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A QUASI-NEWTON ALGORITHM BASED ON A REDUCED MODEL
FOR FLUID-STRUCTURE INTERACTION PROBLEMS IN BLOOD FLOWS ∗

Jean-Frédéric Gerbeau1 and Marina Vidrascu1

Abstract. We propose a quasi-Newton algorithm for solving fluid-structure interaction problems.
The basic idea of the method is to build an approximate tangent operator which is cost effective and
which takes into account the so-called added mass effect. Various test cases show that the method
allows a significant reduction of the computational effort compared to relaxed fixed point algorithms.
We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model
or with shells in large displacements.

Mathematics Subject Classification. 65M60, 74K25, 76D05, 76Z05.

1. Introduction

This work deals with the numerical simulations of the mechanical interaction between the blood and the
wall of large arteries. This subject is of considerable interest as shown by numerous studies in bioengineering
and applied mathematics (see e.g. [2, 12, 22, 23, 27, 29]). From the numerical viewpoint, it is now currently
accepted that these fluid-structure problems differ from those encountered in other domains (aeroelasticity for
example). The interaction between arterial walls and blood flows belongs to the category of problems for which
the numerical stability strongly depends on the accuracy of the resolution of the fluid-structure coupling at
each time step (see [11]). In other words, a precise energy balance must be obtained at each time step and
consequently the coupling has to be solved by implicit schemes. The resulting nonlinear problem is generally
solved by sub-structuring methods based on fixed point algorithms (see e.g. [5, 11, 15, 20]), direct procedures
are also used in some cases (see [28, 31]). Adaptive relaxation (see [15–17]) allows a considerable improvement
with respect to standard relaxed fixed point methods. Yet, fluid-structure simulations for blood flows are still
very expensive with these methods. In order to decrease the computational cost, it is thus natural to think
of Newton methods. For example, a block-Newton method has been proposed in [13, 14]. In these studies the
action of the tangent operators is approximated by finite differences. In [7], the tangent operator is computed
exactly, but the method has not yet been implemented.

We propose in this article a quasi-Newton method (which has been briefly presented in [9] in 2D). Basically,
the idea of our approach is to approximate the tangent operator of the nonlinear fluid-structure problem by
a much simpler operator. The difficulty is to design a pertinent reduced model (“reduced” being understood
here in the sense of “with a reduced complexity”). Some reduced fluid-structure models are well-known in the
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Figure 1. An example of the reference and current configurations.

context of haemodynamics, for example 1D nonlinear hyperbolic models (see e.g. [8, 21, 30]). Nevertheless, it
is difficult to exploit their results within 3D simulations because of the difference of nature of the variables:
velocity, pressure, displacement in 3D versus flux, mean pressure, section area in 1D. Moreover these 1D models
generally assume a cylindrical geometry, which is too restrictive.

One of the contributions of the present work is to propose a model which uses the same variables as the 3D
fluid-structure problem, which does not require particular geometries and which is a “reasonable” approximation
of the original problem. From a physical viewpoint, it is “a priori reasonable” in the sense that it captures the
added mass effect which is an important mechanical feature of the fluid-structure problems encountered in blood
flows. From a numerical viewpoint, it is “a posteriori reasonable” since it provides a pertinent approximation
of the tangent operator of the nonlinear problem, at least in the test cases which have been considered.

The article is organized as follows. Section 2 is devoted to the general formulation of the fluid-structure
problem. Section 3 describes the reduced model and Section 4 presents the numerical methods used in this
study, in particular our algorithm is presented in Section 4.4. The performance of the algorithms are assessed
in Section 5 where the results obtained in 2D and 3D numerical simulations are described.

2. Formulation of the fluid-structure problem

2.1. The governing continuum equations

In order to tackle each problem in its natural setting, we make the standard choice (see e.g. [6, 11]) to
consider the structure in a pure Lagrangian framework, and the fluid in an Arbitrary Lagrangian Eulerian
(ALE) formulation. More precisely, denoting by ΩF (t) (resp. ΩS(t)) the fluid (resp. structure) domain at
time t, we introduce an application At defined on a reference configuration Ω̂F (resp. Ω̂S) which maps any
point x̂ ∈ Ω̂F (resp. Ω̂S) onto x = At(x̂) ∈ ΩF (t) (resp. ΩS(t)) (Fig. 1). We introduce the following notations:

w =
∂At

∂t
, F =

∂At

∂x̂
, J = detF .

In the structure, At is such that At(x̂) corresponds to the current position of the material point located in x̂
at time t = 0. Thus, in particular, F denotes the deformation gradient and w is the velocity of the structure.
In the fluid, the mapping At is just required to satisfy kinematic constraints on the boundary. In the sequel,
Σ(t) denotes the fluid-structure interface, namely ∂ΩF (t)∩∂ΩS(t). We denote by ΓF (t) the portion of the fluid
boundary that is not shared with the boundary of structure, ΓF (t) = ∂ΩF (t)\Σ(t). The boundary ∂Ω̂S of the
structure is partitioned in Γ̂D, Γ̂N and Σ̂. We denote by n the outward normal on the fluid boundary, and
by nS the outward normal on the structure boundary. We denote by u the velocity and p the pressure in the
fluid, and by d (resp. w) the displacement (resp. the velocity) in the structure.
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Fluid problem
The equations for the fluid problem are:




ρF

(
∂u

∂t

∣∣∣
x̂

+ (u − w) · ∇u

)
= div (2µε(u)) − ∇p, in ΩF (t),

div u = 0, in ΩF (t),

u(x, t) =
∂d

∂t
(A−1

t (x), t), on Σ(t),
σF · n = g, on ΓF (t),

(1)

where ε(u) = (∇u + ∇uT )/2 is the strain rate tensor, σF = −p1 + 2µε(u) the Cauchy stress tensor in the
fluid, ρF is the density of the fluid and µ its dynamic viscosity.

Structure problem
The equation of the structure can be written as:




ρS
∂2d

∂t2
− div x̂(T̂ ) = 0 in Ω̂S ,

T̂ · n̂S = Jσ̂F · F−T n̂S on Σ̂,

d = 0 on Γ̂D,

T̂ · n̂S = 0 on Γ̂N ,

(2)

where T̂ is the first Piola-Kirchoff stress tensor. The structure is supposed to be an hyperelastic material, thus
the stress tensor T̂ is given by the derivative of an internal stored energy function W(F ) (see [10]). The choice
of the internal stored energy will not change the setting of the fluid-structure problem. It will be then possible
to choose the most appropriate model depending on the simulation. The actual structure models which have
been used for this work will be briefly described in Section 2.3.

2.2. Weak formulation

We introduce the following function spaces:

V̂ = (H1(Ω̂F ))3, V = {v̂ ◦ A−1
t , v̂ ∈ V̂ },

V̂0 = {v̂ ∈ V̂ , v̂|Σ̂ = 0}, V0 = {v̂ ◦ A−1
t , v̂ ∈ V̂0},

M̂ = L2(Ω̂F ), M = {q̂ ◦ A−1
t , q̂ ∈ M̂},

X = {d ∈ (H1(Ω̂S))3, d|Γ̂D
= 0}.

The variational fluid problem reads: find (u(t), p(t)) ∈ V × M such that for all (v, q) ∈ V0 × M ,



d
dt

∫
ΩF (t)

ρF u · v +
∫

ΩF (t)

ρF (u − w) · ∇u · v

−
∫

ΩF (t)

ρF u · v div w −
∫

ΩF (t)

p div v +
∫

ΩF (t)

2µε(u) · ε(v) =
∫

ΓF (t)

g · v dσ,∫
ΩF (t)

q div u = 0,

(3)

and ∫ t

0

u|Σ(s) ds = d|Σ̂(t) − d|Σ̂(0). (4)

In the fluid domain, we simply define w by an harmonic extension of the boundary velocity:

−�w = 0, (5)
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with
w|Σ(t) = u|Σ(t). (6)

For the structure, we look for d(t) ∈ X , such that for all ϕ̂ ∈ X ,
∫

Ω̂S

ρS
∂2d

∂t2
· ϕ̂ dx̂ + aS(d, ϕ̂) =< fΣ, ϕ̂ >, (7)

with
< fΣ, ϕ̂ >=

∫
Σ(t)

(pn − 2µε(u) · n) · ϕ dσ. (8)

The operator aS is in general nonlinear and can be written for example in terms of the free energy function (see
e.g. [10]).

2.3. The structural models

2.3.1. A shell model in large displacements

A general structural model in blood flows for complex realistic geometries has to be three-dimensional. As
the wall of the blood vessels is thin, it is convenient to use shell elements. The model used hereafter can handle
large displacements, the elements used are MITC4 “General Shell Elements” (see [1, 4]).

A major interest of the “General Shell Elements” is that they are based on a general 3D variational formu-
lation. In particular, standard 3D constitutive laws are used. The transverse stress is null and a kinematical
constraint makes this model compatible with a Reissner-Mindlin shell model. Hereafter we will use a generalized
Hooke law for which the internal stored energy on the non-deformed configuration is given by:

W(d) =
1
2

∫
Ω̂S

[
Cαβλµeαβ(d)eλµ(d) + Dαλeαz(d)eλz(d)

]
, (9)

where e = (eij) denotes the nonlinear Green-Lagrange deformation tensor. In equation (9), the Greek symbols
varying from 1 to 2 are used for the tangential components to the surface, and z is the transverse direction. In
addition we have:

Cαβλµ =
E

2(1 + ν)

(
gαλgβµ + gαµgβλ +

2ν

1 − ν
gαβgλµ

)
, (10)

Dαλ =
8E

t2(1 + ν)
gαλ, (11)

where E is the Young modulus, ν the Poisson ratio and gαλ the contravariant components of the metric tensor.
The finite element used in our computations is the MITC4 element. The geometry is fully defined by the

position of the nodes x(i) on the mid-surface, the unit outward normal a
(i)
3 at the surface in each node and the

corresponding thickness t(i) (see Fig. 2). The position of any point in the structure is given by:

x =
∑

i

λi(r, s)
(

x(i) + z
t(i)

2
a

(i)
3

)
, (12)

where λi(r, s) are the standard Q1 Lagrange shape functions in 2D. The displacement of this point is then
given by:

d =
∑

i

λi(r, s)
(

d(i) + z
t(i)

2
η(i)

)
, (13)

where d(i) is the displacement of the node i, while η(i) corresponds to the rotation of the unit vector a
(i)
3 and

verifies, for the small displacements, the constraint:

η(i) · a(i)
3 = 0.



A QUASI-NEWTON ALGORITHM FOR FLUID-STRUCTURE INTERACTION PROBLEMS 635

r

s

z

t

Figure 2. General shell element (Q1) with local coordinates system.

The MITC4 finite element has thus 5 degrees of freedom per node (the three components of the displacement and
the two parameters which define the variation of the unit vector). This element is robust and does not appear
significantly affected by locking (see [4]). This desirable feature is obtained by using a particular interpolation
strategy for the various components of the strain tensor (we refer to [1] for further details).

2.3.2. A generalized string model

In order to test the coupling algorithms, it will be convenient to use also a simplified structural model which is
derived from the theory of linear elasticity, for a cylindrical tube with small thickness, under the assumptions of
membrane deformations. This model has been used in many works devoted to blood flows (see for example [25]).
The reference configuration is a cylindrical surface of axis 0z and whose base is a circle of radius R0, the radial
displacement dr = dr(z, t) is given by

ρwh
∂2dr

∂t2
− kGh

∂2dr

∂z2
+

Eh

1 − ν2

dr

R2
0

− γ
∂3dr

∂z2∂t
= fΣ, (14)

where h is the wall thickness, k is the so-called Timoshenko shear correction factor, G the shear modulus, E
the Young modulus, ν the Poisson ratio, ρw the wall density and γ a viscoelastic parameter. The longitudinal
and angular displacement are neglected. This simple model will be used in Section 5 for the 2D simulations.

3. Formulation of a reduced model

3.1. General case

The reduced fluid model that we now present relies on the following basic statement: an important mechanism
in fluid-structure problems in arteries is the added mass effect, and this mechanism can be reasonably captured
with a simple linear inviscid model for the fluid. More precisely, we suppose that fluid domain Ω̄F is fixed, and
that the pressure and the velocity satisfy:




ρF ∂tu + ∇p = 0 in Ω̄F ,
u = ∂td on Σ̄,

−pn = g on Γ̄F .

Eliminating u, the simplified fluid problem becomes:




−� p = 0 in Ω̄F ,
∂p

∂n
= −ρF

∂2d

∂t2
· n on Σ̄,

p = −g · n on Γ̄F .

(15)
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This simplified model is not well-suited for the direct resolution of the fluid-structure problems that we consider
here. Indeed, in blood flows, the viscous and the nonlinear advection effects are known to be important and
the domain experiences large displacements. Nevertheless, we will show in the sequel that (15) can be used to
evaluate efficiently an approximate tangent operator for the genuine fluid-structure problem.

3.2. The special case of the generalized string model

For the reader who is not familiar with the notion of added mass, we provide the equation describing the
interaction between the simplified fluid equation described above and the generalized string model (14). We first
introduce the following notation: let q be given on Σ̄, we denote by MAq the trace on Σ̄ of p, the solution to:




−� p = 0 in Ω̄F ,
∂p

∂n
= q on Σ̄,

p = −g · n on Γ̄F ,

where g is the same as in (3). Note that MA is the inverse of the standard Steklov-Poincaré operator (see [26]
for example).

In the simplified model, the fluid being inviscid, the force acting on the structure is solely due to the
pressure. Moreover, taking into account the geometrical assumptions made in the definition of the generalized
string model, it is clear that d · n = dr. Thus, we have:

fΣ = pΣ = −ρFMA
∂2dr

∂t2
·

Finally, equations (14) and (15) give:

(ρwh + ρFMA)
∂2dr

∂t2
− kGh

∂2dr

∂z2
+

Eh

1 − ν2

dr

R2
0

− γ
∂3dr

∂z2∂t
= 0. (16)

Under this form, it clearly appears that the fluid acts as an “added mass” on the structure. In blood flows,
this effect is important since the density of the wall and the blood are close. This explains in particular the
necessity of implicit coupling algorithms for such problems. A complete discussion on the mass added effect in
more general cases is given in [18].

Remark 3.1. Equation (16) constitutes a 1D fluid-structure model, which, to the best of our knowledge, has
never been considered in the context of haemodynamics. Compared to the standard 1D models in blood flows,
dissipation by viscous effect in the fluid and nonlinearity have been lost. But here, the behaviour of the structure
is described more precisely than with the algebraic relations between the area of a section and the pressure
commonly used in standard 1D models.

4. Numerical methods

4.1. Time-stepping algorithm

Suppose that the displacement dn+1 of the structure is known at time tn+1. Then, the velocity wn+1 of the
fluid domain is computed by: 



∫
Ωn+1

F

∇wn+1 · ∇v = 0,

wn+1|Σn+1 =
dn+1|Σ̂ − dn|Σ̂

δt
,

(17)
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which is a variational formulation of equations (5) and (6). Note that it is also possible to compute the integrals
in (17) in the reference domain. The velocity un+1 and the pressure pn+1 are obtained by solving (3) via an
implicit Euler scheme:




1
δt

∫
Ωn+1

F

ρF un+1 · v +
∫

Ωn+1
F

ρF (un+1 − wn+1) · ∇un+1 · v −∫
Ωn+1

F

ρF un+1 · v div wn+1 −
∫

Ωn+1
F

p divv +∫
Ωn+1

F

2µε(un+1) · ε(v) =
1
δt

∫
Ωn

F

ρF un · v +
∫

Γn+1
F

g · v,∫
Ωn+1

F

qdiv un+1 = 0,

un+1|Σn+1 =
dn+1|Σ̂ − dn|Σ̂

δt
,

(18)

the domain Ωn+1
F being defined by:

Ωn+1
F = Ωn

F + δtwn+1.

Next, the forcing term fn+1
Σ is deduced by computing the variational residual of the fluid problem on the fluid-

structure interface (cf. [11]). In the sequel, denoting by dΣ the displacement of the fluid-structure interface, all
this step will be concisely written as:

fn+1
Σ = F(dn+1

Σ ). (19)
Now, suppose that the forcing term fn+1

Σ is known at time tn+1. Then, the displacement dn+1 and the
velocity wn+1 of the structure are computed by solving (7) with a mid-point scheme:

∫
Ω̂S

ρS
wn+1 − wn

δt
· ϕ̂ dx̂ +

1
2
aS(dn, ϕ̂) +

1
2
aS(dn+1, ϕ̂) = < fn+1

Σ , ϕ̂ >,

dn+1 − dn

δt
=

wn+1 + wn

2
,

from which is deduced in particular the displacement dn+1
Σ of the fluid-structure interface. This step will be

formally summarized by the formula:
dn+1

Σ = S(fn+1
Σ ). (20)

With these notations, the fluid-structure coupling is achieved at time tn+1 by solving the following nonlinear
problem on the interface:

dn+1
Σ = S ◦ F(dn+1

Σ ). (21)
In many practical situations (e.g. aeroelasticity), it is not necessary to solve (21), and much time-saving algo-
rithms may be used (cf. [24]). Nevertheless, in fluid-structure problems arising in blood flows, it seems that (21)
must be solved very accurately at each time step in order to ensure the overall stability of the simulation. We
are now going to present several approaches to solve (21).

4.2. Fixed point strategy

A natural way to solve (21) is to use a fixed point algorithm. For this choice, numerical experiments show
that, in the cases of interest, such a method fails if an appropriate relaxation strategy is not adopted. The
algorithms usually proposed in the literature have the following form:

i) Prediction of the position of the interface:

dn+1
Σ,0 = dn

Σ +
3δt

2
wn

Σ − δt

2
wn−1

Σ , k = 0.
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ii) Solution of the coupled fluid-structure problem:

d̃
n+1

Σ,k+1 = S ◦ F(dn+1
Σ,k ).

iii) Correction of the position of the interface:

dn+1
Σ,k+1 = ωkd̃

n+1

Σ,k+1 + (1 − ωk)dn+1
Σ,k .

iv) While a stopping test is not satisfied, go to (ii).
The relaxation parameter may be chosen either constant over the whole simulation [20], or dependent either
on the time step n [19] or on the sub-step k. In this last case, let us mention two possibilities. The first one
(proposed in [11] and also used in [15])) is a domain decomposition approach which consists in reformulating
the fixed point algorithm as a preconditioned steepest descent method applied to an interface problem involving
the Steklov-Poincaré operators of the fluid and the structure. The second possibility suggested in [15,17], is to
use a variant of the Aitken acceleration formula, which can be for example written as:

ωk =
(dk − dk−1) · (dk − S ◦ F(dk) − dk−1 + S ◦ F(dk−1))

|dk − S ◦ F(dk) − dk−1 + S ◦ F(dk−1)|2 · (22)

Empirically, we observed that the above cited variant of adaptive relaxation strategies give similar results. As
noticed in [15], the Aitken method gives in general slightly better results. Therefore in the sequel, we will
compare the results obtained with the new algorithm to those obtained with the Aitken method.

Remark 4.1. In the practical evaluation of F(dn+1
Σ,k ), the equations (17) and (18) are in fact solved sequentially:

(17) is solved on Ωn+1
F,k , which allows to compute the domain Ωn+1

F,k+1 on which (18) is then solved.

4.3. Quasi-Newton algorithms

Another possible strategy to solve (21) is to use a quasi-Newton method. Denoting by R the operator
I − S ◦ F , a quasi-Newton algorithm requires the following steps:

i) Prediction of the position of the interface:

dn+1
Σ,0 = dn

Σ +
3δt

2
wn

Σ − δt

2
wn−1

Σ , k = 0.

ii) Solution of an approximate tangent problem:

R̃′(dn+1
Σ,k )δdΣ,k+1 = −R(dn+1

Σ,k ).

iii) Correction of the position of the interface:

dn+1
Σ,k+1 = dn+1

Σ,k + λkδdΣ,k+1.

iv) While a stopping test is not true, go to (ii),
where R̃′ is an approximation of the tangent operator, and λk is a coefficient determined by a suitable line
search algorithm.

One standard possibility (see e.g. [3]) is to perform an approximate solution of the linear problem of step (ii)
with an iterative method (GMRES for example) and, inside this iterative method, evaluate each matrix-vector
product R̃′(dn+1

Σ,k )z using a finite difference approximation of first order:

R̃′(dn+1
Σ,k )z ≈ R(dn+1

Σ,k + αz) −R(dn+1
Σ,k )

α
, (23)
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or second order:

R̃′(dn+1
Σ,k )z ≈ R(dn+1

Σ,k + αz) −R(dn+1
Σ,k − αz)

2α
· (24)

We will briefly discuss this approach in Remark 5.1. An alternative to this algorithm, proposed in next section,
is to approximate the tangent operator using the simple fluid model presented in Section 3.

4.4. The reduced model based quasi-Newton algorithm

As already mentioned, the simplified fluid model presented in Section 3.1 is linear. Thus, its tangent operator
can be straightforwardly evaluated. Note that independently of the model used, the tangent operator of the
structure equations is always available: if the model is linear (Sect. 2.3.2), this operator is straightforward, and
if the structure is nonlinear (Sect. 2.3.1), its tangent operator needs to be itself computed for the resolution
of the structure problem. Thus, the tangent operator of the fluid-structure problem using the fluid model of
Section 3.1 and one of the structure models of Section 2.3, can be easily and efficiently evaluated. This is the
basic idea of the method that we propose. With the same formal notations as before, the step (ii) in Section 4.3
becomes:

R̃′(dn+1
Σ,k )δdΣ,k+1 = δdΣ,k+1 − S′(F(dn+1

Σ,k ))F̃ ′(dn+1
Σ,k )δdΣ,k+1,

where F̃ denotes the reduced fluid model of Section 3.1. To be precise, we now describe our algorithm in details.

Suppose that Ωn
F , un, pn, dn and wn are known at time tn, we compute these variables at time tn+1 as

follows:
1. Prediction of the position of the interface:

dn+1
Σ,0 = dn

Σ +
3δt

2
wn

Σ − δt

2
wn−1

Σ ,

set k = 0.
2. Evaluation of the residual Rk of the genuine fluid-structure problem:

2.1. Compute wn+1
k+1 in the fluid by solving (17) (where dn+1 is of course replaced by dn+1

k ).
2.2. Move the fluid mesh: Ωn+1

F,k+1 = Ωn
F + δtwn+1

k+1 .
2.3. Compute (un+1

k+1 , pn+1
k+1) by solving (18) in Ωn+1

F,k+1. Evaluate the variational residual of the fluid
problem to obtain the force fn+1

Σ,k+1 acting on the structure.
2.4. Compute (dn+1

k+1 , wn+1
k+1) by solving the structure problem with the force fn+1

Σ,k+1. For a nonlinear
structure, this step is performed with a Newton-Raphson algorithm. We denote by DKn+1

k+1 the
tangent operator of the structure problem which is computed during this step.

2.5. The nonlinear residual is: Rk = dn+1
Σ,k − dn+1

Σ,k+1.
3. If

|dn+1
Σ,k − dn+1

Σ,k+1|
|dref | ≤ ε,

go to step 4. Else:
3.1. Compute δdΣ,k+1 by solving the approximate tangent problem with GMRES:

R′δdΣ,k+1 = −Rk.

The matrix R′ is not explicitly computed. The evaluation of the product of R′ by a vector z (one
time per GMRES iteration) is performed as follows:
(i) Solve: 


� δp = 0 in Ωn+1

k+1 ,
∂δp

∂n
= − ρF

δt2
z · n on Σn+1

k+1 ,

δp = 0 on Γn+1
F,k+1.
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(ii) Define δf by

< δf , ϕ̂ >=
∫

Σn+1
k+1

δpn · ϕ dσ.

(iii) Solve:
DKn+1

k+1δz = δf .

(iv) The product R′ by z is given by z − δz.
The GMRES iterations are stopped as soon as the norm of the linear residual is lower than εlin

times the norm of the nonlinear residual.
3.2. Compute the new displacement of the interface:

dn+1
Σ,k+1 = dn+1

Σ,k + λkδdΣ,k+1,

where λk is computed, if necessary (i.e. if the increment with λk = 1 does not decrease the norm
of the residual), by a line search strategy.

3.3. Go to step 2.
4. Go to next time step with Ωn+1

F = Ωn+1
F,k+1, un+1 = un+1

k+1 , pn+1 = pn+1
k+1 , dn+1 = dn+1

k+1 and wn+1 = wn+1
k+1 .

Remark 4.2. In all the test cases that we performed, the line search algorithm was in fact never activated in
step 3.2 (in other words, λk = 1 always gave a reduction of the residual). This is highly desirable since each
iteration of line search requires the expensive evaluation of the fluid-structure residual. This fact confirms the
pertinence of the approximate tangent operator that we propose.

Remark 4.3. If formula (23) is used to evaluate the matrix-vector product inside the linear iterative solver
(GMRES), then the steps 3.1 (i) to (iv) are replaced by one evaluation of the complete fluid-structure problem,
namely one resolution of the Navier-Stokes equation and one resolution of the nonlinear structure problem.
If formula (24) is used, then two evaluations of the complete fluid-structure problem are necessary. In our
approach, the matrix-vector product only requires the resolution of a scalar Poisson problem (step 3.1 (i))
and a linearized structure problem (step 3.1 (iii)). Moreover, since we use a direct solver for the structure
equation, the linearized structure problem was already factorized during step 2.4. The resolution 3.1 (iii) is a
forward-backward substitution and is therefore extremely cheap.

Remark 4.4. In step 3, |dref | denotes a given reference displacement. Other stopping criteria may be consid-
ered, for example replace dref by dn+1

Σ,k+1, or involve also the velocity. In all the simulations of blood flows, we
use the following values: ε = 10−6, |dref | = 1 and εlin = 10−3. The value of εlin is almost optimal in the sense
that a bigger value leads to divergence whereas a lower one did not improve the convergence of the nonlinear
iterations. The value ε could be a little bit bigger, e.g. about 10−5, but for ε ≈ 10−4 instabilities appear. Notice
that for a large value of ε the coupled fluid-structure problem is in fact not solved in an implicit way.

5. Numerical results

5.1. A benchmark test

This first test case is not related to blood flows: it was proposed in [15] and is used here to validate our
codes. A fluid fills a square cavity with a flexible bottom. An oscillating velocity in imposed on the top of the
cavity (Fig. 3). The length of the sides of the cavity is 1 and two apertures of length 0.1 are present at the top
of the left and right sides. Homogeneous Neumann boundary conditions are imposed on these apertures. The
properties of the fluid are ρF = 1, µ = 0.01, and those of the structure are ρS = 500, E = 250, h = 0.002. The
pulsation of the velocity on the top is ω = 2π/5 and the time step is δt = 10−1. In the original test case of [15],
the fluid is 2D and the structure 1D. Here, we perform a 3D simulation that mimics the 2D configuration,
the bottom being represented with one layer of nonlinear shell elements. The elevation of three points of the
bottom (initial abscissa 0.25, 0.5 and 0.75) are represented in Figure 4. The results are in very good agreements
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Figure 3. Oscillating fluid in a cavity with an elastic bottom.
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Figure 4. Elevation of three points of the flexible bottom.

with those presented in [15]. Note that in this situation, the convergence is achieved with only 2 or 3 Aitken
iterations at each time step. Quasi-Newton methods are therefore useless is this case.

5.2. Pressure wave in 2D

We now present the result obtained on the 2D benchmark proposed in [8]: the domain is a rectangular
(H = 1 cm, L = 6 cm). The structure is described by the generalized string model (Sect. 2.3.2). The fluid is
initially at rest and an over pressure of 2 ·104 dynes/cm2 has been imposed at the inlet for 0.005 seconds (Fig. 5).
For the physical parameters, we chose values that are realistic in the context of blood flow: µ = 0.035 poise,
ρF = 1 g/cm3, E = 0.75 × 106 dynes/cm2, ν = 0.5, ρS = 1.1 g/cm3 and h = 0.1 cm. A propagation of the
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Figure 5. Schematic representation the pressure wave test case.

Figure 6. Propagation of a pressure wave in a portion of artery (2D), t = 6, 10 and 14 ms.
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Figure 7. Pressure wave in 2D. Number of iterations.
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pressure wave is observed. For example, Figure 6 shows the pressure at time t = 6, 10 and 14 ms. The obtained
results are very similar to those presented in [8]. In Figure 7 are indicated the number of iterations required
at each time step to achieve the convergence in problem (21). With a fixed relaxation parameter, fitted by
hand, the mean number of iterations is more than one hundred per time step. With the Aitken acceleration
method this number is about 24.1 whereas it is about 6.1 with the quasi-Newton algorithm of Section 4.4. In
our implementation, the quasi-Newton algorithm was 2.7 times faster than the Aitken method (and more than
10 times faster than the fixed point method with a relaxation parameter fitted by hand).

Remark 5.1. We have also tested the method consisting in evaluating the approximate tangent operator by
formula (23) or (24). We did not investigate extensively this approach, so we just make two remarks. First, the
choice of the “small” parameter α is – as expected – very sensitive. Second, even when α is perfectly tuned and
everything works fine, this approach is still expensive: for example suppose that the convergence is achieved in
only 3 Newton iterations, and suppose that each of them requires only 8 GMRES iterations (which corresponds
roughly to what has been observed), this yields at least 24 evaluations of the complete fluid-structure operator.
Therefore, even in this optimistic situation, we obtain almost the same cost as with the Aitken algorithm.

5.3. Pressure wave in 3D

We now consider a 3D version of the previous test case. The parameters are the same as those used in [8]: the
domain is a cylinder of radius R0 = 0.5 cm and length L = 5 cm. The structure is a nonlinear shell (Sect. 2.3.1).
The fluid is initially at rest and an over pressure of 1.3332×104 dynes/cm2 (10 mmHg) has been imposed at the
inlet for 0.005 seconds. The physical parameters are: µ = 0.03 poise, ρF = 1 g/cm3, E = 3 × 106 dynes/cm2,
ν = 0.3, ρS = 1.2 g/cm3 and h = 0.1 cm. Again, a propagation of the pressure wave is observed (Fig. 8), and
the results are similar to those of [8].

With the Aitken acceleration method, the mean number of iterations per time step is about 33.9 whereas it
is about 8.9 with the quasi-Newton algorithm (Fig. 9). In our implementation, the quasi-Newton algorithm was
2.4 times faster than the Aitken method.

The same experiment has been performed in a bended tube. The results shown in Figure 10 have been
obtained with the quasi-Newton algorithm (with about the same number of iterations as in the previous test
case). In this configuration, the fixed point algorithm with Aitken acceleration failed to converge.

For the sake of completeness, let us indicate that each structure resolution in the experiments presented in
this section requires about three Newton-Raphson iterations.

6. Conclusion

We have presented a method to solve the coupling of the incompressible Navier-Stokes equations on a moving
domain with either a generalized wave equation (2D simulations) or a nonlinear shell model (3D simulations).
Our algorithm is a quasi-Newton method in which the approximation of the tangent operator is governed by
physical considerations. This method offers a possible alternative to the classical relaxed fixed point algorithms
commonly used in fluid-structure problems. In the test cases that we have considered it allows a reduction of
the CPU time by a factor 2 or 3 compared to the most efficient methods that we know, and by a factor 10
compared to fixed point methods with constant relaxation. Moreover, we have presented a simulation where our
algorithm converges and the traditional methods fail. Our approach seems therefore to improve both efficiency
and robustness. The results are very promissing, but this algorithm still needs to be validated in other situations,
in particular with pulsatile flows, more realistic geometries, and larger displacements.
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Figure 8. Propagation of a pressure wave in a portion of cylinder (3D), t = 4, 10 and 14 ms
(the displacements are magnified by a factor 10).
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Figure 9. Pressure wave in 3D. Number of iterations.
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Figure 10. Propagation of a pressure wave in a bended tube, t = 1.2, 7.2, 13.2 and 19.2 ms
(the displacements are magnified by a factor 10).
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