + ∂zuz,

stand for differential operators in the cylindrical coordinates, Ω̂(t) for the half section of the fluid domain Ωf(t)
at time t and Γ̂N(t) = Γ̂in(t) ∪ Γ̂out(t) the inlet and outlet Neumann boundary sections.

The wall displacement η is modeled by a vibrating string model (see [22]) governed by the equation

ρw h
∂2η

∂t2
− Sz

∂2η

∂z2
+

Eh

(1 − ν2)R2
η = H,

where the forcing term H is equal to (σ(u, p − p0)n) · er (the full contribution of the fluid Cauchy tensor
to the normal stress is taken into account). The external pressure p0 and the initial pressure of the fluid
are both set equal to zero. The wall density is ρw = 1.1 g/cm3, its thickness h = 0.1 cm, Young Modulus
E = 0.75 · 104 dyne/cm2, Poisson coefficient ν = 0.5 and longitudinal stress Sz = 2.5 · 104 dyne.
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Figure 5. Iterations history.

On the outlet we impose σ(u, p)n = 0 and on the inlet one “pressure wave” of a period of 5 ms, i.e.,

σ(u, p)n =




−Pin

2

[
1 − cos

(
2πt

5

)]
n, t ≤ 5 ms,

0, t > 5 ms,

with Pin = 2 · 104 dyne/cm2. The fluid density is ρ = 1 g/cm3 and the viscosity µ = 0.035 poise. We have
adopted axisymmetric P1isoP2/P1 finite elements for the fluid and P1 for the structure. The time is discretized
by a mid-point scheme for the structure and implicit Euler for the fluid equations (see [19]), with a time step
of ∆t = 0.1 ms and a relaxation parameter ω = 0.01.

We have used the simplified form (16) for the forcing term and the following values for the tolerances in the
proposed numerical scheme: TOL = 10−6 for the fixed-point (absolute) convergence test with reference displace-
ment equal to 10% of the initial radius of the artery, TOLin

trans = 0.05, TOLout
trans = 0.1 and MAXITERtrans = 50.

We take as characteristic length of the domain the initial radius of the artery, Lref
k = R.

In Figure 5 we report the number of sub-iterations per time step required by the standard BGS method
compared with the one obtained using the modified BGS scheme with transpiration. The number of BGS
iterations is strongly reduced in the transpiration version. Let us notice that at each time step, the number of
outer iterations is almost equal in the two schemes. However, the computing time is greatly reduced: a gain of
40% over 240 time steps. Figure 6 shows the wall displacement obtained by the standard and accelerated BGS
method at three different time steps. This figure points out that the proposed algorithm does not introduce loss
of accuracy. Indeed, as mentioned above, the converged solution provided by our algorithm is also an iteration
of the standard BGS method. Finally, in Figure 7 we plot the corresponding fluid pressure.

We have also tested the zeroth order formulation with (12) substituted by un+1
k+1 = wn+1

k+1 (see Rem. 4.2). The
CPU time and the number of iterations are of the same order (see Tab. 1). The slight difference in CPU time
derives from the computation of the fluid velocity gradients. The fact that the convergence obtained with the
two alternatives is similar is due to the limited contribution of the velocity gradients for this test case. Indeed,
the additional contribution given by the first order scheme is only 10−7 times the zeroth order term. This hangs
on from the very little variations in the wall displacement between the first two BGS iterations and the following
transpiration ones.
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Figure 6. Wall displacement.

Table 1. CPU time w.r.t. standard BGS or first order transpiration scheme.

MAXITERtrans 50 200
Standard 113min
Order 0 66 min 67 min
Order 1 69 min 72 min

Remark 5.1. The superiority of the first order transpiration condition with respect to the zeroth one can be
easily underlined when the difference between the transpiration domain and the actual fluid domain are more
significant. For example one can modify the algorithm in Figure 3 in order to update the fluid mesh only at the
beginning of the time step or every n time steps (see Fig. 8).

6. Conclusion

In this work we dealt with the numerical solution of fluid-structure interaction problems in which the fluid
density is comparable to that of the structure (for instance in hemodynamics applications). Thus, at each time
step, we had to solve a highly non-linear coupled system, since the fluid domain depends on the unknown struc-
tural motion. We proposed a modified fixed-point algorithm which combines the Block-Gauss-Seidel iterations
with a transpiration formulation. Numerical experiments pointed out the relevant improvement of computing
time with respect to the standard method.

The sensibility analysis of the different parameters (MAXITERtrans, TOL, use of zeroth or first order tran-
spiration formulation) as well as variants of the algorithm and other tests will be reported in a forthcoming
work (see [4]).
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Figure 7. Pressure wave.
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hanced accuracy a the second order transpiration condition is appreciated when the domain is
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