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A THREE DIMENSIONAL FINITE ELEMENT METHOD FOR BIOLOGICAL
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Abstract. A hyperelastic constitutive law, for use in anatomically accurate finite element models of
living structures, is suggested for the passive and the active mechanical properties of incompressible
biological tissues. This law considers the passive and active states as a same hyperelastic continuum
medium, and uses an activation function in order to describe the whole contraction phase. The vari-
ational and the FE formulations are also presented, and the FE code has been validated and applied
to describe the biomechanical behavior of a thick-walled anisotropic cylinder under different active
loading conditions.
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1. Introduction

Several numerical models, using finite element analysis, were proposed to simulate the heart continuously
during the phases of the cardiac cycle [3, 9, 16, 18]. In these studies, two approaches were used to model the
living tissue. In both of them, the end-diastolic behavior of the muscle was derived from a passive strain-
energy function expressed per unit of volume of the passive zero-stress state. Additionally, an active stress
tensor was introduced to simulate the contraction of the biological tissue. The main limitation of the first
modeling approach is that no active strain-energy function was used to obtain the active stress tensor, which
suggests that the activated living tissue is not viewed as a hyperelastic material. In the second approach an
active strain-energy function is introduced but an additional intuitive kinematics transformation of the zero-
stress state is needed to derive the unloaded active state. This last point corresponds to the main limitation
of this second modeling approach. Nevertheless Lin and Yin [7] proposed a continuum approach without any
additional kinematics transformation but only for two specific states of the cardiac cycle (passive and maximal
active states). Therefore, the purpose of the present work is to propose a new method to model the material law
of the living tissue, which avoids the previous limitations and allows to describe continuously the whole cardiac
cycle. In addition, the finite element formulation with the proposed law was tested by considering simple cases,
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Figure 1. Description of the active rheology approach.

which are rectangular samples under different boundary conditions, as well as a finite thick-walled cylinder
submitted to an internal pressure.

2. Mechanical model and finite element formulation

2.1. Constitutive law for the active biological tissue

To be consistent with our mathematical formulation, the letter Φ is used for non elastic gradient tensors and
the letter F is used for elastic gradient tensors. The activation of the muscle fibers changes the properties of
the material and at the same time contracts the muscle itself. To have a continuous elastic description during
the activation of the tissue, we use an approach similar to the one proposed by Ohayon and Chadwick [12],
Taber [16], Lin and Yin [7]. From its passive zero-stress state P , the activation of the muscle fibers is modeled
by two transformations (Fig. 1). The first one (from state P to virtual state A0) changes the material properties
without changing the geometry, and the second one (from A0 to A) contracts the muscle without changing the
properties of the material. Thus, the former is not an elastic deformation and is described by the gradient
tensor ΦPA0 = I where I is the identity matrix. In this first transformation, only the strain energy function
changing the rheology is modified using a time-dependent activation function β(t) (0 ≤ β(t) ≤ 1). The second
transformation is an elastic deformation caused by the active tension delivered by the fibers and is described by
the gradient tensor FA0A. Finally, external loads are applied to state A deforming the body through FAC into C.
Thus the global transformation from state P to state C is a non elastic transformation (ΦPC = FA0CΦPA0),
but can be treated mathematically as an elastic one because ΦPC = FA0C . The change of the material
properties during the activation is described by a time-dependent strain-energy function per unit volume of
state P noted W (EPH , t):

W (EPH , t) = Wpas(EPH) + β(t)W f
act(EPH), (1)

where EPH is the Green strain tensor at an arbitrary stateH calculated from the zero strain state P (the stateH
could be one of the states A0, A or C shown in Fig. 1), Wpas represents the contribution of the surrounding
collagen matrix and of the passive fiber components, W f

act arises from the active component of the embedded
muscle fibers. The last term of the right hand side of the equation gives the variation of the mechanical muscle
fibers properties during the activation. We treat the medium as a homogeneous, incompressible and hyperelastic
material transversely isotropic with respect to the local muscle fiber direction. This direction is characterized in
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Figure 2. Coordinate systems (adapted from Costa et al. [5]).

an arbitrary state H by the unit vector fH . To incorporate the active contraction, an active fiber stress T (0) is
applied in the deformed fiber direction fC , defined by fC = ΦPCfP /‖ ΦPCfP ‖. Hence the Cauchy stress tensor
in state C (noted τC) is given by

τC = −pCI + ΦPC
∂W (EPC , t)

∂EPC
ΦT

PC + β(t)T (0)fC ⊗ fC , (2)

where pC is the Lagrangian multiplier resulting of the incompressibility of the material, equivalent to an internal
pressure, and the symbol ⊗ denotes the tensor product. Notice that the activation function β(t) allows us to
describe continuously the phases of the cardiac cycle.

2.2. Variational formulation

The undeformed body state P consists of a volume V bounded by a closed surface A, and the deformed
body state is, as before, noted C. The corresponding position vectors, in cartesian basis unit vectors (Fig. 2),
are respectively R = Y ReR and r = yrer. However, we write the equations with suitable curvilinear systems
of world coordinates noted ΘA in the reference configuration (state P ) and θα in the deformed configuration
(state C). In this paper we use the same conventional notations (Tab. 1) for vectors, tensors and coordinates
systems as Costa et al. [5], where:

– Capital letters are used for coordinates and indices of tensor components associated with state P , and
lower case letters are related to state C.

– G and g are the basis vectors in states P and C, respectively, for which parenthetical superscript (always
a small letter) indicates the associated coordinate system (for example G(x)

I = ∂R/∂XI = R(x)
,I and

g(x)
i = ∂r/∂xi = r(x)

,i ).
Moreover the usual summation convention for repeated indices is used. The Lagrangian formulation of the
virtual works principle is given by [5, 8]

∫
V

P IJΦ·α
J ∇I(δuα) dV =

∫
V

ρ(bα − γα)δuα dV +
∫
A2

s.δu dA, (3)
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Table 1. Notations for the coordinate systems used to formulate the finite element method
(adapted from Costa et al. [5]). (I) Rectangular cartesian reference coordinates, (II) curvi-
linear world coordinates, (III) normalized finite element coordinate, (IV) locally orthonormal
body/fiber coordinates (adapted from Costa et al. [5]).

State Indices Coord.
Covariant Contravariant

Metric tensors
basis vectors basis vectors

P R,S Y R eR eR δRS δRS

(I)
C r, s yr er er δrs δrs

P A, B ΘA G
(θ)
A =

∂R

∂ΘA
G(θ)A G

(θ)
AB G(θ)AB

(II)

C α, β θα g(θ)
α =

∂r

∂θα
g(θ)α g

(θ)
αβ g(θ)αβ

(III) P K, L ξK G
(ξ)
K =

∂R

∂ξK
G(ξ)K G

(ξ)
KL G(ξ)KL

P I, J XI G
(x)
I =

∂R

∂XI
G(x)I G

(x)
IJ = δIJ G(x)IJ = δIJ

(IV)

C g
(x)
I =

∂r

∂XI
g(x)I g

(x)
IJ g(x)IJ

where P IJ are the components of the second Piola-Kirchhoff stress tensor P referred to the basis tensor
G(x)

I ⊗ G(x)
J , Φ·α

I = ∂θα/∂XI are the components of the gradient tensor ΦPC in the basis tensor g(θ)
α ⊗ G(x)I ,

δu = δuαg(θ)α is an arbitrary admissible displacement vector, ∇I(δuα) = ∂δuα/∂X
I − g(θ)

α,I · g(θ)βδuβ are the
components of the covariant differentiation vector δu in the basis vectors g(θ)α (i.e. ∇I(δu) = ∇I(δuα)g(θ)α).
The previous differentiation is done with respect to the locally orthonormal body coordinates (XI , I = 1, 2, 3)
of which X1 coincides with the local muscle fiber direction. The material density in the undeformed body
state P is ρ, b = bαg(θ)

α is the body force vector per unit mass, γ = γαg(θ)
α is the acceleration vector, s is the

surface traction per unit area of A, and A2 is the part of A not subject to displacement boundary conditions.
The Lagrangian formulation for incompressibility is given by∫

V

(
det g(x)

IJ − 1
)
p∗ dV = 0, (4)

where the metric tensor g(x)
IJ is defined in Table 1, and p∗ is an arbitrary admissible pressure. Equations ((3)-(4))

represent the variational formulation of a system of nonlinear partial differential equations. For an incompressible
medium (detΦPC = 1), the relation between the second Piola-Kirchoff stress tensor P and the Cauchy stress
tensor τC is [8]

P = Φ−1
PC . τC . (Φ−1

PC)T . (5)
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We give a complete expression of the components of P in Appendix A. The surface traction per unit of
undeformed area of A, s = sαg(θ)

α , is a known boundary loading which could be written using physical Cauchy
stress (see Appendix B).

2.3. Finite element approximation

Throughout this paper we use a three dimensional finite element with Lagrange trilinear interpolation for
the displacements and uniform pressure to compute an approximate solution of equations ((3)-(4)). This
element is commonly used and is relevant for the finite element approximation of this type of problem where an
incompressibility constraint must be satisfied [4, 6, 11, 14]. We neglect the acceleration and body forces (b = 0,
γ = 0).

Let (ξK) be the Lagrangian normalized finite element coordinates (Fig. 2), the deformed geometric coordi-
nates θα in element e are interpolated as

θα =
8∑

n(e)=1

ψn(e)(ξ1, ξ2, ξ3) θα
n(e), (6)

where ψn(e) is the basis function associated with the local node n(e) and θα
n(e) is the α-coordinate of the local

node n of element e. Let Ωn(e)
∆ be the connectivity matrix defined by

Ωn(e)
∆ =

{
1 if ∆(n(e), e) = ∆,
0 otherwise (7)

where ∆(p, e) is the global node corresponding with the local node p of the element e. Then the FE approxi-
mation of equations ((3)-(4)) is

∑
e

8∑
n(e)=1

Ωn(e)
∆

∫
Ve

P IJ
[
Φ·α

J (ψn(e)),I − Φ·β
J Γα

β I ψn(e)

]
dV =

∑
e

8∑
n(e)=1

Ωn(e)
∆

∫
A2e

sα ψn(e) dA, (8)

∫
Ve

(
det g(x)

IJ − 1
)

dV = 0, (9)

with ∆ = 1, · · · ,∆max, α = 1, 2, 3, Γα
β I = −g(θ)

α,I ·g(θ)β , and where A2e is the part of Ae (boundary of element e)
non subject to displacement conditions.
In the case of the loading of a 3D cylindrical sample of a soft tissue with ξ1 as fiber direction, we give in
Appendix C a complete detailed algebraic computation of the FE approximation using trilinear Lagrange
interpolation for displacements, and constant approximation pC(e) on each element e of domain Ve.

2.4. Finite element solution method

Let us firstly mention that the unknowns (θα
∆, pC(e)), α = 1, 2, 3, ∆ = 1, . . . ,∆max, e = 1, . . . , emax, (emax is

the total number of elements involved in the mesh), are the solution of the nonlinear system of equations ((8)-(9)).
To solve this sytem we use the Powell method [13]. This method is a quasi Newton method which consists in:
(i) computing the jacobian matrix of an iterate by forward differences (with step h = 10−8) and (ii) searching the
new iterate on a steepest descent line of the jacobian by the so called “dogleg method” [19]. For this sake, we use
the free package minpack [10]. Moreover, one can observe that in equations ((8)-(9)), the nonlinear functions
involve 3D and 2D integrals over a rectangular domain. Thus, we use the adaptative gaussian quadrature
method to evaluate these integrals with high precision (up to 10−12) . For this purpose, we use the free package
dcuhre [2]. The developed numerical code has been called Samuel for “Solid Active MUscle Element” and has
been written in Fortran 77 on Personal Computer under LinuX operating system.
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Figure 3. First derivative W1 of the passive strain-energy function of Lin and Yin with respect
to the first strain invariant I1: W1 versus I1 for I4 = 0.5, I4 = 1, I4 = 1.5, and I4 = 2.

3. Results and discussion

3.1. Loading of an active thin sample of myocardium

To check the consistency and the accuracy of the proposed FE formulation, we simulate the loading of a thin
sample of myocardium (1.0×1.0×0.1 cm3) in which the fibers are uniformly oriented in one direction (Y1). For
these computations, we modified the strain-energy function suggested by Lin and Yin [7] by suppressing their
beating term and by introducing our active tension β(t)T (0):

Wpas(EPH) = Cp
1 (eQ − 1) with Q = Cp

2 (I1 − 3)2 + Cp
3 (I1 − 3)(I4 − 1) + Cp

4 (I4 − 1)2,

W f
act(EPH) = Ca

1 (I1 − 3)(I4 − 1) + Ca
2 (I1 − 3)2 + Ca

3 (I4 − 1)2 + Ca
4 (I1 − 3),

where (Cp
i , i = 1, · · · , 4) and (Ca

i , i = 1, · · · , 4) are material constants and I1, I4 are two strain invariants
given by I1(EPH) = trCPH and I4(EPH) = fP · CPH fP where CPH is the right Cauchy-Green strain tensor
(CPH = 2EPH + I ). The strain invariant I4 is directly related to the fiber extension λf (I4 = λ2

f ). Notice
that under the assumptions of incompressibility and transversal isotropy, the strain-energy function W can be
expressed in terms of the two strain invariants I1 and I4 only. Moreover this function satisfies the zero-stress
conditions for the passive muscle free of loading. In fact, in this situation, we have I1 = 3, I4 = 1, β = 0
and ∂Wpas/∂I1 = ∂Wpas/∂I4 = 0. The passive anisotropy of the material is illustrated in Figure 3 where we
represent the variations of the derivative W1 = ∂Wpas/∂I1 with respect to I1 for several values of I4. In the
isotropic case, this function should depend only upon I1 (this case corresponds to the curve labelled “I4 = 1”).

The coefficients involved in the strain-energy function are those of Lin and Yin [7]: Cp
1 = 0.292 kPa, Cp

2 =
0.321, Cp

3 = −0.260, Cp
4 = 0.201, Ca

1 = −3.870 kPa, Ca
2 = 4.830 kPa, Ca

3 = 2.512 kPa and Ca
4 = 0.951 kPa.

Our beating tension T (0) is adapted in order to satisfy the equibiaxial experimental results found by Lin and
Yin [7]. The best agreement is obtained for T (0) = 0.6 kPa (see Fig. 4).
Since the exact displacements solutions are linear for such mechanical problems and the pressure is constant,
they must be equal to their numerical FE approximations on each element with trilinear Lagrange interpolation.
Therefore we chose to use only one element with 25 degree of freedom. All the stresses presented in the numerical
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(curve b). Solid lines represent the computed FE solutions, symbols represent the experimental
data [7].

results are the total physical Cauchy stresses. In this case the L2 norm of the error (between the exact and the
FE numerical solution) is less than 10−12.

3.2. Loading of an active thick-walled cylinder

We simulate the mechanical behaviour of an active artery under physiological blood pressure Pint. This artery
is modelised by a thick-walled cylinder with internal radius Rint = 2 mm, external radius Rext = 3.5 mm and
height L = 2 cm. We assume that the medium is made of a hyperelastic anisotropic material with fibers oriented
in the circumferential direction. In this study we used the strain-energy function suggested by Taber [16]:

Wpas(EPH) =
a

b
(eb (I1−3) − 1), (10)

W f
act(EPH) =

af

bf
(ebf (I4−1) − 1 − bf (I4 − 1)) +

cf
df

(I4 +
1
I4

− 2)df . (11)

Notice that he first derivative (with respect to I1) of the passive energy Wpas is not zero at rest (I1 = 3, I4 = 1,
β = 0). The residual term, proportional to I, is actually incorporated in the Lagrangian term −pC I and this
ensures the zero-stress conditions for the passive muscle free of loading, as in the previous case (sample of
myocardium). The coefficients involved in this strain-energy function are a = 10 kPa, b = 0.1, af = 10 kPa,
bf = 0.1, cf = 55 kPa, df = 1.8 and T (0) = 15 kPa.
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3.2.1. Mechanical continuum approach

The kinematics of the deformation for this loading case are r = r(R), θ = Θ, z = λZ, where λ is the stretch
ratio in the z-direction. The non-zero components of the Cauchy stress tensor are

τrr = −pC + 2
(
R

λr

)2
∂W

∂I1
,

τθθ = −pC

r2
+ 2

1
R2

(
∂W

∂I1
+
∂W

∂I4

)
+
β(t)T (0)

r2
,

τzz = −pC + 2λ2 ∂W

∂I1
·

(12)

These quantities verify:

∂τrr

∂r
+

1
r
τrr − r τθθ = 0 (local equilibrium), (13)

λ
r

R

∂r

∂R
= 1 (incompressibility), (14)

with the boundary conditions τrr(re) = 0, τrr(rint) = −Pint and τzz(±L/2) = 0. The Cauchy stress components
in the θα direction are noted ταα. The strain energy W = Wpas + β(t)W f

act is given by equations ((10)-(11)).
The two invariants I1 and I4 verify the relations

I1 =
(
R

λr

)2

+
( r
R

)2

+ λ2, I4 =
( r
R

)2

·

The unknowns of the previous problem are pC(R), λ, r(R) and the solution of our nonlinear system of equa-
tions ((12)-(13)-(14)) are found numerically with a very high accuracy by using a Newton-Raphson method.
We use this solution to validate the FE approximation.

3.2.2. Finite element solution for particular loading

a. Artery with constant tonus

In this simulation, the active fiber tension β(t)T (0) is kept constant with β = 0.5. We use a pulsatile blood
pressure given by Pint = 13 + 5 sin(2πt). The variations of the thick-walled cylinder radii are presented in
Figure 5. Because the elastic properties of the arterial wall, as well as the active fiber tension, are not time-
dependent, the temporal evolution of the found internal and external radii (noted respectively rint and rext) are
in phase with the pulsatile blood pressure.
Due to the symmetry of the problem, we used a quarter of an artery (0 ≤ Θ ≤ π/2) with appropriate boundary
conditions. A good agreement between the previous reference solution and the computed ones is obtained for
six elements in the radial direction, and one element in the Θ and Z directions.

b. Artery with pressure-dependent tonus

In 1902, Bayliss suggested that the distension of the vessel by blood pressure could act as a mechanical
stimulus to the vascular smooth muscle cells, thereby contributing to their tone [1]. However, conclusive
experimental support for this concept was available only recently. We now know that the degree of vascular
distension appears to be a factor of importance in determining vascular tone. We used the suggested constitutive
law to model a hypothetical autoregulation mechanism.
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Figure 5. Temporal evolution of the internal (rint) and external (rext) radii under a pulsatile
blood pressure loading Pint with a constant active fiber tension β T (0).

For this simulation, the active fiber tension as well as the rheological change are in phase with the pulsatile
pressure, and we use as input data the following functions: β(t) = 0.5 (1+ sin(2πt)) with Pint = 13+ 5 sin(2πt).
The resulting variations of the thick-walled cylinder radii are presented in Figure 6 for this autoregulation law
based on fluid pressure. The autoregulation is defined as the relationship between the activation function β(t)
and the pulsatile blood pressure Pint. Very interestingly, the results show that the kinematics of the arterial
wall may be more sensitive to the change of mechanical properties than to the blood pressure. In other words,
it appears that the internal and external radii increase when the blood pressure decreases. In fact, during
this decrease of pressure, we assume that the material becomes more compliant. Thus, the wall kinematics is
mainly driven by the change of rheology. Furthermore, although the pressure and activation are in phase, you
can create with this autoregulation law some delay in the kinematic response. Therefore we believe that the
pressure-activation interaction is a fundamental mechanism which must be well modeled to describe accurately
the behaviour of the arterial wall under physiological or pathological conditions [15, 17].
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Figure 6. Temporal evolution of the internal (rint) and external (rext) radii under a pulsatile
blood pressure loading Pint with a time-dependant tonus β T (0).

4. Conclusion

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures,
is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law
considers the passive and active states as a same hyperelastic continuum medium, and uses an active tension
in order to model the beating kinematic. The variational and the FE formulations are also presented, and the
FE code has been successfully tested by comparing the numerical and the exact solutions for several quasi-static
equilibrium problems. Such a code has been developed for finite elasticity and may be useful to a variety of
applications in soft tissue biomechanics, such as pathological blood vessels with hypertension. This numerical
tool may be adapted to three-dimensional large-scale problems such as modeling the heart or artery, by the use
of an element by element method on a parallel computer.
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Appendix A. Second Piola-Kirchoff stress tensor

Using equations ((2)-(5)), we can write the components P IJ of the second Piola-Kirchoff stress tensor P in
the basis tensor G(x)

I ⊗ G(x)
J under the form:

P IJ = −pC g
(x)IJ + 2δIJ W1 + 2W4 f

(x)I
P f

(x)J
P + β(t)T (0)f

(x)I
C f

(x)J
C ,

where Wi =
∂W

∂Ii
=
∂Wpas

∂Ii
+ β(t)

∂W f
act

∂Ii
i = 1, 4, (15)

f
(x)I
P and f

(x)I
C are the components of the unit vector fP and fC in the bases G(x)

I and g(x)
I , respectively. The

metric tensors G(x)IJ , g(x)IJ are defined in Table 1.
Following the definition of the locally orthonormal body/fiber coordinate system we have f (x)I

P = δ1I . On
the other hand the vector fC is defined through:

fC =
ΦPCfP

‖ ΦPCfP ‖ =
f (x)I
P g(x)

I

‖ f (x)I
P g(x)

I ‖
, (16)

thus f (x)I
C =

δ1I

‖ g(x)
1 ‖

and we get finally:

P IJ = −pC g
(x)IJ + 2δIJ W1 + 2W4 δ

1Iδ1J + β(t)T (0) δ1Iδ1J

‖ g(x)
I=1 ‖2

· (17)

Appendix B. Expression of the surface traction s in term of the physical

Cauchy-stress tensor

The surface traction per unit area of undeformable boundary A is given by s = JNΦ−1
PC τC with J =

detΦPC = 1 (incompressibility), N = N
(θ)
A G(θ)A (unit outward normal vector), τ = τ (θ)pq g(θ)

p g(θ)
q (Cauchy

stress tensor), and ΦPC = g(θ)β ⊗ G(θ)
β . Then

s = sα g(θ)
α

= N
(θ)
A G(θ)A G(θ)

β ⊗ g(θ)β τ (θ)α′β′
g(θ)

α′ ⊗ g(θ)
β′

= N
(θ)
A G(θ)A ∂ΘB

∂θβ
G(θ)

B ⊗ g(θ)β τ (θ)α′β′
g(θ)

α′ ⊗ g(θ)
β′

=
[
N

(θ)
A

∂ΘA

∂θβ
τ (θ)αβ

]
g(θ)

α ,

and so

sα = N
(θ)
A

∂ΘA

∂θβ
τ (θ)αβ

(
= N

(x)
I

∂XI

∂θβ
τ (θ)αβ

)
. (18)

On the other hand, denoting by σ(θ)pq the physical Cauchy stress components we have

σ(θ)pq = τ (θ)pq ‖ g(θ)
p ‖ ‖ g(θ)

q ‖ (19)

with no summation on p, q.
Equations ((18)-(19)) give together the expression of sα in terms of the physical Cauchy-stress tensor

components.
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Figure 7. Cylindrical element.

Appendix C. Finite element formulation in the cylindrical polar case

The world coordinate system used here is (ΘA) = (R,Θ, Z), defined through Y 1 = R cosΘ, Y 2 = R sin Θ,
Y 3 = Z (the same for (θα) in the deformed configuration). The covariant metric tensor (g(θ)αβ), for instance,
is given by the diagonal matrix diag(1, r2, 1). An element e with size ∆R×∆Θ×∆Z (see Fig. 7) is defined by

R(ξ) = Θ1 = R1 + ξ1 ∆R, Θ(ξ) = Θ2 = Y 2 = Θ1 + ξ2 ∆Θ, Z(ξ) = Θ3 = Z1 + ∆Z ξ3. (20)

In the following we use the relation
∂

∂XI
= (·),I =

∂

∂ξK

∂ξK

∂XI
, but

∂ξK

∂XI
=

1
a(I)

δK
I with a(1) = R(ξ)∆Θ,

a(2) = ∆Z, a(3) = ∆R and thus

∂

∂XI
= (·),I =

1
a(I)

∂

∂ξI
(with no summation on I). (21)

The covariant metric tensor (G(ξ)
KL) is given by the diagonal matrix diag(R2(∆Θ)2, (∆Z)2, (∆R)2) and the

volume element in equation (8) is dV =
√
G

(ξ)
KL dξ1 dξ2 dξ3 = a(1)a(2)a(3) dξ1 dξ2 dξ3.

C.1. Expression of the left hand side (LHS) of equation (8)

In the LHS of equation (8) we have, according to equation (17)

P IJ Φ·α
J = P IJ ∂θα

∂XJ

= −pC
∂XI

∂θβ
g(θ)βα + 2W1

∂θα

∂XI
+ 2W4

∂θα

∂X1
δI1 + β(t)T (0)

∂θα

∂X1

∂θβ

∂X1

∂θγ

∂X1 g
(θ)
βγ

δ1I · (22)
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• Terms
∂θα

∂XI
of equation (22) – Using equations ((6)-(7)) and (21) for the element e we get

∂θα

∂XI
=

1
a(I)

8∑
p=1

∂ψp

∂ξI
θα
∆(p,e) with no summation on I. (23)

• Terms
∂XI

∂θα
of equation (22) – We have

∂XI

∂θα
=

1
2 detΦ·α

J

εIJKεαβγ
∂θβ

∂XJ

∂θγ

∂XK
. The incompressibility

equation writes det(g(x)
IJ ) = det(g(θ)

αβ ) (det Φ·α
J )2 = 1. Since detΦ·α

J > 0 and g(θ) = r2 = (θ1)2, we have

det(Φ·α
J ) =

1
θ1

and

∂XI

∂θα
=

1
2
εIJKεαβγ θ

1 ∂θβ

∂XJ

∂θγ

∂XK
· (24)

Using (23) we get

∂XI

∂θα
=

1
2

3∑
J,K=1

εIJK
1

a(J)a(K)

3∑
β,γ=1

8∑
p,q,r=1

εαβγ θ
1
∆(p,e) θ

β
∆(q,e) θ

γ
∆(r,e) ψp

∂ψq

∂ξJ

∂ψr

∂ξK
· (25)

Finally we get for the first part of the LHS of equation (8) (involving (ψn(e)),I), for all ∆ = 1, · · · ,∆max and,
for instance, α = 1 or 3:

LHS1(∆, α) = ∆R∆Θ ∆Z
∑

e

8∑
n(e)=1

Ωn(e)
∆

{
− pC(e)

2 ∆R∆Θ ∆Z

8∑
p,q,r=1

3∑
β,γ=1

εαβγA
n(e)pqr θβ

∆(p,e) θ
γ
∆(q,e) θ

1
∆(r,e)

+
∫

Ve

2W1(I1, I4, t)R(ξ)
3∑

I=1

8∑
p=1

1
a(I)2

∂ψn(e)

∂ξI

∂ψp

∂ξI
θα
∆(p,e) dξ1 dξ2 dξ3

+
∫

Ve

2
R(ξ) (∆Θ)2

W4(I1, I4, t)
8∑

p=1

∂ψn(e)

∂ξ1
∂ψp

∂ξ1
θα
∆(p,e) dξ1 dξ2 dξ3

+β(t)T (0)

∫
Ve

∂ψn(e)

∂ξ1

8∑
p=1

∂ψp

∂ξ1
θα
∆(p,e)

(R(ξ)∆Θ)2 I4
dξ1 dξ2 dξ3

}
,

where we denote, for all i, j, k, l ∈ {1, · · · , 8}

Aijkl =
∫

Ve

3∑
I,J,K=1

εIJK
∂ψi

∂ξI

∂ψj

∂ξJ

∂ψk

∂ξK
ψl dξ1 dξ2 dξ3. (26)

The terms W1 and W4 are given in equation (15), where

I1 = g
(x)
IJ G

(x)IJ = g
(x)
II =

∂yr

∂XI

∂yr

∂XI
=

3∑
β=1

3∑
I=1

1
a(I)2

(
∂θβ

∂ξI

)2

g
(θ)
ββ ,

and

I4 = g
(x)
IJ f I

P f
J
p = g

(x)
11 =

1
(R(ξ)∆Θ)2

3∑
β=1

(
∂θβ

∂ξ1

)2

g
(θ)
ββ ,
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are discretized as above (we skip the details for the sake of legibility).
When α = 1, the second part of the LHS of equation (8) reduces to −P IJ Φ·2

J Γ1
2 I ψn(e), and when α = 2 it

reduces to −P IJ (Φ·1
J Γ2

1 I + Φ·2
J Γ2

2 I)ψn(e). It is zero for α = 3. These terms are discretized as above, using:

Γ1
2 I = −r θ,I =

1
a(I)

θ1
∂θ2

∂ξI
, Γ2

1 I =
1
r
θ,I =

1
a(I)

1
θ1

∂θ2

∂ξI
, Γ2

2 I =
1
r
r,I =

1
a(I)

1
θ1

∂θ1

∂ξI
·

C.2. Expression of the right hand side (RHS) of equation (8)

• Term sα – We write sα under the form (see Appendix B)

sα =
∂XI

∂θβ
ταβ N

(x)
I .

• Term dA of the boundary of element e – On each face of the element e the outward normal vector N has only
one non zero component N (x)

I . We note A(I, e) the part of ∂e ∩ ∂V with outward normal vector in the G(x)I

direction (it may be empty). The surface measure is

dA = dXK dXL =
√

detG(ξ)
K′L′

√
G(ξ)II dξK dξL = R(ξ)∆R∆Θ ∆Z

√
G(ξ)II dξK dξL (K �= L �= I),

with no summation on I. The metric tensors G(ξ)
KL and G(ξ)KL are defined in Table 1. In the case of fibers in

the ξ1-direction we have simply G(ξ)II =
1

a(I)2
. Then, using equation (24) we get

RHS =
1
2

∑
{e, e∩∂V �=∅}

8∑
n(e)=1

Ωn(e)
∆

3∑
I,J,K=1

3∑
β,γ,δ=1

εIJK εβγδ

∫
A(I,e)

σαβ

‖ g(θ)
α ‖ ‖ g(θ)

β ‖
θ1
∂θγ

∂ξJ

∂θδ

∂ξK
N

(x)
I dξK dξL.

In the case of an internal pressure loading σ33 = −Pint, the expression of RHS reduces to

RHS = −1
2
Pint δ

α1
∑

{e, e∩∂V �=∅}

8∑
n(e)=1

Ωn(e)
∆

2∑
J,K=1

3∑
γ,δ=2

8∑
p,q,r=1

ε3JK ε1γδ θ
1
∆(p,e) θ

γ
∆(q,e) θ

δ
∆(r,e)

×
∫

A(3,e)

ψp
∂ψq

∂ξJ

∂ψr

∂ξK
ψn(e) dξ1 dξ2.

C.3. Discretization of the incompressibility equation

We use a uniform approximation for the pressure on each mesh, so the incompressibility equation (9) is∫
Ve

(
det g(x)

IJ − 1
)√

detG(ξ)
KL dξ

1 dξ2 dξ3 = 0, or equivalently

∫
Ve

(
θ1 detΦ·α

J − 1
)√

detG(ξ)
KL dξ1 dξ2 dξ3 = 0. (27)

Using the formula detΦ·α
J = εIJK

∂θ1

∂XI

∂θ2

∂XJ

∂θ3

∂XK
and equation (21), we write equation (27) under the form

8∑
p,q,r,s=1

Apqrs θ1∆(p,e) θ
2
∆(q,e) θ

3
∆(r,e) θ

1
∆(s,e) =

(
R1(e) +

∆R
2

)
∆R∆Θ ∆Z = vol(Ve),

with Apqrs defined by (26).
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