
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 37, No 5, 2003, pp. 741–753

DOI: 10.1051/m2an:2003042

MODELLING OF MISCIBLE LIQUIDS WITH THE KORTEWEG STRESS
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Abstract. When two miscible fluids, such as glycerol (glycerin) and water, are brought in contact,
they immediately diffuse in each other. However if the diffusion is sufficiently slow, large concentration
gradients exist during some time. They can lead to the appearance of an “effective interfacial tension”.
To study these phenomena we use the mathematical model consisting of the diffusion equation with
convective terms and of the Navier-Stokes equations with the Korteweg stress. We prove the global
existence and uniqueness of the solution for the associated initial-boundary value problem in a two-
dimensional bounded domain. We study the longtime behavior of the solution and show that it
converges to the uniform composition distribution with zero velocity field. We also present numerical
simulations of miscible drops and show how transient interfacial phenomena can change their shape.
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1. Introduction

In the case of immiscible liquids nonlocal molecular interaction can lead to appearance of capillary phenomena.
One of the most well-known examples is related to the behavior of drops: a drop of oil in water becomes spherical
because of the interfacial tension which acts to minimize its surface.

In the case of miscible liquids the nonlocal interaction can also exist and lead to some transient phenomena
that, by analogy with the immiscible case, we call transient capillary phenomena. The difficulty to study them
is related not only to their transient character but to the fact that they are very weak and can be hidden
by other phenomena. For example, contrary to a drop of oil on the surface of water, a drop of water on the
surface of glycerin, initially round, changes its shape in time (Fig. 1). Another example of “strange” behavior
of miscible liquids is described in [4]. A drop of water with sugar in glycerin with the adjusted density splits in
two drops, one of them going up and another one going down. In both cases the gravity can play a role but the
explanation of these effects is not known.

To model miscible liquids, as in the examples above, we cannot use the approach often used in the immiscible
case where it is supposed that the liquids are separated by an infinitely narrow interface. We have to consider
not an interface but a transition zone with a finite width. Already in 1893 Van der Waals wrote a paper about
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3 Université Lyon 1, UMR 5585 CNRS, 69622 Villeurbanne Cedex, France. e-mail: texier@maply.univ-lyon1.fr,
volpert@maply.univ-lyon1.fr

c© EDP Sciences, SMAI 2003



742 I. KOSTIN ET AL.

Figure 1. Evolution of the drop of water on the surface of glycerin.

binary systems with continuous variation of density [13] where he had introduced the free energy functional
with the square of the density gradient. This term describes the nonlocal interaction and plays an important
role in the theory of phase separation [3].

Korteweg was the first one to propose in 1901 that a nonuniform density (concentration or temperature)
distribution can induce stresses and convection in a fluid [5]. To model this behavior he suggested to add a
specific stress tensor in the Navier-Stokes equations. In the case of two miscible liquids brought in contact,
this tensor acts like an effective interfacial tension that relaxes with time due to the mass diffusion. There is a
number of more recent works where various approaches are used to derive or to justify such kind of models [1,2].

Under the assumptions that diffusive fluxes are sufficiently small, that the fluids are incompressible and have
the same density and viscosity, following [14], we write the mass and momentum conservation equations in the
form:

∂C

∂t
+ u · ∇C = d∆C, (1.1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+∇ · T (C), (1.2)

∇ · u = 0. (1.3)
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Here C is the concentration, u is the velocity, p is the pressure, ν the viscosity, d is the coefficient of mass
diffusion, ∆ denotes the Laplace operator, T (C) = (Tij)1≤i,j≤2 is an additional stress tensor defined by

T11 = k

(
∂C

∂x2

)2

, T12 = T21 = −k ∂C
∂x1

∂C

∂x2
, T22 = k

(
∂C

∂x1

)2

,

where k is a nonnegative constant.
In this work we study some mathematical properties of this model, namely, the existence and uniqueness

of solutions, and their longtime behavior. We show that the solution converges to the uniform composition
distribution with zero velocity. We carry out numerical simulations to study the behavior of miscible drops. In
particular we show that a drop, initially elliptic, becomes round because of the convection arising due to the
transient interfacial tension. The contents of the paper are as follows. In Section 2 we prove the global existence
and uniqueness of the solution, and study its asymptotic for large time. In Section 3 we present numerical
simulations of miscible drops. Finally, conclusions are given in Section 4.

2. Existence and uniqueness

Let Ω be a bounded regular open set in R2 with boundary Γ. We consider the problem:
Find C : Ω×R+ → R, u : Ω×R+ → R2, and p : Ω×R+ → R, such that

∂C

∂t
+ u · ∇C = d∆C, (2.1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+∇ · T (C), (2.2)

∇ · u = 0. (2.3)

This system of equations is completed by the boundary conditions

∂C

∂n
= 0, u = 0 on Γ (2.4)

and the initial conditions
C(x, 0) = C0(x), u(x, 0) = u0(x), x ∈ Ω. (2.5)

Here ν > 0 and d > 0 are given. The stress tensor T (C) = (Tij)1≤i,j≤2 is defined by

T11 = k

(
∂C

∂x2

)2

, T12 = T21 = −k ∂C
∂x1

∂C

∂x2
, T22 = k

(
∂C

∂x1

)2

, (2.6)

and its divergence by

∇ · T (C) =



∂T11

∂x1
+
∂T12

∂x2

∂T21

∂x1
+
∂T22

∂x2


 .

In this section we aim to show that the above problem possesses a unique solution in some appropriate functional
space. For that purpose, we consider

H1 = H1(Ω), V1 =
{
B ∈ H2(Ω),

∂B

∂n
|Γ = 0

}
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and also
H2 = {v ∈ L2(Ω)2, ∇ · v = 0, v · n = 0 on Γ},

V2 = {v ∈ H1
0 (Ω)2, ∇ · v = 0}·

We will denote by ( , ) and | · | the usual inner product and norm both in L2(Ω) and in L2(Ω)2.
The following existence and uniqueness result holds.

Theorem 2.1. For any initial condition (C0, u0) from H1 × H2 there exists a unique solution of problem
(2.1)–(2.5) which satisfies

C ∈ L2(0, τ ;V1) ∩ C(R+, H1), u ∈ L2(0, τ ;V2) ∩ C(R+, H2), ∀τ > 0.

Proof. The proof relies on the classical Faedo-Galerkin method (see for instance Lions [7], Temam [11, 12],
Ladyzhenskaya [6]). We start with estimates for an exact smooth solution of (2.1)–(2.5). As usual, they will
also be valid for the Galerkin approximation at least if we use a convenient basis (see below).

(i) We first multiply equation (2.1) by C and integrate over Ω. Using (2.4) and the Green formula, we find

1
2

d
dt
|C|2 + d|∇C|2 +

∫
Ω

(u · ∇C)Cdx = 0. (2.7)

Now since ∇ · u = 0 and u = 0 on ∂Ω, integration by parts gives that the last term in (2.7) vanishes. There-
fore (2.7) enables us to say that

C is bounded in L∞(0, τ ;L2(Ω)), ∀τ > 0. (2.8)

(ii) Next, let us multiply (2.1) by −k∆C and integrate over Ω. We find

k

2
d
dt
|∇C|2 + dk|∆C|2 − k

∫
Ω

(u · ∇C)∆Cdx = 0. (2.9)

Also, we multiply (2.2) by u and integrate over Ω. This gives

1
2

d
dt
|u|2 + ν|∇u|2 +

∫
Ω

(u · ∇)u · u dx−
∫

Ω

(∇ · T (C)) · u dx = 0. (2.10)

Here, as above, ∫
Ω

(u · ∇)u · u dx = 0.

Besides, recalling (2.6), we have

∂T11

∂x1
+
∂T12

∂x2
= k

∂C

∂x2

∂2C

∂x1∂x2
− k

∂C

∂x1

∂2C

∂x2
2

= k

(
∂C

∂x2

∂2C

∂x1∂x2
+
∂C

∂x1

∂2C

∂x2
1

)
− k

∂C

∂x1
∆C

=
k

2
∂

∂x1
|∇C|2 − k

∂C

∂x1
∆C.

A similar argument for the second component of the divergence term finally gives the equality

∇ · T (C) =
k

2
∇|∇C|2 − k∆C∇C. (2.11)
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Therefore, since ∇ · u = 0, we have
∫

Ω

(∇ · T (C)) · u dx = −k
∫

Ω

∆C∇C · u dx. (2.12)

Coming back to (2.10), we conclude that

1
2

d
dt
|u|2 + ν|∇u|2 − k

∫
Ω

∆C∇C · u dx = 0. (2.13)

Adding (2.9) and (2.13) enables us to write

1
2

d
dt

(k|∇C|2 + |u|2) + dk|∆C|2 + ν|∇u|2 = 0. (2.14)

Combined with (2.8), this equality implies that

C is bounded in L2(0, τ ;V1) ∩ L∞(0, τ ;H1), ∀τ > 0, (2.15)

u is bounded in L2(0, τ ;V2) ∩ L∞(0, τ ;H2), ∀τ > 0. (2.16)

(iii) The last estimate concerns the time derivatives. In view of equation (2.1) and the Sobolev-Gagliardo-
Nirenberg inequalities, we have

∣∣∣∣∂C∂t
∣∣∣∣ ≤ d|∆C|+ |u · ∇C|
≤ d|∆C|+ ‖u‖L4(Ω)2‖∇C‖L4(Ω)2

≤ d|∆C|+M |u|1/2‖u‖1/2
H1(Ω)2‖C‖1/2

H1(Ω)‖C‖1/2
H2(Ω)

with some M > 0. Next, (2.15) and (2.16) provide that

C′ =
∂C

∂t
is bounded in L2(0, τ ;L2(Ω)), ∀τ > 0. (2.17)

For the u equation, the additional term with respect to the Navier-Stokes equations is the last one. Here,
∇ · T (C) is a sum of expressions of the form λDi(DjCDkC). Denoting by V

′
2 the dual space of V2, we have

‖Di(DjCDkC)‖V ′
2
≤ ‖DjCDkC‖L2(Ω)

≤ ‖DjC‖L4(Ω)‖DkC‖L4(Ω)

≤ M |DjC| 12 |DkC| 12 ‖DjC‖
1
2
H1(Ω)‖DkC‖

1
2
H1(Ω). (2.18)

Using also some classical estimates for the Navier-Stokes equations (see for example Temam [12]), we conclude
that

u′ =
∂u

∂t
is bounded in L2(0, τ ;V

′
2 ), ∀τ > 0. (2.19)

(iv) We now implement the Galerkin method using a “special” basis of H1 (and of V1) composed with the
eigenvectors of the Laplace operator associated to the Neumann boundary condition, together with an arbitrary
basis of V2. The Galerkin procedure yields the finite-dimensional solutions Cm and um defined on some maximal
interval of time [0, Tm[. It is easy to see that the estimates (2.15, 2.16, 2.17) and (2.19) apply to Cm and um.
Consequently the solutions are global in time (Tm = +∞).
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Also, the estimates provide the existence of subsequences, still denoted by Cm and um, such that
Cm → C in L2(0, T ;V1) weakly,
Cm → C in L∞(0, T ;H1) weak-star,
C′m → C′ in L2(0, T ;V ′1) weakly,

and
um → u dans L2(0, T ;V2) weakly,
um → u dans L∞(0, T ;H2) weak-star,
u′m → u′ dans L2(0, T ;V ′2) weakly.

Applying some classical compactness theorems (see for example [7, 12]) we also obtain the strong convergence
of the Galerkin approximations (Cm, um) in the space L2(0, τ ;H1(Ω))× L2(0, τ ;L2(Ω)2). We can now pass to
the limit in the finite-dimensional problems and obtain the existence of solutions for the system (2.1)–(2.5).
The arguments are mostly classical, and we only consider the term related to ∇ · T (C). For the approximate
solutions, similarly to (2.18), we see that DjCmDkCm is bounded in L2(]0, τ [×Ω), so that some subsequence
converges weakly in L2(]0, τ [×Ω) to some function χjk ∈ L2(]0, τ [×Ω). Using the strong convergence of Cm in
the space L2(0, τ ;H1(Ω)), we infer immediately that χjk = DjCDkC. From this we conclude easily that we
can pass to the limit in the approximate problem, and we obtain the existence of a solution of (2.1)–(2.5).

(v) We now aim to prove the uniqueness of such a solution. Let (C1, u1) and (C2, u2) be two solutions
of (2.1)–(2.5). We set C = C1 − C2 and u = u1 − u2. Using the identity (2.11), we see that C and u are
solutions of the problem

∂C

∂t
− d∆C + u1 · ∇C1 − u2 · ∇C2 = 0 (2.20)

∂u

∂t
− ν∆u + (u1 · ∇)u1 − (u2 · ∇)u2 +∇p1 −∇p2 = k∇(|∇C1|2 − |∇C2|2)

−k(∆C1∇C1 −∆C2∇C2). (2.21)

Next, we multiply (2.20) by −k∆C, (2.21) by u, integrate over Ω and add the corresponding equalities. We
obtain

1
2

d
dt

(|u|2 + k|∇C|2) + kd |∆C|2 + ν|∇u|2 =

−
∫

Ω

((u · ∇)u2) · u dx+ k

∫
Ω

(−∆C1∇C · u+ ∆C∇C · u1) dx. (2.22)

The integrals in the right-hand side can be estimated thanks to interpolation inequalities and the Young in-
equality. We find:

∣∣∣∣
∫

Ω

((u · ∇)u2) · u dx
∣∣∣∣ ≤

√
2|u| |∇u| |∇u2| ≤ ε|∇u|2 + Cε|u|2|∇u2|2.

∣∣∣∣
∫

Ω

∆C1∇C · u dx
∣∣∣∣ ≤ M |∆C1||∆C| 12 |∇C| 12 |∇u| 12 |u| 12

≤ ε
(|∆C|2 + |∇u|2) + Cε|∆C1|2 |∇C| |u|,

where M and ε are positive numbers, and a constant Cε > 0 depends on ε. Similarly,
∣∣∣∣
∫

Ω

∆C ∇C · u1 dx
∣∣∣∣ ≤ M |∆C| 32 |∇C| 12 |∇u1| 12 |u1| 12

≤ ε|∆C|2 + Cε|∇C|2 |∇u1|2 |u1|2.
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Now take ε such that 2ε < min(ν, kd). We obtain:

d
dt

[|u|2 + k|∇C|2] ≤ Cε

(|u|2|∇u2|2 + |∆C1|2 |∇C| |u|+ |∇C|2|u1|2|∇u1|2)
≤ Cε

(|∇u2|2 + |∆C1|2 + |u1|2|∇u1|2) [|u|2 + k|∇C|2] . (2.23)

Let us denote
φ(t) = |∇u2(t)|2 + |∆C1(t)|2 + |u1(t)|2|∇u1(t)|2.

Since u1, u2 ∈ L2(0, τ ;H1
0 (Ω)2) ∩ L∞(0, τ ;L2(Ω)2) and C1, C2 ∈ L2(0, τ ;H2(Ω)) ∩ L∞(0, τ ;H1(Ω)) we have

φ ∈ L1([0, τ ]). Hence the inequality (2.23) can be rewritten in the form

∀t ≥ 0,
d
dt

[
exp

(
−Cε

∫ t

0

φ(s)ds
) (|u|2 + k|∇C|2)

]
≤ 0.

It follows that

∀t ≥ 0, exp
(
−Cε

∫ t

0

φ(s)ds
) (|u|2 + k|∇C|2) ≤ |u(0)|2 + k|∇C(0)|2.

Since the right-hand side vanishes, we have C = u = 0 which provides the uniqueness result. The proof of
Theorem 2.1 is complete. �

Remark 2.2. 1. From the proof of uniqueness follows the continuous dependence of the solution on the initial
condition.

2. The equation for the concentration satisfies the maximum principle. Therefore, from the estimate a ≤
C0(x) ≤ b for the initial condition follows the same estimate for the solution.

At the end of this section we study the longtime behavior of solutions of problem (2.1)–(2.3). First of all we
note that the mean value of C is conserved:

∫
Ω

C(x, t)dx =
∫

Ω

C0(x)dx, ∀t ≥ 0.

This equality can be obtained by integration of (2.1) over Ω.

Theorem 2.3. The solution (C, u) of (2.1)–(2.3) converges to a constant solution as t→∞:

C(x, t) →
∫

Ω

C0(x)dx in H1,

u(x, t) → 0 in H2.

The convergence is exponential in time.

Proof. Let

C̄(x, t) = C(x, t) −
∫

Ω

C(x, t)dx.

Then C̄ satisfies the equation
∂C̄

∂t
+ u · ∇C̄ = d∆C̄.

Multiplying it by C̄ and integrating over Ω, we obtain

1
2

d
dt
|C̄|2 + d|∇C̄|2 = 0.
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From this and (2.14), we conclude that

1
2

d
dt

(|C̄|2 + k|∇C̄|2 + |u|2) + d|∇C̄|2 + dk|∆C̄|2 + ν|∇u|2 = 0. (2.24)

Now u = 0 on Γ, so that the Poincaré inequality yields that

|∇u| ≥ α1|u|

with some positive α1. Also since
∫
Ω
C̄(x, t)dx = 0, it is known that there exists some α2 > 0 such that

|∇C̄| ≥ α2|C̄|.

Finally we also have
|∆C̃| ≥ α3|∇C̃|,

where α3 denotes the smallest eigenvalue of −∆ associated with the Neumann boundary condition for zero
mean value functions. Let α = min(α1, α2, α3). We infer from (2.24) that

1
2

d
dt

(|C̄|2 + k|∇C̄|2 + |u|2) + αmin(d, ν)
(|∇C̄|2 + k|∆C̄|2 + |∇u|2) ≤ 0.

Thus, by integration in time,

|C̄(t)|2 + k|∇C̄(t)|2 + |u(t)|2 ≤ e−2α min(d,ν)t
(|C̄(0)|2 + k|∇C̄(0)|2 + |u(0)|2) .

Theorem 2.3 is proved. �

3. Numerical results

In this section we present numerical simulations of problem (2.1)–(2.5). We have proved in Theorem 2.2
that the composition C converges to a uniform distribution in space, and the velocity u to 0 as time goes to
infinity. However, during some transient time, while the concentration gradients remain large they can induce
convection and change the shape of the drop.

3.1. Numerical method

For the numerical study, we introduce a stream function/vorticity formulation of the problem. We define the
stream function ψ and the vorticity ω by:

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1

and
ω = −∆ψ =

∂u2

∂x1
− ∂u1

∂x2
·

The equations of motion take the form

∂ω

∂t
= ν∆ω − ∂ψ

∂x2

∂ω

∂x1
+
∂ψ

∂x1

∂ω

∂x2
+

1
ρ

[
∂

∂x1

(
∂T21

∂x1
+
∂T22

∂x2

)
− ∂

∂x2

(
∂T11

∂x1
+
∂T12

∂x2

)]
, (3.1)

0 = ∆ψ + ω. (3.2)

The boundary condition u = 0 can be written as

∇ψ|∂Ω = 0.
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Figure 2. Evolution of the spherical drop: a) initial composition and b) difference between
the composition after 2 s and the initial composition.

In particular, ψ is constant on the boundary of Ω, and we suppose that this constant equals zero. For the
vorticity, we introduce an artificial second order boundary condition, obtained from a Taylor expansion of the
stream function in the neighbourhood of the boundary. For example, at the left boundary

ωn
0,j = −1

2
ωn

1,j −
3ψn

1,j

h2
,

where the superscript n corresponds to the time discretization, the subscripts i, j to the space discretization,
h is the space step. To solve the problem numerically we use the finite difference alternating direction method
with the implicit-explicit scheme. Numerical accuracy is verified by decreasing the time and space steps.

3.2. Evolution of a spherical drop

We first consider a spherical drop in a square domain with the dimensions L1 = L2 = 3 cm. The parameter k
is estimated experimentally for the system water/glycerol, using a spinning drop tensiometer [9, 10]. We take
the following values of the parameters:

ν = 10−4 m2/s; d = 2.5× 10−8 m2/s; k = 10−9 m4/s2.

The simulations show that the composition remains radially symmetric (Fig. 2), and there is a weak convection.
If we decrease the space step, the convective motion weakens (Fig. 3). Therefore it is a pure numerical effect
that becomes negligible if the space discretization is sufficiently good.
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Figure 3. Maximum of the stream function in the 2.5 first seconds. From top to bottom the
number of discretization points is 100, 200 and 300.
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Figure 4. Maximum of the stream function in the first second for an elliptic drop. The plain
curve corresponds to 100×200 discretization points, and ht = 5 ·10−5 s. The crosses correspond
to 150× 300 discretization points, and ht = 2 · 10−5 s.

3.3. Evolution of an elliptic drop

Here we consider a rectangular domain with the dimensions L1 = L2/2 = 3 cm. The drop is initially elliptic.
We observe that the convection induced by the concentration gradients is now significant (see Fig. 4). Moreover,
it does not depend any longer on the discretization step.

As a consequence of these flows, the shape of the drop evolves to a spherical shape (see Fig. 5). The variation
of concentration is much higher than in the previous case. A comparison with a purely diffusive case (with no
Korteweg stress) shows that this evolution is mainly a consequence of this stress.
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Figure 5. Evolution of the elliptic drop: a) initial composition and b) composition after 10 s.

3.4. Evolution of a long drop

Finally we consider the case of a long linear drop (jet). In the case of immiscible liquids and in three space
dimensions, the drop would break into two or more droplets. Here the behaviour is somehow similar: after a
few seconds, there is a constriction of the drop in its middle, and it seems to break into two parts. But as time
grows, its shape becomes more spherical, as in the previous case (see Fig. 6).

4. Conclusions

To study behavior of miscible liquids we use the model which includes the diffusion equation with convec-
tive terms and the Navier-Stokes equations with the Korteweg stress describing the nonlocal interaction and
resulting in a volume force similar to the capillary force for immiscible liquids. This model admits an energy
functional that decreases in time if the Korteweg constant k is positive. The existence of the Lyapunov func-
tional determines some mathematical properties of the problem. It allows us to prove the global existence and
uniqueness of the solution, and to study its longtime asymptotics.

We carry out numerical simulations of the problem to investigate behavior of miscible drops. For the phys-
ically realistic values of the parameters a two-dimensional drop initially elliptic becomes round because of the
convection. This first stage of the process takes about several seconds of the physical time. After that the
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Figure 6. Evolution of the composition for a long drop: a) t = 0 s, b) t = 60 s and c) t = 90
s; left – composition, right – drop profile (level lines of the composition).

convection decays, and the drop diffuses during several hours remaining round. Finally the system converges
to the homogeneous in space equilibrium.

It is easy to verify that radially symmetric and plane composition distributions can exist without convection.
For example, if the initial composition distribution is radially symmetric and the initial velocity is zero, then the
composition will diffuse being radially symmetric, and the velocity will remain zero. Our conjecture is that any
other composition distributions except for radially symmetric and plane ones cannot exist without convection.

An interesting behavior is observed for long drops or jets. In the beginning they form two elliptic drops
which touch each other. This can recall the capillary instability where a jet splits into drops. However it is just
a transient stage before the next one where they have a tendency to form a single drop.
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As it is already mentioned in the introduction, transient capillary phenomena in miscible liquids are very
weak. To study them, experiments in the International Space Station are planned [8, 9].
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